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ory with the twisted gradient flow (TGF) method. A running coupling constant g2
TGF(1/L)

is defined in a finite volume box with size of L4 with the twisted boundary condition. This

defines the TGF scheme. Using the step scaling method for the TGF coupling with lattice

simulations, we can evaluate the Λ-parameter non-perturbatively in the TGF scheme. In

this paper we determine the dimensionless ratios, ΛTGF/
√
σ and r0ΛTGF together with the

Λ-parameter ratio ΛSF/ΛTGF on the lattices numerically. Combined with the known ratio

ΛMS/ΛSF, we obtain ΛMS/
√
σ = 0.5315(81)(+269

−48 ) and r0ΛMS = 0.6062(92)(+309
−52 ), where

the first error is statistical one and the second is our estimate of systematic uncertainty.
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1 Introduction

The Λ-parameter is a fundamental quantity in asymptotically free gauge theories and plays

the role to set the scale of the theory. Λ characterizes the low energy non-perturbative

physics and its determination is one of the most important tasks in lattice gauge theory.

In the pure Yang-Mills theory, Λ is the only free parameter of the theory and is determined

from the coupling constant. Its value depends on the renormalization scheme. In the MS

scheme, for example, it is defined by

ΛMS = µ(b0g
2
MS

(µ))
− b1

2b20 exp

[
− 1

2b0g2
MS

(µ)

]
exp

[
−
∫ gMS(µ)

0
dξ

(
1

β(ξ)
+

1

b0ξ3
− b1
b20ξ

)]
,

(1.1)

where g2
MS

(µ) is the MS coupling renormalized at the renormalization scale µ, and β(ξ)

is the beta function in the MS scheme. b0 and b1 are the first two coefficients of the

perturbative beta function, b0 = 11
3

NC
16π2 and b1 = 34

3

(
NC

16π2

)2
, for the pure SU(NC) gauge

theory. Since the MS scheme is only defined perturbatively, the non-perturbative estimate

of ΛMS thoroughly within the MS scheme is impossible. Therefore we usually convert a

Λ-parameter determined with a non-perturbative scheme to ΛMS through the perturbative

relation.
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On the lattice, the Λ-parameter can be defined by

ΛLat =
1

a
(b0g

2
Lat(1/a))

− b1
2b20 exp

[
− 1

2b0g2
Lat(1/a)

]
× exp

[
−
∫ gLat(1/a)

0
dξ

(
1

β(ξ)
+

1

b0ξ3
− b1
b20ξ

)]
, (1.2)

with the lattice spacing a. The bare coupling g0 can be related to the lattice spacing a

non-perturbatively and be used as gLat(1/a) = g0 in eq. (1.2). This defines a lattice scheme.

It is, however, well known that the scaling is largely violated for the range of g2
0 accessible

with the presently available computational power. In the early stage of the lattice studies,

it was common to use an improved coupling such as g2
E = 8NC

N2
C−1

(1−up) or g2
A = g2

0/up with

up the observed plaquette value [1, 2]. They exhibit a better scaling property, nonetheless

there are only intuitive arguments of “tad-pole improvement” to explain why they work.

Great progresses for evaluating non-perturbatively running coupling constants have

been made with the discovery of the step scaling method [3], where the renormalization

scale is introduced by the physical box-size of the target system. In this method, one can

calculate the running coupling in a wide range of the scale covering both the hadronic

scale, where we make the non-perturbative calculation of physical quantities with lattice

techniques, and the high energy scale, where we can estimate the Λ-parameter neglecting

higher order corrections. The most successful non-perturbative scheme for the running

coupling constant in QCD is the Schrödinger functional (SF) scheme [4–11], in which a

specific Dirichlet boundary condition is imposed on the temporal direction of the box. The

advantages of the SF scheme are that it is regularization independent and can be defined

non-perturbatively. In addition, the calculation of the Λ-parameter ratio ΛMS/ΛSF has been

done in ref. [12] perturbatively. In the SF scheme, on the other hand, it becomes difficult

to calculate the coupling at larger physical box sizes (i.e. low energy renormalization scale)

due to the appearance of exceptional configurations and the noisy behavior which result

the large statistical error [6].

Several other schemes are also available to define the running coupling with the step

scaling method [13–17]. The gradient flow scheme is one of the applications of the gradient

flow method, in which the gauge field is smeared with the so-called flow equation and the

smeared gauge field has a nice perturbative property on the renormalizability [18–20]. In

ref. [21], a renormalized coupling via the gradient flow in a finite size box with the periodic

boundary condition has been introduced. However, ΛMS cannot be extracted from the

coupling, since the coupling has a non-analytic expansion in αMS due to the zero-mode

of the gauge field in the periodic boundary condition. To avoid the zero-mode problem,

the twisted boundary condition has been introduced by Ramos [22]. The renormalized

coupling defined in a finite box with the twisted boundary condition (the TGF scheme)

has the normal one-loop relation to the MS scheme and is regularization independent.

The running can be traced via the step scaling method on the lattice. The TGF running

coupling for the pure SU(2) Yang-Mills theory has been evaluated using the step scaling

method [22] and extended to two- or three-color many flavor dynamical simulations [23, 24].
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The gradient flow coupling with the Schrödinger functional boundary condition is another

scheme avoiding the zero-mode problem and has been investigated in refs. [25–27] for the

SU(3) gauge theories.

We extend Ramos’s work [22] to the pure SU(3) Yang-Mills theory. In addition to this,

we extract the Λ-parameter in the TGF scheme and convert it to the MS scheme. The ratio

ΛMS/ΛTGF, which is usually evaluated using the perturbation theory, is not yet available at

this time (but there is an ongoing study [28]). Since we already know ΛMS/ΛSF [12], actu-

ally what we have to estimate is the ratio ΛSF/ΛTGF. Therefore we estimate ΛSF/ΛTGF for

the pure SU(3) gauge theory numerically with lattice simulations in this study. It should be

noted that the analysis made in this paper is applicable to the gauge theories with dynam-

ical fermions provided that the fermion representations and contents are compatible with

the twisted boundary condition. This study is the first attempt to apply the TGF method

for evaluating the Λ-parameter in the SU(3) gauge theories from the beginning to the end.

In this study we estimate ΛMS in terms of physical observables via the TGF method.

Our strategy is summarized as follows:

ΛMS

Aphys
=

ΛMS

ΛSF
· ΛSF

ΛTGF
· LmaxΛTGF

LmaxAphys
. (1.3)

Here Aphys is a physical observable with mass dimension and Lmax is an intermediate scale

which connects the non-perturbative energy scale and the perturbative energy scale. In

this paper, we consider the string tension
√
σ and the Sommer scale 1/r0 as the physi-

cal observable Aphys. (Another reference scale can be considered, for example w0 [29].)

We will numerically calculate LmaxΛTGF, LmaxAphys, and ΛSF/ΛTGF. LmaxΛTGF is cal-

culated with the step scaling method. In order to evaluate LmaxAphys, we employ data

available from refs. [1, 30] and ref. [31] for a
√
σ and a/r0, respectively. We finally estimate

ΛMS/Aphys using eq. (1.3). We show that our estimates for ΛMS/Aphys are compatible with

the values previously obtained with other methods. This demonstrates the validity of our

non-perturbative analysis.

This paper is organized as follows. In the next section, we introduce the TGF method

and explain how to calculate the TGF coupling briefly. Our strategy eq. (1.3) and the

details of lattice simulations are explained in section 3. LmaxΛTGF and LmaxAphys are

presented in sections 4 and 5, respectively. ΛSF/ΛTGF and ΛMS/Aphys are extracted in

section 6. Finally we summarize this paper in the last section 7. Our preliminary result

has been presented at the Lattice conference [32].

2 Twisted gradient flow coupling

We use the Wilson gauge action on a (L/a)4 lattice with twisted boundary condition:

SW[U ] =
β

2NC

∑
n,µ,ν
(µ 6=ν)

Zµν(n)Tr
[
Uµ(n)Uν(n+ µ̂)U †µ(n+ ν̂)U †ν (n)

]
. (2.1)

Here Uµ(n) is the SU(NC) link variable with periodic boundary condition. We represent

the twisted boundary condition by using the twist phase Zµν(n). In this work, we follow

– 3 –
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ref. [22] and put the twisted boundary condition in the x-y plane. The twist phase is

defined as

Zµν(n) = Z∗νµ(n) =

exp
[
− 2πi
NC

]
µ = 1, ν = 2, and n1 = n2 = 0,

1 otherwise,
(2.2)

in the case. The derivation of the action with the periodic variables (2.1) is given in

appendix A.

We first introduce link variables Vµ(n, t) evolved with the gradient flow equation;

dVµ(n, t)

dt
= −2NC

β
{∂n,µSW[V ]}Vµ(n, t), Vµ(n, t)|t=0 = Uµ(n), (2.3)

where t, a fictitious time or so-called flow time, is introduced. ∂n,µ is the su(NC)-valued

differential operator with respect to Vµ(n, t).

The twisted gradient flow (TGF) coupling g2
TGF(1/L) is defined as

g2
TGF(1/L) = N−1

T (c, a/L)t2〈E(t)〉
∣∣
t=c2L2/8

, (2.4)

where E(t) is a energy density made of Vµ(n, t). The explicit form of E(t) will be given

later. The vacuum expectation value 〈E(t)〉 is a renormalized quantity at the scale 1/
√

8t

at any t > 0 [20]. In a finite volume system we can use the volume size L as the scale of

the renormalization so we have set
1√
8t

=
1

cL
(2.5)

in eq. (2.4). The factor c is, in principle, a free parameter: a different choice of c gives

a different renormalization scheme. Throughout this work we choose c = 0.3 for a reason

we will state later. The normalization factor N−1
T (c, a/L) depends on the definition of the

energy density on the lattice.

In this work, we employ the following definition for the energy density E(t);

E(t) = − 1

64NC(L/a)4

∑
n,µ 6=ν

Tr
[
G2
µν(n, t)

]
, (2.6)

with

Gµν(n, t) = Zµν(n)Vµ(n, t)Vν(n+ µ̂, t)V †µ (n+ ν̂, t)V †ν (n, t)

+ Zµν(n− µ̂)Vν(n, t)V †µ (n− µ̂+ ν̂, t)V †ν (n− µ̂, t)Vµ(n− µ̂, t)
+ Zµν(n− µ̂− ν̂)V †µ (n− µ̂, t)V †ν (n− µ̂− ν̂, t)Vµ(n− µ̂− ν̂, t)Vν(n− ν̂, t)
+ Zµν(n− ν̂)V †ν (n− ν̂, t)Vµ(n− ν̂, t)Vν(n+ µ̂− ν̂, t)V †µ (n, t)− {h.c.}. (2.7)

With this definition, the normalization factor NT(c, a/L), which is defined so as to match

g2
TGF(1/L) with the bare coupling g2

0 at the tree level of the perturbation theory, is

NT(c, a/L) =
c4

128

∑
P

′
exp

[
−c

2L2

4
P̂ 2

] (∑
µ P̃

2
µ

) (∑
ν C

2
ν

)
−
∑

µ(P̃µCµ)2

P̂ 2
, (2.8)
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where

P̂µ =
2

a
sin

[
a
Pµ
2

]
, P̃µ =

1

a
sin[aPµ], Cµ = cos

[
a
Pµ
2

]
. (2.9)

The summation over Pµ runs

P1,2 =
2πm1,2

NCL
, 0 ≤ m1,2 ≤

NCL

a
− 1, (2.10)

for µ = 1, 2 and

P3,4 =
2πm3,4

L
, 0 ≤ m3,4 ≤

L

a
− 1, (2.11)

for µ = 3, 4. The prime (′) symbol on the summation indicates the exclusion of the

momentum contributions with (P1, P2) = (0, 0) from the sum.

We employ c = 0.3 throughout this work. In general, a smaller value of c gives smaller

statistical error. It causes, however, a larger lattice artifact. According to the previous

works [22, 25], c = 0.3 gives a good compromise between these two effects. This is the

reason for our choice c = 0.3.

3 Overview of strategy and simulation details

Here we explain the strategy for evaluating eq. (1.3). We take the following steps.

1. We evaluate the discrete beta function Bs(u) as a function of u = g2
TGF(1/L). It is

defined as

Bs
(
g2

TGF(1/L)
)

=
g2

TGF(s/L)− g2
TGF(1/L)

log[s2]
, (3.1)

where s is the scaling parameter. We extract this discrete beta function by taking

the continuum limit of lattice discrete beta functions evaluated on several lattices.

The details of the fitting and the analysis for the continuum limit will be explained

in the next section.

2. We estimate LmaxΛTGF using the discrete beta function evaluated in the previous

step. By fixing the scale 1/Lmax implicitly through the value of the coupling u∗ =

g2
TGF(1/Lmax), LmaxΛTGF can be evaluated with

cLmaxΛTGF = (b0u
∗)
− b1

2b20 exp

[
− 1

2b0u∗

]
× exp

[
−
∫ √u∗

0
dξ

(
1

βTGF(ξ)
+

1

b0ξ3
− b1

(b0)2 ξ

)]

' sn (b0un)
− b1

2b20 exp

[
− 1

2b0un

]
. (3.2)

Here we explicitly put c on the left-hand side, which is to use the same notation as

eq. (2.5) for the scale setting. The TGF coupling at scale sn/Lmax is evaluated with

the following recurrence equation (step scaling),

ui = ui−1 +Bs(ui−1) log[s2], u0 = u∗. (3.3)
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For a sufficiently small value of un = g2
TGF(sn/Lmax) we can safely use the two-loop

approximation in eq. (3.2) to extract LmaxΛTGF.

3. We relate the intermediate scale 1/Lmax to a hadronic scale Aphys in the continuum

limit. We employ two hadronic scales for the consistency check; the string tension
√
σ

and the Sommer scale r0. The lattice data of
√
σ and r0 are taken from refs. [1, 30]

and [31], respectively. To outline the procedure, let us assume that Aphys has a mass

dimension one for simplicity. We interpolate each of g2
TGF(1/L, β) and aAphys(β) as a

function of bare coupling β. By keeping the coupling constant g2
TGF(1/Lmax, β

∗) fixed

to u∗ over several lattices Lmax/a
∗, we obtain the corresponding values of β∗ (here

to show the connection between u∗ and the lattice spacing (or bare coupling), we use

a∗ (or β∗) ). For each value of β∗ (thus a∗/Lmax) we have a pair of Lmax/a
∗ and

a∗Aphys(β
∗). We then take the continuum limit of (Lmax/a

∗)(a∗Aphys) as a function

of a∗/Lmax.

4. To convert ΛTGF to the Λ-parameter in the MS scheme, we need the ratio ΛMS/ΛTGF.

We split the ratio into two pieces: (ΛMS/ΛSF)(ΛSF/ΛTGF). The value of the former

factor is already known to be ΛMS/ΛSF = 0.48811(1) [12], but the latter is not known

in the literature. We therefore calculate ΛSF/ΛTGF numerically via the one-loop

relation between g2
SF and g2

TGF at the same renormalization scale 1/L. To obtain

the one-loop relation, we calculate the couplings with lattice simulations in the weak

coupling region.

5. Finally we combine all pieces obtained above to have

ΛMS√
σ

=
ΛMS

ΛSF

ΛSF

ΛTGF

LmaxΛTGF

Lmax
√
σ
, r0ΛMS =

ΛMS

ΛSF

ΛSF

ΛTGF

LmaxΛTGF

Lmax/r0
. (3.4)

The TGF couplings on the lattice in the steps 1–3 explained above are evaluated on five

lattices with L/a =12, 16, 18, 24 and 36. We use the heat-bath method introduced by Fabri-

cius and Haan [33] to increase the acceptance ratio. We accumulate configurations as listed

in table 10 in appendix B. Each configuration is separated by 100 sweeps. The TGF cou-

plings, we computed, are listed in table 1, of which error is statistical one and estimated by

taking the autocorrelation into account with the procedure proposed in ref. [34].1 We take

several values for the bare coupling β = 6/g2
0 on each lattice to take the continuum limit.

On the other hand, simulations in the weak coupling region have been done on four

lattices L/a =8, 10, 12 and 16, with three values of the bare coupling β = 40, 60 and 80.

We use the same plaquette gauge action with the O(a)-improvement boundary correction

and the SF boundary condition [4, 35] to calculate g2
SF. The error of the coupling from

these data is estimated with the Jackknife method after binning data into 10 bins. We

execute O(106)–O(107) sweeps for each parameter. The SF coupling is evaluated every

sweep and the TGF coupling is evaluated every 100 sweeps.

1We observed long autocorrelations for some of the parameter sets so we increased the statistics for

them. We leave the identification of the source of this behavior for future study.
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g2
TGF(1/L, β)

β 12 16 18 24 36 L/a

6.11 6.9717(35)

6.13 6.6924(34)

6.15 6.4394(34)

6.17 6.1930(33)

6.20 5.8715(38)

6.25 5.4287(42)

6.30 7.0234(91)

6.31 6.8951(95)

6.33 4.8848(34) 6.6495(96)

6.36 6.2972(90)

6.38 6.102(11) 7.082(14)

6.40 4.5129(29) 5.892(12) 6.848(14)

6.42 4.4250(27) 5.6829(75) 6.595(12)

6.45 4.3034(29) 5.4760(85) 6.263(12)

6.47 6.034(17)

6.49 5.868(14)

6.50 4.1052(26) 5.118(13) 5.734(14)

6.60 3.7783(18) 4.5767(39) 5.049(14) 6.967(27)

Table 1. TGF coupling on each L/a and β.

The error propagation of the statistical error on non-primary observables, such as

the discrete beta function in the continuum limit, is estimated by a random re-sampling

method. For the re-sampling, we assume the primary data in table 1 satisfies Gaussian

distribution with the width of the measured statistical error.

4 TGF running coupling constant and LmaxΛTGF

To extract the discrete beta function eq. (3.1), we take the continuum limit of the lattice

discrete beta function defined by

BLAT
s (g2

TGF(1/L, β)) =
g2

TGF(s/L, β)− g2
TGF(1/L, β)

log[s2]
. (4.1)

We use s = 3/2 as the scaling parameter. To take the continuum limit of eq. (4.1), the

value of g2
TGF(1/L, β) is kept fixed at g2

TGF(1/L, β) = u as the renormalization condition

irrespective of β. This implies that the physical length L is fixed. The lattice discrete beta

function is evaluated using eq. (4.1) by substituting the data of table 1. In the following we

fit the lattice discrete beta function to a polynomial function and investigate the systematic

errors coming from the fitting.
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g2
TGF(1/L, β)

β 12 16 18 24 36 L/a

6.62 4.4730(40) 6.705(21)

6.65 3.6355(17) 4.3581(56) 4.799(15) 6.352(25)

6.75 3.3836(18) 3.9874(69) 4.3092(87) 5.4640(88)

6.80 3.8284(31) 5.1284(90)

6.86 3.1542(15) 3.6604(33) 4.8079(69)

6.90 4.6334(48) 7.009(19)

6.94 4.4546(67) 6.590(26)

6.97 4.3189(55) 6.317(28)

7.00 2.9041(14) 3.3168(75) 3.5318(73) 4.2230(44) 5.983(14)

7.05 3.2164(24) 4.0409(43)

7.13 3.7924(38) 5.0811(92)

7.18 3.6537(34) 4.8281(68)

7.25 2.5489(12) 2.8649(40) 3.0163(57) 3.4803(31) 4.4890(60)

7.40 3.1596(28) 3.9612(56)

7.50 2.2783(11) 2.5122(41) 2.6370(57) 2.9831(27) 3.6693(50)

7.75 2.06258(94) 2.2627(32) 2.3452(47) 2.6125(23) 3.1269(34)

8.00 1.88717(88) 2.0469(36) 2.1238(42) 2.3323(21) 2.7269(27)

8.25 1.74054(80) 1.8722(30) 1.9380(35) 2.1078(17) 2.4235(27)

8.50 1.61638(71) 1.7312(26) 1.7868(34) 1.9273(11) 2.1836(18)

9.00 1.41544(65) 1.4971(24) 1.5438(39) 1.64590(88) 1.8261(15)

9.50 1.26024(62) 1.3242(22) 1.3576(30) 1.43870(82) 1.5689(12)

10.00 1.13594(49) 1.1879(16) 1.2134(17) 1.27733(67) 1.3803(12)

Table 1. (cont’d) TGF coupling on each L/a and β.

We use the following polynomial function of a/L and u for the fitting;

BLAT
3/2 (u, a/L) =

Nmax∑
j=0

[
cj + dj

( a
L

)2
]
uj+2. (4.2)

Here c0 = −b0 and c1 = b20 log[s2] − b1 are fixed to the analytical values from the two-

loop perturbation. Nmax is an order of truncation to investigate the uncertainty from the

fit-ansatz as a polynomial in u. We compare the parameters fitted with Nmax = 3 and

Nmax = 4 to see the truncation error in u. The lattice cut-off dependence is incorporated

with dj for O(a2/L2) effects. We also investigate the fit range dependence in u by varying

the upper limit around umax ∼ 6.263–6.848 together with the truncation effect in cj and

dj . To use interpolated data for the analysis, we set umax defined by

umax = min
L/a

(
max
β

g2
TGF(1/L, β)

)
,

where max
β

takes the maximum value of g2
TGF among different values of β with fixed L/a.
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Figure 1. The discrete beta function on each lattice size.

Data set Set (A) Set (A) with dNmax = 0

Nmax 3 4 3 4

c2 0.000657(26) 0.00143(15) 0.000644(26) 0.00145(15)

c3 −0.0000613(39) −0.000337(53) −0.0000589(39) −0.000344(52)

c4 - 0.0000237(46) - 0.0000243(45)

d0 −0.79(58) 2.1(1.3) 1.88(27) 1.49(71)

d1 1.92(44) −1.6(1.5) −0.25(15) −0.84(67)

d2 −0.54(10) 0.53(57) −0.019(16) 0.22(17)

d3 0.0389(75) −0.072(91) - −0.021(13)

d4 - 0.0030(52) - -

χ2/DoF 2.39(59) 1.60(52) 3.11(64) 1.56(51)

Table 2. Fit results with the set (A) for the discrete beta function.

We have three data sets [(A), (B) and (C)] for the fitting stability analysis.

• Set (A): all data pairs at L/a = (12, 18), (16, 24), or (24, 36) in each β row listed in

table 1. This corresponds to umax ' 6.848.

• Set (B): following data pairs are excluded from the set (A): β = 6.40 for L/a =

(12, 18), β = 6.60 for L/a = (16, 24), and β = 6.90 for L/a = (24, 36). This corre-

sponds to umax ' 6.590.

• Set (C): following data pairs are excluded from the set (B): β = 6.42 for L/a =

(12, 18), β = 6.62 for L/a = (16, 24), and β = 6.94 for L/a = (24, 36). This corre-

sponds to umax ' 6.263.

Figure 1 shows the lattice discrete beta function. The set (A) uses all data points in the

figure. For the set (B) and the set (C), we use all data points below the solid vertical line

and dotted vertical line, respectively. We fit data (BLAT
3/2 (u, a/L), u, a/L) simultaneously in
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Data set Set (B) Set (B) with dNmax = 0

Nmax 3 4 3 4

c2 0.000755(34) 0.00110(21) 0.000740(34) 0.00110(20)

c3 −0.0000802(57) −0.000208(76) −0.0000774(56) −0.000211(73)

c4 - 0.0000117(69) - 0.0000119(66)

d0 −0.09(64) 1.0(1.4) 1.63(29) 0.84(82)

d1 1.17(52) −0.2(1.7) −0.29(17) 0.00(83)

d2 −0.37(13) 0.04(66) −0.001(20) −0.03(23)

d3 0.0287(97) −0.01(11) - 0.000(19)

d4 - 0.0008(67) - -

χ2/DoF 1.42(52) 1.41(54) 1.66(54) 1.36(52)

Table 3. Fit results with the set (B) for the discrete beta function.

Data set Set (C) Set (C) with dNmax = 0

Nmax 3 4 3 4

c2 0.000809(44) 0.00100(23) 0.000793(43) 0.00099(22)

c3 −0.0000912(80) −0.000165(90) −0.0000884(78) −0.000160(84)

c4 - 0.0000070(86) - 0.0000066(80)

d0 0.43(75) 0.6(1.8) 1.56(34) 0.87(93)

d1 0.69(63) 0.4(2.1) −0.30(21) 0.11(95)

d2 −0.26(16) −0.22(91) 0.006(27) −0.08(27)

d3 0.022(13) 0.03(16) - 0.007(23)

d4 - −0.002(11) - -

χ2/DoF 1.36(52) 1.44(55) 1.41(52) 1.39(53)

Table 4. Fit results with the set (C) for the discrete beta function.

u and a/L by taking the correlation among u’s and BLAT
3/2 (u, a/L)’s into account [36] for

each data set. The continuum limit is obtained by dropping the dj terms.

Tables 2, 3, and 4 show the fit results in each case. As seen from the results in

the set (A), the discrepancy for cj between Nmax = 3 and 4 is rather large indicating

the uncontrolled systematic error in the polynomial fit at these polynomial order. We

cannot determine the higher order terms using data with large statistical error in the

strong coupling region. We observe that the discrepancy in cj between Nmax = 3 and 4

for sets (B) and (C) is smaller than that for the set (A). The coefficients cj in the set

(C) are consistent between Nmax = 3 and 4, though there are large statistical errors. The

truncation error in u seems to be controlled in the fitting range of (C).

We also investigate the stability on fitting for dj (j < Nmax) by dropping the parame-

ter dNmax . For the set (A), setting dNmax = 0 in the fit-ansatz largely affects on the determi-

nation on the coefficients dj (j < Nmax). For the sets (B) and (C), however, the stability

on dj improves. Although the coefficients dj have large statistical errors, the consistency in
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Figure 2. The discrete beta function in the continuum limit (solid purple line) obtained with

Nmax = 3 from the set (C) together with the one- and two-loop analytic results. The statistical

error band (light purple shade) for the result is underlaid behind the solid purple line, but is almost

identical to the width of the line.

the set (C) is better than that in the set (B). Moreover we observe that the truncation of

dNmax does not disturb the coefficients c2 and c3, which indicates that the continuum limit

is insensitive to the lattice cut-off effect with the fit-ansatz we employed. In the rest of the

analysis, we always use results obtained with dNmax 6= 0 without explicitly mentioning.

Because of these observations we adopt the results obtained with Nmax = 3 from the

data set (C) as the central value. The other results obtained from the data set (B) and

(C) are used to investigate the systematic error on the Λ-parameter. Figure 2 shows the

discrete beta function in the continuum limit obtained with Nmax = 3 from the set (C).

We evaluate LmaxΛTGF according to the step 2 in section 3. Eleven values for u∗ are

taken from 6.00 to 6.25 in steps of 0.025 to fix the intermediate scale Lmax. The fluctuations

coming from the different choice of Lmax, fit-ansatz and data set will be used to estimate

the systematic errors of the final results of r0ΛMS and ΛMS/
√
σ in section 5. The number of

steps n to evolve eq. (3.3) is n = 400, where un=400 is sufficiently small to utilize eq. (3.2).

The values of cLmaxΛTGF for each u∗ are tabulated in table 5.

5 Physical scale in terms of Lmax

As described in section 3, the hadronic scales, the string tension
√
σ and the Sommer scale

r0, have to be determined in terms of Lmax. a
√
σ and r0/a with the plaquette gauge action

in large physical volumes have been determined at β ∈ [5.65, 6.515] in refs. [1, 30] and

β ∈ [5.70, 6.692] in ref. [31], respectively. To relate the intermediate scale Lmax/a and the

physical scales aAphys (= a
√
σ or a/r0) at the same lattice cut-off “a”, we need the bare

coupling constant g2
0 dependence (or β dependence) of g2

TGF(1/Lmax, β) and aAphys(β).

Using the values of aAphys(β
∗) at a fixed value g2

TGF(a∗/Lmax, β
∗) = u∗ on several

lattice sizes are obtained, we can take the continuum limit for LmaxAphys as follows:

LmaxAphys = lim
a∗/Lmax→0

[(
Lmax

a∗

)
(a∗Aphys)

]∣∣∣∣
fixed g2TGF=u∗

. (5.1)
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cLmaxΛTGF

Set (B) Set (C)

u∗ = g2
TGF(1/Lmax) Nmax = 3 Nmax = 4 Nmax = 3 Nmax = 4

6.000 0.5791(67) 0.6142(229) 0.5845(74) 0.6040(253)

6.025 0.5812(67) 0.6164(230) 0.5865(74) 0.6061(254)

6.050 0.5832(67) 0.6186(231) 0.5885(74) 0.6082(256)

6.075 0.5852(67) 0.6208(232) 0.5904(74) 0.6103(257)

6.100 0.5872(67) 0.6230(233) 0.5923(74) 0.6123(259)

6.125 0.5892(68) 0.6251(234) 0.5942(74) 0.6143(260)

6.150 0.5912(68) 0.6273(235) 0.5961(74) 0.6163(262)

6.175 0.5931(68) 0.6294(236) 0.5980(73) 0.6183(264)

6.200 0.5950(68) 0.6315(237) 0.5998(73) 0.6203(265)

6.225 0.5969(68) 0.6336(238) 0.6020(73) 0.6222(267)

6.250 0.5988(68) 0.6357(239) 0.6037(73) 0.6242(269)

Table 5. cLmaxΛTGF for each u∗.

To take the continuum limit of the hadronic scale aAphys reliably, g2
TGF(1/Lmax, β) should

be precisely evaluated in the scaling region of aAphys on several lattice sizes Lmax/a with

sufficiently large u∗. This condition is satisfied with our data at Lmax/a = 12, 16 and 18,

where the large enough TGF couplings g2
TGF(1/Lmax, β) = u∗ and aAphys in the scaling

region are available in the ranges β ∈ [6.11, 6.515] for a
√
σ and β ∈ [6.11, 6.92] for a/r0,

respectively. Therefore we can take any renormalization condition u∗ in this region and we

employ several different values from u∗ = 6.00–6.25, of which upper limit is below umax '
6.263 of the set (C), to see that the final results do not depend on the choice of u∗ indeed.

Let us start with interpolation of g2
TGF(1/Lmax, β), a

√
σ and a/r0 as functions of g2

0

separately in the following. Then we combine the interpolated results to take the continuum

limit using eq. (5.1).

To interpolate g2
TGF(1/Lmax, β), we use all data satisfying the following conditions;

β ∈ [6.11, 6.60], g2
TGF > 5.0, and Lmax/a = 12, 16 or 18 in table 1. In this β region, both

the Sommer scale and the string tension are available in large volumes. We interpolate the

data using the following function;

g2
TGF(1/Lmax, β) = g2

0

1

1 +
∑3

k=1 ckg
2k
0

. (5.2)

Figure 3 shows the fit result, and table 6 shows the parameters obtained. Solving

g2
TGF(1/Lmax, β

∗) = u∗

at each u∗ for β∗ using eq. (5.2), we obtain β∗ as shown in table 11 in appendix C.
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Figure 3. g2TGF(1/L, β) vs β at each lattice size. The solid lines show the fit results with eq. (5.2).

L/a c1 c2 c3 χ2/DoF

12 −3.03(0.78) 5.25(1.60) −3.12(0.82) 3.2(2.2)

16 −2.95(1.05) 5.06(2.24) −3.07(1.19) 3.6(1.6)

18 −3.23(1.22) 5.69(2.62) −3.44(1.41) 2.9(1.7)

Table 6. Fitted parameters for eq. (5.2) at each lattice size.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 5.6  5.8  6  6.2  6.4  6.6

a
√(

σ
)

β

Figure 4. The β dependence of the string tension a
√
σ.

Interpolating the data from refs. [1, 30] for a
√
σ as a function of x = g2

0, we obtain

(a
√
σ)(x) = f(x)

(
−12536(1651) + 40079(5022)x− 42596(5087)x2 + 15145(1716)x3

)
,

f(x) = (b0x)
− b1

2b20 exp

[
− 1

2b0x

]
, (5.3)

with χ2/DoF = 1.15(67). As plotted in figure 4, eq. (5.3) smoothly interpolates the data

in the scaling region β ∈ [6.11, 6.515]. Substituting β∗ from table 11 into eq. (5.3), and

multiplying Lmax/a
∗ which corresponds to β∗ on it, we obtain Lmax

√
σ at each u∗. Table 12

in appendix C shows the values of Lmax
√
σ before taking the continuum limit. The cut-off
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Figure 5. (a/L)2 dependence of Lmax
√
σ (left) and Lmax/r0 (right) for each u∗. The lines show

the liner extrapolation to the continuum limit.

u∗ = g2
TGF(1/Lmax) Lmax

√
σ Lmax/r0

6.000 1.9189(86) 1.6839(98)

6.025 1.9260(85) 1.6896(97)

6.050 1.9330(85) 1.6954(97)

6.075 1.9399(84) 1.7010(97)

6.100 1.9468(83) 1.7067(97)

6.125 1.9537(83) 1.7123(96)

6.150 1.9605(82) 1.7179(96)

6.175 1.9673(82) 1.7234(96)

6.200 1.9740(81) 1.7289(96)

6.225 1.9806(80) 1.7343(95)

6.250 1.9873(80) 1.7397(95)

Table 7. Lmax
√
σ and Lmax/r0 for each u∗ in the continuum limit.

dependence of Lmax
√
σ for each u∗ is shown in the left panel of figure 5. We extrapolate

them linearly in a2/L2 to the continuum limit (circles). χ2/DoF ∼ 1 are obtained from

the extrapolation. Since the resulting value of the χ2/DoF is reasonable, and naive order

estimation of contribution from (a/L)4 is much smaller than the statistical error, we neglect

the O(a4/L4) uncertainty in the continuum extrapolation. The values in the continuum

limit are tabulated in the middle column of table 7.

We analyze Lmax/r0 similarly to the case of Lmax
√
σ. The interpolating formula is

a

r0
(x) = f(x) (23977(12145)− 106580(50576)x

+178094(78876)x2 − 132318(54603)x3 + 36906(14157)x4
)
, (5.4)
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Figure 6. The β dependence of the Sommer scale a/r0.

with χ2/DoF = 1.14(1.14) (figure 6 shows the interpolation in the scaling region). We

list the values of Lmax/r0 at each renormalization condition u∗ with finite lattice cut-off in

table 13 in appendix C. The cut-off dependence and the values in the continuum limit are

shown in the right panel of figure 5 and the right column in table 7, respectively.

6 Λ-parameter ratio ΛSF/ΛTGF and ΛMS

To move from the TGF scheme to the MS scheme, we need the Λ-parameter ratio ΛMS/ΛTGF.

Usually the ratio is calculated with the one-loop perturbation theory but the value is not yet

available at the present time, while there is an ongoing project [28] of the perturbative cal-

culation. As we already know the ratio ΛMS/ΛSF [12], what we have to calculate is the ratio

ΛSF/ΛTGF. Since both g2
SF and g2

TGF can be evaluated on the lattice with the same cut-off

and with the renormalization scale (that is, a and L are the same), we can evaluate them

with the Monte Carlo simulation on the lattice. We employ the two-loop formula [4, 35],

ct(g0) = 1− 0.08900(5)g2
0 − 0.0294(3)g4

0, (6.1)

for the O(a)-improvement boundary correction in the SF simulations so that g2
SF is O(a)-

improved at the two-loop level.

Let us denote the SF and TGF couplings at the gauge coupling β on a finite box (L/a)4

by g2
SF(a/L, β) and g2

TGF(a/L, β), respectively. In a weak coupling region, these couplings

are related through

g2
SF(a/L, β)

g2
TGF(a/L, β)

= 1 + cg(a/L)g2
TGF(a/L, β) + · · · . (6.2)

We extract the value of cg(a/L) by investigating g2
TGF(a/L, β) dependence of the ratio (6.2).

Both couplings g2
TGF and g2

SF are numerically evaluated at β = 40, 60 and 80 on L/a = 8,

10, 12 and 16 lattices. Since the TGF scheme is automatically free from O(a) errors and

gSF is O(a)-improved, the a/L dependence of cg(a/L) should be

cg(a/L) = c(0)
g + c(1)

g

( a
L

)2
+ · · · . (6.3)
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L/a β g2
TGF g2

SF L/a β g2
TGF g2

SF

8 40 0.167587(25) 0.166813(18) 12 40 0.169048(26) 0.168350(19)

60 0.107511(18) 0.107154(13) 60 0.108094(14) 0.1077858(82)

80 0.079132(18) 0.0789374(73) 80 0.079439(11) 0.079294(10)

10 40 0.168404(22) 0.167642(19) 16 40 0.170093(21) 0.169426(19)

60 0.107848(16) 0.107478(15) 60 0.108526(19) 0.108242(13)

80 0.079311(15) 0.0791399(81) 80 0.079700(16) 0.0795263(79)

Table 8. TGF and SF couplings on each lattice and each β in the weak coupling region.
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Figure 7. The ratio between the SF coupling and TGF coupling vs the TGF coupling. The lines

show the fit results with linear fitting.

The ratio of the Λ-parameters is defined by

ΛSF

ΛTGF
= c× exp

[
c

(0)
g

2b0

]
. (6.4)

with c
(0)
g from the continuum limit of cg(a/L).

In table 8 we list the TGF and SF couplings measured on each lattice size and each β.

Figure 7 shows g2
SF(a/L, β)/g2

TGF(a/L, β) as a function of g2
TGF(a/L, β). We fit the data

linearly in g2
TGF and the lines drawn in the figure are the fit results. Table 9 summarizes

the fitted value of cg(a/L) for each L/a. In figure 8, we plot cg(a/L) as a function of

(a/L)2. Fitting the data linearly in (a/L)2, we obtain

c(0)
g = −0.02215(99) (6.5)

with χ2/DoF ' 1.48. Consequently, eq. (6.4) with c = 0.3 yields

ΛSF

cΛTGF
= 0.8530(61), (6.6)

where the error quoted is the statistical one.
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L/a cg(L/a) χ2/DoF L/a cg(L/a) χ2/DoF

8 −0.02859(92) 1.42 12 −0.02492(82) 0.98

10 −0.02793(85) 2.76 16 −0.02363(84) 1.11

Table 9. The fit results for cg at each lattice.
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Figure 8. The coefficient cg(a/L) vs (a/L)2.

We can now evaluate ΛMS according to our strategy eq. (1.3). We assemble ΛSF/ΛMS =

0.48811(1) [12] and the results for LmaxΛTGF, LmaxAphys, and ΛSF/ΛTGF (tables 5, 7 and

eq. (6.6), respectively). Figures 9 and 10 show the renormalization condition u∗ dependence

of ΛMS/
√
σ and r0ΛMS, respectively. All results with Nmax = 3 and 4 from sets (B) and (C)

are plotted. The dashed lines with gray band are from refs. [37] and [38] for comparison. We

observe no renormalization condition dependence as expected. For the case of Nmax = 3

the results are consistent between the sets (B) and (C). This also holds for the case of

Nmax = 4. On the other hand, the results between Nmax = 3 and 4 are consistent within

one standard deviation in the set (C), while the results between Nmax = 3 and 4 differ by

more than one standard deviation in the set (B). Our final estimates are

ΛMS√
σ

= 0.5315(81)stat.(
+269
−48 )syst., (6.7)

r0ΛMS = 0.6062(92)stat.(
+309
−52 )syst.. (6.8)

The central values are obtained by averaging the results with Nmax = 3 from the set

(C) over different renormalization conditions u∗. The upper and lower systematic errors

are assigned by the discrepancies to the set (B) with Nmax = 4 and to the set (B) with

Nmax = 3, respectively. Although there still remain large systematic errors coming from the

form of the fitting function for the discrete beta function, our results of ΛMS/
√
σ and r0ΛMS

are consistent with the known values ΛMS/
√
σ = 0.555(+19

−17) from [37] and r0ΛMS = 0.62(2)

from [38], respectively.
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Figure 10. Same as figure 9, but for r0ΛMS. The dashed line with gray band is the known value

r0ΛMS = 0.62(2) [38].

7 Summary

We have evaluated the Λ-parameter in the MS scheme for the pure SU(3) gauge theory via

the twisted gradient flow method according to our strategy shown in (1.3). Our results are

summarized in eqs. (6.7) and (6.8), which are determined from two independent low energy

physical scales, and both results are consistent with the known values in the literature. To

obtain the results we have determined the Λ-parameter ratio between the TGF scheme

and the SF scheme with lattice simulations, which is a non-trivial step in our analysis.

Having obtained consistent values to the known ones in eqs. (6.7) and (6.8), we verified the

ratio ΛSF/ΛTGF (6.6) determined with non-perturbative simulations. To further confirm

the value of the ratio ΛSF/ΛTGF, it would be interesting to compare our ratio with the

analytic one from the explicit perturbative calculation [28].

The major source of the error of the Λ-parameter is the uncertainty of the fitting

function for the discrete beta function, which we disentangled from the statistical error

– 18 –



J
H
E
P
1
2
(
2
0
1
7
)
0
6
7

using high precision numerical computation. To further reduce the uncertainty, there are

two possible strategies; first one is to increase the statistics in the strong coupling region,

umax = 6.0–7.0. However, since we observed a long auto-correlation time in this region,

we have to treat this behavior carefully in the analysis. Another possibility is to increase

the data point and the statistics in the region u = 5.0–6.0, where no long auto-correlation

time is observed. We expect stabilization of the fitting for the discrete beta function as

a polynomial function of u by lowering the maximum of the fit range with the increased

data points and statistics in this weaker coupling region. Although the Sommer scale is

available in u∗ = 5.0–6.0, the string tension is not available. Our prime interest was to

demonstrate the strategy and to show the consistency, and we employed two independent

low energy hadronic scales for the Λ-parameter. Therefore further study based on the

second possibility is beyond the scope of this paper as it requires the string tension in the

weak coupling region and more computational resources.
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A Derivation of the action

In this appendix, we derive the action with periodic variables (2.1). We start from the

following action in SU(NC) defined on a (L/a)4 ≡ L̂4 lattice with the twisted boundary

condition on the x-y plane and periodic boundary condition in z and t directions:

S =
β

2NC

∑
n,µ,ν
(µ6=ν)

Tr [Pµν [n;V ]] , (A.1)

where

Pµν [n;V ] = Vµ(n)Vν(n+ µ̂)V †µ (n+ ν̂)V †ν (n) (A.2)

is a plaquette variable made of link variables Vµ(n) with the twisted boundary condition:

Vµ(n+ L̂ν̂) = ΓνVµ(n)Γ†ν (ν = 1, 2), (A.3)

Vµ(n+ L̂ν̂) = Vµ(n) (ν = 3, 4), (A.4)

where NC ×NC unitary matrix Γν (ν = 1, 2) is called twist matrix and satisfies

Γ1Γ2 = ωΓ2Γ1, ω = exp

[
2πi

NC

]
. (A.5)
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Let us eliminate the link variables on n1 = 0 or n2 = 0 by using the variables on

ni = L̂. The plaquette on n1 = n2 = 0 becomes

TrP12[(0, 0, n3, n4);V ] = ω∗Tr[V1(L̂, L̂, n3, n4)Γ1V2(1, L̂, n3, n4)Γ2

Γ†1V
†

1 (L̂, 1, n3, n4)Γ†2V
†

2 (L̂, L̂, n3, n4)]. (A.6)

By introducing the following new variables for n1,2 = 1, 2, . . . , L̂

U1(L̂, n2, n3, n4) ≡ V1(L̂, n2, n3, n4)Γ1 = Γ1V1(0, n2, n3, n4), (A.7)

U2(n1, L̂, n3, n4) ≡ V2(n1, L̂, n3, n4)Γ2 = Γ2V2(n1, 0, n3, n4), (A.8)

Uµ(n1, n2, n3, n4) ≡ Vµ(n1, n2, n3, n4) for others, (A.9)

it becomes

TrP12[(0, 0, n3, n4);V ] = ω∗Tr[U1(L̂, L̂, n3, n4)U2(1, L̂, n3, n4)

U †1(L̂, 1, n3, n4)U †2(L̂, L̂, n3, n4)]. (A.10)

Except for the overall factor ω, this is exactly the plaquette with periodic link variables

Uµ(n). Therefore we define link variables on n1 = 0 and n2 = 0 through the periodic

boundary condition:

Uµ(0, n2, n3, n4) ≡ Uµ(L̂, n2, n3, n4), (A.11)

Uµ(n1, 0, n3, n4) ≡ Uµ(n1, L̂, n3, n4), (A.12)

Uµ(0, 0, n3, n4) ≡ Uµ(L̂, L̂, n3, n4). (A.13)

Similar calculations show other plaquettes become those with Uµ(n) without overall factor.

Then, we finally obtain the action with periodic link variable Uµ(n)

S =
β

2NC

∑
n,µ,ν
(µ6=ν)

Tr [Zµν(n)Pµν [n;U ]] , (A.14)

where Zµν(n) = Z∗νµ(n) is given as

Zµν(n) =

{
ω∗ µ = 1, ν = 2, and n1 = n2 = 0,

1 otherwise.
(A.15)

B The number of the configurations for g2
TGF

We list the number of the configurations used to calculate g2
TGF in table 10.
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Number of configurations [τint]

β 12 16 18 24 36 L/a

6.11 91300[1.7]

6.13 89600[1.7]

6.15 89600[1.8]

6.17 89600[1.9]

6.20 69500[2.3]

6.25 37600[1.9]

6.30 27500[3.5]

6.31 29600[4.2]

6.33 37100[1.9] 29600[4.6]

6.36 29600[4.7]

6.38 29100[6.9] 16760[5.3]

6.40 19500[1.0] 26000[8.8] 15266[4.9]

6.42 19600[0.9] 29100[4.5] 27620[7.1]

6.45 19600[1.1] 29100[6.0] 25820[7.2]

6.47 18020[11.3]

6.49 18020[8.6]

6.50 15500[0.8] 14300[8.7] 14804[7.8]

6.60 19600[0.6] 14350[1.3] 10020[7.2] 9340[10.5]

6.62 8550[0.9] 18240[15.0]

6.65 19600[0.7] 9600[1.9] 10020[9.9] 8820[11.1]

6.75 15500[0.7] 2500[1.0] 2200[1.2] 14950[3.8]

6.80 8550[0.8] 9470[3.1]

6.86 19600[0.7] 8050[0.9] 9420[2.3]

6.90 163262[20.4] 26610[14.9]

6.94 7440[2.0] 41435[50.1]

6.97 8040[1.7] 39240[65.3]

7.00 15500[0.6] 1600[1.3] 1420[0.9] 11006[1.6] 20057[9.9]

7.05 9500[0.8] 10440[1.6]

7.13 12710[1.8] 20890[7.2]

7.18 12710[1.5] 20850[4.7]

7.25 15500[0.6] 1750[0.6] 1900[1.0] 10650[1.3] 14500[3.3]

7.40 10440[1.3] 12145[3.3]

7.50 15500[0.7] 1300[0.6] 1350[1.0] 9570[1.3] 12900[3.5]

7.75 15500[0.7] 1800[0.7] 1200[0.9] 9450[1.4] 14500[2.7]

8.00 15500[0.7] 1100[0.7] 1200[0.9] 9450[1.5] 13700[2.3]

8.25 15000[0.7] 1700[0.9] 1480[0.9] 9350[1.2] 12900[2.8]

8.50 15000[0.6] 1400[0.7] 1300[1.0] 23620[1.4] 19980[2.7]

9.00 15500[0.7] 1300[0.8] 1100[1.5] 22220[1.3] 19920[2.8]

9.50 15500[0.9] 1800[1.1] 1200[1.2] 22400[1.6] 19640[2.3]

10.00 15500[0.7] 1800[0.7] 1600[0.7] 23000[1.4] 19640[3.2]

Table 10. Number of configurations after thermalization used to calculate g2TGF. τint. indicates

integrated autocorrelation.
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C Tables to evaluate Lmax/Aphys

In tables 11, 12 and 13 we collect values needed to evaluate Lmax/Aphys in section 5.

β∗

u∗ 12 16 18 Lmax/a
∗

6.000 6.18803(21) 6.38835(46) 6.47494(71)

6.025 6.18565(20) 6.38578(46) 6.47232(70)

6.050 6.18330(20) 6.38324(46) 6.46974(69)

6.075 6.18097(20) 6.38073(45) 6.46718(68)

6.100 6.17866(20) 6.37824(45) 6.46464(67)

6.125 6.17638(20) 6.37577(45) 6.46213(66)

6.150 6.17411(19) 6.37333(44) 6.45964(65)

6.175 6.17187(19) 6.37091(44) 6.45718(64)

6.200 6.16965(19) 6.36851(43) 6.45474(63)

6.225 6.16745(19) 6.36614(43) 6.45233(62)

6.250 6.16528(18) 6.36378(42) 6.44994(61)

Table 11. The bare coupling β∗ at the renormalization condition u∗.

(Lmax/a
∗) · (a∗

√
σ)

u∗ 12 16 18 Lmax/a
∗

6.000 1.9207(36) 1.9228(39) 1.9156(57)

6.025 1.9275(36) 1.9297(40) 1.9227(56)

6.050 1.9343(36) 1.9366(40) 1.9297(56)

6.075 1.9410(36) 1.9434(40) 1.9367(55)

6.100 1.9477(36) 1.9502(40) 1.9436(54)

6.125 1.9544(36) 1.9570(40) 1.9505(54)

6.150 1.9610(36) 1.9637(40) 1.9573(53)

6.175 1.9676(36) 1.9704(40) 1.9641(52)

6.200 1.9742(36) 1.9770(40) 1.9708(52)

6.225 1.9807(36) 1.9836(41) 1.9776(51)

6.250 1.9872(36) 1.9902(41) 1.9842(51)

Table 12. Lmax
√
σ at each u∗.
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(Lmax/a
∗) · (a∗/r0)

u∗ 12 16 18 Lmax/a
∗

6.000 1.6592(38) 1.6697(51) 1.6732(61)

6.025 1.6651(38) 1.6755(51) 1.6790(61)

6.050 1.6709(38) 1.6813(51) 1.6848(61)

6.075 1.6766(38) 1.6870(51) 1.6905(61)

6.100 1.6824(38) 1.6927(51) 1.6962(60)

6.125 1.6881(38) 1.6984(51) 1.7019(60)

6.150 1.6938(38) 1.7040(50) 1.7075(60)

6.175 1.6995(38) 1.7096(50) 1.7131(60)

6.200 1.7051(38) 1.7152(50) 1.7186(60)

6.225 1.7107(38) 1.7207(50) 1.7242(60)

6.250 1.7163(38) 1.7262(50) 1.7297(60)

Table 13. Lmax/r0 at each u∗.
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