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1 Introduction

In a cold, nearly empty Universe, spontaneous breaking of the electroweak (EW) symmetry

takes place because the Higgs potential energy is minimized when the Higgs field(s) acquire

non-vanishing vacuum expectation values (VEVs). But in the early Universe, when the

scalar fields are surrounded by a thermal plasma of particles, the net free-energy of the

entire system has further contributions stemming from interactions with this thermal bath,

which yield a restoration of the EW symmetry for temperatures T & 100 GeV. Tracing the

thermal history of the Higgs field from the high temperature regime down to the T = 0

vacuum of today reveals the properties of the Electroweak Phase Transition (EWPT), the

process of EW symmetry breaking in the early Universe.

The detailed dynamics of the EWPT is a crucial ingredient for a number of cosmological

observables. One example is the baryon asymmetry of the Universe (BAU), which could be

dynamically generated during a first order EWPT as long as the nucleation and expansion of

vacuum bubbles provide a strong enough departure from thermal equilibrium as required by

the Sakharov conditions [1]. For the minimal Higgs sector of the SM, a first order transition

would only be achieved for a Higgs mass mh lower than the mass of the W boson, mh .
mW [2], and thus does not occur in the SM [3]. The BAU therefore constitutes concrete
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evidence of physics beyond the SM which can be connected to the EWPT and the precise

nature of the Higgs sector. In addition, a first order EWPT would generate a stochastic

background of gravitational waves, potentially observable with the upcoming space-based

gravitational wave interferometer LISA (see [4] for a review). Since the properties of

the EWPT are highly sensitive to the presence of new degrees of freedom at the EW

scale coupling to the Higgs field, its study provides a tantalising research topic at the

interface of particle physics and cosmology, shedding light on the ultimate structure of the

sector responsible for EW symmetry breaking in Nature. This is a key goal of the physics

programme of the LHC and future colliders.

To fully determine the nature of the EWPT one typically has to inspect the shape and

evolution of the Higgs thermal effective potential with temperature, which faces various

theoretical issues (see e.g. [5–7]). Furthermore, determining the phase transition strength

is usually a computationally expensive algorithm. On the other hand, it has been recently

pointed out that, in theories where a modified scalar sector acts as the main source of a

strong phase transition, the EWPT strength is closely correlated with the zero temperature

vacuum energy difference of the theory [8, 9]. The amount by which the EW broken vacuum

is “uplifted” with respect to the SM case constitutes a good indicator of the increase in

the strength of the EWPT.

In this work we will investigate this correlation in the context of two-Higgs-doublet

models (2HDMs) (see [10] for a review). Despite the minimality of the model, the existence

of additional scalars can induce a strongly first order phase transition [11–14], as well as

introduce new sources of Charge-Parity (CP) violation to enable the successful generation

of the BAU via EW baryogenesis in some regions of its parameter space [15–17]. Ultimately,

lattice calculations will provide a detailed map of the 2HDM parameter region in which

a strong first order EWPT occurs, but perturbative calculations can already point to the

main features of such a map. We show that the correlation between the EWPT strength

and the zero temperature vacuum energy uplifting is a powerful analytic tool to explore

the interplay between experimental/theoretical constraints and the strength of the EWPT

in 2HDM scenarios.

Our analysis indicates that this interplay results in a strong EWPT favouring a hier-

archical 2HDM scalar spectrum, with a preference for a heavy charged and pseudoscalar

as compared to the neutral scalars (which includes the 125 GeV Higgs boson). This leads

to a “smoking-gun” signature at the LHC [14] (see also [18, 19]). We also show a signifi-

cant deviation of the Higgs self-coupling from its SM value to be a collateral prediction of

2HDM scenarios with a strong EWPT [20, 21]. Accessing the Higgs self-coupling is a key

goal of the LHC and future colliders (see e.g. [22–25] for recent analyses), as it provides a

direct probe of the nature of EW symmetry breaking. In the High-Luminosity LHC the

sensitivity of such measurement is expected to be ∼ 50 % [26, 27]. We will show that this

could be enough to probe some scenarios with a strong EWPT in 2HDMs.

In section 2 we provide a review of the 2HDM and establish our notation as well

as the relevant theoretical constraints on the model parameters. Section 3 elaborates on

the computation of the vacuum energy difference in the 2HDM. Section 4 presents the

numerical scan of the 2HDM parameter space, establishing the correlation between the
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vacuum energy difference and the strength of the EWPT, well as highlighting a number

of key features of 2HDMs that exhibit strongly first order EWPTs. We move to a more

analytical treatment in section 5, using the vacuum energy difference as a proxy for the

phase transition strength, delving deeper into the effects that establish the preferred regions

of parameter space. Section 6 discusses the connection of the phase transition with the

trilinear Higgs self-coupling before conclusions are drawn in section 7.

2 Reviewing two Higgs doublet scenarios

Let us start with a brief review of the 2HDM, which also defines our notation in this work.

We consider a 2HDM scalar potential with a softly broken Z2 symmetry to inhibit tree-

level flavour changing neutral currents (FCNC), and for simplicity we neglect effects from

CP violation. We stress that CP violation is key for the computation of the final baryon

asymmetry, however its impact on the phase transition strength is typically negligible, as

electric dipole moment (EDM) constraints require the CP violating effects arising from the

2HDM scalar potential to be small [17, 28]. The scalar potential then reads

Vtree(Φ1,Φ2) = µ2
1 |Φ1|2 + µ2

2 |Φ2|2 − µ2
[
Φ†1Φ2 + h.c.

]
+
λ1

2
|Φ1|4 +

λ2

2
|Φ2|4

+ λ3 |Φ1|2 |Φ2|2 + λ4

∣∣∣Φ†1Φ2

∣∣∣2 +
λ5

2

[(
Φ†1Φ2

)2
+ h.c.

]
, (2.1)

where the two scalar SU(2)L doublets Φj (j = 1, 2) may be written as

Φk =

(
φ+
k

vk+ϕk+i ηk√
2

)
. (2.2)

The physical scalar sector of a 2HDM is comprised of two CP-even neutral scalars, h and

H0 (with mH0 ≥ mh), plus a neutral CP-odd scalar A0 and a charged scalar H±. In this

work we identify h with the observed 125 GeV Higgs boson, but we stress that our main

arguments can be easily extended to the flipped case where H0 is the recently observed

particle and h is a lighter and yet undetected scalar (experimental constraints on this

scenario have been recently discussed in [29–31]).

Apart from mh and v = 246 GeV, the scalar potential (2.1) may be parametrized in

terms of tan β ≡ v2/v1 (with v2
1 + v2

2 = v2), the angle α parametrising the mixing between

the CP-even states, the scalar masses mH0 , mA0 , mH± and the mass scale M ,

M2 ≡ µ2

(
tanβ +

1

tanβ

)
. (2.3)

The relation between the physical states h, H0, A0, H
± and the states ϕj , ηj , φ

±
j is given by

H± = −sβ φ±1 + cβ φ
±
2 , A0 = −sβ η1 + cβ η2,

h = −sα ϕ1 + cα ϕ2, H0 = −cα ϕ1 − sα ϕ2,

with sβ , cβ , sα, cα ≡ sinβ, cosβ, sinα, cosα, respectively. Regarding the couplings of the

two doublets Φ1,2 to fermions, the Z2 symmetry in (2.1), even when softly broken by
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µ2, may be used to forbid potentially dangerous tree-level FCNCs by requiring that each

fermion type couple to one doublet only [32]. By convention, up-type quarks couple to Φ2.

In Type I 2HDM all the other fermions also couple to Φ2, while for Type II down-type

quarks and leptons couple to H1. There are two more possibilities (depending on the Z2

parity assignment for leptons with respect to down-type quarks), but we focus here on

Types I and II. The parameters tβ ≡ tanβ and cβ−α ≡ cos (β − α) control the strength of

the couplings of h, H0, A0 and H± to gauge bosons and fermions. In particular, one can

identify the so-called alignment limit [33] cβ−α = 0, for which h couples to SM particles

exactly like the SM Higgs. The parameters in the scalar potential can be related to the

masses and mixings in the scalar sector as shown in appendix A.

In order to obtain a viable 2HDM scenario, theoretical constraints from unitarity,

perturbativity and stability/boundedness from below of the scalar potential (2.1) need

to be satisfied. These will play an important role in the following discussion. Tree-level

boundedness from below of the potential (2.1) requires

λ1 > 0 , λ2 > 0 , λ3 > −
√
λ1λ2 , λ3 + λ4 − |λ5| > −

√
λ1λ2 . (2.4)

At the same time, tree-level unitarity1 imposes bounds on the size of various combinations

of the quartic couplings λi [35, 36]. Similar (although generically less stringent) bounds on

λi may be obtained from perturbativity arguments. Finally, in order to guarantee absolute

tree-level stability of the EW minimum (by enforcing the EW minimum to be the deeper

minimum of the tree-level potential, thus ensuring that we do not live in a so-called “panic

vacuum” [37, 38]), the couplings must satisfy[(
m2
H±

v2
+
λ4

2

)
− |λ5|2

4

] [
m2
H±

v2
+

√
λ1 λ2 − λ3

2

]
> 0, (2.5)

which can be rewritten as

M2m2
A0

2v4

{
M2

v2
+

(m2
H0
−m2

h)

v2

[
s2
β−α−c2

β−α−cβ−α sβ−α(tβ−t−1
β )
]
+
√
λ1λ2

}
> 0. (2.6)

Note that, in alignment, the condition that no panic-vacua exist at tree-level is satisfied

for M2 > 0.

In the following, it will prove convenient to use the Higgs basis of the 2HDM [33], given

by the rotation from the doublet fields in (2.2) via

H1 = cβ Φ1 + sβ Φ2,

H2 = −sβ Φ1 + cβ Φ2 . (2.7)

The two doublets in the Higgs basis read

H1 =

(
G+

v+h1+iG0√
2

)
, H2 =

(
H+

h2+i A0√
2

)
, (2.8)

1For a recent one-loop analysis, leading to slightly more stringent bounds, see [34].
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such that the EW broken phase is characterized by 〈h1〉 = v, 〈h2〉 = 0, with h1, h2 the CP

even field directions of H1 and H2. The 2HDM tree-level potential for Hi reads

Vtree(H1, H2) = µ̄2
1 |H1|2 + µ̄2

2 |H2|2 − µ̄2
[
H†1H2 + H.c.

]
+
λ̄1

2
|H1|4

+
λ̄2

2
|H2|4 + λ̄3 |H1|2 |H2|2 + λ̄4

∣∣∣H†1H2

∣∣∣2 +
λ̄5

2

[(
H†1H2

)2
+ H.c.

]
+ λ̄6

[
|H1|2H†1H2 + H.c.

]
+ λ̄7

[
|H2|2H†1H2 + H.c.

]
, (2.9)

with the modified mass parameters µ̄2
1, µ̄2

2, µ̄2 and quartic couplings λ̄1−7 being functions

of m2
H± , m2

A0
, m2

H0
, m2

h, M2, cβ−α and tβ (see appendix A.2). We also note that in the

Higgs basis M precisely corresponds to the mass scale of the second doublet prior to EW

symmetry breaking.

3 The electroweak phase transition with two Higgs doublets

The evolution of the Higgs vacuum in the early Universe, in thermal equilibrium, can be

described by means of the finite temperature effective potential V T
eff(φ, T ) for the Higgs

(and possibly other scalar fields subject to evolution in the early Universe)

V T
eff(φ, T ) = Vtree(φ) + V1(φ) + VT (φ, T ) , (3.1)

with φ representing the set of relevant scalar fields including the Higgs, V1 being the

T = 0 radiative Coleman-Weinberg piece of the effective potential and VT the thermal

contribution. The free-energy density difference FT between the SU(2)L×U(1)Y symmetric

phase 〈φ〉 = 0 and the broken phase 〈φ〉 = vT 6= 0 at temperature T is then

FT = V T
eff(vT , T )− V T

eff(0, T )

≡ F0 + V0(vT )− V0(v0) + VT (vT , T )− VT (0, T ) = F0 + ∆VT .
(3.2)

The first contribution, F0 < 0, corresponds to the vacuum energy difference at T = 0,

while the second contribution ∆VT ≥ 0 is monotonically increasing with T , vanishing as T

vanishes. The critical temperature, Tc, below which the EWPT can proceed in the early

Universe is then defined by FTc = 0.

A first order EWPT is characterized by the presence of a potential barrier between the

symmetric and broken phases as FT turns negative during the evolution of the Universe.

Such a first order transition could be responsible for the generation of the matter-antimatter

asymmetry of the Universe through EW baryogenesis, should the strength of the transition

be sufficiently large (see [39–41] for reviews on the EWPT and baryogenesis). The details

of the tunneling process [42–44] between symmetric and broken phases in a first order

EWPT depend on the functional form of ∆VT in (3.2). Nevertheless, it has been recently

shown that in a wide class of extensions of the SM potentially leading to a first order

EWPT, the strength of the transition, which is the relevant quantity for EW baryogenesis,

is dominantly controlled by the value of F0 w.r.t. its corresponding value for the SM,

FSM
0 [8, 9]. In this work we show that this is indeed the case for the 2HDM. It is then
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possible to perform a systematic study of the 2HDM parameter space in which a strongly

first order EWPT is favoured by analyzing the behaviour of ∆F0 ≡ F0 −FSM
0 . Moreover,

we stress that ∆F0 is renormalization scale independent and safe from potential gauge

dependence issues [5, 6], being manifestly gauge invariant. These highlight the advantage

of using ∆F0 to explore the regions of 2HDM parameter space where a strongly first order

EWPT is possible, as well as its phenomenological implications.

Let us now discuss the vacuum energy at 1-loop in 2HDM scenarios. For the renor-

malization of the 2HDM 1-loop effective potential we use an on-shell scheme, imposing

(among other conditions) that the value of the 1-loop vevs for the two doublets and the

1-loop physical masses mh, mH0 , mA0 and mH± are equal to their tree-level values. The

renormalized 1-loop effective potential in the Higgs basis reads

Vtree(H1, H2) + VCT(H1, H2) + V1, (3.3)

with the counterterm potential being

VCT(H1, H2) = −δµ̄2
1 |H1|2 + δµ̄2

2 |H2|2 − δµ̄2
[
H†1H2 + H.c.

]
+
δλ̄1

2
|H1|4

+
δλ̄2

2
|H2|4 + δλ̄3 |H1|2 |H2|2 + δλ̄4

∣∣∣H†1H2

∣∣∣2 +
δλ̄5

2

[(
H†1H2

)2
+ H.c.

]
+ δλ̄6

[
|H1|2H†1H2 + H.c.

]
+ δλ̄7

[
|H2|2H†1H2 + H.c.

]
. (3.4)

An immediate advantage of working in the Higgs basis is that, in order to obtain the vacuum

energy F0, we only need to compute the on-shell renormalization conditions explicitly2 for

δµ̄2
1 and δλ̄1

− δµ̄2
1 +

δλ̄1 v
2

2
+

1

v

∂V1

∂h1

∣∣∣∣
v

= 0 , −δµ̄2
1 +

3 δλ̄1 v
2

2
+
∂2V1

∂h2
1

∣∣∣∣
v

= 0 . (3.5)

The 1-loop piece of the scalar potential V1 in (3.3) is given in Landau gauge (see e.g. [15]) by

V1 =
∑
α

nα
m4
α(h1, h2)

64π2

(
log
|m2

α(h1, h2)|
Q2

− Cα
)
. (3.6)

The index α sums over W, Z gauge bosons, top quark and 2HDM scalars including Gold-

stone bosons,3 with nα > 0 (nα < 0) for bosons (fermions). The various Cα are constants

which depend on the renormalization scheme, and may be disregarded as they drop out in

the following analysis. The vacuum energy F0 reads

F0 = −m
2
hv

2

8
− v2

8
c2
β−α (m2

H0
−m2

h) + ∆V1 −
δµ̄2

1 v
2

2
+
δλ̄1 v

4

8
, (3.7)

where ∆V1 is to be understood as the difference of the Coleman-Weinberg terms (3.6)

evaluated at the electroweak minimum and at the origin. As we are ultimately interested

2The Higgs basis condition 〈h2〉 = 0 is maintained at 1-loop by the choice of δµ̄2 and δλ̄6.
3We note the squared masses of the scalars do not vanish at the origin in general. As these masses may

be negative for certain values of h1, h2, the absolute value in the argument of the logarithm ensures only

the real part of the potential is evaluated.
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in ∆F0, we also need to compute FSM
0 using the same on-shell renormalization procedure

(demanding the 1-loop Higgs vev and mass to match their tree level values), obtaining

FSM
0 = −m

2
hv

2

8
+

1

64π2

(
3m4

W +
3

2
m4
Z − 6m4

t

)
+

m4
h

64π2
(3 + log 2) . (3.8)

The first term in (3.7) and (3.8) corresponds to the tree-level vacuum energy difference

for the SM. We also note that the contributions to ∆V1 from the gauge bosons W and

Z and the top quark are identical in the SM and 2HDM, and so drop out from ∆F0.

Combining (3.7) and (3.8), we obtain

∆F0 = −v
2

8
c2
β−α (m2

H0
−m2

h)− m4
h

64π2
(3 + log 2)−

∑
k

m4
0k

64π2

(
log
|m2

0k
|

Q2
− 1

2

)
(3.9)

+
1

64π2

∑
k

1

4

{
(vIk)

2 − 2m4
k +

[(
vIk − 2m2

k

)2
+m2

k

(
v2Jk − vIk

)]
log

m2
k

Q2

}
,

with m2
0k

the (possibly negative) squared scalar masses for k = H±, A0, H0, h evaluated at

the origin. Further details on the derivation of ∆F0 including explicit expressions for Ik
and Jk are given in appendix B.

It is possible to show that the Q2 dependence in (3.9) cancels out, so that ∆F0 is renor-

malization scale independent. We also note that the first term in (3.9), which corresponds

to the tree-level contribution to ∆F0, is negative definite and vanishes in the alignment

limit cβ−α → 0. In this limit, (3.9) simplifies considerably and reads

∆F0 =
1

64π2

[ (
m2
h − 2M2

)2(3

2
+

1

2
log

[
4mA0 mH0 m

2
H±(

m2
h − 2M2

)2
])

(3.10)

+
1

2

(
m4
A0

+m4
H0

+ 2m4
H±
)

+
(
m2
h − 2M2

) (
m2
A0

+m2
H0

+ 2m2
H±
) ]
.

4 Vacuum energy vs EW phase transition strength: numerical scan

In order to show explicitly the correlation between the vacuum energy difference ∆F0

and the nature of the EW phase transition in 2HDMs, we perform a Monte-Carlo scan

over an extensive region of the 2HDM parameter space. We vary mass parameters from

100−1000 GeV (but with mH0 > mh), and limit ourselves to the low tan β < 10 region, since

very large tan β is uninteresting for practical applications such as the baryon asymmetry

computation. Each scanned point is tested for:

• Tree-level unitarity and perturbativity (by requiring the tree-level quartic self-

couplings among the physical scalars to be smaller than 2π).4

4In the literature, perturbativity is typically imposed as λ1−5 < 4π. However, the scalar vertex entering

a loop expansion involves the self-coupling of physical states, rather than the flavour eigenstates, hence the

limits must be imposed on the physical quartic couplings. Furthermore, we chose a more stringent upper

bound of 2π for the tree-level couplings, as this tends to ensure well-behaved running up to or beyond

Λ & 2 TeV. For the impact of requiring the running couplings to remain small all the way up to a certain

cutoff scale, see discussion in section 5.
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• Stability of the electroweak vacuum at tree-level (cf. eqs. (2.4) and (2.6)) and at 1-

loop level by directly searching for lower secondary minima and/or unboundedness

of the effective potential up to a cutoff Λ = 5 TeV.5

• Limits from EW precision observables [45–48].

• Flavour constraints, of which the most relevant in the low tan β region are B0 − B̄0

mixing [49, 50] and B̄ → Xsγ decays [51–55].

• Bounds from direct scalar searches using HiggsBounds [56], and agreement with

measured properties of the mh = 125 GeV Higgs boson using HiggsSignals [57].

A point passing all these tests is considered physical. For each of these, the strength of

the phase transition is computed by increasing the temperature, starting at T = 0, and

following the electroweak minimum (whose norm at temperature T is denoted vT ), until

we reach the critical temperature Tc for which FTc = 0. The phase transition is considered

strong if

ξ ≡ vTc
Tc
≥ 1. (4.1)

Clearly, the larger ∆F0 is, the smaller the temperature corrections required in order

to reach FTc = 0. Since vT also grows as T decreases, the overall result is that the strength

of the phase transition should be directly related to ∆F0. This is illustrated in figure 1.

Here, the filled green contours indicate the number of physical points in a given region of

the parameter space. In any such region we also define

Pξ>1 ≡
# points with ξ > 1

# physical points
, (4.2)

whose contours are shown in the empty curves indicating the percentage of points in the

encircled region for which the phase transition is strong (e.g. in figure 1 (top), 95% of points

inside the black solid curve have ξ ≥ 1). Note that the latter curves, being the ratio of

density distributions in a certain region, are less sensitive to the priors of the scan than the

actual distribution of points alone, and therefore offer a more meaningful physical picture

in that they can be interpreted as a posterior probability density for requiring a strongly

first-order EWPT given the existing constraints on the model.

For convenience, we normalize the vacuum energy by the SM value at 1-loop6

FSM
0 ≈ −1.25× 108 GeV4. It is clear from figure 1 (top) that as ∆F0/FSM

0 decreases both

Tc and the likelihood of having a strong phase transition increase. Notice, furthermore,

that the phase transition is guaranteed to be strong if ∆F0/FSM
0 . −0.34 for the sample

generated in our scan. This can be used as an efficient criterion to judge the nature of the

phase transition, as it does not require the evaluation of the thermal potential (although

5This is generally more stringent than evaluating the stability conditions in eq. (2.4) with the 1-loop

running couplings, as the latter method only takes the logarithmic contributions into account. Note also

that one would find even more accurate exclusion regions by scanning the RG improved 1-loop effective

potential with the 2-loop running couplings.
6As FSM

0 is negative, larger values of ∆F0 will correspond to more negative values of ∆F0/FSM
0 .
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Figure 1. Results of a numerical scan of the 2HDM parameter space (see text for details) showing

the correlation between the ∆F0 and (top) the critical temperature (bottom) the strength of the

EWPT for Type I (left) and Type II (right). Filled contours indicate the density of physical points.

Also shown are contours of Pξ>1, the posterior probability of having a strong first order EWPT.

it is not used in what follows). We however emphasize that the details of the temperature-

dependent part of the effective potential are obviously important for the thermal evolution

of the system, and oftentimes one cannot precisely judge the nature of the phase transition

by the vacuum energy alone. E.g. for ∆F0 = 0 in Type I, the EWPT can be weak or

strong, as shown in figure 1 (bottom, left).

Yet, a direct correlation certainly exists between these quantities, from which one can

understand and predict the favoured corners of the parameter space for a strong EWPT.

Eq. (3.9) shows that the vacuum energy difference receives a negative tree-level contribution

away from alignment, which increases with mH0 . We thus expect a strong EWPT to favour

the alignment limit, and the more so the heavier H0 is. These expectations are confirmed

by the data, as shown in figure 2. In both Type I and II scenarios the probability contours

increasingly favour alignment for a strong EWPT as mH0 grows. For Type I, even though

the distribution of physical points already narrows around alignment for mH0 & 550 GeV,

the narrowing of the Pξ>1 bands is significantly more drastic and does not merely follow that

– 9 –



J
H
E
P
1
2
(
2
0
1
7
)
0
8
6

200 300 400 500 600 700 800 900 1000

mH0
[GeV]

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

c β
−
α

0.20
0.10 0.05

1

25

100

250

500

750

1000

1250

Type I

200 300 400 500 600 700 800 900 1000

mH0
[GeV]

0.0

0.2

0.4

0.6

0.95
0.50

0.
05

0.95
0.50 0.05

1

25

125

500

1000

1500

2000

2500
N

u
m

b
er

of
p

hysical
p

oints

Type II

Figure 2. Distribution of physical points, as in figure 1, and Pξ>1 contours in the (mH0
, cβ−α)

plane. As H0 gets heavier, a strong first order EWPT increasingly favours alignment. In Type II

the wrong-sign scenario, albeit less populated, can also lead to a strong EWPT.

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4

∆F0/FSM

0

100

200

300

400

500

600

700

800

M
[G

eV
]

0.95
0.50 0.05

1

25

150

300

750

2000

5000

8500

Type I

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4

∆F0/FSM

200

300

400

500

600

700

800

0.95
0.50

0.05

1

10

125

500

1000

2500

5000

N
u

m
b

er
of

p
hysical

p
oints

Type II

Figure 3. Distribution of physical points, as in figure 1, and Pξ>1 contours in the

(∆F0/FSM
0 , M) plane.

of the physical distribution. It is also worth noticing that, while for Type I the low-mass

region is the mostly populated, for Type II the lower bound mH± > 480 GeV from flavour

constraints tends to shift the masses of the additional scalars towards rather large values,

which is why the physical points are mostly concentrated in the region of mH0 ∼ 500 GeV.

For Type II we also note the physical region for cβ−α & 0.4, corresponding to the 2HDM

wrong-sign scenario [58]. Both in Type I and II scenarios one sees that away from the

alignment limit there is a tension between a strong EWPT and a heavy H0.

The dependence of the vacuum uplifting with the overall mass scale M is determined

mostly by stability, perturbativity and unitarity constraints. Indeed, close to the alignment

limit the quartic couplings λ1,2 read

v2 λ1 ≈ m2
h + t2β Ω2 , v2 λ2 ≈ m2

h + t−2
β Ω2, (4.3)
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Figure 4. Distribution of physical points and Pξ>1 contours in the (∆F0/FSM
0 , mA0) plane.

where the parameter

Ω2 ≡ m2
H0
−M2 (4.4)

has been introduced for its usefulness in the analysis of the stability and unitarity require-

ments. Recalling eq. (2.4), both couplings λ1,2 must be positive and it follows that

m2
h > −max(t2β , t

−2
β ) Ω2, (4.5)

so that as M2 grows larger, m2
H0

has to follow it closely. In addition eq. (2.4) shows that

v2 λ3 ≈ 2m2
H± − 2m2

H0
+ Ω2 +m2

h,

v2 λ4 ≈ m2
A0
−m2

H0
+ Ω2 − 2m2

H±

(4.6)

cannot grow too negative either, from which it follows that m2
H± and m2

A0
cannot be much

smaller than a large M2. In summary, for M2 � m2
h, stability enforces m2

H0
,m2

A0
,m2

H± ∼
M2, for which the decoupling limit is approached and ∆F0 → 0, as can be verified by

setting mH0 = mH± = mA0 ≈ M � mh in eq. (3.9). Therefore, a significant uplifting

of the vacuum energy can only be achieved for M ∼ v, which is confirmed by figure 3.

We note that again in Type II the distribution of physical points is peaked around larger

values due to the lower bound on mH± from the B̄ → Xsγ constraint. However, in both

types a moderate uplifting of the vacuum energy is achieved only for M . 500 GeV.

A strongly first order EWPT generally relies on the existence of sizable couplings

between the symmetry breaking scalar field (the Higgs) and the particles in the plasma,

which means that one or more of the additional scalars must be significantly heavier than

the overall mass scale M , as the mass splitting would be controlled by these large couplings.

We have already established that a large mH0 becomes disadvantageous for a strong EWPT

away (even if only slightly) from alignment. Furthermore, for tβ 6= 1 a large Ω2 quickly

violates perturbativity bounds. On the other hand, EW precision observables constrain

the charged scalar H± to be close in mass to either mH0 or mA0 . This leaves A0 as the
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Figure 5. Distribution of physical points and Pξ>1 contours in the (mH0
, mA0

) plane. A strong

first order EWPT is clearly favoured by a splitting mA0 > mH0 +mZ .

only scalar whose mass is free to be large,7 and figure 4 confirms that a rather heavy8 A0

is indeed the most favoured scenario, with > 94% of strong phase transition points lying

above the lower bound mA0 & 300 GeV.

These results are put together in figure 5, illustrating how the likelihood of a strong

EWPT varies with mH0 andmA0 . In both Type I and II 2HDM scenarios a strong transition

favoures a large splitting mA0 > mH0 +mZ , pointing to the A0 → ZH0 decay as a smoking

gun signature of a 2HDM with a strongly first order EWPT. The detection prospects of

this channel, and its importance as complementary to searches into SM final states, have

been discussed in [14, 18, 19, 65].

5 Analytic results

We now turn to an analytic exploration of the 2HDM vacuum uplifting as computed from

eq. (3.9). Given the large dimensionality of the 2HDM parameter space, we perform the

study in various limits which allow us to explicitly investigate the relevant parameter

dependences. In the following section we focus on the alignment limit, pair mH± exactly

with either mH0 or mA0 , and work out the dependence of the vacuum energy and phase

transition strength with the splitting ∆mAH ≡ mA0 − mH0 and Ω ≡
√
|Ω2| × sign(Ω2)

for different fixed values of mH0 . Then, in section 5.2 we allow for deviations from the

alignment limit, fixing a degenerate spectrum (mH0 = mA0 = mH±) for simplicity. Finally

we devote section 5.3 to the special case of the Inert 2HDM where only one double takes

a vev and the Z2 symmetry is exact.

7H± may also be significantly heavier than M if paired to A0, but not on its own.
8We note that a heavy pseudoscalar (m2

A0
�M2) does induce a negative quartic coupling λ5 = (M2 −

m2
A0

)/v2. However, this does not pose a problem for stability, since only the absolute value of λ5 enters

eq. (2.4).
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Figure 6. Ω ≡
√
|Ω2| × sign(Ω2) vs ∆mAH ≡ mA0

− mH0
assuming mH± = mA0

, for mH0
=

200, 500 GeV (Left to Right) and tβ = 1.5, 3, 5 (Top to Bottom). Red lines show constant values

of ∆F0/FSM
0 . Blue lines show constant values of the strength of the EWPT ξ. The grey region is

excluded by boundedness from below of the scalar potential, while the brown region is excluded by

unitarity. In the hatched region, a panic vacuum develops.

5.1 The alignment limit cβ−α = 0

We start by considering the alignment limit cβ−α = 0, where h behaves exactly as the SM

Higgs boson. In this case, ∆F0 is given by (3.10). Since measurements of EW precision

observables (in particular the T -parameter) require an approximate degeneracy mH± ∼
mH0 or mH± ∼ mA0 , we set for simplicity this pairing as exact, analysing both possibilities.

With these parameters fixed, ∆F0 is then solely dependent on mH0 , mA0 , and Ω2.
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We first fix mH± = mA0 and show in figure 6 the parameter space regions of constant

∆F0/FSM
0 in the (Ω, ∆mAH) plane, respectively for mH0 = 200, 500 GeV (Left to Right)

and tβ = 1.5, 3, 5 (Top to Bottom). In each case we show the constraints from tree-level

unitarity, boundedness from below of the scalar potential and non-existence of a panic

vacuum. We note that as opposed to unitarity and stability, ∆F0/FSM
0 and the existence of

a panic vacuum do not depend on tβ (this last one for cβ−α = 0). To estimate the breakdown

of perturbativity, we show the region for which any quartic coupling grows larger than 4π

at a cutoff µ = 5 TeV from 2-loop running [63], starting from µ0 = max(mH0 ,mH± ,mA0)

to ensure that the heavy degrees of freedom will only contribute above their threshold.

While this is not a hard limit on the model compared to the others presented, it provides

an idea of the UV scale of new physics that would be required in such a picture. Finally,

we also show the lines of a constant strength of the EWPT ξ in the (Ω, ∆mAH) plane,

obtained numerically. These smoothly track the lines of constant ∆F0/FSM
0 , confirming

the observations in section 4 regarding the tight correlation between the strength of the

EWPT and ∆F0 in 2HDM scenarios.

From figure 6 we see that a strongly first order EWPT is achieved by increasing ∆mAH

in all cases. For mH0 � v (mH0 = 500 GeV in figure 6) and tβ ∼ 1 it is also possible to

achieve such a strongly first order transition by increasing Ω (with Ω < mH0) for ∆mAH <

0, but this possibility is forbidden by unitarity as tβ departs significantly from 1. We repeat

the analysis, now for mH± = mH0 , and show the results in figure 7. These are qualitatively

similar to those from figure 6 for the mH± = mA0 scenario. Together, these show that a

strongly first order EWPT within the 2HDM generically favours mA0 −mH0 & 100 GeV,

leading to the landmark signature A0 → H0Z at colliders.

Before continuing, let us note that in our analytical study of the 2HDM vacuum energy

we haven’t imposed several experimental constraints that would further restrict the allowed

parameter space within the 2HDM, briefly outlined in section 4. The reason for not doing

so is that these constraints depend significantly on the Type of 2HDM, while our analysis of

the EWPT and the bounds from stability, unitarity, perturbativity and existence of a panic

vacuum do not. However, it is important to briefly discuss these experimental constraints

so that the reader is well informed of their potential impact on the 2HDM parameter

space: (i) LEP searches yield the limit mH± > 72 GeV (80 GeV) for 2HDM Type I (II) [60]

as well as the bound mH0 + mA0 & 209 GeV [61]. (ii) LHC measurements of Higgs signal

strengths constrain the allowed value of cβ−α as a function of tβ (see e.g. [62–65]). These do

not provide a constraint in the alignment limit cβ−α = 0 (since the 125 GeV Higgs behaves

as the SM one in this case), but do constrain significant deviations from the alignment

limit, and thus will be relevant for the analysis of section 5.2. In addition, Higgs signal

strength measurements constrain the size of the h→ A0A0 partial width for mA0 < 62 GeV,

which in alignment translates into the strong constraint Ω2 ' m2
H0
−m2

A0
−m2

h/2 on the

allowed range of Ω in this region [66]. (iii) LHC searches for H0, A0 and H± constrain

the masses of the new scalars as a function of cβ−α and tβ (and Ω in certain regions of

parameter space). In the alignment limit, and for the parameters considered in figures 6

and 7, relevant limits come from A0 → ZH0 (H0 → ZA0) 8 TeV CMS searches [67] in the

region ∆mAH > 0 (∆mAH < 0), as discussed in [65]. Searches for H± are also relevant for
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Figure 7. Ω vs ∆mAH assuming mH± = mH0
, for mH0

= 200, 500 GeV (Left to Right) and

tβ = 1.5, 3, 5 (Top to Bottom). Labels as in figure 6.

mH± < mt (see e.g. [68]). (iv) Flavour constraints, particularly from B̄ → Xsγ B-meson

decays, yield strong limits on the (mH± , tβ) parameter space both for Type I [54] and

Type II [54, 55] 2HDM (see also [69]).

Finally, it is worth stressing that the strong bounds from EDM searches on the possible

amount of CP violation in the 2HDM potential, in combination with the limits outlined

above, seriously constrain the ability of the 2HDM to explain the BAU (see e.g. [17]),

reducing it to small, tuned regions of parameter space.

In order to shed some more light on the impact of the quartic coupling values from the

2HDM potential (2.1) on the strength of the EWPT, we now analyze the interplay between
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Figure 8. λ3+λ4 vs λ5 forM = 246 GeV and assuming respectively mH± = mA0
(Left) and mH± =
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0 , with the green region corresponding to

∆F0/FSM < −1 (F0 > 0). Blue lines show the contours mA0
−mH0

> mZ (solid) and mH0
−mA0

>

mZ (dashed). The grey and orange regions are respectively excluded by boundedness from below

of the scalar potential and by unitarity, for tβ = 1.5, 3, 5 (dark to light). The brown region is

unphysical (mH0
< 0 and/or mA0

< 0).

∆F0 and the theoretical constraints using a different choice of independent parameters:

cβ−α, tβ , M2, λ3, λ4, λ5. Together with v = 246 GeV and mh = 125 GeV, these completely

determine the parameters in (2.1). We fix cβ−α = 0, and note that ∆F0 in this limit,

given by (3.10), is symmetric under mA0 ↔ mH0 . Fixing mH± to be close to either mA0

or mH0 breaks this symmetry. However, there is still a symmetry between the scenario

mH± = mA0 with ∆mAH > 0 and the scenario mH± = mH0 with ∆mAH < 0. Using

the relations from appendix A.1 we find that in the former scenario λ4 = λ5 while in the

latter λ4 = m2
h/v

2 − (2λ3 + λ5). In both cases m2
A0
−m2

H0
= v2(λ3 + λ4)−m2

h. Choosing

M = 246 GeV as an illustrative example, we compare in figure 8 the vacuum energy

difference ∆F0 and theoretical constraints in the (λ3 + λ4, λ5) plane, for the mH± = mA0

and mH± = mH0 scenarios. In each case, besides the lines of constant ∆F0/FSM
0 = 0,

−0.2, −0.4 and −1 (F0 > 0), we show the contours of mA0 − mH0 = mZ (when the

decay A0 → ZH0 becomes kinematically accessible) and mH0 − mA0 = mZ (when the

decay H0 → ZA0 becomes kinematically accessible), as well as the tree-level stability and

unitarity bounds for tβ = 1.5, 3, 5. Figure 8 explicitly shows that for tβ ∼ 1 sufficient

vacuum uplifting for a strongly first order EWPT in the 2HDM is compatible with both

mA0 −mH0 > mZ and mH0 −mA0 > mZ (and even mH0 = mA0). This is the case for both

the mH± = mA0 (figure 8 Left) and mH± = mH0 (figure 8 Right) scenarios. However, as tβ
increases, the region mH0 > mA0 becomes progressively excluded by unitarity, and already

for tβ = 3 a vacuum uplifting ∆F0/FSM
0 = −0.2 demands mA0 −mH0 > mZ , as can also

be inferred from figures 6 and 7.
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In the hatched region, a panic vacuum develops.
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5.2 Away from the alignment limit: degenerate 2HDM spectrum

We now investigate the effect of departing from the alignment limit, setting for simplicity

mH0 = mA0 = mH± = mφ. In this approximation the vacuum energy difference can

be expressed in terms of cβ−α, tβ , m2
φ and Ω2 (see appendix B for details). We show in

figure 9 the behaviour of the vacuum energy difference in the (Ω, cβ−α) plane for mφ =

200, 500 GeV (Left to Right) and tβ = 1.5, 3, 5 (Top to Bottom). In all cases a sizable

vacuum uplifting demands Ω & v (the only exception corresponds to mφ = 500 GeV, tβ = 5

and cβ−α & 0.4, excluded by vacuum stability). As shown in figure 9 (Left), for light mφ

uplifting of the vacuum is in conflict with the panic vacuum constraint (and also excluded by

unitarity for tβ � 1). In contrast, figure 9 (Right) shows that sufficient vacuum uplifting is

possible for mφ = 500 GeV and v . Ω . mH0 , provided that tβ ∼ 1. Again, as tβ increases

the parameter space region where the 2HDM Higgs vacuum is uplifted compared to the

SM one becomes excluded by unitarity.

5.3 An inert second doublet

The inert doublet model [59, 70, 71] (IDM) is a special case of 2HDM scenario in which

the second doublet is protected by a Z2 symmetry and does not develop a vev. This Z2

symmetry leads to the lightest state of the second doublet being stable, yielding a viable

dark matter (DM) candidate if this corresponds to either A0 or H0. This scenario has

been widely studied in the literature (see e.g. [72, 73] for updated analyses, and references

therein), including its impact on the EWPT [74–77].

The scalar potential for the IDM is given by (2.1) with µ = 0, and due to the unbroken

Z2 symmetry the dictionaries from appendix A.1–A.2 do not apply in any particular limit,

and instead the relations among parameters are given in A.3 (note however that some

of the parameter relations are identical to those of the Higgs basis with cβ−α = 0 and

M2 = 0). The relevant IDM parameters can be conveniently chosen to be mH0 , mA0 ,

mH± , λ345 ≡ λ3 +λ4 +λ5 and λ2. In the following we consider DM to be H0 (both choices

are physically equivalent in the IDM), which amounts to requiring ∆mAH > 0, and we also

consider mH± = mA0 as a simplifying assumption to satisfy EW precision constraints.

Using (3.5), (3.6) and the results from appendix B we can easily obtain the vacuum

energy difference ∆F0 for the IDM, which reads

∆F0 =
1

64π2

(m2
H0
−λ345v

2

2

)2

log

 m2
H0
m6
A0(

m2
H0
− λ345v2

2

)4

+
1

2
(m4

A0
−m4

H0
)+3

(
λ345v

2

2

)2

+4

(
m2
H0
−m2

A0
−λ345v

2

2

)(
m2
H0
−λ345v

2

2

)
+

(
m2
H0
−m2

A0
−λ345v

2

2

)2
]
, (5.1)

and we investigate its interplay with theoretical constraints: stability, unitarity and the

requirement that the Z2 symmetry is preserved in the EW broken vacuum, which leads to

the condition

µ2
1/
√
λ1 < µ2

2/
√
λ2 . (5.2)
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Figure 10. λ345 vs ∆mAH assuming mH± = mA0
, for mH0

= 70 GeV. Red lines show constant

values of ∆F0/FSM
0 , with the green region corresponding to ∆F0/FSM < −1 (F0 > 0). The grey

and brown regions are respectively excluded by boundedness from below of the scalar potential and

by the failure to fulfill eq. (5.2), respectively for λ2 = 1 (dark) and λ2 = 0.1 (light). Contours of

constant ΩH0
/ΩDM = 1, 0.1, 0.02, 0.01 are shown as solid, dashed, dash-dotted and dotted black

lines. The excluded region from LUX [78] is shown in pale yellow.

We also include in our analysis the constraint on the IDM parameter space from the latest

LUX bounds on the spin-independent DM-nucleon scattering cross section [78], as well

as the IDM parameter space region for which the H0 relic abundance through thermal

freeze-out ΩH0 does not exceed the observed DM relic density ΩDM = 0.1199± 0.0022 [79].

The H0 relic abundance and the spin-independent H0-nucleon scattering cross section are

both obtained with micrOMEGAs 4.3 [80], and we note that the nucleon scattering cross

section has to be weighted by ΩH0/ΩDM when comparing with the LUX limits (as these

assume ΩH0 = ΩDM).

In figure 10 we show the vacuum energy difference in the plane (λ345, ∆mAH) for

benchmark values mH0 = 70 GeV (left) and mH0 = 150 GeV (right), as well as the the-

oretical constraints for λ2 = 1, 0.1. We also show the contours of constant ΩH0/ΩDM =

1, 0.1, 0.02, 0.01 and the bound from LUX. For mH0 = 70 GeV the LUX bound com-

bined with ΩH0/ΩDM ≤ 1 exclude the entire parameter space except for the small island

∆mAH . 10 GeV and −0.05 . λ345 . 0.05. As shown in figure 10 significant vacuum

uplifting requires ∆mAH & v and is thus not possible in this case.9 In contrast for

mH0 = 150 GeV, sizable uplifting and thus a strongly first order EWPT is possible, re-

quiring ∆mAH & 200 GeV. However, in this case the relic abundance of H0 falls short

of explaining the observed DM abundance, ΩH0/ΩDM < 0.01, and another DM candidate

would be needed. We emphasize that while previous works have already identified a large

mass splitting ∆mAH in the IDM as providing a strong EWPT (see e.g. [77]), the dom-

inant strengthening effect was attributed to the thermal contributions of H0, A0, H± to

V T
eff . While these do play an important role, we show here that the most important effect

is due to the uplifting of the T = 0 vacuum.

9We note that for this value of mH0 a strong EWPT was deemed possible in [77], but we find the most

recent LUX limits exclude this possibility.
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6 Trilinear Higgs self-coupling

Finally, it is useful to discuss the behaviour of the trilinear Higgs self-coupling λhhh in the

(Ω, ∆mAH) plane, w.r.t. its value in the SM λSM
hhh. It has been suggested that a strong

first order EWPT in the 2HDM is tightly correlated with sizable deviation in the value

of λhhh w.r.t. the SM value [20, 21]. In the alignment limit, we note that λhhh = λSM
hhh at

tree-level (as was also noted in [20, 21]). However, in the 2HDM 1-loop corrections may

lead to sizable deviations from the SM value. The Higgs self-coupling λhhh in the 2HDM

is approximately given at 1-loop by

λhhh = λSM
hhh +

∑
k=H0,A0,H±

nk
m4
k

4π2v3

(
1 +

m2
h

2m2
k

− M2

m2
k

)3

,

where λSM
hhh includes the SM 1-loop corrections due to the top quark, Higgs and gauge

bosons. Our result agrees with [20, 21] and includes some sub-leading pieces that become

relevant when the new scalar states are not so heavy with respect to the 125 GeV Higgs

boson. Given the tight correlation between the vacuum energy difference and the strength

of the EWPT, one would also expect a relationship to exist between the former and the

Higgs self-coupling. Defining κhhh ≡ λhhh/λSM
hhh, the region |1− κhhh| ≥ 0.5 is of particular

interest, since such a deviation in λhhh from its SM value could be probed at the HL-

LHC [26, 27]. In figure 11 we show contours of κhhh, for mH0 = 200 GeV and mH0 =

500 GeV in both mH± = mH0 and mH± = mA0 scenarios. We also superimpose the

normalized vacuum energy difference ∆F0/FSM
0 , highlighting (in red/green) the values 0

and -1. The latter case corresponds to the limit above which the EW vacuum is lifted above

the trivial one (F0 > 0), preventing EWSB from ever occurring, while the former denotes

a vacuum energy difference equal to that of the SM. Interestingly, we see that the region

of unchanged vacuum energy difference with respect to the SM coincides almost exactly

with the region where the Higgs self-coupling does not deviate from the SM prediction.

Furthermore, the self-coupling grows as the EW vacuum is uplifted, reaching values of 2-4

times the SM prediction in the regions shown in figures 6 and 7 where a strong EWPT is

expected to occur.

The strong correlation between the vacuum energy and the trilinear Higgs coupling

shown in figure 11 can qualitatively be understood in terms of an effective potential (in

the Effective Field Theory sense) for the SM Higgs. The extra Higgs states induce higher

dimensional operators, with the leading one being of mass dimension six. When only

keeping the mass term, the quartic coupling and the dimension-6 operator in the Higgs

potential, we can vary the vacuum energy independently of the Higgs mass and trade the

coefficient of the dimension-6 operator for the vacuum energy to parametrize this effective

potential [9]. We can then compute the third derivative of this potential to obtain the

trilinear Higgs coupling. Setting this in ratio to the SM result, which corresponds to a

vanishing dimension-6 operator, we obtain

κhhh =
3m2

hv
2 + 16F0

3m2
hv

2 + 16FSM
0

≈ 1− 2
∆F0

FSM
0

, (6.1)
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Figure 11. Contours of the deviation in the 2HDM Higgs self-coupling κhhh = λhhh/λ
SM
hhh overlay-

ing the vacuum energy difference. The dashed curve corresponds to κhhh = 1, where the prediction

is unchanged with respect to the SM. The values of 1.5 and 0.5 correspond to the expected precision

envisaged for the HL-LHC. Vacuum energy difference values of 0 and -1 are also highlighted in which

either no EWSB can occur or the vacuum energy difference is the same as in the SM respectively.

where in the second step we assume the tree-level relation m2
hv

2 = −8FSM
0 . Clearly

F0 > FSM
0 means κhhh > 1. Quantitatively, we find that this estimate falls short of the full

result in figure 11 up to about 30%. This is not surprising, as the Higgs states integrated

out are not very much heavier than v. So we expect operators of higher mass dimension

to play a role, which, however, do not spoil the overall qualitative picture.

In fact, the contribution to the dimension-6 operator affecting the Higgs potential from

integrating out the new states in the 2HDM is known [81]. Only one operator

O6 = λ
c̄6

v2

(
Φ†Φ

)3
(6.2)

plays a role here. Its effect on the vacuum energy difference and the Higgs trilinear coupling
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is as follows

κhhh = 1 + c̄6,
F0

FSM
0

= 1− c̄6

2
. (6.3)

In the alignment limit, the Wilson coefficient of interest has been calculated as

c̄6 = (λ̄2
4 + λ̄2

5)
v2

192π2µ̄2
2

(6.4)

=
(m2

A0
−m2

H±)2 + (m2
H0
−m2

H±)2

48π2v2(2M2 −m2
h)

. (6.5)

Being positive definite, we see that it contributes both to an uplifting of the EW vacuum

and an increase in the Higgs trilinear coupling. Furthermore, since EW precision tests

constrain the charged Higgs mass to be near one or the other neutral state (mH± ∼H0

or mH± ∼A0), we are left with precisely the aforementioned mass splitting between the

two, new neutral states controlling the effects of interest,10 lending further support to our

previous findings.

7 Conclusions

In this work we have established a correlation between the strength of the electroweak

phase transition and the zero-temperature free-energy of the broken minimum in two-

Higgs-doublet models. Considering similar statements made previously in the literature in

the context of other SM scalar sector extensions [8, 9], we claim this is a general effect of any

model where the modified scalar sector acts as the main source of strong phase transition.

Because working with the zero-temperature vacuum energy is analytically much sim-

pler than with the full thermal potential, this correlation can be used to better predict

the behaviour of a certain model concerning the nature of the EWPT, as well as to better

understand the impact of parameter space constraints on the strength of the phase tran-

sition predicted by the model. In particular, we have in this way clarified the preferred

hierarchy in the scalar sector from the requirement of a strong EWPT, with a heavier pseu-

doscalar and charged scalar. Furthermore, as a more technical implication of our results,

we note that in the regime of significant uplifting of the electroweak vacuum the critical

temperature of the transition is reduced, which helps making the loop expansion at finite

temperature more robust [82]. Investigating this aspect in detail, however, would require

the computation of the thermal potential at 2-loop order, which we leave for future work.

We have further investigated the relation between the triple Higgs self-coupling and

the vacuum energy uplifting in the model. Large deviations from the SM predictions of

these couplings are expected as a collateral effect of a model with a strong EWPT, and we

have shown that these deviations can be measurable at the HL-LHC in some scenarios here

presented. A measurement of the Higgs self-couplings is a key goal in any future collider

10We note that the Effective Field Theory approximation used above is valid for M2 & v2, precisely

where our analysis (see figure 11) shows that κhhh is fully controlled by the mass splittings. As M2 → 0

(Ω2 → m2
H0

) this ceases to be true since our approximation breaks down.
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experiment as a probe of the ultimate structure of the Higgs potential. Results such as the

ones we present here show that this measurement would also serve as an indirect probe

for the nature of the nature of the electroweak phase transition, and of the viability of

electroweak baryogenesis as an explanation for the baryon asymmetry of the Universe.
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A Physical dictionaries of the Z2 and Higgs bases for two Higgs doublets

Here we provide the detailed expressions for the scalar potential parameters of the 2HDM as

a function of the masses and mixings of the scalar sector. We define Ω2 ≡ m2
H0
−µ2(tβ+t−1

β ).

A.1 Z2 basis

See eq. (2.1) for the definition of the potential parameters.

µ2
1 = µ2tβ −

1

2

[
m2
h + (m2

H0
−m2

h)cβ−α (cβ−α + sβ−αtβ)
]
,

µ2
2 = µ2t−1

β −
1

2

[
m2
h + (m2

H0
−m2

h)cβ−α
(
cβ−α − sβ−αt−1

β

)] (A.1)

v2λ1 = m2
h + Ω2t2β − (m2

H0
−m2

h)
[
1− (sβ−α + cβ−αtβ)2

]
t2β ,

v2λ2 = m2
h + Ω2t−2

β − (m2
H0
−m2

h)
[
1− (sβ−α − cβ−αt−1

β )2
]
t−2
β ,

v2λ3 = 2m2
H± + Ω2 −m2

h − (m2
H0
−m2

h)
[
1 + (sβ−α + cβ−αt

−1
β )(sβ−α − cβ−αtβ)

]
,

v2λ4 = m2
A0
− 2m2

H± +m2
H0
− Ω2 ,

v2λ5 = m2
H0
−m2

A0
− Ω2 .

A.2 Higgs basis

See eq. (2.9) for the definition of the potential parameters.

µ̄2
1 = −1

2

[
m2
h + (m2

H0
−m2

h)c2
β−α

]
< 0

µ̄2
2 = −Ω2 +

1

2
m2
h +

1

2
(m2

H0
−m2

h)
[
1 + sβ−α

(
sβ−α − cβ−α(tβ − t−1

β )
) ]

µ̄2 = −(m2
H0
−m2

h)sβ−αcβ−α

(A.2)
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v2λ̄1 = −2µ̄2
1

v2λ̄2 = m2
h + Ω2(tβ − t−1

β )2 + (m2
H0
−m2

h)
[
1− (sβ−α − cβ−α(tβ − t−1

β ))2
]

v2λ̄3 = 2m2
H± − 2µ̄2

2

v2λ̄4 = m2
A0 − 2m2

H± +m2
h + (m2

H0 −m2
h)s2

β−α
v2λ̄5 = −m2

A0 +m2
h + (m2

H0 −m2
h)s2

β−α
v2λ̄6 = 2µ̄2

v2λ̄7 = −Ω2(tβ − t−1
β )− (m2

H0
−m2

h)cβ−α
(
sβ−α − cβ−α(tβ − t−1

β )
)

(A.3)

The Higgs basis does allow to read in a straightforward way the masses for the new scalars

in the symmetric and broken EW phases, which is what will enter into the vacuum en-

ergy difference.

A.3 Inert doublet model

The potential parameters in this case are defined by eq. (2.1), with µ2 = 0.

µ2
1 = −m

2
h

2

µ2
2 = m2

H0
− λ345

2
v2

v2λ1 = m2
h

v2λ3 = 2
(
m2
H± −m2

H0

)
+ λ345 v

2

v2λ4 = m2
H0

+m2
A0
− 2m2

H±

v2λ5 = m2
H0
−m2

A0

(A.4)

with λ345 ≡ λ3 + λ4 + λ5, λ2 and the scalar masses mH0 , mA0 , mH± as independent

parameters.

B On-shell renormalization of the 2HDM: F0 in the Higgs basis

We recall the scalar contribution to the zero-temperature 2HDM vacuum energy in the

basis of (2.9) (eq. (3.7))

F0 =− m2
hv

2

8
− v2

8
c2
β−α (m2

H0
−m2

h) + ∆V1 −
δµ̄2

1 v
2

2
+
δλ̄1 v

4

8
. (B.1)

The first two terms correspond to the tree-level piece, −λ̄1v
4/8, translated with eq. (A.2).

The second half of the expression is the 1-loop correction, comprising of the difference

between the Coleman Weinberg potential evaluated at the EW minimum and the origin as

well as the relevant counterterms. The latter are chosen to preserve the tree-level minimum

and scalar masses at 1-loop, which fixes their value to

δµ̄2
1 ≡

1

2

(
∂2V1

∂h2
1

∣∣∣∣
v

− 3

v

∂V1

∂h1

∣∣∣∣
v

)
, δλ̄1 ≡

1

v2

(
∂2V1

∂h2
1

∣∣∣∣
v

− 1

v

∂V1

∂h1

∣∣∣∣
v

)
, (B.2)
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with11

∂V1

∂φi
=
∑
k

nk
m2
k

32π2

∂m2
k

∂φi
log

m2
k

Q2
, (B.3)

∂2V1

∂φi∂φj
=
∑
k

nk
32π2

[
∂m2

k

∂φi

∂m2
k

∂φj

(
log

m2
k

Q2
+ 1

)
+m2

k log

(
m2
k

Q2

)
∂2m2

k

∂φi∂φj

]
. (B.4)

Plugging eqs. (B.2) and (B.4) into (B.1), one finds the contribution of the counter-

terms to the effective potential at the electroweak minimum,

V CT
∣∣
v

=−
∑
k

nk
4× 64π2

[
(vIk)

2

(
log
|m2

k|
Q2

+ 1

)
+m2

k log
|m2

k|
Q2

(
v2Jk − 5vIk

) ]
,

with Ik ≡
∂m2

k

∂h1

∣∣∣∣∣
v

and Jk ≡
∂2m2

k

∂h2
1

∣∣∣∣∣
v

. (B.5)

Finally, putting everything together back into eq. (B.1), including the explicit contri-

butions to ∆V1, we find

F0 = FSM
0 − v

2

8
c2
β−α (m2

H0
−m2

h)− m4
h

64π2
(3+log2)−

∑
k

m4
k,0

64π2

(
log
|m2

k,0|
Q2

− 1

2

)

+
1

4×64π2

∑
k

{
(v Ik)

2−2m4
k+
[(
v Ik−2m2

k

)2
+m2

k

(
v2Jk−vIk

)]
log

m2
k

Q2

}
,

(B.6)

where the SM vacuum energy of eq. (3.8) has been reintroduced and the contribution to

the vacuum energy from loops of the SM Higgs and Goldstones, which also occur in ∆V1,

are explicitly subtracted to avoid double counting these terms. Here, m2
k,0 denotes a field

dependent mass squared evaluated at the origin. This defines the vacuum energy difference

of eq. (3.9).

What remains is to compute the derivatives of the field dependent masses with respect

to h1 via the general relations [85]

∂m2
k

∂φi
=

(
R̄
∂M

∂φi
R̄T
)
kk

, (B.7)

∂2m2
k

∂φi∂φj
=

(
R̄

∂2M

∂φi∂φj
R̄T
)
kk

+ 2

(
R̄
∂M

∂φi
R̄T
)
ki

(
m2
k I−Mdiag

)+
ii

(
R̄
∂M

∂φj
R̄T
)
ik

,

11Note that there is a caveat in carrying out the condition in eq. (B.4). For the Goldstone bosons, the

first term in eq. (B.4) is infrared divergent, so that trying to define the physical mass by taking derivatives

of Veff actually yields unphysical results. This happens because, by definition, the effective potential takes

into account only diagrams with vanishing external momenta, whereas the physical mass must be evaluated

on-shell, with p2 = m2. A rigorous solution to the problem has been developed in [11], and also in [83, 84] via

resummation of the Goldstone contributions. Here we choose to adopt the more straightforward approach of

replacing the vanishing Goldstone masses in the logarithmic divergent term by an IR cutoff at m2
IR = m2

h0 ,

which gives a good approximation to the exact procedure of on-shell renormalization, as argued in [15].

– 25 –



J
H
E
P
1
2
(
2
0
1
7
)
0
8
6

where R̄ is the orthogonal transformation that diagonalises the scalar mass matrix and

(m2
k −Mdiag)+ denotes the Moore-Penrose pseudoinverse of the diagonal matrix in paren-

thesis. For such a diagonal matrix, the entries of the pseudoinverse are

(m2
k −Mdiag)+

ii =

{
0, (Mdiag)ii = m2

k,[
m2
k − (Mdiag)ii

]−1
, else.

(B.8)

Note from eq. (B.4) that second derivatives of Goldstone masses always enter multiplied

by the Goldstone masses themselves, which vanish at the electroweak minimum. So we will

not need to compute them.

Defining the quantities

∆m2
0 ≡ (m2

H0
−m2

h) ,

A ≡ sαcα
sβcβ

= (cβ−α + sβ−αtβ)(cβ−α − sβ−αt−1
β ),

(B.9)

the required mass derivatives are given by

v IG = m2
h + ∆m2

0 c
2
β−α (Goldstone Bosons)

v IH± = 2m2
H± +m2

h c
2
β−α +m2

H0
s2
β−α −

[
2M2 −∆m2

0A
]

v2 JH± = v IH± + 2c2
β−αs

2
β−α

(∆m2
0)2

m2
H±

v IA0 = v IH± − 2m2
H± + 2m2

A0

v2 JA0 = v IA0 + 2c2
β−αs

2
β−α

(∆m2
0)2

m2
A0

v Ih = 3m2
h − c2

β−α
[
2M2 −∆m2

0A
]

v2 Jh = v Ih −
2 c2

β−α s
2
β−α

∆m2
0

[
2M2 −∆m2

0A
]2

v IH0 = 3m2
H0
− s2

β−α
[
2M2 −∆m2

0A
]

v2 JH0 = v IH0 +
2 c2

β−α s
2
β−α

∆m2
0

[
2M2 −∆m2

0A
]2
.

(B.10)

It is easy to show that eq. (B.6) simplifies to eq. (3.10) in alignment. Through a

laborious computation one can also show that the Q2 dependence always cancels out, so

that F0 is indeed renormalization scale independent.
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