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1 Introduction

Six dimensional superconformal field theories (SCFTs) along with their compactifications

to lower dimensions have attracted a lot of attention in recent years: on the one hand,

the dynamics of these theories display very rich structures which are interesting to explore

in their own right. On the other hand, these SCFTs have seen numerous applications in

string- and field theories. Indeed, the fact that many of them can be engineered from string

or M-theory through various brane constructions (see for example [1–7] for recent work on

theories constructed from parallel M5-branes (with M2-branes stretched between them)),

has allowed to identify interesting structures in the latter and has provided an invaluable

window into their inner workings [8–15]. Similarly, from the point of view of field theory, the

recent years have brought to light interesting new dualities: for example, different types of

compactifications of six dimensional SCFTs lead to various lower dimensional theories. The

connection to a common higher dimensional parent theory gives rise to relations between

certain quantities computed in these theories. The first example of this phenomenon was

discussed in [16, 17], relating the partition functions of four dimensional gauge theories to

conformal blocks in Liouville theory. Since then, multiple other examples of this type have

been found.

Describing these SCFT’s, however, using traditional tools in field theory, is typically

rather difficult, since in general no Lagrangian description is known. Therefore, different

methods — many of them inspired by their relation to string-theory — have been developed.

In particular, considering compactifications of F-theory [18] on elliptically fibered Calabi-

Yau threefolds, a classification [19–23] (see also [24] for recent work in this direction) of
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six-dimensional SCFTs has been proposed. Those theories with N = (2, 0) supersymmetry

allow an ADE classification and can be realised within type II string theory compactified

on a R4/Γ singularity, with Γ a discrete ADE subgroup of SU(2). In the case of an A-

type orbifold (i.e. Γ = ZN ) these theories have a dual description in terms of N parallel

M5-branes probing a transverse R4
⊥ space.

In this paper we study the AN symmetry in a series of mass-deformed theories that

are described by N parallel M5-branes (separated along R or S1) that probe a transverse

R⊥/ZM singularity. The BPS partition functions ZN,M of this system have been computed

explicitly in [1] for M = 1 and in [2, 3] for generic M ∈ Z. There are various techniques to

obtain ZN,M , which exploit different dual descriptions of the M-brane setup:

• For general N,M one can associate a toric Calabi-Yau threefold1 XN,M to the M-

brane setup whose topological string partition function captures ZN,M .

• The M-brane setup is dual to a (p, q) 5-brane web in type II string theory [25].

The Nekrasov partition function on the world-volume of the D5-branes corresponds

to ZN,M .

• Considering BPS M2-branes stretched between the M5-branes, the intersection of the

two has been dubbed M-string in [1]. The partition function of the latter is computed

by a N = (2, 0) sigma model, whose elliptic genus was shown in [1] to capture ZN,M .

Besides the mass parameter m, the partition function ZN,M needs to be regularised by

the introduction of two deformation parameters ε1,2, which (from the perspective of the

dual gauge theory) correspond to the introduction of the Ω-background [26, 27]. For

generic values of m, ε1,2, the M-string world-sheet theory is described by a sigma model

with N = (2, 0) supersymmetry. However, it was remarked in [1] that m = ± ε1−ε2
2 the

supersymmetry is enhanced to N = (2, 2) leading to ZN,M (m = ± ε1−ε2
2 ) = 1 (after a

suitable normalisation).

In this paper we generalise this observation to make the AN−1 (or affine ÂN−1) sym-

metry of the partition function ZN,M manifest and organise it according to irreducible

(integrable) representations of the associated Lie algebra aN−1 (or affine âN−1) for certain

choices of the deformation parameters: for simplicity, we consider the unrefined parti-

tion functions (i.e. we choose ε1 = −ε2 = ε) and consider the case m = nε with n ∈ N.

While the former enhances the supersymmetry to N = (4, 0), the latter choice does not

change the superconformal algebra on the M-string world-sheet. Nevertheless, the partition

function ZN,M (m = nε, ε) simplifies dramatically due to the fact that the corresponding

supercharges obtain a non-trivial holonomy structure. This allows for infinitely many can-

cellations of different BPS-states contributing to the partition function, thus dramatically

simplifying ZN,M (m = nε, ε): indeed, by studying a series of examples, we show that in the

case of a non-compact brane configuration (i.e. in the cases where the M5-branes are sepa-

rated along non-compact R), the partition function becomes a polynomial of order Mn2 in

1In the case that the M5-branes are separated along R (called the non-compact setup in this work),

the Calabi-Yau is an elliptic fibration over AN−1 while in the case that R is compactified to S1 (called the

compact brane setup in this work), the latter is replaced by affine ÂN−1.
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Qfa = e−tfa , where tfa is the distance between the M5-branes (in suitable units). Similarly,

also the partition functions of the compact brane configurations simplify (although their

dependence on the Qfa remains non-polynomial).

Moreover, since the choice m = nε is fully compatible with all symmetries of the

elliptic fibration XN,M , notably AN−1 (or affine ÂN−1 in the case of a compact brane

configuration), the latter are manifestly visible in ZN,M (m = nε, ε). Indeed, from the

perspective of the Calabi-Yau manifold XN,M the tfa can be written as integrals of the

Kähler form over a set of P1’s that can be identified with the simple positive roots of

the Lie algebra aN−1 (or affine âN−1) (see e.g. [5, 28] for recent applications). Using this

identification, specifically for the choice m = nε we show in a large series of examples that

ZN,M (m = nε, ε) can be written as a sum over weights that form a single irreducible (or

integrable in the affine case) representation of the Lie algebra aN−1 (affine âN−1). In the

basis of the fundamental weights, the highest weight of these representations is given by

[Mn2, . . . ,Mn2]. Furthermore, each summand in the sum over weights is a quotient of

Jacobi theta functions transforming with a well-defined index under an SL(2,Z) symmetry

corresponding to the elliptic fibration of XN,M . Based on an extensive list of examples

of different brane configurations (and choices for n ∈ N) we find a pattern for all these

symmetries that allows us to formulate precise conjectures for generic values (N,M) and n.

Finally, the compact M-brane configurations (i.e. where the M5-branes separated along

S1 rather than R) enjoy a duality upon exchanging M ↔ N as can be seen directly

from the web diagram of XN,M . For the simplest2 such configuration (i.e. N = 2 =

M) we show explicitly that the partition function can be written as a double sum over

integrable representations of affine âN−1 and âM−1 respectively. The latter not only makes

the algebraic structures but also the duality manifest. Since compact brane setups of the

type (N,M) capture [29–31] a class of little string theories (see [33–38] for various different

approaches as well as [39, 40] for reviews) with N = (1, 0) supersymmetry we expect that

these findings will turn out useful for the further study of little string theories in general,

in particular their symmetries and dualities (see e.g. [41] for a recent application).

The outline of this paper is as follows. In section 2 we describe the M-theory brane

setup probing a transverse orbifold geometry. We introduce all necessary parameters to

describe the configurations and discuss different approaches in the literature to compute

the BPS counting functions ZN,M . Finally, we also discuss the supersymmetry preserved

by these configurations (from the point of view of the M-string world-sheet theory) specif-

ically focusing on their holonomy charges as a function of the deformation parameters

(m, ε1 = −ε2 = ε). In section 3 the expression for the topological string partition function

is introduced. We furthermore motivate the choice m = nε of deformation parameters

by exhibiting explicitly cancellations in ZN,M . In section 4 we present specific examples

of non-compact brane setups and rewrite the corresponding partitions functions as sums

over Weyl orbits of weights forming specific irreducible representations of aN−1
∼= sl(N,C).

In section 5 we repeat a similar analysis for certain compact brane configurations and

rewrite them in a similar manner as sums of Weyl orbits of weights forming integrable

2We expect that similar results hold true for generic values (N,M).
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S1
0 × S1

1 R4
|| R R4

⊥

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

M5-branes = = = = = =

M2-branes = = =

Table 1. Non-compact BPS configuration of M5- and M2-branes.

representations of the affine Lie algebra âN−1
∼= ŝl(N,C). Based on the examples of the

previous two sections, in section 6 we give a general expression for the compact partition

functions ZN,M (for generic (N,M)) as a sum over integrable representations of âN−1. The

non-compact partition functions in turn are obtained by an appropriate decompactification

limit. Finally section 7 contains our conclusions. Several supplementary computations as

well as additional information on simple and affine Lie algebras and their representations

are relegated to 5 appendices.

2 M-brane configurations and Calabi-Yau manifolds

In this paper we consider theories which can be described through particular BPS config-

urations of M-branes. In the following subsection we provide a review of these M-brane

webs and relate them to a class of toric Calabi-Yau threefolds in section 2.2.3.

2.1 M-brane webs

In the following we describe configurations of parallel M5-branes with M2-branes stretched

between them. Depending on whether the M5-branes are separated along S1 or R, we call

these configurations either compact or non-compact.

2.1.1 Non-compact brane webs

We first discuss non-compact brane webs in M-theory compactified on T2 × R4
|| × R× R4

⊥
(with coordinates x0, . . . , x10) and consider a configuration of N M5- and K M2-branes

as shown in table 1. Here the M5-branes are spread out along the x6 direction and we

denote their positions aa with a = 1, . . . , N (such that aa < ab for a < b). For explicit

computations we introduce the N − 1 distances between adjacent M5-branes as

tfi = aa+1 − aa , ∀a = 1, . . . , N − 1 . (2.1)

which typically appear in the form of

Qfa = e−tfa/R0 , ∀a = 1, . . . , N − 1 . (2.2)

Furthermore, we also denote the tfa collectively as t = (tf1 , . . . , tfN−1). The M2-branes are

stretched between adjacent M5-branes and their two-dimensional intersections have been

termed M-strings in [1]. Furthermore, denoting the radius of S1
0 and S1

1 by R0 and R1

respectively (i.e. x0 ∼ x0 + 2πR0 and x1 ∼ x1 + 2πR1) we introduce the parameter

τ := iR0/R1 and Qτ = e2πiτ . (2.3)
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S1
0 × S1

1 R4
|| S1

6 R4
⊥

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

M5-branes = = = = = =

M2-branes = = =

Table 2. Compact BPS configuration of M5- and M2-branes.

2.1.2 Compact brane webs

By arranging the M5-branes on a circle rather than on R, we obtain compact M-brane

configurations. Specifically, we replace the R along direction x6 by S1
6 with radius R6

(i.e. x6 ∼ x6 + 2πR6), as shown in table 2. As before, we denote the N positions of the

M5-branes on S1
6 by aa (with a = 1, . . . , N) which satisfy the relation

0 ≤ a1 ≤ a2 ≤ . . . ≤ aN ≤ 2πR6 , (2.4)

and introduce the N distance between adjacent branes as

tfa =

{
aa+1 − aa for a = 1, . . . , N − 1 ,

2πR6 − (aN − a1) for a = N .
(2.5)

As in the non-compact case, we also introduce

Qfa = e−tfa/R0 , ∀a = 1, . . . , N , (2.6)

along with the parameter3

ρ := iR6/R0 and Qρ = e2πiρ . (2.7)

Notice the following relation

ρ =
i

2π

N∑
a=1

tfa
R0

and Qρ = Qf1Qf2 . . . QfN . (2.8)

With this notation, the non-compact brane configurations are obtained in the limit ρ→ i∞.

2.1.3 Deformation parameters

Computing the partition functions for the brane configurations introduced above, the latter

are typically divergent. To circumvent this problem, one can introduce various deformation

parameters [1]. Indeed, the underlying geometries allow for two different types of U(1)

twists. Upon introducing the complex coordinates for R|| and R⊥

z1 = x2 + ix3 , z2 = x4 + ix5 , w1 = x7 + ix8 , w2 = x9 + ix10 . (2.9)

we can define

3We use the definition (2.3) also in the compact case.
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S1
0 × S1

1 R4
|| R or S1

6 R4
⊥

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

M5-branes = = = = = =

M2-branes = = =

ε1 • • • • • •
ε2 • • • • • •
m • • • •

Table 3. U(1) twists alowing for deformations of the BPS configurations of M5- and M2-branes.

• ε-deformation:

As we go around the compact x0-direction (i.e. the circle S1
0) we can twist by

U(1)ε1 ×U(1)ε2 : (z1, z2) −→ (e2πiε1z1, e
2πiε2z2) ,

(w1, w2) −→ (e−
ε1+ε2

2 w1, e
− ε1+ε2

2 w2) . (2.10)

From the point of view of supersymmetric gauge theories which can be associated

with the brane configurations described above (see [1, 3]) this deformation introduces

the Ω-background [26, 27] allowing to compute the partition functions in an efficient

manner.

• mass deformation:

As we go around the compact x1-direction (i.e. the circle S1
1) we can twist by:

U(1)m : (w1, w2) −→ (e2πimw1, e
−2πimw2) . (2.11)

As we shall briefly discuss further below, from the perspective of the gauge theories

(that are engineered from a dual type II setup), this deformation parameter corre-

sponds to a mass for certain hypermultiplet fields.

The action of the deformation parameters ε1,2 and m can be schematically represented

in table 3. The former regularise divergences in the partition function coming from con-

tributions of the non-compact dimensions while at the same time breaking part of the

supersymmetries, as we shall discuss in sections 3 and 2.3 respectively. Finally, we remark

that in the later sections of this paper, the parameters ε1,2 and m appear through

Qm = e2πim , q = e2πiε1 , t = e−2πiε2 . (2.12)

2.2 Orbifolds of M-brane webs

2.2.1 Orbifold action and brane web parameters

A generalisation of the above M-brane configurations has been discussed in [2] (see also [3]).

Indeed, upon considering M5-branes probing an orbifold geometry (rather than R4
⊥), the

positions of the M2-branes can be separated in the transverse direction. Specifically, we

– 6 –



J
H
E
P
1
2
(
2
0
1
7
)
0
2
0

S1
0 × S1

1 R4
|| R or S1

6 ALEAM−1

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

M5-branes = = = = = =

M2-branes = = =

ε1 • • • • • •
ε2 • • • • • •
m • • • •

Table 4. BPS configurations of M5-branes probing a transverse orbifold geometry with M2-branes

stretched between them.

generalise R4
⊥ to an Asymptotically Locally Euclidean space of type AM−1 (which we denote

by ALEAM−1
) for M ∈ N, which can be obtain as the following orbifold

ALEAM−1
= R4

⊥/ZM , with ZM :

{
w1 7−→ e

2πin
M w1

w2 7−→ e−
2πin
M w2

for n = 0, . . . ,M − 1 . (2.13)

As explained in [2], the twists (2.10) and (2.11), which introduce the deformation param-

eters ε1,2 and m, are compatible with the ALEAM−1
geometry. Indeed, when viewed as an

S1 fibration over R3, the latter posses two distinct U(1) isometries related to the fiber and

base respectively. Therefore, the generalised M-brane configuration (including the defor-

mation parameters ε1,2 and m) can be represented by table 4, where we again allowed for

the possibility of arranging the M5-branes along the x6-direction either on R or on S1
6.

As in the case M = 1, the distances between the M5-branes along the direction x6 give

rise to N parameters tfa for a = 1, . . . , N (see eq. (2.5)). The case |tfN | <∞ corresponds to

a compact brane configuration (i.e. the direction x6 is compactified on S1
6 with finite radius

R6), while the limit |tfN | → ∞ corresponds to a non-compact brane configuration (i.e. the

direction x6 is non-compact). As explained in [2], besides the (tfa ,m, ε1,2), the orbifolded

configuration allows for another set of parameters, corresponding to the expectation values

Ti (for i = 1, . . . ,M) of the M-theory three-form along S1
1 × Ci, where Ci is a basis of the

2-cycles of ALEAM−1
. In later computations, these parameters typically appear in the form

Q̄i = e−Ti , ∀i = 1, . . . ,M . (2.14)

Furthermore, the parameters τ and ρ (see (2.3) and (2.7) respectively) are in this duality

frame given by

τ =
i

2π

M∑
i=1

Ti , and ρ =
i

2π

N∑
a=1

tfa
R0

, (2.15)

which is equivalent to

Qτ = Q̄1 . . . Q̄M , and Qρ = Qf1 . . . QfN . (2.16)

The full orbifolded M-brane configuration is finally parametrised by (tf1 , . . . , tfN , T1, . . . ,

TM ,m, ε1,2), which we denote more compactly by (t,T,m, ε1,2).
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S1
0 R4

|| R or S1
6 S1

7 R⊥

x0 x2 x3 x4 x5 x6 x7 x8 x9 x10

D5-branes = = = = = =

NS5-branes = = = = = =

Table 5. Configuration of intersecting D5- and NS5-branes.

2.2.2 Type II description

The parameters introduced in the above M-brane configurations can be given a more ge-

ometric interpretation when dualising to the corresponding type II picture. Indeed, upon

reducing the orbifold M-theory configuration along S1
1, it can be dualised into a web of

intersecting D5- and NS5-branes as shown in table 5, where we represented the ALEAM−1

space as a (particular limit of a) fibration of S1
7 over R3

⊥ (see [2] for more details). While the

parameters ε1,2 can be introduced in the same fashion as in the M-theory case, the param-

eter m can no longer be interpreted as a U(1) deformation (since the corresponding circle

S1
1 is no longer present). The latter is introduced by giving mass m to the bifundamental

hypermultiplets corresponding to strings stretched between the D5- and NS5-branes. At

the level of the brane web, it corresponds to a deformation with (1, 1) branes in the (x6, x7)-

plane, as shown in figure 1. This figure also shows the remaining parameters (t,T) as the

distances of the D5- and NS5-branes in the x6 and x7 direction respectively.4 As discussed

in [2, 31, 32] choosing the deformation parameter m to be the same for all intersections of

D5-NS5-branes is not the most general case since a generic such brane web has NM + 2

independent parameters. In the following, however, we focus on this simpler case, where

all mass deformations are the same (as indicated in figure 1).

2.2.3 Toric Calabi-Yau manifolds

There is a further description of the theories introduced above. Indeed, as explained

in [1–3], one can associate a toric non-compact Calabi-Yau 3-fold (CY3fold) XN,M with

the 5-brane web. More precisely, the web diagram shown in figure 1 can be interpreted as

the dual of the Newton polygon which encodes how XN,M is constructed from C3 patches.

A generic XN,M can be described as a ZN×ZM orbifold of X1,1. The latter is a Calabi-

Yau threefold that resembles the geometry of the resolved conifold at certain boundary-

regions of its moduli space (i.e. upon sending τ, ρ → ∞).5 More importantly, XN,M has

the structure of a double elliptic fibration: it can be understood as an elliptic fibration over

the affine AN−1 space, which (as already mentioned) itself is an elliptic fibration. The two

elliptic parameters are ρ and τ , which were introduced in (2.15). The remaining parameters

(tf1 , . . . , tfN−1
), (T1, . . . , TM−1) as well as m correspond to further Kähler parameters of

XN,M . We shall further elaborate on the interpretation of the parameters ε1,2 from the

4For latter convenience, we adopt the convention that the Ti are counted in units of R0.
5Orbifolds of the latter have for example been studied in [42].
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NS5
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Figure 1. Configuration of intersecting D5-branes (red) and NS5-branes (blue). The deformation

parameter m introduced by the (1, 1)-branes (black) is chosen to be the same throughout the

diagram. For |tfN | < ∞, the D5-branes are arranged on a circle (compact case), while the non-

compact case corresponds to the limit tfN →∞.

point of view of the Calabi-Yau manifold once we discuss the topological partition function

on XN,M in section 3.

The double elliptic fibration structure of XN,M corresponds to the presence of two

SL(2,Z) symmetries which act separately on the modular parameters τ and ρ. Particularly

for the case M = 1 we have the following action on the various parameters [30]

SL(2,Z)τ : (τ, ρ,m, tf1 , . . . , tfN−1
, ε1, ε2) −→(

aτ + b

cτ + b
, ρ,

m

cτ + d
, tf1 , . . . , tfN−1

,
ε1

cτ + d
,

ε2
cτ + d

)
,

SL(2,Z)ρ : (τ, ρ,m, tf1 , . . . , tfN−1
, ε1, ε2) −→(

τ,
aρ+ b

cρ+ b
,

m

cτ + d
,

tf1
cρ+ d

, . . . ,
tfN−1

cρ+ d
,

ε1
cρ+ d

,
ε2

cρ+ d

)
, (2.17)

where

(
a b

c d

)
∈ SL(2,Z), i.e. a, b, c, d ∈ Z and ad− bc = 1.
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2.3 Supersymmetry

In order to discuss the amount of supersymmetry preserved by the M-brane configurations

described above, we adopt the point of view of the M-string [1]: for a configuration of

parallel M5-branes probing a flat R4
⊥ with M2-branes stretched between them (i.e. configu-

rations with M = 1), the M-string preserves N = (4, 4) supersymmetry with R-symmetry

group SpinR(4). The latter acts on the space R4
⊥ transverse to the M5-branes. The super-

charges [1] transform as the representations

(2,1,2,1)+ ⊕ (1,2,1,2)− , (2.18)

under Spin(4) × SpinR(4) × Spin(1, 1), where Spin(4) × Spin(1, 1) is the Lorentz group

on the M5 world-volume (with Spin(1, 1) the Lorentz-group on the world-volume of the

M-string) and the ± subscript denotes the chirality with respect to Spin(1, 1). As was

explained in [1], upon introducing the simple roots of Spin(8) ⊃ Spin(4)R × Spin(4)

u1 = e1 − e2 , u2 = e2 − e3 , u3 = e3 − e4 , u4 = e3 + e4 , (2.19)

the weight vectors of the preserved supercharges are

(2,1,2,1)+ :

{
e1+ e2+ e3+ e4

2
,
e1+ e2− e3− e4

2
,−e1+ e2− e3− e4

2
,−e1+ e2+ e3+ e4

2

}
,

(1,2,1,2)− :

{
e1− e2+ e3− e4

2
,
e1− e2− e3+ e4

2
,−e1− e2+ e3− e4

2
,−e1− e2− e3+ e4

2

}
.

Furthermore, as discussed in [2], the orbifold action (2.13) is not compatible with all 8

supercharges and indeed only (2,1,2,1)+ (i.e. the supercharge with positive chirality) is

invariant. Therefore, for configurations with M > 1, supersymmetry is broken to N =

(4, 0). The latter is in general further reduced by the deformations (2.10): while the mass

deformation (2.11) (which acts in a similar manner on R4
⊥ as the ZM orbifold (2.13)) breaks

the same supercharges as the orbifold action (and leaves invariant all of (2,1,2,1)+), the

ε-deformation in general6 only leaves the supercharges corresponding to

e1 + e2 + e3 + e4

2
, and − e1 + e2 + e3 + e4

2
, (2.20)

invariant. It therefore reduces the supersymmetry to N = (2, 0).

3 Partition functions

3.1 Compact and non-compact M-brane configurations

An important quantity to describe the different M-brane configurations introduced above

is the partition function ZN,M that counts BPS states. The latter can be weighted by

fugacities related to the various symmetries described above. Concretely, the partition

functions can be computed in various different manners, as explained in [1–3]

6In the unrefined case (i.e. for ε1 = −ε2), in fact all supercharges (2,1,2,1)+ remain invariant, such

that the supersymmetry remains N = (4, 0).
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• Topological string partition function

The partition function ZN,M is captured by the (refined) topological string parti-

tion function on the toric Calabi-Yau threefold XN,M . The latter can efficiently be

computed using the (refined) topological vertex [43–45]

• M-string partition function

ZN,M can also be computed as the M-string partition function. For configurations

(N, 1) (i.e. for M = 1) it was shown in [1] that the latter can be obtained as the

elliptic genus of a sigma model with N = (2, 0) supersymmetry whose target space is

a product of Hilb[C2], the Hilbert scheme of points in R4. This result was generalised

in [3] to the case M > 1 where it was shown that ZN,M can be computed as the

elliptic genus of a sigma model with N = (2, 0) supersymmetry whose target space

is given by M(r, k), the moduli spaces of U(r) instantons of charge k.

• Nekrasov instanton calculus

The partition function can also be obtained from the 5-dimensional gauge theory that

lives on the world-volume of the D5-branes in the type II brane-web description (see

section 2.2.2). The non-perturbative partition function of the latter can be computed

using Nekrasov’s instanton calculus on the Ω-background [46].

• BPS scattering amplitudes in type II string theory

As discussed in [3], certain of the partition functions ZN,M can also be obtained from

a specific class of higher derivative scattering amplitudes in type II string theory.

Using either of these approaches, the partition function for a compact (i.e. Qρ 6= 0) brane

configuration (N,M) can be written in the following manner [1–3]

ZN,M (T, t,m, ε1, ε2) = WM (∅)N
∑
α
(a)
i

Q
∑M
i=1 |α

(N)
i |

ρ

(
N∏
a=1

Q

∑M
i=1

(
|α(a)
i |−|α

(N)
i |

)
fa

)

×

 N∏
a=1

M∏
i=1

ϑ
α
(a+1)
i α

(a)
i

(Qm; τ)

ϑ
α
(a)
i α

(a)
i

(
√
t/q; τ)


×

 ∏
1≤i<j≤M

N∏
a=1

ϑ
α
(a)
i α

(a+1)
j

(QijQ
−1
m ; τ)ϑ

α
(a+1)
i α

(b)
j

(QijQm; τ)

ϑ
α
(a)
i α

(a)
j

(Qij
√
t/q; τ)ϑ

α
(a)
i α

(a)
j

(Qij
√
q/t; τ)

∣∣∣∣
α
(1)
i =α

(N+1)
i

, (3.1)

where α
(a)
i are NM integer partitions (with size |α(i)

a |) and αN+1
i = α

(1)
i and

Qij = Q̄iQ̄i+1 . . . Q̄j−1 , for 1 ≤ i < j ≤M . (3.2)

Furthermore, for two integer partitions µ = (µ1, . . . , µ`1) and ν = (ν1, . . . , ν`2) of length

`1,2 respectively, we have

ϑµν(x; τ) =
∏

(i,j)∈µ

ϑ
(
x−1q−µi+j−

1
2 t−ν

t
j+i−

1
2 ; τ
) ∏

(i,j)∈ν

ϑ
(
x−1qνi−j+

1
2 tµ

t
j−i+

1
2 ; τ
)
. (3.3)
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Here (i, j) denotes the position of a given box in the Young diagram of the partitions µ

and ν respectively, µt denotes the transposed partition of µ and

ϑ(x; τ) =
iθ1(τ, x)

Q
1/8
τ
∏∞
k=1(1−Qkτ )

, (3.4)

where θ1(τ ;x) (for x = e2πiz) is the Jacobi theta-function

θ1(τ ; z) = 2Q1/8
τ sin(πz)

∞∏
n=1

(1−Qnτ )(1− xQnτ )(1− x−1Qnτ ) . (3.5)

Finally, the factor WM (∅) in (3.1) is defined as

WM (∅; T,m, ε1, ε2) = lim
ρ→i∞

Z1,M (T, ρ,m, ε1, ε2) , (3.6)

and we also introduce the normalised partition function

Z̃N,M (T, t,m, ε1, ε2) =
ZN,M (T, t,m, ε1, ε2)

WM (∅)N
. (3.7)

The latter was related in [2, 5, 29, 30] to an U(N)M gauge theory (which is dual to an

U(M)N gauge theory), as well as (five-dimensional) little string theory. For the explicit

computations in the remainder of this work it is more convenient to rewrite the partiton

function in the following form:

ZN,M (T, t,m, ε1, ε2) =WM (∅)N
∑
α
(a)
i

(
N∏
a=1

(−Qfa)
∑M
i=1 |α

(a)
i |

)

×

 N∏
a=1

M∏
k=1

∏
(i,j)∈α(a)

k

θ1(τ ; z
(a+1)
k,ij )θ1(τ ; v

(a−1)
k,ij )

θ1(τ ;u
(a)
k,ij)θ1(τ ;w

(a)
k,ij)


×

N∏
a=1

∏
1≤k<l≤M

( ∏
(i,j)∈α(a)

k

θ1(τ ; z
(a+1)
l,ij + T̃kl)θ1(τ ; v

(a−1)
l,ij − T̃kl)

θ1(τ ;u
(a)
l,ij + T̃kl)θ1(τ ;w

(a)
l,ij + T̃kl)

)

×

( ∏
(i,j)∈α(a)

l

θ1(τ ; z
(a+1)
k,ij − T̃kl)θ1(τ ; v

(a−1)
k,ij + T̃kl)

θ1(τ ;u
(a)
k,ij − T̃kl)θ1(τ ;w

(a)
k,ij − T̃kl)

)
. (3.8)

Here we introduced

T̃i =
i

2π
Ti , and T̃kl = T̃k + T̃k+1 + . . .+ T̃l−1 , for

k, l = 1, . . . ,M

k ≤ l
(3.9)

and the arguments of the Jacobi-theta functions in (3.8) are given by:

z
(a)
k,ij = −m+ ε1

(
α

(a)
k,i − j +

1

2

)
− ε2

(
(α

(a+1)
k,j )t − i+

1

2

)
,

v
(a)
k,ij = −m− ε1

(
α

(a)
k,i − j +

1

2

)
+ ε2

(
(α

(a−1)
k,j )t − i+

1

2

)
,

w
(a)
k,ij = ε1

(
α

(a)
k,i − j + 1

)
− ε2

(
(α

(a)
k,j)

t − i
)
,

u
(a)
k,ij = ε1

(
α

(a)
k,i − j

)
− ε2

(
(α

(a)
k,j)

t − i+ 1
)

(3.10)
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Specifically, for M = 1 we have the following expression

ZN,1(τ, tf1 , . . . , tfN ,m, ε1, ε2) =
∑

ν1,...,νN

(
N∏
a=1

(−Qfa)|νa|

)
N∏
a=1

∏
(i,j)∈ν(a)

θ1(τ ; z
(a)
ij ) θ1(τ ; v

(a)
ij )

θ1(τ ;w
(a)
ij )θ1(τ ;u

(a)
ij )

,

(3.11)

where we introduced the following shorthand notation for the arguments of the Jacobi

theta-functions

z
(a)
ij = −m+ ε1

(
νa,i − j +

1

2

)
− ε2

(
νta+1,j − i+

1

2

)
,

v
(a)
ij = −m− ε1

(
νa,i − j +

1

2

)
+ ε2

(
νta−1,j − i+

1

2

)
,

w
(a)
ij = ε1(νa,i − j + 1)− ε2(νta,j − i) ,

u
(a)
ij = ε1(νa,i − j)− ε2(νta,j − i+ 1) . for a = 1, . . . , N . (3.12)

The partition function for non-compact brane webs (which we denote Z line
N,M ) can be ob-

tained from (3.1) through the limit Qρ → 0 (i.e. ρ→ i∞):

Z line
N,M (T, t,m, ε1, ε2) = WM (∅)N

∑
α
(a)
i

Q
∑M
i=1 |α

(N)
i |

ρ

(
N∏
a=1

Q

∑M
i=1

(
|α(a)
i |−|α

(N)
i |

)
fa

)

×

 N∏
a=1

M∏
i=1

ϑ
α
(a+1)
i α

(a)
i

(Qm; τ)

ϑ
α
(a)
i α

(a)
i

(
√
t/q; τ)


×

 ∏
1≤i<j≤M

N∏
a=1

ϑ
α
(a)
i α

(a+1)
j

(QijQ
−1
m ; τ)ϑ

α
(a+1)
i α

(b)
j

(QijQm; τ)

ϑ
α
(a)
i α

(a)
j

(Qij
√
t/q; τ)ϑ

α
(a)
i α

(a)
j

(Qij
√
q/t; τ)

∣∣∣∣
α
(0)
i =α

(N)
i =∅

, (3.13)

where t = {tf1 , . . . , tfN−1
} and T = {T1, . . . , TM}. Specifically for M = 1 we have

Z line
N,1(τ, tf1 , . . . , tfN−1

,m, ε1, ε2) =
∑

ν1,...,νN−1
ν0=νN=∅

(
N−1∏
a=1

(−Qfa)|νa|

)
N−1∏
a=1

∏
(i,j)∈νa

θ1(τ ; zaij) θ1(τ ; vaij)

θ1(τ ;waij)θ1(τ ;uaij)
,

(3.14)

where the arguments (z
(a)
ij , v

(a)
ij , w

(a)
ij , u

(a)
ij ) for a = 1, . . . , N − 1 are the same as in (3.12).

3.2 Particular values of the deformation parameters

Viewed as a BPS counting function (3.8) (and its non-compact counterpart (3.13)) depend

on the fugacities (T, t,m, ε1, ε2) that refine various symmetries associated with the (N,M)

brane-web. We can summarise the latter in the following table
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parameter symmetry, compact case symmetry, non-compact case

T = {τ, T1, . . . TM−1} SL(2,Z)τ SL(2,Z)τ

t ÂN−1 AN−1

m U(1)m U(1)m

ε1 , ε2 U(1)ε1 ×U(1)ε2 U(1)ε1 ×U(1)ε2

Here SL(2,Z)τ is a generalisation of (2.17) to the case M > 1

(τ, T1, . . . , TM−1, ρ,m, tf1 , . . . , tfN−1
, ε1, ε2) −→(

aτ + b

cτ + b
,

T1

cτ + d
, . . . ,

TM−1

cτ + d
, ρ,

m

cτ + d
, tf1 , . . . , tfN−1

,
ε1

cτ + d
,

ε2
cτ + d

)
. (3.15)

From the point of view of the Calabi-Yau manifold XN,M (described in section 2.2.3), the

t are Kähler parameters associated with the structure of an elliptic fibration over (affine)

AN−1. From the point of view of the M-brane web, the connection of the t to (affine)

AN−1 seems less clear, since the former correspond to the distances of the M5-branes along

the (non-)compact x6 direction. However, as remarked in e.g. [5], the structure of the M5-

branes along this direction can be interpreted as the Dynkin diagram of aN−1 (or its affine

extension âN−1) and the Qfa can be linked to the roots of these algebras respectively.

Indeed, we will explain this connection in more detail in the following sections, when

considering explicit examples of the partition functions ZN,M . Finally, we notice that in

the compact case, the roles of T and t can be exchanged upon replacing (N,M) −→ (M,N).

In the above table the parameters t have been singled out since we have decided to write

ZN,M in (3.1) as a power series expansion in Qfa (rather than Q̄i).
7

Written as a function of all parameters mentioned above ZN,M is rather complicated

and very difficult to analyse. In this paper we therefore consider particular values for some

of the parameters, such that ZN,M simplifies and the various symmetries can be made more

manifest. First, for simplicity, we choose to work in the unrefined case, i.e. we set

ε1 = −ε2 = ε , (3.16)

which (as mentioned in section 2.3) leads to an enhancement of supersymmetry to N =

(4, 0). Furthermore, (3.16) is fully compatible with the symmetries SL(2,Z)τ as well as

AN−1 (or ÂN−1).

In order to further define regions in the parameter space in which the partition function

simplifies, we first consider the case M = 1. In this case, the Spin(8) holonomy charges

corresponding to the deformations (2.10) and (2.11) read

(ε,−ε,m,−m) , (3.17)

7From the point of view of the (refined) topological vertex (which was used to compute the topological

string partition function ZN,M ), this corresponds to a particular choice of the preferred direction of the

vertex. In the current case, the latter has been chosen horizontally with respect to figure 1.

– 14 –



J
H
E
P
1
2
(
2
0
1
7
)
0
2
0

where we recall that the first two entries (depending on ε) correspond to a holonomy with

respect to S1
0 and the last two (depending on m) with respect to S1

1. For generic values of

ε and m (in particular for m/ε ∈ R/N) there is no cancellation between the corresponding

holonomy phases. Phrased differently, there is no mixing between states with distinct

charges under U(1)m and U(1)ε1 ×U(1)ε2 in the partition function. However, if we choose

m = nε , with n ∈ N , (3.18)

the holonomy charges are no longer linearly independent over Z and thus holonomy phases

may cancel when we go multiple times around the circle S1
0. In this way, there may be non-

trivial cancellations between the contributions of states with distinct charges under U(1)m
and U(1)ε1 × U(1)ε2 in the partition function ZN,1 leading to possible simplifications of

ZN,1.8 For M > 1, the same effect appears (at least) in the untwisted sector of the orbifold,

so that we expect similar simplifications. Finally, we also remark that the choice (3.18) is

still compatible with SL(2,Z)τ as well as AN−1 (or ÂN−1). Therefore, we can analyse the

simplified partition functions ZN,M (T, t,m = nε, ε,−ε) with respect to these symmetries

and write them in a fashion that makes them manifest.

Explicitly, at the level of the partition function, the reason for the above mentioned

simplifications is the following: when choosing the parameters

ε1 = −ε2 = ε , and m = nε , for n ∈ N , (3.19)

the arguments (3.10) of the theta-functions in (3.8) take the following form

z
(a)
k,ij = ε(α

(a)
k,i + (α

(a+1)
k,j )t− i− j + 1−n) , v

(a)
k,ij = −ε(α(a)

k,i + (α
(a−1)
k,j )t − i− j + 1 + n) ,

w
(a)
k,ij = u

(a)
k,ij = ε(α

(a)
k,i + (α

(a)
k,j)

t− i− j + 1) . (3.20)

For specific partitions α
(a)
k these combinations may become zero even for generic ε, thereby

(with θ1(τ ; 0) = 0) leading to a vanishing contribution to the partition function. We also

notice that for (3.19) in general w
(a)
k,ij 6= 0 6= u

(a)
k,ij : indeed, the coordinates (i, j) of the

boxes in a given Young diagram are bounded from above by (α
(a)
k,j)

t and α
(a)
k,i respectively,

so w
(k)
a,ij , u

(k)
a,ij ≥ 1 as can be seen from (3.20). Therefore, there are no divergences coming

from the denominator of (3.8) and ZN,M (T, t,m = nε, ε,−ε) is well defined for n ∈ N.

In the following we discuss specific examples of partition functions with the choice of

parameters (3.19) and analyse their symmetries.

4 Examples: non-compact brane configurations

4.1 Configuration (N,M) = (2, 1)

4.1.1 Choice ε1 = −ε2 = ε and m = ε

We start with the non-compact configuration (N,M) = (2, 1) for which the partition

function (3.14) is a sum over a single partition ν1. For the choice of the deformation

8Notice that for n = 1, in addition to (2,1,2,1)+ the (anti-chiral) supercharges with the weight vectors
e1−e2−e3+e4

2
and − e1−e2−e3+e4

2
remain unbroken, thus leading to an enhancement of supersymmetry. This

fact was already remarked in [1] for the more generic case m = ε1−ε2
2

.
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parameters ε1 = −ε2 = m = ε we can show that the only integer partitions ν1 contributing

to the partition function Z line
2,1 (tf1 ,m = ε, ε,−ε) are in fact ν1 = ∅ and ν1 = . To see

this, we recall that θ1(τ ; 0) = 0 such that only those partitions ν1 contribute for which

(see (3.12) for the definitions of z
(a)
ij and v

(a)
ij )

z
(1)
ij 6= 0 , and v

(1)
ij 6= 0 , ∀(i, j) ∈ ν1 . (4.1)

Starting from a generic partition ν1 = (ν1,1 , ν1,2 , . . . , ν1,`) of length `, the condition (4.1)

can be checked explicitly. In particular, we can consider the following two particular boxes:

• the last box in the second row (i.e. (i, j) = (2, ν1,2)):

(4.2)

For this particular box we have v
(1)
2,ν1,2

= ε(ν2 − 2 − ν2 + 2) = 0, such that all par-

titions with ` ≥ 2 violate (4.1) and therefore do not contribute to the partition

function (3.14).

• (ν1 − 1)th box in the first row (i.e. (i, j) = (1, ν1,1 − 1))

Due to the previous constraint the only remaining partitions correspond to Young

diagrams with a single row:

(4.3)

For this particular box we have z
(1)
1,ν1,1−1 = ε(ν1,1 − 1 − (ν1,1 − 1)) = 0, such that

all partitions with ν1,1 ≥ 2 violate (4.1) and do not contribute to the partition

function (3.14).

Combining these two constraints we find that the only possible choices are ν1 = ∅ or ν1 =

and the partition function therefore is

Z line
2,1 (τ, tf1,m=ε, ε,−ε) =

∑
ν∈{∅, }

(−Qfa)|ν|
∏

(i,j)∈ν

θ1(τ ; z
(1)
ij ) θ1(τ ; v

(1)
ij )

θ1(τ ;w
(1)
ij )θ1(τ ;u

(1)
ij )

= 1−Qf1
θ1(τ ;−ε)θ1(τ ;−ε)

θ1(τ ; ε)2

= 1−Qf1 . (4.4)

Notice that the right hand side is independent of τ and ε and only depends linearly on Qf1 .

The partition function (4.4) can be rewritten in fashion that makes an a1 symmetry

manifest. Indeed, upon identifying

Qf1 = e−α1 , (4.5)
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where α1 is the simple root of a1 we can write

Z line
2,1 (τ, tf1 ,m = ε, ε,−ε) =

∏
α∈∆+(a1)

(1− e−α)mult(α) , (4.6)

with mult(α1) = 1 and ∆+(a1) the space of positive roots of a1. Using the Weyl character

formula, we can rewrite the product (4.6) as a sum over the Weyl group W(a1) ∼= Z2 of a1

Z line
2,1 (τ, tf1 ,m = ε, ε,−ε) =

∑
w∈W(a1)

(−1)`(w) ew(ξ)−ξ , (4.7)

where ξ is the Weyl vector of a1 and `(w) is the length of w ∈ W(a1) ∼= Z2, i.e. the number

of Weyl reflections that w is decomposed of.

While the re-writings (4.6) and (4.7) seem trivial (due to the fact that the root space

of a1 is one-dimensional, i.e. ∆+(a1) = {α1}), we shall see that both equations can be

directly generalised for other choices m = nε (with n > 1) and also N > 2 (as we shall

discuss in section 4.2).

4.1.2 Choice ε1 = −ε2 and m = nε for n > 1

For the cases n > 1 we can repeat the above analysis to find all partitions that

yield a non-vanishing contribution to the partition function (3.14). In doing so, we

find a generic pattern, which can be summarised as follows:9 only those partitions

ν1 = (ν1,1 , ν1,2 , . . . , ν1,`) with

` ≤ n , and ν1,a ≤ n , ∀a = 1, . . . , n , (4.8)

satisfy (4.1). As a consequence, we propose that the partition function is a polynomial in

Qf1 and can be written as the finite sum

Z line
2,1 (τ, tf1 ,m = nε, ε,−ε) =

n2∑
k=0

(−1)k c
(n)
k (τ, ε)Qkf1 . (4.9)

For n > 1 the coefficients c
(n)
k depend explicitly on τ and ε and have the property

c
(n)
k (τ, ε) = (−1)n c

(n)
n2−k(τ, ε) . (4.10)

Explicit expressions for the first few c
(n)
k with the condition10

k ≤

{
n2

2 + 1 . . . n even
n2+1

2 . . . n odd
(4.11)

9This pattern has explicitly been checked up to n = 11 and we conjecture it to hold for generic n ∈ N.
10If k does not satisfy (4.11), the corresponding coefficient is determined by (4.10).
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are given by (we recall that relations (4.12)–(4.18) have in fact been checked explicitly up

to n = 11):

c
(n)
0 = 1 , (4.12)

c
(n)
1 =

θ(n)2

θ(1)2
, (4.13)

c
(n)
2 = 2

θ(n− 1)θ2(n)θ(n+ 1)

θ(1)2θ(2)2
, (4.14)

c
(n)
3 =

θ(n− 1)2θ(n)2θ(n+ 1)2

θ(1)4θ(3)2
+ 2

θ(n− 2)θ(n− 1)θ(n)2θ(n+ 1)θ(n+ 2)

θ(1)2θ(2)2θ(3)2
, (4.15)

c
(n)
4 =

θ(n− 1)2θ(n)4θ(n+ 1)2

θ(1)2θ(2)4θ(3)2
+ 2

θ(n− 2)θ(n− 1)2θ(n)2θ(n+ 1)2θ(n+ 2)

θ(1)4θ(2)2θ(4)2

+ 2
θ(n− 3)θ(n− 2)θ(n− 1)θ(n)2θ(n+ 1)θ(n+ 2)θ(n+ 3)

θ(1)2θ(2)2θ(3)2θ(4)2
, (4.16)

c
(n)
5 =

θ(n− 2)2θ(n− 1)2θ(n)2θ(n+ 1)2θ(n+ 2)2

θ(1)4θ(2)4θ(5)2
(4.17)

+ 2
θ(n− 2)θ(n− 1)2θ(n)4θ(n+ 1)2θ(n+ 2)

θ(1)4θ(2)2θ(3)2θ(4)2

+ 2
θ(n− 3)θ(n− 2)θ(n− 1)2θ(n)2θ(n+ 1)2θ(n+ 2)θ(n+ 3)

θ(1)4θ(2)2θ(3)2θ(5)2

+ 2
θ(n− 4)θ(n− 3)θ(n− 2)θ(n− 1)θ(n)2θ(n+ 1)θ(n+ 2)θ(n+ 3)θ(n+ 4)

θ(1)2θ(2)2θ(3)2θ(4)2θ(5)2
,

where for simplicity we have introduced the shorthand notation

θ(`) := θ1(τ, `ε) , ∀` ∈ N . (4.18)

While not constant (as in the case of n = 1), the coefficients c
(n)
k display a clear pattern,

which we propose to hold for generic (k, n) satisfying (4.11): every coefficient itself can be

written in the form

c
(n)
k (τ, ε) =

∑
µ(k,n)=(µ1,...,µ`)

µ∈S

c(µ)
θ(n)µ1

∏`
a=2 (θ(n− a+ 1)θ(n+ a− 1))µa

f(µ; ε, τ)
, (4.19)

where the sum is over partitions µ(k, n) = (µ1(k, n) , µ2(k, n) , . . . , µ`(k, n)) of length `

(with 0 ≤ ` ≤ k), S denotes the set of partitions that verify

µ1(k, n) + 2
∑̀
a=2

µa = 2k , (4.20)

and f(µ) is a product of theta functions

f(µ; ε, τ) =

k∏
i=1

θ(i)ri , (4.21)
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with ri ∈ {0} ∪ Neven that satisfy

k∑
i=1

ri = 2k , and µ1n
2 + 2

∑̀
a=2

[
n2 + (a− 1)2

]
µa −

k∑
j=1

rj j
2 = 2k(n2 − k) . (4.22)

Here the first condition states that the number of θ1-functions in the numerator and de-

nominator of (4.19) is the same, while the second condition ensures that each coefficient

c
(n)
k (τ, ε) transforms in an appropriate manner under SL(2,Z)τ transformations (see (2.17)).

Specifically, we have

c
(n)
k (−1/τ, ε/τ) = e

2πiε2

τ
k(n2−k) c

(n)
k (τ, ε) . (4.23)

Thus, we can assign an index under SL(2,Z)τ to each of the c
(n)
k

Iτ (c
(n)
k ) = k(n2 − k) . (4.24)

Finally, the c(µ) in (4.19) are numerical coefficients which take values c(µ) ∈ {0, 1, 2}.
While the expressions for c

(n)
k (τ, ε) in (4.19) are rather complicated, they are essentially

determined by specifying all partitions µ(n, k) for which c(µ) 6= 0. These can be obtained

from the partitions µ(n, k−1) in an algorithmic fashion by increasing one of the µa(k−1, n)

by either 1 or 2. The precise relation (along with explicit examples up to k = 5) is explained

in appendix C and can be summarised by the fact that there is an operator R+ such that

c
(n)
k (τ, ε) = R+ c

(n)
k−1(τ, ε) . (4.25)

Schematically, the action of R+ can be represented graphically in the following manner

• • • • • • •
c
(n)
0

. . .

c
(
n
)

n
2
/
2
−

1

c
(
n
)

n
2
/
2

c
(
n
)

n
2
/
2
−

1

. . . c
(n)
0

R+ R+ R+ R+ R+ R+

n even

||||||• • • • • • • •
c
(n)
0

. . .

c
(
n
)

(
n
2
−

3
)
/
2

c
(
n
)

(
n
2
−

1
)
/
2

−
c
(
n
)

(
n
2
−

1
)
/
2

−
c
(
n
)

(
n
2
−

3
)
/
2

. . . −c(n)
0

R+ R+ R+ R+ R+ R+ R+

n odd

which also reflects the symmetry (4.10). These graphical representations are reminiscent of

the highest-weight representation Γn2 of sl(2,C) where one can move between the various

points (which represent certain one-dimensional functional spaces of theta-quotients) with
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the help of raising and lowering operators. In fact, we can make this connection more

precise by writing

Z line
2,1 (τ, tf1 ,m = nε, ε,−ε) = e−n

2ξ
∑

λ=[c]∈P+

n2

(−1)c φn[c](τ, ε)O
n
λ(tf1) (4.26)

where e−n
2ξ = Q

n2/2
f1

and ξ = α1/2 = tf1/2 can be identified with the Weyl vector of

a1 following the identification (4.5). Furthermore, the sum is over all elements of the

fundamental Weyl chamber of the representation Γn2 which are labelled by their weights

λ = [c], i.e.

P+
n2 =

 {[2c]|c = 0, . . . , n2/2} = {[0], [2], [4], . . . , [n2]} . . . n even ,

{[2c+ 1]|c = 0, . . . , (n2 − 1)/2} = {[1], [3], [5], . . . , [n2]} . . . n odd .
(4.27)

while we have for the coefficients

φn[k] = c
(n)
(n2−k)/2

, for [k] ∈ P+
n2 . (4.28)

Finally, the Onλ in (4.26) can be understood as the (normalised) orbits of λ ∈ P+
n2 under

the Weyl group W(a1) ∼= Z2 of a1, i.e.

Onλ=[c](tf1) = dλ
∑

w∈W(a1)

(−1)n`(w) ew(λ) = dλ

(
Q
− c

2
f1

+ (−1)nQ
c
2
f1

)
, (4.29)

where we have used the identification (4.5) and the normalisation factor is given by

dλ=[c] =
|Orbλ(W(a1))|
|W(a1)|

=

{
1
2 . . . c = 0 ,

1 . . . else .
(4.30)

Here |Orbλ(W(a1))| is the order of the orbit of λ under the Weyl group of a1 and |W(a1)| =
|Z2| = 2.

To summarise, we propose that Z line
2,1 (τ, tf1 ,m = nε, ε,−ε) can be written as a sum

over weights of sl(2,C), whose representatives fall into the fundamental Weyl chamber of

the irreducible representation Γn2 . As we shall see in the following, this pattern continues

to hold for the partition functions of other non-compact M-brane configurations (N, 1)

for N > 2.

4.2 Configuration (N,M) = (3, 1)

4.2.1 Case ε1 = −ε2 = ε and m = ε

The case (N,M) = (3, 1) for the choice m = ε is analysed in detail in appendix E. Sum-

marising the results, as above only finitely many partitions contribute to Z line
N,1 in (3.14)

which are given in the following table
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ν1 ν2

(∏2
a=1(−Qfa)|νa|

) ∏2
a=1

∏
(i,j)∈νa

θ1(τ ;zaij) θ1(τ ;vaij)

θ1(τ ;waij)θ1(τ ;uaij)

∅ ∅ 1

∅ −Qf1

∅ −Qf2

Q2
f1
Qf2

Qf1Q
2
f2

−Q2
f1
Q2
f2

Combining these expressions, we find for the partition function

Z line
3,1 (τ, tf1 , tf2 ,m = ε, ε,−ε) = 1−Qf1 −Qf2 +Q2

f1Qf2 +Qf1Q
2
f2 −Q

2
f1Q

2
f2

= (1−Qf1)(1−Qf2)(1−Qf1Qf2) . (4.31)

Notice that this result is independent of τ and ε and only depends on Qf1,2 in a polynomial

fashion. Moreover, the partition function (4.31) can be rewritten in a fashion that makes

an a2 symmetry manifest. Indeed, upon defining

Qf1 = e−α1 , Qf2 = e−α2 , with α1,2 ∈ ∆+(a2) , (4.32)

where ∆+(a2) denotes the simple positive roots of a2, we can write

Z line
3,1 (τ, tf1 , tf2 ,m = ε, ε,−ε) =

∏
α∈∆+(a2)

(1− e−α)mult(α) . (4.33)

Here we have used the fact that mult(α1) = mult(α2) = 1. Using the Weyl character

formula, we can rewrite the product (4.33) as an orbit of the Weyl group

Z line
3,1 (τ, tf1 , tf2 ,m = ε, ε,−ε) =

∑
w∈W(a2)

(−1)`(w) ew(ξ)−ξ , (4.34)

where ξ = α1 +α2 is the Weyl vector and `(w) is the length of w ∈ W(a2), i.e. the number

of Weyl reflections that w is decomposed of: the Weyl reflections of a2 are defined as

si : γ −→ si(γ) = γ − 〈γ, α∨i 〉αi for i = 1, 2, where α∨i are the co-roots associated with

α1,2, i.e. α∨i = 2αi
(αi,αi)

. They are subject to the relations s2
1 = s2

2 = (s1s2)3 = 0. With this

notation we can check (4.34) by working out all non-equivalent Weyl reflections

w ∈ W(a2) w(ξ)− ξ `(w)

1 0 0

s1 −α1 1

s2 −α2 1

s1s2 −2α1 − α2 2

s2s1 −α1 − 2α2 2

s1s2s1 −2α1 − 2α2 3
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Therefore, (using (4.32)), we have

Z line
3,1 (τ, tf1 , tf2 ,m = ε, ε,−ε)

=
∑

w∈W(a2)

(−1)`(w) ew(ξ)−ξ = 1−Qf1 −Qf2 +Q2
f1Qf2 +Qf1Q

2
f2 −Q

2
f1Q

2
f2 , (4.35)

which indeed matches (4.31). Thus the partition function Z line
3,1 (τ,m = ε, tf1 , tf2 , ε,−ε) can

be written in the form of a single Weyl-orbit of W(a2).

In view of generalising (4.34) to the cases m = nε for n > 1, we prefer to write the

action of the Weyl group W(a2) ∼= S3 in a slightly different and more intuitive manner.

To this end we introduce the simple weights (L1, L2, L3) that span the dual of the Cartan

subalgebra h∗a2 (as explained in appendix B) and identify

tfa = La − La+1 ∀a = 1, 2 , (4.36)

which is compatible with (4.32). Furthermore, we introduce

xr := eLr , ∀r = 1, 2, 3 , (4.37)

such that

Qf1 = x2/x1 , and Qf2 = x3/x2 . (4.38)

We note that the xr=1,2,3 are not independent, but satisfy x1x2x3 = 1 due to the constraint

L1+L2+L3 = 0 (see (B.9)). Using the latter condition, we can write (4.35) in the following

fashion

Z line
3,1 (τ, tf1 , tf2 ,m = ε, ε,−ε) = x2x

2
3

(
x2

1x2 − x2
1x3 − x1x

2
2 + x1x

2
3 + x2

2x3 − x2x
2
3

)
= e−ξ

∑
σ∈S3

sign(σ)x2
σ(1) x

1
σ(2) x

0
σ(3) , (4.39)

where e−ξ = eL3−L1 = Qf1Qf2 = x2x
2
3 (and eξ = e2L1+L2 = x2

1x2). The action of the Weyl

group in (4.39) can also be illustrated graphically by arranging all terms in the following

weight diagram:

eξ = x21x2
+1

eξ Q2
f1
Q2
f2

= x2x
2
3

−1

eξ Qf1 = x1x
2
2

−1

eξ Q2
f1
Qf2 = x22x3

+1

eξ Qf2 = x21x3

−1

eξ Qf1Q
2
f2

= x1x
2
3

+1

×L2

+
L1

+
L3

(4.40)

where the blue numbers represent the factor sign(σ) in (4.39). This picture indeed illus-

trates the S3
∼=W(a2) symmetry inherent in Z line

3,1 (τ, tf1 , tf2 ,m = ε, ε,−ε).
Finally, before continuing with further examples with m = nε for n > 1 there are two

comments we would like to make
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• The prefactor e−ξ in (4.39) simply serves to arrange the various terms in the expansion

of Z line
3,1 (τ, tf1 , tf2 ,m = ε, ε,−ε) to be concentric with respect to the origin of the weight

lattice spanned by (L1, L2, L3).

• We can also add the ‘central point’ e−ξ (marked by a red circle in the above figure)

to the partition function Z line
3,1 (τ, tf1 , tf2 ,m = ε, ε,−ε) in (4.39) since

e−ξ
∑
σ∈S3

sign(σ)x0
σ(1) x

0
σ(2) x

0
σ(3) = e−ξ(1− 1− 1 + 1 + 1− 1) = 0 . (4.41)

Therefore, we can write the partition function in the more suggestive form

Z line
3,1 (τ, tf1 , tf2 ,m = ε, ε,−ε) = e−ξ

∑
λ∈P+

1,1

∑
w∈W(a2)

(−1)`(w) ew(λ) (4.42)

where P+
1,1 is the fundamental Weyl chamber of the irreducible representation Γ1,1

of a2

P+
1,1 = {0, ξ} = {0, 2L1 + L2} . (4.43)

As we shall discuss in the following, the form (4.42) can be generalised to the cases

m = nε for n > 1.

4.2.2 Case ε1 = −ε2 and m = 2ε

Generalising the discussion of the previous subsection to the case ε1 = −ε2 = ε and m = 2ε

we find again specific conditions for the partitions ν1,2 in (3.14) to yield a non-vanishing

contribution to the partition function Z line
3,1 (τ, tf1 , tf2 ,m = 2ε, ε,−ε). As a consequence, the

latter is again polynomial in Qf1 and Qf2 with highest powers Q8
f1

and Q8
f2

respectively.

However, the coefficient of each term in this polynomial is no longer a constant (i.e. ±1),

but rather a quotient of Jacobi theta functions, i.e. schematically

Z line
3,1 (τ, tf1 , tf2 ,m = 2ε, ε,−ε) =

8∑
i,j=1

Qif1Q
j
f2

∏
r

θ(ar(i, j)ε)

θ(br(i, j)ε)
, ar, br ∈ Z , (4.44)

where the integers ar(i, j) and br(i, j) implicitly depend on i, j. However, as we shall

discuss presently, this expressions can still be written in a manner that makes the action

of a2 manifest. To this end, we group together all terms corresponding to a given quotient

of theta functions, however, rather than using the variables Qfi , we use the variables xr as

introduced in (4.37). In terms of the monomials Qif1Q
i
f2

we have

Qif1Q
j
f2

= e−iL1+(i−j)L2+jL3 = x−i1 xi−j2 xj3 , for 0 ≤ i, j ≤ 2n2 . (4.45)

The relation L1 + L2 + L3 = 0 then implies x1x2x3 = 1, which allows us to a generic

monomial Qif1Q
j
f2

as a polynomial of x1,2,3 with only positive powers. Specifically, for
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n = 2 we find:

Z line
3,1 (τ, tf1 , tf2 ,m = 2ε, ε,−ε) = x4

2x
8
3

{
φ2

[4,4] (x8
1x

4
2 + x8

1x
4
3 + x8

2x
4
3 + x8

2x
4
1 + x8

3x
4
1 + x8

3x
4
2)

+φ2
[2,5] (x7

1x
5
2 + x7

1x
5
3 + x7

2x
5
3 + x7

2x
5
1 + x7

3x
5
1 + x7

3x
5
2)

+φ2
[5,2] (x7

1x
2
2 + x7

1x
2
3 + x7

2x
2
3 + x7

2x
2
1 + x7

3x
2
1 + x7

3x
2
2)

+φ2
[0,6] (x6

1x
6
2 + x6

1x
6
3 + x6

2x
6
3) + φ2

[6,0] (x6
1 + x6

2 + x6
3)

+φ2
[3,3] (x6

1x
3
2 + x6

1x
3
3 + x6

2x
3
3 + x6

2x
3
1 + x6

3x
3
1 + x6

3x
3
2)

+φ2
[1,4] (x5

1x
4
2 + x5

1x
4
3 + x5

2x
4
3 + x5

2x
4
1 + x5

3x
4
1 + x5

3x
4
2)

+φ2
[4,1] (x5

1x2 + x5
1x3 + x5

1x3 + x5
2x1 + x5

3x1 + x5
3x2)

+φ2
[2,2] (x4

1x
2
2 + x4

1x
2
3 + x4

2x
2
3 + x4

2x
2
1 + x4

3x
2
1 + x4

3x
2
2)

+φ2
[0,3] (x3

1x
3
2 + x3

1x
3
3 + x3

2x
3
3) + φ2

[3,0] (x3
1 + x3

2 + x3
3)

+φ2
[1,1] (x2

1x2 + x2
1x3 + x2

2x3 + x2
2x1 + x2

3x1 + x2
3x2)

+φ2
[0,0]

}
, (4.46)

where the factors φ2
[c1,c2](τ, ε) depend on τ and ε and are given as follows

φ2
[4,4](τ, ε) = 1 ,

φ2
[2,2](τ, ε) =

−θ1(τ ; 3ε)2 + θ1(τ ; ε)2θ1(τ ; 5ε)

θ1(τ ; ε)3
,

φ2
[5,2](τ, ε) = φ2

[2,5](τ, ε) =
θ1(τ ; 2ε)2

θ1(τ ; ε)2
,

φ2
[3,0](τ, ε) = φ2

[0,3](τ, ε) = −2
θ1(τ ; 2ε)θ1(τ ; 3ε)θ1(τ ; 4ε)

θ1(τ ; ε)3
,

φ2
[6,0](τ, ε) = φ2

[0,6](τ, ε) = 2
θ1(τ ; 3ε)

θ1(τ ; ε)
,

φ2
[1,1](τ, ε) = −θ1(τ ; ε)θ1(τ ; 4ε)2 + θ1(τ ; 2ε)2θ1(τ ; 5ε)

θ1(ε)3
,

φ2
[3,3](τ, ε) =

θ1(τ ; 2ε)2θ1(τ ; 3ε)

θ1(τ ; ε)3
,

φ2
[0,0](τ, ε) = 6

θ1(τ ; 3ε)θ1(τ ; 5ε)

θ1(τ ; ε)2
,

φ2
[4,1](τ, ε) = φ2

[1,4](τ, ε) =
θ1(τ ; 2ε)θ1(τ ; 4ε)

θ1(τ ; ε)2
. (4.47)

The subscripts11 are chosen in such a way to make an action of the Weyl groupW(a2) ∼= S3

of sl(3,C) on Z line
3,1 (τ, tf1 , tf2 ,m = 2ε, ε,−ε) (along the lines of (4.42) for n = 1) visible. They

can be identified with the Dynkin labels of the irreducible representation Γ4,4, as we shall

explain in the following: as in the case of n = 1 (see eq. (4.39)), the Weyl group W(a2)

acts as a permutation of the powers of a given monomial of the x1,2,3:

sσ(xi1x
j
2x
k
3) = xiσ(1)x

j
σ(2)x

k
σ(3) , for σ ∈ S3 , (4.48)

11The superscript has been added as a reminder of the fact that we are dealing with the case n = 2.
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which allows us to describe all monomials multiplying a given φ2
[c1,c2] as the Weyl orbit of

a single element. To describe the latter, we introduce the fundamental weights of a2

ω1 = L1 , and ω2 = L1 + L2 , (4.49)

which serve as a basis for the weight lattice of a2 and span the fundamental Weyl chamber.

Concretely, every weight vector can be written as

λ = c1ω1 + c2ω2 , for c1, c2 ∈ Z . (4.50)

For example the Weyl vector is given by ξ = ω1 + ω2.

In order to illustrate the structure of the partition function Z line
3,1 (τ, tf1 , tf2 ,m=2ε, ε,−ε)

graphically, we can represent each term in (4.46) in the weight lattice of a2

φ2
[4,4]

φ2
[5,2] φ2

[6,0] φ2
[2,5] φ2

[4,4]

φ2
[2,5] φ2

[3,3] φ2
[4,1] φ2

[1,4] φ2
[3,3]

φ2
[5,2]

φ2
[0,6] φ2

[1,4] φ2
[2,2] φ2

[3,0] φ2
[2,2] φ2

[4,1]

φ2
[0,6]

φ2
[5,2] φ2

[4,1] φ2
[0,3] φ2

[1,1] φ2
[1,1] φ2

[0,3] φ2
[1,4]

φ2
[2,5]

φ2
[4,4]

φ2
[3,3]

φ2
[2,2]

φ2
[1,1]

φ2
[0,0]

φ2
[1,1]

φ2
[2,2]

φ2
[3,3]

φ2
[4,4]

φ2
[2,5]

φ2
[1,4] φ2

[3,0] φ2
[1,1] φ2

[1,1] φ2
[3,0] φ2

[4,1] φ2
[5,2]

φ2
[6,0]

φ2
[4,1] φ2

[2,2] φ2
[0,3] φ2

[2,2] φ2
(1,4]

φ2
[6,0]

φ2
[5,2]

φ2
[3,3] φ2

[1,4] φ2
[4,1] φ2

[3,3] φ2
[2,5]

φ2
[4,4] φ2

[2,5] φ2
[0,6] φ2

[5,2]

φ2
[4,4]

ω2

ω1

L1L3

L2

where we have also indicated the fundamental Weyl chamber (spanned by the fundamental

weights ω1,2) and attributed the factors φ2
[c1,c2] accordingly. Comparing with the irreducible

representations of sl(3,C) (see appendix B.2 for a review), we can write the partition

function (4.46) as a sum over the Weyl orbits of the 13 representatives in the fundamental
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Weyl chamber of the irreducible representation Γ4,4. Concretely, we have

Z line
3,1 (τ, tf1 , tf2 ,m = 2ε, ε,−ε) = e−4ξ

∑
λ=[c1,c2]∈P+

4,4

(−1)c1+c2 φ2
[c1,c2](τ, ε)O

2
λ(tf1 , tf2) ,

(4.51)

where the individual (normalised) Weyl orbits are labelled by the Dynkin labels [c1, c2] and

are given as

O2
λ=[c1,c2](tf1 , tf2) = dλ

∑
w∈W(a2)

ew(λ) = dλ
∑
σ∈S3

xc1+c2
σ(1) xc2σ(2) x

0
σ(3) , (4.52)

and the normalisation factor is given by

dλ=[c1,c2] =
|Orbλ(W(a2))|
|W(a2)|

=



1
6 . . . c1 = c2 = 0

1
2 . . .

c1 = 0 or c2 = 0 and

[c1, c2] 6= [0, 0]

1 . . . else

(4.53)

where |Orbλ(W(a2))| is the order of the orbit of λ under the Weyl group of a2 and |W(a2)| =
|S3| = 6. Finally the following weights of Γ4,4 are in the fundamental Weyl chamber

P+
4,4 = {[0, 0] , [1, 1] , [3, 0] , [0, 3] , [2, 2] , [4, 1] , [1, 4] , [3, 3] , [6, 0] , [0, 6] , [5, 2] , [2, 5] , [4, 4]} .

(4.54)

For example we have explicitly12

e−4ξ O2
[3,0](tf1 , tf2) =

1

2
x4

2x
8
3(2x3

1 + 2x2
2 + 2x3

3) = Q4
f1Q

4
f2(Q2

f1Qf2 +Q−1
f1
Q1
f2 +Q−1

f1
Q−2
f2

) .

(4.55)

Here the factors 2 (which cancel d[3,0] = 1
2) are due to the fact that e.g. x3

1x
0
2x

0
3 = x3

1x
0
3x

0
2,

such that x3
1 is invariant under two elements of S3. Notice also |Orb[3,0](W(a2))| = 3.

Before further generalising this discussion to generic m = nε for n ∈ N, there are a few

comments we would like to make

• Comparing (4.51) to (4.42), both are structurally very similar in the sense that they

are sums over Weyl orbits whose representatives are in the fundamental Weyl chamber

of a certain irreducible representation of sl(3,C). However, in the case of (4.51), each

orbit is still multiplied by a non-trivial function which depends on τ and ε. Another

difference is the fact that the terms in each orbit in (4.52) come with the same relative

sign due to the absence of (−1)`(w) which is present in (4.42).

• The arguments of the theta functions of the individual φ2
[c1,c2] are related to the

Dynkin labels [c1, c2]. Indeed, recall that the φ2
[c1,c2] are quotients of Jacobi-theta

functions, schematically

φ2
[c1,c2](τ, ε) =

∏
r

θ1(τ ; arε)

θ1(τ ; brε)
with ar, br ∈ N (4.56)

12In order to make contact with the Qf1 and Qf2 we recall that upon using (4.45), a given monomial

in (4.44) can be written in the form Qif1Q
j
f2

= e(j−2i)ω1+(i−2j)ω2 .
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Each such quotient has a well-defined index Iτ under the action of SL(2,Z)τ (which

was introduced in (2.17)13)

(τ, ε) −→
(
aτ + b

cτ + d
,

ε

cτ + d

)
, with

(
a b

c d

)
∈ SL(2,Z)τ . (4.57)

Specifically, Iτ is given as

Iτ (φ2
λ=[c1,c2]) =

1

2

∑
r

(a2
r − b2r) , (4.58)

which is related to the weight λ = [c1, c2] of φ2
[c1,c2] through

Iτ (φ2
λ=[c1,c2]) = (4ξ, 4ξ)− (λ, λ) = 16− 1

3
(c2

1 + c1c2 + c2
2) . (4.59)

Here (., .) stands for the inner product in the basis (ω1, ω2).

4.2.3 Case ε1 = −ε2 and m = nε for generic n ∈ N

The results of the previous two subsections show an emergent pattern which can be gener-

alised directly and which we conjecture14 to hold for generic n ∈ N: for n a (finite) integer,

only a finite number of partitions ν1,2 can contribute to the partition function (3.8). There-

fore Z line
3,1 (τ, tf1 , tf2 ,m = nε, ε,−ε) is polynomial in the parameters Qf1 and Qf2 with the

highest powers Q2n2

f1
and Q2n2

f2
. Each monomial Qif1Q

j
f2

is multiplied by a quotient of

Jacobi-theta functions that depend on τ and ε. Specifically, we can write in a similar

fashion as in (4.44)

Z line
3,1 (τ,m = nε, tf1 , tf2 , ε,−ε) =

2n2∑
i,j=1

Qif1Q
j
f2

∏
r

θ(ar(i, j)ε)

θ(br(i, j)ε)
, ar, br ∈ Z , (4.60)

Using the same notation as in the previous subsection, we propose that we can re-write

the partition function in the following manner

Z line
3,1 (τ, tf1 , tf2 ,m = nε, ε,−ε) = e−n

2ξ
∑

λ=[c1,c2]∈P+

n2,n2

(−1)c1+c2 φn[c1,c2](τ, ε)O
n
λ(tf1 , tf2) .

(4.61)

Here Onλ(tf1 , tf2) denotes the following normalised orbits of the Weyl group W(a2) ∼= S3

(with dλ defined in (4.53))

Onλ=[c1,c2](tf1 , tf2) = dλ
∑

w∈W(a2)

(−1)n `(w) ew(λ) = dλ
∑
σ∈S3

(sign(σ))n xc1+c2
σ(1) xc2σ(2) x

0
σ(3) ,

(4.62)

13Notice that SL(2,Z)τ remains a symmetry of the partition function even after the identification ε1 =

−ε2 = ε and m = 2ε.
14We have indeed verified the results further up to n = 6.

– 27 –



J
H
E
P
1
2
(
2
0
1
7
)
0
2
0

while the representatives λ fit into the irreducible representation Γn2,n2 of sl(3,C) (see

appendix B.2 for further information and notation) and are chosen from the fundamental

Weyl chamber, i.e.

P+
n2,n2 = {[r − s, r + 2s]

∣∣r = 0, . . . , n2 and s = 0, . . . ,min(r, n2 − r)}

∪ {[r + 2s, r − s]
∣∣r = 1, . . . , n2 and s = 1, . . . ,min(r, n2 − r)}

= {[0, 0] , [1, 1] , [3, 0] , [0, 3] , [2, 2] , . . . , [n2 − 2, n2 + 1] , [n2 + 1, n2 − 1] , [n2, n2]} .
(4.63)

Finally, the φn[c1,c2](τ, ε) are quotients of theta functions and the first few of them are

given explicitly in appendix D.1. These expressions are compatible with (4.47): notice in

particular the appearance of the numerical overall factors 2 for the weights [k, 0] and [0, k]

(for k ∈ N) or 6 for the weight [0, 0], e.g.

φn[n2−4,n2−1]

∣∣
n=2

= φ2
[0,3] = −2

θ(1)θ(3)θ(4)

θ(1)3
or φn[n2−4,n2−4]

∣∣
n=2

= φ2
[0,0] = 6

θ(1)θ(5)

θ(1)2
,

(4.64)

which agree with (4.47) and compensate the factor dλ for the cases |Orbλ(W(a2))| < 6, in

order to avoid overcounting. Furthermore, just as in the case n = 2 in (4.47), the functions

φn[c1,c2] can be assigned an index under the SL(2,Z)τ action defined in (4.57)

I(φnλ=[c1,c2]) = (n2ξ, n2ξ)− (λ, λ) = n4 − 1

3
(c2

1 + c1c2 + c2
2) . (4.65)

The structure of (4.61) can be made more transparent by arranging all terms on the weight

lattice of a2 as shown in figure 2. Here the red lines indicate the fundamental Weyl chamber

and we have attached the coefficients for each weight respectively. In this way the symmetry

under the Weyl group is made manifest. We notice, however, that for n odd, the weights

[c1, c2] for c1 = 0 or c2 = 0 do not contribute to the partition function. Indeed, in these

cases we have

On[c,0](tf1 , tf2) = 0 = On[0,c](tf1 , tf2) , for
c ∈ N
n ∈ Nodd

(4.66)

due to the sign factors sign(σ) in the definition (4.62).15

In order to further elucidate the connection between Z line
3,1 (τ, tf1 , tf2 ,m = nε, ε,−ε)

and the irreducible representation Γn2,n2 of a2, we remark another property of the φnλ(τ, ε)

in (D.1). As explained in appendix B.2, the weight diagram of the representation Γn2,n2 is

made from concentric hexagons whose weight spaces share the same multiplicity. Thus, one

would expect that the quotients of the theta-functions φnλ are elements of a vector space of

functions whose dimension corresponds to the latter multiplicity. Concretely, we expect

15The vanishing is due to the same mechanism which leads to (4.41) for n = 1.
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Figure 2. Representation of Z line
3,1 (τ,m = nε, tf1 , tf2 , ε,−ε) on the weight lattice of a2.
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multiplicity weights

1
{

[n2 − 2r, n2 + r]|r = 0, . . . , bn2

2 c
}
∪
{

[n2 + r, n2 − 2r]|r = 1, . . . , bn2

2 c
}

2

{
[n2 − 1− 2r, n2 − 1 + r]|r = 0, . . . , bn2−1

2 c
}
∪{

[n2 − 1 + r, n2 − 1− 2r]|r = 1, . . . , bn2−1
2 c

}
3

{
[n2 − 2− 2r, n2 − 2 + r]|r = 0, . . . , bn2−2

2 c
}
∪{

[n2 − 2 + r, n2 − 2− 2r]|r = 1, . . . , bn2−2
2 c

}
...

...

k

{
[n2 − (k − 1)− 2r, n2 − (k − 1) + r]|r = 0, . . . , bn

2−(k−1)
2 c

}
∪{

[n2 − (k − 1) + r, n2 − (k − 1)− 2r]|r = 1, . . . , bn
2−(k−1)

2 c
}

Comparing with the explicit expressions (D.1), we find that the functions φnλ with weights

λ = [c1, c2] that are expected to be of multiplicity k ∈ N according to the above table, are

indeed linear combinations of theta-quotients of the following type:

Sk =

{
θ(n− p)a

(1)
p θ(n− p+ 1)a

(1)
p−1 . . . θ(n)a

(1)
0 θ(n+ p− 1)a

(1)
p−1θ(n+ p)a

(1)
p

θ(1)b
(1)
1 θ(2)b

(1)
2 . . . θ(p− 1)b

(1)
p−1

,

θ(n+ 2− p))a
(2)
2−pθ(n+ 4− p)a

(2)
4−pθ(n+5−p)a

(2)
5−p . . . θ(n+p−4)a

(2)
p−4θ(n+p−3)a

(2)
p−3

θ(1)b
(2)
1 θ(2)b

(2)
2 . . . θ(p− 2)b

(2)
p−2

+
θ(n+ 3− p))a

(2)
p−3θ(n+ 4− p)a

(2)
p−4 . . . θ(n+ p− 5)a

(2)
5−pθ(n+ p− 4)a

(2)
4−pθ(n+ p− 2)a

(2)
2−p

θ(1)b
(2)
1 θ(2)b

(2)
2 . . . θ(p− 2)b

(2)
p−2

,

θ(n+ 2− p)a
(3)
2−pθ(n+ 5− p)a

(3)
5−pθ(n+ 6− p)a

(3)
6−p . . . θ(n+ p− 3)a

(3)
p−3θ(n+ p− 4)a

(3)
p−4

θ(1)b
(3)
1 θ(2)b

(3)
2 . . . θ(p− 3)b

(3)
p−3

+
θ(n+ 4− p)a

(3)
p−4θ(n+ 3− p)a

(3)
p−3 . . . θ(n+ p− 6)a

(3)
6−pθ(n+ p− 5)a

(3)
5−pθ(n+ p− 2)a

(3)
2−p

θ(1)b
(3)
1 θ(2)b

(3)
2 . . . θ(p− 3)b

(3)
p−3

,

, . . . ,

θ(n+ 2− p)a
(k)
2−pθ(n+ 2 + k − p)a

(k)
2+k−pθ(n+ 3 + k − p)a

(k)
3+k−p . . . θ(n+ p− k − 1)a

(k)
p−k−1

θ(1)b
(k)
1 θ(2)b

(k)
2 . . . θ(p− k)b

(k)
p−k

+
θ(n+k+1−p)a

(k)
p−k−1 . . . θ(n+p−k−3)a

(k)
3+k−pθ(n+ p− k − 2)a

(k)
2+k−pθ(n+ p− 2)a

(k)
2−p

θ(1)b
(k)
1 θ(2)b

(k)
2 . . . θ(p− k)b

(k)
p−k

}
,

(4.67)

where p = 2n2 +1−c1−c2 and a
(r)
i , b

(r)
j ∈ N. Thus, according to the grouping in (4.67), the

φnλ are indeed elements of a space of functions Sk whose dimension k matches the expected

mutliplicity. This is a further indication that the partition functions Z line
3,1 (τ, tf1 , tf2 ,m =

nε, ε,−ε) can be arranged according to the irreducible representation Γn2,n2 of sl(3,C)

for n ∈ N.
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Finally, we would like to comment on the relation between Z line
3,1 (τ,m = nε, tf1 , tf2 , ε,−ε)

and Z line
2,1 (τ,m = nε, tf1 , ε,−ε) from the point of view of the representation theory of sl(3,C)

and sl(2,C) respectively. Indeed, starting from the highest weight [n2, n2] of Γn2,n2 and

acting with only a single root produces a highest weight representation of sl(2,C). Indeed,

considering the functions{
φn[n2,n2], φ

n
[n2+1,n2−2], φ

n
[n2+2,n2−4], . . . , φ

n[
n2+bn2

2
c,n2−2bn2

2
c
]} (4.68)

they exactly correspond to the c
(n)
r defined in (4.12)–(4.18), that appear in the expansion

of Z line
2,1 (τ, tf1 ,m = nε, ε,−ε) in (4.9) and which we already argued in section 4.1.2 follow

the irreducible representations Γn2 of sl(2,C). From a physical perspective, acting with

only a single root on the highest weight [n2, n2] amounts to setting Qf2 → 0 and thus

reducing the M-brane web configuration (N,M) = (3, 1) to (2, 1) by decoupling one of the

M5-branes.

4.3 Configurations (N,M) = (4, 1) and (5, 1)

We can repeat the above analysis for (N,M) = (4, 1) and (5, 1). For simplicity, we restrict

ourselves to the case m = ε In the former case, the partition function (3.14) contains a sum

over non-trivial partitions (ν1, ν2, ν3) and the relevant contributions are given by

Z line
4,1 (τ, tf1 , tf2 , tf3 ,m = ε, ε,−ε) =

∑
ν1,ν2,ν3

f
(ν1,ν2,ν3)
(4,1) (τ, tf1 , tf2 , tf3 , ε) (4.69)

=
∑

ν1,ν2,ν3

(
3∏

a=1

(−Qfa)|νa|

) ∏
(i,j)∈νa

θ1(τ ; zaij) θ1(τ ; vaij)

θ1(τ ;waij)θ1(τ ;uaij)

which are tabulated as follows

ν1 ν2 ν3 f
(ν1,ν2,ν3)
(4,1)

∅ ∅ ∅ 1

∅ ∅ −Qf1
∅ ∅ −Qf2
∅ ∅ −Qf3

∅ Qf1Qf3

∅ Q2
f1
Qf2

∅ Qf1Q
2
f2

∅ Q2
f2
Qf3

∅ Qf2Q
2
f3

∅ −Q2
f2
Q2
f3

∅ −Q2
f1
Q2
f2

−Q2
f1
Qf2Q

2
f3

−Qf1Q3
f2
Qf3

ν1 ν2 ν3 f
(ν1,ν2,ν3)
(4,1)

−Q2
f1
Q2
f2
Q3
f3

−Q3
f1
Q2
f2
Qf3

Qf1Q
3
f2
Q3
f3

Q2
f1
Q2
f2
Q3
f3

Q3
f1
Q2
f2
Q2
f3

Q3
f1
Q3
f2
Qf3

Q2
f1
Q4
f2
Q2
f3

−Q2
f1
Q4
f2
Q3
f3

−Q3
f1
Q3
f2
Q3
f3

−Q3
f1
Q4
f2
Q2
f3

Q3
f1
Q4
f2
Q3
f3

– 31 –



J
H
E
P
1
2
(
2
0
1
7
)
0
2
0

Combining all these contributions, we find for the partition function

Z line
4,1 (τ, tf1 , tf2 , ff3 ,m = ε, ε,−ε)
= (1−Qf1)(1−Qf2)(1−Qf3)(1−Qf1Qf2)(1−Qf2Qf3)(1−Qf1Qf2Qf3) , (4.70)

which is polynomial in Qf1,2,3 and invariant under the exchange Qf1 ↔ Qf3 . By making

the following identifications with the simple roots of sl(4,C)

Qf1 = e−α1 , Qf2 = e−α2 , Qf3 = e−α3 , (4.71)

we can write (4.70)

Z line
X4,1

(τ,m = ε, tf1 , tf2 , ff3 , ε,−ε) =
∏

α∈∆+(a3)

(1− e−α)mult(α) . (4.72)

As before, this can be rewritten, using the Weyl denominator formula, as a sum over the

Weyl group for the corresponding root lattice

Z line
X4,1

(τ,m = ε, tf1 , tf2 , ff3 , ε,−ε) =
∑

w∈W(a3)

ew(ξ)−ξ (4.73)

where ξ = 3
2α1 + 2α2 + 3

2α3 is the Weyl vector for sl(4,C). In a similar fashion as in

the previous section we can give a graphical representation of the partition function by

arranging its various terms on the weight lattice of a3 (see figure 3). This presentation of

the partition function indeed resembles a highest weight representation of a3
∼= sl(4,C).

We have also performed checks for n > 1: in all cases the partition function still has the

structure of irreducible sl(4,C) representations.

In the case (N,M) = (5, 1), the partition function is a sum over four partitions

(ν1, ν2, ν3, ν4). Analysing the individual contributions, we find that the partition function

can be written as

Z line
5,1 (τ, tf1 , tf2 , ff3 , tf4 ,m = ε, ε,−ε) = (1−Qf1)(1−Qf2)(1−Qf3)(1−Qf4)(1−Qf1Qf2)

×(1−Qf2Qf3)(1−Qf3Qf4)(1−Qf1Qf2Qf3)(1−Qf2Qf3Qf4)(1−Qf1Qf2Qf3Qf4)

=
∏

α∈∆+(a4)

(1− e−α) . (4.74)

where we used

Qfi = e−αi , i = 1, 2, 3, 4 (4.75)

As in the previous cases this can be rewritten as

Z line
5,1 (τ, tf1 , tf2 , ff3 , tf4 ,m = ε, ε,−ε) =

∑
w∈W(a4)

ew(ξ)−ξ (4.76)

where ξ = 2α1 + 3α2 + 3α3 + 2α4 is the Weyl vector of a4.
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Figure 3. Structure of Z line
4,1 with the simple weights L1 (red), L2 (blue), L3 (green) and L4

(yellow).

Comparing (4.4), (4.31), (4.70) and (4.74) we conjecture the following pattern

Z line
N,1(τ, tf1 , . . . , tfN−1,m = ε, ε,−ε) =

N−1∏
I=1

[
I∏
a=1

(
1−

N−1−I+a∏
b=a

Qfb

)]

=

[
N−1∏
a=1

(1−Qfa)

] [
N−2∏
b=1

(1−QfbQfb+1
)

]
. . .

×

[
2∏
c=1

(1−QfcQfc+1 . . . Qfc+N−3
)

]
(1−Qf1 . . . QfN−1

) . (4.77)

which is independent of τ and ε.

4.4 Configuration (N,M) = (2, 2)

After discussing examples of partition functions for non-compact configurations (N,M)

with M = 1, we can generalise the analysis to cases with M > 1. We recall that the

latter correspond to brane configurations with M5-branes probing a transverse ZM orbifold

background (i.e. an ALEAM−1
-space). The simplest such configuration is (N,M) = (2, 2),

i.e. two M5-branes probing a transverse ALEA1 space.
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4.4.1 Choice ε1 = −ε2 = ε and m = ε

We begin with the specific choice ε1 = −ε2 = m = ε for the deformation parameters.

Analysing all integer partitions that may contribute to (3.13) in this case, we find

Z line
2,2 (τ, T1, tf1 ,m = ε, ε,−ε) = Qf1

[
Q−1
f1
φ1,2

[2] (τ, T1, ε)− φ1,2
[0] (τ, T1, ε) +Qf1 φ

1,2
[2] (τ, T1, ε)

]
,

(4.78)

where T̃1 was defined in (3.9) and

φn=1,M=2
[2] (τ, T1, ε) = 1 , and φn=1,M=2

[0] (τ, T1, ε) = 2
θ1(τ ; T̃1 − ε)θ1(τ ; T̃1 + ε)

θ1(τ ; T̃1)2
. (4.79)

Here we have added an additional superscript M in order to distinguish the coefficients from

their counterparts with M = 1 defined in (4.28). Moreover, similar to the configuration

(N,M) = (2, 1), we can write (4.78) as a sum over Weyl orbits of representatives in the

fundamental Weyl chamber of the irreducible representation Γ2 of sl(2,C). Indeed, similar

to (4.26), we can write

Z line
2,2 (τ, T1, tf1 ,m = ε, ε,−ε) = e−2ξ

∑
λ=[c]∈P+

2

(−1)1− c
2φ1,2

λ (τ, T1, ε)O1,2
λ (tf1) , (4.80)

where e−2ξ = Qf1 and P+
2 corresponds to the sl(2,C) weights in the fundamental Weyl

chamber of Γ2, i.e. P+
2 = {[0] , [2]}. Furthermore, we have the following definition of the

Weyl orbits

On=1,M=2
λ=[c] (tf1) = dλ

∑
w∈W(a1)

ew(λ) = dλ

(
Q
− c

2
f1

+Q
c
2
f1

)
, (4.81)

where dλ was defined in (4.53). Comparing On=1,M=2
λ=[c] (tf1) to its counterpart for M = 1

and n = 1 defined in (4.29), we notice that there is no relative sign between the two factors

due to the absence of the factor (−1)`(w). We can represent Z line
2,2 (τ, tf1 ,m = ε, ε,−ε)

schematically in the following weight diagram

• • •
φ1,2
[2]

φ1,2
[0]

φ1,2
[2]

The coefficient functions φ1,2
λ transform in a particular manner under modular transforma-

tions with respect to τ (generalising the action of SL(2,Z) to the case M > 1 as in (3.15)).

Specifically, we have

φ1,2
[c]

(
−1

τ
,
T̃1

τ
,
ε

τ

)
= e−

2πi ε2 Iτ
τ φ1,2

[c] (τ, T̃1, ε) , (4.82)

where for λ = [c] we have

Iτ
(
φ1,2
λ=[c]

)
= (2ξ, 2ξ)− (λ, λ) = 1− 1

4
c2 , (4.83)
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where (., .) denotes the inner product in the fundamental weight basis {ω1} of a1. Gener-

alising (4.65) we call Iτ the index of φ1,2
λ under SL(2,Z)τ . We point out in particular that

the phase-factor (4.82) is independent of T1 and only depends on ε.

Before generalising the above discussion to cases m = nε for n ∈ N, we would like to

make a further remark: in section 3.2 we argued that the simplification of the partition

function ZN,M=1 for m = nε and ε1 = −ε2 = ε is due to the fact that the Spin(8)

holonomy charges are no longer linear independent over Z. Therefore, there are possible

cancellation among contributions with different charges with respect to U(1)m and U(1)ε1×
U(1)ε2 . For M > 1, the same simplifications take place in the untwisted sector of the

orbifold action (2.13), leading to similar simplifications of the partition function, as is

indeed showcased in (4.78). However, along the same line of reasoning, identifying T̃1 = kε

for k ∈ N, should lead to further cancellations among different contributions in the partition

function. Indeed, setting T̃1 = ε in (4.78) we get φ1,2
[0] (τ, ε, ε) = 0, such that

Z line
2,2 (τ, T̃1 = ε, tf1 , ε,−ε) = 1 +Q2

f1 . (4.84)

This choice of parameters is still compatible with the SL(2,Z)τ transformation (4.82).

4.4.2 Choice ε1 = −ε2 = ε and m = nε for n > 1

Generalising the discussion of the previous subsubsection for m = nε with n > 1 the

partition function can schematically be written in the following form:16

Z line
2,2 (τ, T1, tf1 ,m = nε, ε,−ε) =

2n2∑
i=1

Qif1

∏
r

θ1(τ ; a1,rε)θ1(τ ; a2,rε+ T̃1)

θ1(τ ; b1,rε)θ1(τ ; b2,rε+ T̃1)
. (4.85)

Analogously to the previous cases we propose that the partition function (4.85) can be

written by summing the Weyl orbits for the weights in the fudamental Weyl chamber P+
2n2

of the irreducible representation Γ2n2 of sl(2,C)

Z line
2,2 (τ, T1, tf1 ,m = nε, ε,−ε) = e−2n2ξ

∑
λ∈P+

2n2,2n2

(−1)
2n2−c

2 φn,M=2
[c1] (τ, T1, ε)On,M=2

λ (tf1)

(4.86)

where e−2n2ξ = Qn
2

f1
, P+

2n2 = {[2k]|k = 0, . . . , n2} and the Weyl orbits On,M=2
λ (tf1) are

defined as

On,M=2
λ=[c] (tf1) = dλ

∑
w∈W(a1)

(−1)Mnl(w) ew(λ) = dλ

(
Q
− c

2
f1

+Q
c
2
f1

)
, (4.87)

which is equivalent to (4.81) since (−1)Mnl(w) = 1 for n ∈ Z. Furthermore, the first few

coefficient functions φn,M=2
[c1] (τ, T1, ε) are given by (for λ = [c] with c ≥ 0)

φn,2
[2n2]

= 1 ,

φn,2
[2(n2−1)]

= 2
θ(n)2θ(T̃1 − n)θ(T̃1 + n)

θ(1)2θ(T̃1)2
,

16We have checked this expression explicitly up to n = 10 and conjecture that it holds in general.
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φn,2
[2(n2−2)]

=
θ(n)4θ(T̃1 − n)2θ(n+ T̃1)2

θ(1)4θ(T̃1 − 1)2θ(T̃1 + 1)2
(4.88)

+ 2
θ(n− 1)θ(n)2θ(n+ 1)θ(T̃1 − n− 1)θ(T̃1 − n)θ(T̃1 + n− 1)θ(T̃1 + n)

θ(1)2θ(2)2θ(T̃1)2θ(T̃1 + 1)2

+ 2
θ(n− 1)θ(n)2θ(n+ 1)θ(T̃1 − n)θ(T̃1 − n+ 1)θ(T̃1 + n)θ(T̃1 + n+ 1)

θ(1)2θ(2)2θ(T̃1)2θ(T̃1 + 1)2

Generalising (4.83) and using the notation (4.85), the index of the theta ratios is

Iτ (φn,2[c] ) =
∑
r

(a2
1,r + a2

2,r − b21,r − b22,r) = (2n2ξ, 2n2ξ)− (λ, λ) = n4 − 1

4
c2 . (4.89)

Finally, as for the case n = 1, there are additional cancellations in the partition function

once we set T̃1 = kε (with k ∈ N) to be a(n integer) multiple of ε. Notice, however, when

k < n the partition function Z line
2,2 (τ, T1 = kε, tf1 ,m = nε, ε,−ε) appears to diverge due to

the fact that theta-functions in the denominator vanish. The choice k = n provides the

simplest expression in the sense that certain φn,M=2
λ vanish. Schematically, the vanishing

coefficient functions can be shown in the following weight diagram of sl(2,C):

• • • • • • • •
φn,2
[2n2]

φ
n
,2

[2
(n

2−
1
)] →

0

φ
n
,2

[2
(n

2−
n
+
1
)] →

0

φ
n
,2

[2
(n

2
−
n
)]

φn,2[2]

φn,2[0]

= 0

for
n
o
d
d

fo
r
n
ev
en

6= 0

φn,2[2] φ
n
,2

[2
(n

2
−
n
)]

φ
n
,2

[2
(n

2−
n
+
1
)] →

0

φ
n
,2

[2
(n

2−
1
)] →

0

φn,2
[2n2]

The vanishing theta-quotients correspond to the following powers of Qf1 in the partition

function: Qf1 , Q
2
f1
, . . . , Qnf1 , Q

2n2−n
f1

, Q2n2−n+1
f1

, . . . , Q2n2−1
f1

, while for odd n also the power

Qn
2

f1
is vanishing as well.

4.5 Configuration (N,M) = (3, 2)

We can analyse the configuration (N,M) = (3, 2) in a similar fashion. The latter corre-

sponds to a brane web with 3 M5-branes probing a transverse ALEA1 space.

4.5.1 Choice ε1 = −ε2 = ε and m = ε

We again begin with the case m = ε. In order to write the partition function, we use the

same notation as in section 4.2. In particular we use the variables x1,2,3 as defined in (4.37)
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to write

Z line
3,2 (τ, T1, tf1 , tf2 ,m = ε, ε,−ε)

= x2
2x

4
3

{
φ1,2

[2,2](τ, T1, ε) (x4
1x

2
2 + x4

1x
2
3 + x4

2x
2
3 + x4

2x
2
1 + x4

3x
2
1 + x4

3x
2
2)

+ φ1,2
[3,0](τ, T1, ε) (x3

1 + x3
2 + x3

3)

+ φ1,2
[0,3](τ, T1, ε) (x3

1x
3
2 + x3

2x
3
3 + x3

1x
3
3)

+ φ1,2
[1,1](τ, T1, ε) (x2

1x2 + x2
1x3 + x2

2x3 + x2
2x1 + x2

3x1 + x2
3x2)

+ φ1,2
[0,0]

}
(4.90)

where x2
2x

4
3 = e−2ξ = Q2

f1
Q2
f2

with ξ the Weyl vector of a2 and the φ1,2
[c1,c2](τ, T1, ε) are

defined as follows

φ1,2
[2,2] = 1 , φ1,2

[1,1] =
θ1(T̃1+2ε)θ1(T̃1−ε)2 + θ1(T̃1−2ε)θ1(T̃1+ε)2

θ1(T̃1)3

φ1,2
[0,0] = −6

θ1(T̃1−2ε)θ1(T̃1+2ε)

θ1(T̃1)2
, φ1,2

[3,0] = φ1,2
[0,3] = −2

θ1(T̃1 − ε)θ1(T̃1 + ε)

θ1(T̃1)2
. (4.91)

As in section 4.2, the polynomials in x1,2,3 in (4.90) resemble orbits of the Weyl ac-

tion W(a2) ∼= S3 (and the subscripts in (4.91) correspond to weights of a2). More pre-

cisely, Z line
3,2 (τ, T1, tf1 , tf2 ,m = ε, ε,−ε) can be expressed as a sum over the Weyl orbits of

the weights in the fundamental Weyl chamber P+
2,2 of the irreducible representation Γ2,2

of sl(3,C)

Z line
3,2 (τ, T1, tf1 , tf2 ,m = ε, ε,−ε) = e−2ξ

∑
λ=[c1,c2]∈P+

2,2

φ1,2
[c1,c2](τ, T1, ε)O1

λ(tf1 , tf2) (4.92)

where P+
2,2 = {[0, 0] , [1, 1] , [0, 3] , [3, 0] , [2, 2]} and the Weyl orbits are given by

O1
λ(tf1 , tf2) = dλ

∑
w∈W

ew(λ) (4.93)

with dλ defined in (4.53). As in section 4.4, the partition function Z line
3,2 (τ, T1, tf1 , tf2 ,m =

ε, ε,−ε) transforms well under SL(2,Z)τ : following the transformation (4.82) we have for

example

φ1,2
[1,1]

(
−1

τ
,
ε

τ
,
T̃1

τ

)
= eiπ(−2ε+T̃1)2eiπ2(ε+T̃1)2e−iπ3T̃ 2

1 φ1,2
[1,1](τ, ε, T̃1) = e2iπ3ε2φ1,2

[1,1](τ, ε, T̃1) .

(4.94)

In general we can introduce the index

Iτ (φ1,2
[c1,c2]) = (2ξ, 2ξ)− (λ, λ) = 4− 1

3
(c2

1 + c1c2 + c2
2) . (4.95)

As in the previous section the partition function can be further simplified by setting T̃1 = 2ε.

We can represent the partition function by the following diagram:
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φ[2,2]
φ[3,0] φ[2,2]

φ[0,3] φ[1,1] φ[1,1]

φ[0,3]

φ[2,2]
φ[1,1]

φ[0,0]

φ[1,1]
φ[2,2]

φ[3,0]
φ[1,1] φ[1,1]

φ[3,0]

φ[2,2] φ[0,3]
φ[2,2]

ω2

ω1

The red circles correspond to the terms that are removed by the simplification.

4.5.2 Choice ε1 = −ε2 = ε and m = nε for n > 1

For n ≥ 2 the number (and size) of all expressions grows very quickly. However, all terms

can still be arranged according to irreducible representations of a2, as e.g. is graphically

shown below for n = 2

φ2,2
[0,12]

φ2,2
[2,11]

φ2,2
[4,10]

φ2,2
[6,9]

φ2,2
[8,8]

φ2,2
[9,6]

φ2,2
[10,4]

φ2,2
[11,2]

φ2,2
[12,0]

ω2

ω1
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where some of the φ2,2
[c1,c2] are given by

φ2,2
[8,8](τ , T1, ε) = 1 , φ2,2

[6,9] = φ2,2
[9,6] = −2

θ1(τ ; 4ε)2θ1(τ ; 4ε− T̃1)θ1(τ ; 4ε+ T̃1)

θ1(τ ; ε)2θ1(τ ; T̃1)2

φ2,2
[4,10] =φ2,2

[10,4] =
θ1(τ ; 4ε)4θ1(τ ; 4ε− T̃1)2θ1(τ ; 4ε+ T̃1)2

θ1(τ ; ε)4θ1(τ ; ε− T̃1)2θ1(τ ; ε+ T̃1)2

+
θ1(τ ; 3ε)θ1(τ ; 4ε)2θ1(τ ; 5ε)θ1(τ ; 4ε− T̃1)θ1(τ ; 5ε− T̃1)θ1(τ ; 3ε+ T̃1)θ1(τ ; 4ε+ T̃1)

θ1(τ ; ε)θ1(τ ; 2ε)2θ1(τ ; 2T̃1)2θ1(τ ; ε− T̃1)2

+
θ1(τ ; 3ε)θ1(τ ; 4ε)2θ1(τ ; 5ε)θ1(τ ; 3ε− T̃1)θ1(τ ; 4ε− T̃1)θ1(τ ; 4ε+ T̃1)θ1(τ ; 5ε+ T̃1)

θ1(τ ; ε)θ1(τ ; 2ε)2θ1(τ ; 2T̃1)2θ1(τ ; ε+ T̃1)2

(4.96)

Here again the red circles stand for the terms removed when setting T̃1 = 4ε.17

Based on the above results, for generic n ≥ 2, we propose that the partition function

can then be expressed by summing the Weyl orbits for the weights in the fundamental

Weyl chamber P+
2n2,2n2 of the irreducible representation Γ2n2,2n2

Z line
3,2 (T, t,m = nε, ε,−ε) = e−2n2ξ

∑
λ∈P+

2n2,2n2

φn,2[c1,c2](τ, ε)O
n
λ(tf1 , tf2) ,

with Onλ(tf1 , tf2) = dλ
∑
w∈W

ew(λ) ,

and the SL(2,Z)τ indices are

Iτ (φn,Mλ[c1,c2]) = (2n2ξ, 2n2ξ)− (λ, λ) = 4n4 − 1

3
(c2

1 + c1c2 + c2
2) (4.97)

5 Examples: compact brane configuration

After having discussed examples of partition functions of non-compact brane configurations

for the particular choice m = nε (with n ∈ N), we now consider compact brane configu-

rations. The non-compact case can be recovered in the limit
∏n
a=1Qfa = Qρ → 0, as we

shall discuss in the following.

5.1 Configuration (N,M) = (2, 1)

5.1.1 Choice ε1 = −ε2 = ε and m = ε

We start with the case of two M5-branes, in which case there are two different partitions

contributing to (3.11). To describe the configurations contributing, we introduce the fol-

lowing class of partitions

mn = (n, n− 1, n− 2, . . . , 1) ,

n-boxes︷ ︸︸ ︷
, (5.1)

17In general, cancellation of this type occur for generic n by setting T̃1 = 2nε.
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with size

|mn| =
n∑
i=1

i =
n(n+ 1)

2
. (5.2)

We also use the notation m0 = ∅. With this notation, we only get the following three types

of contributions to the partition function (n ∈ N)

ν1 ν2

(∏2
a=1(−Qfa)|νa|

) ∏2
a=1

∏
(i,j)∈νa

θ1(τ ;zaij) θ1(τ ;vaij)

θ1(τ ;waij)θ1(τ ;uaij)

∅ ∅ 1

mn = mn−1 = (−Qf1)
n(n+1)

2 (−Qf2)
n(n−1)

2

mn−1 = mn = (−Qf1)
n(n−1)

2 (−Qf2)
n(n+1)

2

Thus, the normalised partition function (3.7) is

Z̃2,1(τ,m = ε, tf1 , tf2 , ε,−ε) = 1 +

∞∑
n=1

(−1)n
2

[
Q

n(n+1)
2

f1
Q

n(n−1)
2

f2
+Q

n(n−1)
2

f1
Q

n(n+1)
2

f2

]
.

This expression can also be written in the form

Z̃2,1(τ, tf1 , tf2 ,m = ε, ε,−ε) =

∞∏
k=1

Z(k)
2,1 (τ,m = ε, tf1 , tf2 , ε,−ε)

=

∞∏
k=1

(1−Qkρ) (1−Qf1Qk−1
ρ ) (1−Qf2Qk−1

ρ ) , (5.3)

where Qρ = Qf1Qf2 .18 Following the discussion of the non-compact examples, we would

like to Identify the Kähler parameters tf1 and tf2 with the affine roots α̂0 and α̂1, which

are introduced in appendix A.2. This involves choosing which tfa contains the null root

δ. The final answer does not depend on this choice as the exchange Qf1 ↔ Qf2 does not

change the partition function. Here we choose the following

Qf1 = e−α̂1 , Qf2 = Qρ/Qf1 = eα̂1−δ = e−α̂0 , Qρ = e−δ (5.4)

and using expression (A.15) for the positive roots of â1 we can write

Z̃2,1(τ, t,m = ε, ε,−ε) =

( ∞∏
n=0

(1−Q1Q
n
ρ )

)( ∞∏
n=1

(1−Qnρ/Q1)

)( ∞∏
k=1

(1−Qkρ)

)
=

∏
α̂∈∆̂+(â1)

(1− e−α̂) . (5.5)

18Notice the relation Z line
3,1 (τ, tf1 , tf2 ,m = ε, ε,−ε) = Z̃(1)

2,1(τ, tf1 , tf2 ,m = ε, ε,−ε) relating compact to the

non-compact M-brane configurations.
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Using the affine Weyl denominator formula (5.5) can be written as a sum over elements of

the affine Weyl group (with mult(α̂) = 1 for α̂ ∈ ∆̂(â1))

Z̃2,1(τ, tf1 , tf2 ,m = ε, ε,−ε) =
∑
w∈Ŵ

(−1)l(w)ew(ξ̂)−ξ̂ (5.6)

where ξ̂ = ω̂0 + ω̂1 = [1, 1, 0] is the affine Weyl vector. We recall the action of the affine

Weyl group Ŵ(â1) as given in (A.21)

s0[c0, c1, l] = [−c0, c1 + 2c0, l − c0] , and s1[c0, c1, l] = [c0 + 2c1,−c1, l] . (5.7)

We can work out the first few Weyl reflections to check (5.6)

w ∈ Ŵ(â1) w(ξ̂)− ξ̂ `(w) grade

1 0 0 0

s0 −α̂0 1 −1

s1 −α̂1 1 0

s1s0 −α̂0 − 3α̂1 2 −1

s0s1 −3α̂0 − α̂1 2 −3

s1s0s1 −3α̂0 − 6α̂1 3 −3

Therefore, using (5.6), we have

Z̃2,1(τ, tf1 , tf2 ,m = ε, ε,−ε) =
∑
w∈Ŵ

(−1)l(w)ew(ξ̂)−ξ̂

= 1−Qf1 −Qf2 +Q3
f1Qf2 +Q3

f1Qf2 −Q
6
f1Q

3
f2 + . . . (5.8)

which matches (5.3). While written as a sum of Weyl reflections of ξ̂, we can also inter-

pret (5.8) as a sum over Weyl orbits of weights in the fundamental domain P̂+
1,1 of the

highest weight representation Γ̂1,1 of â1:19 following the discussion of appendix A.2, every

affine weight of ŝl(2,C) can be decomposed into fundamental weights (ω̂0, ω̂1) as follows

λ̂ = c0ω̂0 + c1ω̂1 + lδ = [c0, c1, l] , c0, c1, l ∈ Z (5.9)

such that the affine root tf1 and a generic monomial Qif1Q
j
f2

are decomposed as

tf1 = −2ω0 + 2ω1 , and Qif1Q
j
f2

= e2(j−i)(ω1−ω0)e−jδ . (5.10)

Furthermore, in table 6 in appendix B.3 we give the the first few grades of the affine

representation generated by ξ̂ = [1, 1, 0]. The affine weights which are colored in red are

contained in the Weyl orbit of ξ̂. To make the connection to the remaining weights even

more manifest, we rewrite (5.8) in a slightly different manner: we observe that the Weyl-

orbit of the weight λ = [1, 1, r] for r ∈ Z can be written as

e−ξ̂
∑
w∈Ŵ

(−1)`(w) ew([1,1,r]) = e−ξ̂erδ
∑
w∈Ŵ

(−1)`(w) ew([1,1,0]) = e−ξ̂erδ
∑
w∈Ŵ

(−1)`(w) ew(ξ̂) ,

(5.11)

19This directly generalises the discussion of section 4.1 to compact M5-brane configurations.
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such that

∞∑
l=0

e−ξ̂
∑
w∈Ŵ

(−1)`(w) ew([1,1,−l]) = e−ξ̂

( ∞∑
l=0

e−lδ

) ∑
w∈Ŵ

(−1)`(w) ew(ξ̂)

=
e−ξ̂

1− e−δ
∑
w∈Ŵ

(−1)`(w) ew(ξ̂) .

Therefore, we can write

Z̃2,1(τ, tf1 , tf2 ,m = ε, ε,−ε) = e−ξ̂(1−Qρ)
∑
λ̂∈P̂+

1,1

O1
λ̂=[c0,c1,l]

(tf1 , tf2) , (5.12)

where we defined

O1
λ̂=[c0,c1,l]

(tf1 , tf2) =
∑
w∈Ŵ

(−1)`(w) ew(λ̂) , (5.13)

and P̂+
1,1 is the fundamental Weyl chamber of the affine representation generated by the

weight [1, 1], i.e. P̂+
1,1 = {[1, 1,−l]|l ∈ N ∪ {0}}. Thus (up to a prefactor e−ξ̂(1 − Qρ)),

the partition function Z2,1(τ, tf1 , tf2 ,m = ε, ε,−ε) can be written as a sum over the states

contained in Γ̂1,1.

Finally, before discussing more general cases m = nε with n > 1, we remark that in

the limit Qρ → 0 we reproduce the partition function Z line
2,1 (τ,m = ε, tf1 , ε,−ε)

lim
Qρ→0

Z̃2,1(τ, tf1 , tf2 ,m = ε, ε,−ε) = 1−Qf1 , (5.14)

which indeed agrees with (4.4). From the point of view of the irreducible representation

[1, 1, 0], due to (5.4), the limit Qρ → 0 corresponds to restricting to states with grade

l = 0. Indeed, according to the weight diagram in table 6, the partition function can thus

be written as the sum of two states (λ = [1, 1, 0] and λ = [3,−1, 0])

Z line
2,1 (τ, tf1 ,m = ε, ε,−ε) = lim

Qρ→0
Z̃2,1(τ, tf1 , tf2 ,m = ε, ε,−ε) =

∑
w∈Ŵ

(−1)l(w)ew(ξ̂)−ξ̂

= e−(ω0+ω1)
1∑

k=0

(−1)k
∑

[c0,c1,l]=[1,1,0]−kα1

ec0ω0+c1ω1+lδ = 1−Qf1 ,

(5.15)

where we used the identification (5.4).

5.1.2 Choice ε1 = −ε2 = ε and m = nε for n > 1

For m = nε with n > 1, the partition function is an infinite sum of ratios of theta functions:

Z̃2,1(τ, ρ, tf1 ,m = nε, ε,−ε) =

∞∑
i,j

Qif1Q
j
f2

∏
r

θ(τ ; arε)

θ(τ ; brε)
(5.16)

To illustrate this expression, we first consider in some detail the case n = 2 and generic

n later.
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n=2. For n = 2 the first few terms of the partition function can be written in the following

suggestive form

Z̃2,1(τ, ρ, tf1 ,m=2ε, ε,−ε) =

e−4ξ̂︷ ︸︸ ︷
e−4(ω0+ω1)

[
φ̂2

[4,4,0]

(
e4ω0+4ω1 +e12ω0−4ω1 +e−4ω0+12ω1−4δ+. . .

)
+ φ̂2

[6,2,0]

(
e6ω0+2ω1 + e10ω0−2ω1 + e−6ω0+14ω1−6δ + . . .

)
+ φ̂2

[8,0,0]

(
2e8ω0 + 2e−8ω0+16ω1−8δ + 2e24ω0−16ω1−8δ + . . .

)
+ φ̂2

[2,6,−1]

(
e2ω0+6ω1−δ + e14ω0−6ω1−δ + e−2ω0+10ω1−3δ + . . .

)
+ φ̂2

[4,4,−1]

(
e4ω0+4ω1−δ + e12ω0−4ω1−δ + e−4ω0+12ω1−5δ + . . .

)
+ φ̂2

[8,0,−1]

(
2e8ω0−δ + 2e−8ω0+16ω1−9δ + 2e24ω0−16ω1−9δ + . . .

)
+ . . .

]
(5.17)

where the notation is the same as in (5.9). Indeed, the φ̂2
[c0,c1,l]

are indexed by their Dynkin

labels c0, c1 and their grade l

φ̂2
[4,4,0](τ, ε) = 1, φ̂2

[8,0,0](τ, ε) = 2
θ1(τ ; 3ε)

θ1(τ ; ε)

φ̂2
[4,4,−1](τ, ε) =

θ1(τ ; 3ε)2

θ1(τ ; ε)2
, φ̂2

[8,0,−1](τ, ε) = −2
θ1(τ ; 5ε)

θ1(τ ; ε)

φ̂2
[6,2,0](τ, ε) = φ̂2

[2,6,−1](τ, ε) = −θ1(τ ; 2ε)2

θ1(τ ; ε)2
(5.18)

Comparing with affine representations of ŝl(2,C) (as given in appendix B.3), we can write

the compact partition function (5.17) as a sum over Weyl orbits of the representatives in

the fundamental Weyl chamber P̂+
4,4 of the affine [4, 4] representation

Z̃2,1(τ, ρ, t1, t2,m = 2ε, ε,−ε) = e−4ξ̂
∑
λ̂∈P̂+

4,4

φ̂2
[c0,c1,l]

(τ, ε)O2
λ̂
(tf1 , tf2) (5.19)

where the individual Weyl orbits are given by

O2
λ̂=[c0,c1,l]

(tf1 , tf2) = d̂λ
∑
w∈Ŵ

ew(λ̂) (5.20)

where the normalization is given by

d̂λ=[c0,c1] =

{
1
2 if c0 = 0 or c1 = 0

1 else
(5.21)

The weights of the affine [4, 4] that are in the fundamental Weyl chamber P̂+
4,4 are those

with positive Dynkin labels

P̂+
4,4 = {[0, 8,−l], [2, 6,−l], [4, 4,−l], [6, 2,−l], [8, 0,−l]}l∈N∪{0} (5.22)
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As for the finite case there are again weights that are fixed under the action of certain

elements of the Weyl group, e.g.

s0[0, 8,−2] = [0, 8,−2] , s0 ∈ Ŵ (5.23)

As for the non-compact cases the arguments of the φ̂2
[c0,c1,l]

can be related to their corre-

sponding affine weights λ̂ = [c0, c1, l] through

Iτ (φ̂2
λ=[c0,c1,l]

) = (4ξ̂|4ξ̂)− (λ̂|λ̂) + 8l = 4− 1

4
c2

1 − 8l , (5.24)

where (.|.) stands for the inner product in the affine ω̂1 basis.

Before continuing to the case of generic n, we consider the decompactification limit

Qρ → 0. In this case only those weights with ` = 0 survive, such that (with (5.10))

lim
ρ→i∞

Z̃2,1(τ, ρ, tf1 ,m = 2ε, ε,−ε) = (1 +Q4
f1)φ̂2

[4,4,0] + (Qf1 +Q3
f1)φ̂2

[6,2,0] + 2Q2
f1 φ̂

2
[8,0,0]

= (1 +Q4
f1)− (Qf1 +Q3

f1)
θ(τ ; 2ε)2

θ1(τ ; ε)
+ 2Q2

f1

θ1(τ ; 3ε)

θ1(τ, ε)

= Z line
2,1 (τ, tf1 ,m = 2ε, ε,−ε) . (5.25)

This expression indeed agrees with (4.9) as expected, since in the limit Qρ → 0 the brane

setup corresponds to the non-compact configuration (N,M) = (2, 1).

Generic n. The above analysis can be extended for n > 2 with a pattern arising which

allows us to conjecture the structure for generic n: indeed, we propose that the partition

function can be written as a sum over Weyl orbits of the representatives in the fundamental

Weyl chamber P̂+
n2,n2 of the affine [n2, n2] representation

Z̃2,1(τ, ρ, tf1 ,m = nε, ε,−ε) = e−n
2ξ̂

∑
λ̂∈P̂+

n2,n2

φ̂n[c0,c1,l](τ, ε)O
n
λ̂
(tf1 , tf2) (5.26)

where the Weyl orbits are given by20

On
λ̂
(tf1 , tf2) = d̂λ

∑
w∈Ŵ

(−1)n·l(w)ew(λ̂) . (5.27)

The fundamental Weyl chamber P̂+
n2,n2 is given by

P̂+
n2,n2 = {[0, 2n2,−l], [2, 2(n2 − 1),−l], . . . , [2(n2 − 1), 2,−l], [2n2, 0,−l]}l∈N∪{0} . (5.28)

In this case the relation (5.24) becomes

Iτ (φ̂2
λ=[c0,c1,l]

) = (n2ξ̂|n2ξ̂)− (λ̂|λ̂) +

level k︷ ︸︸ ︷
(c0 + c1) l =

n4 − c2
1

4
− kl . (5.29)

20Notice that dλ = 1 for all λ ∈ P̂+
1,1 such that no normalisation is required in (5.13).
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Explicit expressions for the coefficient functions φ̂n[c0,c1,l] are given in appendix D.2. Finally,

due to the fact that

φ̂n[c0,c1,l=0](τ, ε) = φn
[n2− c0−c1

2
]
(τ, ε) , (5.30)

with φn[k] defined in (4.28), we have in the decompactification limit

lim
ρ→i∞

Z̃2,1(τ, ρ, tf1 ,m = nε, ε,−ε) = Z line
2,1 (τ, tf1 ,m = nε, ε,−ε) , ∀n ≥ 1 . (5.31)

as is expected from the point of view of the brane configurations.

5.2 Configurations (N, 1) for N > 2

We can generalise the discussion of the previous subsection to cases N > 2. For simplicity

we restrict to n = 1 and show that the partition function can be written as a product over

simple positive roots of âN−1.

The first case corresponds to N = 3, i.e. three M5-branes. For the partition function,

this requires to sum over three different partitions (ν1, ν2, ν3). Analysing the configurations

which lead to a non-trivial contribution, we summarise the first few in the following table

(with g
(ν1,ν2,ν3)
(3,1) =

(∏3
a=1(−Qfa)|νa|

) ∏3
a=1

∏
(i,j)∈νa

θ1(τ ;zaij) θ1(τ ;vaij)

θ1(τ ;waij)θ1(τ ;uaij)
)

ν1 ν2 ν3 g
(ν1,ν2,ν3)
(3,1)

∅ ∅ ∅ 1

∅ ∅ −Qf1

∅ ∅ −Qf2

∅ ∅ −Qf3

∅ Q2
f1
Qf2

∅ Q2
f2
Qf3

∅ Qf1Q
2
f3

∅ Q2
f1
Qf3

∅ Qf1Q
2
f2

∅ Qf2Q
2
f3

ν1 ν2 ν3 g
(ν1,ν2,ν3)
(3,1)

∅ −Q2
f1
Q2
f3

∅ −Q2
f2
Q2
f3

−Q4
f1
Q2
f2
Qf3

−Qf1Q4
f2
Q2
f3

−Q2
f1
Qf2Q

4
f3

−Q4
f1
Qf2Q

2
f3

−Q2
f1
Q4
f2
Qf3

−Qf1Q2
f2
Q4
f3

The first few terms in the partition function therefore take the form

Z̃3,1(τ, tf1 , tf2 , tf3 ,m = ε, ε,−ε) = 1− (Qf1 +Qf2 +Qf3) (5.32)

+ (Q2
f1Qf2 +Qf1Q

2
f2 +Q2

f1Qf3 +Q2
f2Qf3 +Qf1Q

2
f3 +Qf2Q

2
f3)−(Q2

f1Q
2
f2 +Q2

f1Q
2
f3 +Q2

f2Q
2
f3)

− (Q4
f1Q

2
f2Qf3 +Q2

f1Q
4
f2Qf3 +Q4

f1Qf2Q
2
f3 +Qf1Q

4
f2Q

2
f3 +Q2

f1Qf2Q
4
f3 +Qf1Q

2
f2Q

4
f3) + . . .
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This expansion is matched by the expression21

Z̃3,1(τ, tf1 , tf2 , tf3 ,m = ε, ε,−ε) =

∞∏
k=1

Z(k)
3,1 (τ,m = ε, tf1 , tf2 , tf3 , ε,−ε)

=

∞∏
k=1

(1−Qkρ)2(1−Qk−1
ρ Q1)(1−Qk−1

ρ Q2)(1−Qk−1
ρ Q3)(1−QkρQ−1

1 )(1−QkρQ−1
2 )(1−QkρQ−1

3 )

=
∏

α̂∈∆̂+(â2)

(1− e−α̂) , (5.33)

where ∆̂+(â2) is the space of positive simple roots of â2. Notice the relation

Z line
4,1 (τ, tf1 , tf2 , tf3 ,m = ε, ε,−ε) =

1

(1−Qρ)(1−Qf1Qf3)
Z̃(1)

3,1 (τ,m = ε, tf1 , tf2 , tf3 , ε,−ε) .

(5.34)

Repeating the computation for N = 4, we find up to order 6 in the expansion of Qfi
that the partition function can be written as

Z̃4,1(τ, tf1 , tf2 , tf3 , tf4 ,m = ε, ε,−ε) =

∞∏
k=1

Z̃(k)
4,1 (τ,m = ε, tf1 , tf2 , tf3 , tf4 , ε,−ε)

=

∞∏
k=1

(1−Qkρ)3 (1−Qk−1
ρ Qf1)(1−Qk−1

ρ Qf2)(1−Qk−1
ρ Qf3)(1−Qk−1

ρ Qf4)

× (1−Qkρ/Qf1)(1−Qkρ/Qf2)(1−Qkρ/Qf3)(1−Qkρ/Qf4)

× (1−Qkρ/(Qf1Qf2))(1−Qkρ/(Qf2Qf3))(1−Qkρ/(Qf3Qf4))(1−Qkρ/(Qf1Qf4))

=
∏

α̂∈∆̂+(â3)

(1− e−α̂) , (5.35)

with Qρ = Qf1Qf2Qf3Qf4 . Notice the relation

Z line
5,1 (τ, tf1 , tf2 , tf3 , tf4 ,m = ε, ε,−ε)

=
Z̃(1)

4,1 (τ,m = ε, tf1 , tf2 , tf3tf4 , ε,−ε)
(1−Qρ)2(1−Qf1Qf4)(1−Qf1Qf3Qf4)(1−Qf1Qf2Qf4)

. (5.36)

5.3 Configuration (N,M) = (2, 2)

Finally we can similarly discuss cases (N,M) with M > 1. The simplest such case is the

configuration (2, 2) and we shall limit ourselves to the choice m = ε1 = −ε2 = ε. Analysing

the partition function Z̃2,2(T, t,m = ε, ε,−ε) in the same fashion as above, we can write it

21We have checked (5.33) up to order 12 in the expansion of Qf1,2,3 .
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in the following suggestive form

Z̃2,2(T, t,m=ε, ε,−ε)=e−2(ω̂0+ω̂1)
[(
e2ω̂0+2ω̂1 + e6ω̂0−2ω̂1 + e−2ω̂0+6ω̂1−2δ+ e10ω̂0−6ω̂1−2δ . . .

)
− 2

θ1(τ ; T̃1 + ε)θ1(τ ; T̃1 − ε)
θ1(τ ; T̃1)2

(
e4ω̂0 + e−4ω̂0+8ω̂1−4δ + e12ω̂0−8ω̂1−4δ + . . .

)
− 2

θ1(τ ; T̃1 + ε)θ1(τ ; T̃1 − ε)
θ1(τ ; T̃1)2

(
e4ω̂1−δ + e8ω̂0−4ω̂1−δ + e−8ω̂0+12ω̂1−9δ . . .

)
+ 2

θ1(τ ; T̃1+2ε)θ1(τ ; T̃1−2ε)

θ1(τ ; T̃1)2

(
e2ω̂0+2ω̂1−δ + e6ω̂0−2ω̂1−δ + e−2ω̂0+6ω̂1−3δ + . . .

)
+. . .

]
,

(5.37)

where we have used the same notation as in section 5.1. Comparing (5.37) with the previous

examples, we notice that the partition function can again be written as a sum of Weyl orbits

where the affine weights of the representatives lie in the fundamental Weyl chamber of the

affine representation P̂+
2,2 with highest weight [2, 2, 0] (see appendix B.3)

Z̃2,2(τ, T1, tf1 , tf2 ,m = ε, ε,−ε) = e−2ξ̂
∑

λ̂∈P̂+
2,2,

φ̂1
[c0,c1,l]

(τ, T1, ε)Oλ̂(tf1 , tf2) . (5.38)

Here the Weyl orbits are given by

O1
λ̂
(tf1 , tf2) = d̂λ

∑
w∈Ŵ

ew(λ̂) , with d̂λ=[c0,c1,−l] =

{
1
2 if c0 = 0 or c1 = 0

1 else
(5.39)

where the Weyl reflections are explicitly given as in (5.7) and the factor d̂λ takes into

account the presence of fixed points in the Weyl action. The fundamental Weyl chamber

is defined as

P̂+
2,2 = {[0, 4,−l], [2, 2,−l], [4, 0,−l]}l∈N∪{0} . (5.40)

and the φ̂1
λ=[c0,c1,−l] in (5.38) are given by

φ̂1
[0,4,−l](τ, T1, ε) =

{
−2 θ1(τ ;T̃1+(2r+1)ε)θ1(τ ;T̃1−(2r+1)ε)

θ1(τ ;T̃1)2
if l = r(r + 1) + 1 for r ∈ N ∪ {0}

0 else

(5.41)

φ̂1
[2,2,−l](τ, T1, ε) =


1 if l = 0

2 θ1(τ ;T̃1+2rε)θ1(τ ;T̃1−2rε)

θ1(τ ;T̃1)2
if l = r2 for r ∈ N

0 else

(5.42)

φ̂1
[4,0,−l](τ, T1, ε) =

{
−2 θ1(τ ;T̃1+(2r+1)ε)θ1(τ ;T̃1−(2r+1)ε)

θ1(τ ;T̃1)2
if l = r(r + 1) for r ∈ N ∪ {0}

0 else

(5.43)
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We notice that the arguments of the φ̂1
[c0,c1,l]

are related to the affine weights by

Iτ (φ̂1
[c0,c1,−l]) = (2ξ̂|2ξ̂)− (λ̂|λ̂) + 4l = 1− 1

4
c2

1 − 4l . (5.44)

which directly generalises the cases M = 1 discussed above

Before closing this section we would like to make a further remark: the brane configura-

tion (N,M) = (2, 2) is self-dual under the exchange of N and M . Furthermore, the appear-

ance of the symmetry âN−1=1 is due to the expansion of Z̃2,2(τ, T1, ρ, tf1 , tf2 ,m = ε, ε,−ε)
with respect to Qtf1,2 and we would expect a similar structure with respect to Q̄1,2. It is

therefore interesting to see whether the partition function can be written in a fashion that

makes a symmetry âN−1=1 ⊗ âM−1=1 manifest. To this end, we first have to re-instate

the normalisation factor (WM=2(∅))N=2
∣∣
ε1=−ε2=m=ε

in (3.1). The latter can be read off

from (5.5)

W2(∅)
∣∣
ε1=−ε2=m=ε

= lim
ρ→i∞

Z̃2,1(ρ, T1, T2,m = ε, ε,−ε) (5.45)

=

( ∞∏
k=1

(1− Q̄1Q
k
τ )

)( ∞∏
k=1

(1−Qkτ/Q̄1)(1−Qτ )k

)
=−iQ̄

1/2
1

Q
1/8
τ

θ1(τ ; T̃1) .

Thus, multiplying the coefficient functions (5.41) — (5.43) with (W2(∅))2
∣∣
ε1=−ε2=m=ε

, the

non-trivial φ̂1
λ are (up to integer coefficients) of the form

− Q̄1

Q
1/4
τ

θ1(τ ; T̃1 + kε)θ1(τ ; T̃1 − kε) (5.46)

for k ∈ N ∪ {0}. Upon introducing

T1 = −2κ̂0 + 2κ̂1 , Qτ = e−µ , (5.47)

which mirror (5.10) and (5.4) such that

Q̄a1Q̄
b
2 = e2(b−a)(κ̂1−κ̂0)−bµ , ∀a, b ∈ N , (5.48)

we can write for (5.46)

− Q̄1

Q
1/4
τ

θ1(τ ; T̃1 + kε)θ1(τ ; T̃1 − kε) = e−2(κ̂0+κ̂1)
∑

λ̂∈P̂+
2,2,

ϕ̂1
[c0,c1,l]

(k, ε)O
λ̂
(T1, T2) . (5.49)

where we denote e−2(κ̂0+κ̂1) = e−2ζ̂ as the Weyl vector of âM−1=1 and

ϕ̂1
[0,4,−l](k, ε) =

{
−(ε−k(2s+1) + εk(2s+1)) if l = s(s+ 1) + 1 for s ∈ N ∪ {0}

0 else
(5.50)

ϕ̂1
[2,2,−l](k, ε) =


1 if l = 0

ε2ks + ε−2ks if l = s2 for s ∈ N

0 else

(5.51)

ϕ̂1
[4,0,−l](k, ε) =

{
−(ε−k(2s+1) + εk(2s+1)) if l = s(s+ 1) for s ∈ N ∪ {0}

0 else
(5.52)
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which exactly mirror (5.50) — (5.52). Thus the partition function can be written in

the form

Z2,2(T,t,m = ε, ε,−ε) = e−2(ζ̂+ξ̂)
∑

λ1,λ2∈P̂+
2,2

p̂1
λ1,λ2(ε)O

λ̂1
(tf1 , tf2)O

λ̂2
(T1, T2) . (5.53)

where the non-vanishing coefficients p̂1
λ1,λ2

(ε) are (with s, s′ ∈ N ∪ {0} and r, r′ ∈ N)

p̂1[0,4,−s(s+1)−1],[c0,c1,−l](ε)=



2(ε−(2s+1)(2s′+1)+ε(2s+1)(2s′+1)) if (c0, c1)=(0, 4) and l=s′(s′+1)+1

−2 if (c0, c1) = (2, 2) and l = 0

−2(ε−(2s+1)2r + ε(2s+1)2r) if (c0, c1) = (2, 2) and l = r2

2 (ε−(2s+1)(2s′+1) + ε(2s+1)(s′+1)) if (c0, c1) = (4, 0) and l = s′(s′+1)

(5.54)

p̂1[2,2,0],[c0,c1,−l](ε) =



−2 if (c0, c1) = (0, 4) and l = s′(s′ + 1) + 1

1 if (c0, c1) = (2, 2) and l = 0

2 if (c0, c1) = (2, 2) and l = r2

−2 if (c0, c1) = (4, 0) and l = s′(s′ + 1)

(5.55)

p̂1[2,2,−r2],[c0,c1,−l](ε) =



−2 (ε−2r(2s′+1) + ε2r(2s
′+1)) if (c0, c1) = (0, 4) and l = s′(s′ + 1) + 1

2 if (c0, c1) = (2, 2) and l = 0

2(ε−4rs′ + ε4rs
′
) if (c0, c1) = (2, 2) and l = s′

2

−2 (ε−2r(2s′+1) + ε2r(2s
′+1)) if (c0, c1) = (4, 0) and l = s′(s′ + 1)

(5.56)

p̂1[4,0,−s(s+1)],[c0,c1,−l](ε) =



2 (ε−(2s+1)(2s′+1) + ε(2s+1)(2s′+1)) if (c0, c1)=(0, 4) and l=s′(s′+1)+1

−2 if (c0, c1) = (2, 2) and l = 0

−2(ε−(2s+1)2r + ε(2s+1)2r) if (c0, c1) = (2, 2) and l = r2

2 (ε−(2s+1)(2s′+1) + ε(2s+1)(2s′+1)) if (c0, c1) = (4, 0) and l = s′(s′+1)

(5.57)

Notice in particular that p̂1
λ1,λ2

(ε) = p̂1
λ2,λ1

(ε). Therefore, the form (5.53) makes the duality

of the partition function under the exchange (N,M)←→ (M,N) manifest.

6 Generic configuration (N,M) and representations

After the analysis of many specific cases we compile in this section generic relations that

we conjecture to hold for arbitrary N , M and n. As the non-compact case is obtained as

a limit of the compact case we start with the latter.

We propose that the normalised partition 3.7 can be written as a sum over the Weyl

orbits for the representative weights in the fundamental Weyl chamber P̂+
Mn2,...,Mn2 of the

affine highest weight representation generated by [Mn2, . . . ,Mn2︸ ︷︷ ︸
N

, 0] of ŝl(N,C)

Z̃N,M (τ,T, ρ, tf ,m = nε, ε,−ε) = e−Mn2ξ̂
∑

λ̂∈P̂+

Mn2,...,Mn2

φ̂n,M[c0,...,cN−1,l]
(τ,T, ε)On

λ̂
(tf ) (6.1)
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where ξ̂ = ω̂0 + · · ·+ ω̂N−1 denotes the affine Weyl vector for ŝl(N,C) defined in terms of

the fundamental weights ω̂i and the Weyl orbits are given by

On
λ̂
(tf ) =

∑
w∈Ŵ

(−1)Mn·l(w)ew(λ̂) . (6.2)

The φ̂n,Mλ are given by ratios of Jacobi theta functions. They transform under SL(2,Z)τ
transformations as

φ̂n,M[c0,...,cN−1,l]

(
−1

τ
,
T

τ
,
ε

τ

)
= e2iπIτ ε2 φ̂n,M[c0,...,cN−1,l]

(τ,T, ε) . (6.3)

where the index Iτ is related to the Dynkin labels by

Iτ
(
φ̂n,Mλ=[c0,...,cN−1,l]

)
= (Mn2ξ̂|Mn2ξ̂)− (λ̂|λ̂) + kl (6.4)

where (.|.) stands for the inner product in the basis of affine fundamental weights

(ω̂1, . . . , ω̂N−1).

The partition functions of non-compact brane configurations are obtained by taking

the limit

tfN →∞ ⇐⇒ δ →∞ . (6.5)

From the point of view of affine representations this means that we only keep the weights

with grade l = 0 as e−lδ → 0. The remaining states fall into the corresponding sl(N,C)

representations with the non-affine counterpart of λ̂ as highest weight vector

λ̂ = (λ, k, l) −→ λ . (6.6)

The affine Weyl group Ŵ reduces to the finite one W. Futhermore the φ̂’s at grade 0 are

identified with their non-affine counterparts in the following way

φ̂n,M[c0,c1,...,cN−1,0](T, ε) = φn,M[c1,...,cN−1](T, ε) . (6.7)

After taking the limit we are thus left with a sum over the Weyl orbits for the representative

weights in the fundamental Weyl chamber PMn2,...,Mn2 of the irreducible highest weight

representation ΓMn2,...,Mn2 of sl(N,C)

Z line
N,M (T, tf1 , . . . , tfN−1

,m = nε, ε,−ε) = e−Mn2ξ
∑

λ∈P+

Mn2,...,Mn2

φ[c1,...,cN−1](T, ε)Onλ(tf1 , . . . , tN−1) ,

(6.8)

with the finite Weyl orbits given by

Onλ(tf1 , . . . , tfN−1
) =

∑
w∈W

(−1)Mn·l(w)ew(λ) . (6.9)

The index (6.4) reduces to22

I = (Mn2ξ,Mn2ξ)− (λ, λ) , (6.10)

where (., .) denotes the inner product in the basis of fundamental weights (ω1, . . . , ωN−1).

22Notice that the transformation (6.3) is compatible with the decompactification limit.
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7 Conclusions

In this paper we have studied the BPS partition functions of N parallel M5-branes probing

a transverse ALEAM−1
space. We have distinguished cases of M5-branes separated along

S1 (with partition function ZN,M defined in (3.1)) and along R (with partition function

Z line
N,M defined in (3.13). The latter can be obtained from the former through the decom-

pactification limit that sends one of the distances tfa of the branes to infinity.

To regularise the BPS partition functions, a set of deformation parameters, denoted

by (m, ε1, ε2) needs to be introduced. For simplicity, we have chosen to work in the so-

called unrefined limit ε1 = −ε2 = ε. Furthermore, motivated by studying the holonomy

structure of the supercharges (from the point of view of the M-string world-sheet theory),

we have imposed m = nε for n ∈ N. We have demonstrated in a large series of examples

(and conjecture that our results hold for generic values of N,M,n ∈ N) that this limit

exhibits an aN−1 (or affine âN−1) symmetry of the BPS counting function. Indeed, in the

case of non-compact brane configurations, (after a suitable normalisation) Z line
N,M depends

only polynomially on Qfa = e−tfa . Upon identifying the latter with the roots of aN−1,

the partition function can be organised as a sum of orbits of SN which is the Weyl group

of aN−1. Furthermore, the representatives of each orbit fall into the fundamental Weyl

chamber P+
Mn2,...,Mn2 of the irreducible representation ΓMn2,...,Mn2 of aN−1.

For compact brane configurations, the (suitably normalised) partition function

ZN,M (m = nε) is no longer polynomial in the Qfa . Nevertheless, it can be arranged

in a similar fashion as a sum over weights that form a single integrable representation of

the affine Lie algebra âN with highest weight [Mn2, . . . ,Mn2, 0]. We have again demon-

strated this behaviour explicitly for a large number of examples and based on the emergent

pattern conjecture that it holds in general.

Finally, compact brane configurations enjoy the duality (N,M) ←→ (M,N). For the

case (N,M) = (2, 2) we have made this duality manifest in the full partition function

Z2,2 by writing it as a double sum of weights in the fundamental domain P̂+
2,2 of â1. This

presentation of the partition function also makes the structure of X2,2
∼= X1,1/(Z2 × Z2)

more tangible, which is dual to the M5-brane configuration.

These results make the algebraic properties of the BPS counting functions of specific

M-brane configurations very tangible: indeed, in certain regions of the parameter space,

the partition functions fall into the form of single highest weight representations of (affine)

Lie algebras that are related to the geometric backgrounds of the M-brane configurations.

While the results presented here are specific to the choice m = nε, the aN symmetries

are expected to be unbroken for generic deformations as well: indeed the dual Calabi-Yau

manifolds XN,M can be understood as elliptic fibrations over AN−1. Thus, our results have

highlighted a region in the moduli space in which the latter are very manifest.

In view of the many other physical systems that are dual to the M-brane configurations

that we have studied here, we expect our results to have many applications in the future:

one of them is the study of little string theories (LSTs) [33–38] (see also [39, 40] for

reviews). Indeed, the compact brane configurations (N,M) are related to a particular class

of LSTs [29–31] with N = (1, 0) supersymmetry. It will be interesting in the future to find
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further regions in the moduli spaces of LSTs which make more of their symmetries manifest

or possibly reveal new ones. Furthermore, our findings may also turn out useful to study

algebraic properties of double-quantised Seiberg-Witten geometry related to the topological

string partition function of XN,M and the definition of qq-characters (see [47–50] and [51–53]

for recent progress respectively, as well as [54] for an earlier connection between M-string

configurations and surface operators in 4d gauge theories using geometric transition).

Finally, an interesting open question remains why in the limits we have discussed in

this work, the partition function is governed by a single irreducible/integrable representa-

tion. While we have argued, based on the structure of the preserved supercharges, that

the choice (3.16) and (3.18) leads to cancellations among different states in the partition

function (and thus to massive simplifications) it does not fully explain why the remaining

contributions have the structure of a single representation. As was pointed out to us by

A. Iqbal, it would be interesting to study these results from the point of view of Chern

Simons theory (see e.g. [43, 44]) to see if one can find an interpretation from this side. We

leave this possibility for future work.
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A Affine Lie algebras

A.1 Central extension of simple Lie algebras

In this appendix we follow [55] and [56]. Reviews of this material can also be found

in [57, 58].

The affine Lie algebra ĝ has the following decomposition

ĝ = g⊗ C[t, t−1]︸ ︷︷ ︸
g̃

⊕Ck̂ ⊕ CL0 (A.1)

where g̃ corresponds to the so called loop algebra. For a generator Ja ∈ g the corresponding

elements of the loop algebra take the form

Ja ⊗ tl = Jal ∈ g̃ , l ∈ Z (A.2)

The loop algebra is then centrally extended in a non-trivial way23 by the addition of k̂ with

the property that it commutes with all the generators

[Jal , k̂] = 0 (A.3)

23All central extensions for simple Lie algebras turn out to be trivial [58].
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It can be shown [58] that this extension is unique.24 L0 is the so called grading operator

defined as a differential operator in t, whose eigenvalue l in the sense

[L0, J
a
l ] = −lJal (A.4)

is called the grade of Jal . The eigenvectors under the action of ad(H i
0) and ad(k̂) on

the generators Eαl are infinitely degenerate. It is thus necessary to introduce L0 so that

{H1
0 , . . . ,H

r
0 , k̂, L0} forms a Cartan subalgebra.

An affine weight λ̂ can thus be denoted by its eigenvalues under the Cartan subalgebra

λ̂ = (λ; k; l) (A.5)

where λ is the corresponding weight in the finite Lie algebra g. The inner product between

affine weights is defined as

(λ̂|µ̂) = (λ|µ) + kλlµ + kµlλ (A.6)

where the first term on the right hand side is the inner product between finite weights.

At the level of the root system the construction can be seen as follows. The root system

∆ of any finite dimensional Lie algebra g (whose basis is given by the simple positive roots

αi) contains a highest root θ ∈ ∆, such that

θ + αi /∈ ∆ , ∀ i = 1, . . . , r . (A.7)

We can use θ to extend the root lattice Λg. To this end, we introduce the lattice Π1,1

spanned by {β1, β2} whose inner product satisfies

(β1|β2) = 1 , (β1|β1) = (β2|β2) = 0 , (β1|αi) = (β2|αi) = 0 ∀i = 1, . . . , r . (A.8)

We now define the root lattice Λĝ of the new algebra ĝ by

Λĝ =
r∑

a=0

Z α̂a ⊂ Λg ⊕Π1,1 , (A.9)

which is spanned by the new set of simple affine roots

{α̂0 = β1 − θ, α̂i=1,...,r} . (A.10)

In complete analogy to the finite simple Lie algebra g the affine Weyl group Ŵ is defined

to be the group generated by reflections with respect to the affine roots. As there is an

infinity of the latter the Weyl group is infinite as well. We will give further details for the

specific case α̂1.

The examples that we will mostly deal with in this work is the affine extension of a1,

which we shall briefly discuss below.

24Notice that the abelian subalgebra {H1
0 , . . . , H

r
0 , k̂} is not maximally abelian. To define the Cartan

subalgebra L0 needs to be included.
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A.2 Lie algebra â1

The affine counterpart to the highest root of a1 is

θ = α̂1 = (α1; 0; 0) (A.11)

The null root δ is defined as

δ = β1 = (0; 0; 1) (A.12)

The term null root comes from the fact (δ|δ) = 0. Thus, the simple positive roots of â1 are

α̂0 = δ − α̂1 = (−α1; 0; 1) , and α̂1 = (α1; 0; 0) . (A.13)

The root system of â1 contains inifnitely many (imaginary) roots and the explicit expression

can be found in [57]

∆̂ = {±α̂1 + nδ
∣∣n ∈ Z} ∪ {kδ

∣∣ k ∈ Z \ {0}} , (A.14)

such that the positive roots are

∆̂+ =
{
α̂1 + nδ

∣∣n ∈ N ∪ {0}
}
∪
{
− α̂1 + nδ

∣∣n ∈ N
}
∪
{
kδ
∣∣ k ∈ N

}
. (A.15)

In analogy to the finite Lie algebras one can introduce the fundamental weights. In the

case of â1 they are given by

ω̂0 = (0; 1; 0) , and ω̂1 = (1; 2; 0) . (A.16)

Every affine weight λ̂ can be decomposed as

λ̂ = λ0ω̂0 + λ1ω̂1 + lδ , λ0, λ1, l ∈ Z (A.17)

where λ0, λ1 are the so called Dynkin labels. λ1 corresponds to the finite Dynkin label

corresponding to the associated finite weight λ. λ0 is related to the level eigenvalue k by

λ0 = k − λ1 (A.18)

Alternatively to (A.5) we can label the affine weights by their Dynkin labels and by

their grade

λ̂ = [λ0, λ1, l] , (A.19)

which is the notation we will use in the main part of this work. In the affine case the Weyl

vector cannot be defined in terms of the positive roots as there is an infinity of them. The

definition as the sum of the fundamental weights is still valid

ξ̂ = ω̂0 + ω̂1 = [1, 0, 0] + [0, 1, 0] = [1, 1, 0] (A.20)

The Weyl group Ŵ(â1) is generated by two elements s0, s1 which correspond to the reflec-

tions with respect to α̂0 and α̂1. Their action on affine weights is given as follows

s0[λ0, λ1, l] = [−λ0, λ1 + 2λ0, l − λ0]

s1[λ0, λ1, l] = [λ0 + 2λ1,−λ1, l] (A.21)

From this we immediately see that the action of s0 changes the grade whereas the action

of s1 does not affect it.
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B Representation theory of sl(2,C) and sl(3,C)

In this section we review representations of sl(2,C) and sl(3,C) which are relevant for the

discussion in section 4. Our notation mainly follows [59] (see also [60]).

B.1 Irreducible representations of sl(2,C)

We recall that the Lie algebra sl(2,C) is generated by (H,X, Y ) which satisfy the commu-

tation relations

[H,X] = 2X , [H,Y ] = −2Y , [X,Y ] = H . (B.1)

As explained in [59], irreducible representation Γn of sl(2,C) (with n ∈ N) can be decom-

posed as

Γn =
n⊕

m=0

Vn−2m . (B.2)

Here the one-dimensional eigenspaces Vα are eigenspaces of H with weight α, i.e.

H · v = α v , ∀v ∈ Vα , (B.3)

while the operators X and Y map from one eigenspace to another

X : Vα −→ Vα+2 , and Y : Vα −→ Vα−2 , (B.4)

as well as

X · v = 0 , ∀v ∈ Vn ,
Y · w = 0 , ∀w ∈ V−n . (B.5)

Graphically, the structure of V (and the action of all generators) can be represented as

follows

0 V−n V−n+2 · · · Vn−2 Vn 0
YYYYY

X X X X X

HHHH

Furthermore, for given n ∈ N the irreducible representation Γn can be written as

Γn = SymnV , with V ∼= C2 . (B.6)
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Explicitly, apart from the trivial representation Γ0, we present the first few irreducible

representations by specifying the weights of the underlying subspaces

Γ1 = V−1 ⊕ V1 |
0 n

•
−1

•
1

Γ2 = V−2 ⊕ V0 ⊕ V2 •
0

n
•
−2

•
2

Γ3 = V−3 ⊕ V−1 ⊕ V1 ⊕ V3 |
0 n

•
−3

•
−1

•
1

•
3

Γ4 = V−4 ⊕ V−2 ⊕ V0 ⊕ V2 ⊕ V4

•0
n

•
−4

•
−2

•2 •4

B.2 Irreducible representations of sl(3,C)

Following [59], in order to describe the structure of representations of sl(3,C), we first

recall the Cartan-Weyl decomposition

sl(3,C) ∼= h⊕

(⊕
α∈S

gα

)
(B.7)

where h is the Cartan subalgebra, which is defined as

h =


 c1 0 0

0 c2 0

0 0 c3

∣∣∣∣c1,2,3 ∈ C and c1 + c2 + c3 = 0

 , (B.8)

along with its dual (with i = 1, 2, 3)

h∗ = SpanC(L1, L2, L3)/{L1 + L2 + L3 = 0} , with Li

 c1 0 0

0 c2 0

0 0 c3

 = ci . (B.9)

Furthermore we have

S = {Li − Lj |i, j = 1, 2, 3 and i 6= j} ⊂ h∗ (B.10)

and the (one-dimensional) root-space gLi−Lj is generated by the 3 × 3 matrix Eij whose

component (i, j) = 1, while all other entries are zero.

While each H ⊂ h maps each of the gα into itself, we have for the adjoint action

ad(X)(Y ) = [X,Y ] (with X ∈ gα and Y ∈ gβ)

ad(gα) : gβ −→ gα+β . (B.11)

As in the case of sl(2,C), this action can be represented graphically in the form of ‘trans-

lations’ [59]. Indeed, while the subspaces gα can be graphically represented on a two-

dimensional (hexagonal) lattice, the adjoint action of a given X ∈ gα acts through trans-

lation, e.g. for X ∈ gL1−L3 we have schematically
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L2

L1L3

0

L2 − L3L2 − L1

L3 − L1 L1 − L3

L3 − L2 L1 − L2

0

0

0

Irreducible representations of sl(3,C) follow a similar pattern: indeed, as explained in [59],

for any two integers n,m ∈ N there exists a finite dimensional irreducible representation

Vn,m which enjoys a weight decomposition Vn,m =
⊕
Vα. The (one-dimensional) sub-

spaces Vα are characterised through their weights and are created from the heighest weight

subspace VnL1−mL3 through application of the generators E2,1, E3,1 and E3,2.

Apart from the trivial representation (m = n = 0), we have the following weight

diagrams for Γ1,0
∼= C3 and its dual Γ0,1

Γ1,0 : L1

L2

L3

0 and Γ0,1 : L1

L2

L3

0

(B.12)

More generally, e.g. the weight diagram of a representation Γm,n for generic (m,n) consist

of hexagons and triangles that are concentric to the origin. The hexagons have vertices

at (m − i)L1 − (n − i)L3 for i = 0, . . .min(m,n) − 1 and the triangles have vertices at

(m− n− 3j)L1 for j = 0, . . . b(m− n)/3c, e.g. for (m,n) = (2, 4) we have
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4L2

−5L2

2L1 − 4L32L3 − 4L1

2L1 − 4L22L3 − 4L1

4L14L3

2L2 − 4L32L2 − 4L1

L2

L1L3

0

The multiplicity (i.e. the dimension of the corresponding subspace of Γm,n) is (i + 1) for

the ith hexagon and min(m+1, n+1) for the triangles in the weight diagram. In the above

picture we have indicated the double multiplicity of certain weights by .

In the case of m = n (which is the most important for us) the diagram consists of

concentric regular hexagons (while for m=0 or n=0 it consists of equilateral triangles), e.g.

Γ1,1 : L1 − L3L3 − L1

L2 − L3L2 − L1

L1 − L2L3 − L2

+ +

+
L2

L1L3 0

Γ2,2 :
0

2L1 − 2L32L3 − 2L1

2L2 − 2L32L2 − 2L1

2L1 − 2L22L3 − 2L2

3L2

−3L2

−3L3

3L3 3L1

−3L1

+ +

+
L2

L1L3
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B.3 Integrable representations of ŝl(2,C)

In order to describe the partition functions of compact M-brane configurations we also

need (certain) irreducible representations of ŝl(2,C) (i.e. the affine extension of sl(2,C)).

In this appendix we give a brief review of the specific representations required and we

refer the reader to [58] for a more rigorous and complete discussion of the representation

theory of ŝl(2,C).

The idea of constructing irreducible representation of affine algebras is similar to their

finite counterparts: we start with a highest weight state λ̂ and repeatedly subtract the

positive roots, which act as ladder operators. In the notation introduced in appendix A.2,

the latter can be written in the form

α̂0 = [2,−2, 1] , and α̂1 = [−2, 2, 0] . (B.13)

However, we have to take care that the action of a single one of the two roots (i.e. either α0 or

α1) creates a (finite dimensional) irreducible representation of sl(2,C) of the type explained

in appendix B.1 and in particular truncates after a finite number of steps. Starting with

the highest weight state25

[n, n, 0] for n ∈ N , (B.14)

(which is the case relevant for the discussion of partition functions of compact M-brane

configurations in section 5) we obtain the following weights at grade 0

[n, n, 0]
−α̂1−→ [n+ 2, n− 2, 0]

−α̂1−→ [n+ 4, n− 4, 0]
−α̂1−→ . . .

−α̂1−→ [3n,−n, 0]
−α̂1−→ 0 (B.15)

Notice that the weights {[n+ 2r, n− 2r, 0]|r = 0, . . . , n} indeed form the irreducible repre-

sentation Γn of sl(2,C). Similarly, acting with the root α̂0 yields

[n, n, 0]
−α̂0−→ [n− 2, n+ 2,−1]

−α̂0−→ [n− 4, n+ 4,−2]
−α̂0−→ . . .

−α̂0−→ [−n, 3n,−n]
−α̂0−→ 0 ,

(B.16)

which equally forms the irreducible representation Γn. Acting with combinations of both

roots, generates all states of the [n, n] highest weight representation. In contrast to the

irreducible representations of sl(2,C), the highest weight representation [n, n] is infinite

dimensional.

Specifically, for n = 1 we obtain the weights shown in table 6. Here, the Weyl orbit of

the weight [1, 1, 0] is coloured in red. For the highest weight state [2, 2, 0] we find table 7.

Finally, repeating the analysis for the highest weight state [4, 4, 0] we find table 8.

C Recursive relation for the configuration (N,M) = (2, 1)

In this appendix we provide more details on the recursive relation allowing to determine the

coefficients c
(n)
k (τ, ε) (introduced in (4.19)) from c

(n)
k−1(τ, ε) through the action of an operator

25Notice that the grade of the highest weight state has been chosen to be zero for convenience.
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[1,1,0]
−α̂1−−−→ [3,-1,0]

−α̂0

←−−−
−α̂0

←−−−

[-1,3,-1]
−α̂1−−−→ [1,1,-1]

−α̂1−−−→ [3,-1,-1]
−α̂1−−−→ [5,-3,-1]

−α̂0

←−−−
−α̂0

←−−−
−α̂0

←−−−

[-1,3,-2]
−α̂1−−−→ [1,1,-2]

−α̂1−−−→ [3,-1,-2]
−α̂1−−−→ [5,-3,-2]

−α̂0

←−−−
−α̂0

←−−−
−α̂0

←−−−
−α̂0

←−−−

[-3,5,-3]
−α̂1−−−→ [-1,3,-3]

−α̂1−−−→ [1,1,-3]
−α̂1−−−→ [3,-1,-3]

−α̂1−−−→ [5,-3,-3]
−α̂1−−−→ [7,-5,-3]

−α̂0

←−−−
−α̂0

←−−−
−α̂0

←−−−
−α̂0

←−−−
−α̂0

←−−−

[-3,5,-4]
−α̂1−−−→ [-1,3,-4]

−α̂1−−−→ [1,1,-4]
−α̂1−−−→ [3,-1,-4]

−α̂1−−−→ [5,-3,-4]
−α̂1−−−→ [7,-5,-4]

...

Table 6. Weights of the affine highest weight representation [1, 1].

[2, 2, 0]
−α̂1−−−→ [4, 0, 0]

−α̂1−−−→ [6,−2, 0]

−α̂0

←−−−
−α̂0

←−−−
−α̂0

←−−−

[0, 4,−1]
−α̂1−−−→ [2, 2,−1]

−α̂1−−−→ [4, 0,−1]
−α̂1−−−→ [6,−2,−1]

−α̂1−−−→ [8,−4,−1]

−α̂0

←−−−
−α̂0

←−−−
−α̂0

←−−−
−α̂0

←−−−
−α̂0

←−−−

[−2, 6,−2]
−α̂1−−−→ [0, 4,−2]

−α̂1−−−→ [2, 2,−2]
−α̂1−−−→ [4, 0,−2]

−α̂1−−−→ [6,−2,−2]
−α̂1−−−→ [8,−4,−2]

−α̂1−−−→ [10,−6,−2]

−α̂0

←−−−
−α̂0

←−−−
−α̂0

←−−−
−α̂0

←−−−
−α̂0

←−−−

[−2, 6,−3]
−α̂1−−−→ [0, 4,−3]

−α̂1−−−→ [2, 2,−3]
−α̂1−−−→ [4, 0,−3]

−α̂1−−−→ [6,−2,−3]
−α̂1−−−→ [8,−4,−3]

−α̂1−−−→ [10,−6,−3]

−α̂0

←−−−
−α̂0

←−−−
−α̂0

←−−−
−α̂0

←−−−
−α̂0

←−−−
−α̂0

←−−−

[−4, 8,−4]
−α̂1−−−→ [−2, 6,−4]

−α̂1−−−→ [0, 4,−4]
−α̂1−−−→ [2, 2,−4]

−α̂1−−−→ [4, 0,−4]
−α̂1−−−→ [6,−2,−4]

−α̂1−−−→ [8,−4,−4]
−α̂1−−−→ [10,−6,−4]

−α̂1−−−→ [12,−8,−4]
...

Table 7. Representation with highest weight [2, 2, 0].

[4, 4, 0]
−α̂1−−−→ [6, 2, 0]

−α̂1−−−→ [8, 0, 0]
−α̂1−−−→ [10,−2, 0]

−α̂1−−−→ [12,−4, 0]

−α̂0

←−−−
−α̂0

←−−−
−α̂0

←−−−
−α̂0

←−−−
−α̂0

←−−−

[2, 6,−1]
−α̂1−−−→ [4, 4,−1]

−α̂1−−−→ [6, 2,−1]
−α̂1−−−→ [8, 0,−1]

−α̂1−−−→ [10,−2,−1]
−α̂1−−−→ [12,−4,−1]

−α̂1−−−→ [14,−6,−1]

−α̂0

←−−−
−α̂0

←−−−
−α̂0

←−−−
−α̂0

←−−−
−α̂0

←−−−
−α̂0

←−−−
−α̂0

←−−−

[0, 8,−2]
−α̂1−−−→ [2, 6,−2]

−α̂1−−−→ [4, 4,−2]
−α̂1−−−→ [6, 2,−2]

−α̂1−−−→ [8, 0,−2]
−α̂1−−−→ [10,−2,−2]

−α̂1−−−→ [12,−4,−2]
−α̂1−−−→ [14,−6,−2]

−α̂1−−−→ [16,−8,−2]
...

Table 8. Representation with highest weight [4, 4, 0].

R+ as in (4.25). We also supply as an example the explicit coefficients for k = 1, . . . , 5 for

generic n.

We only discuss the action of R+ on c
(n)
k for k ≤ dn2+1

2 e, since all other cases are

determined through (4.10). As explained in section 4.1.2, the coefficients c
(n)
k (τ, ε) are es-

sentially determined through a set of partitions of integers µ(k, n) = (µ1(k, n), . . . , µ`(k, n))

of length 0 ≤ ` ≤ k with

µa(k, n) ≥ µa+1(k, n) and µ1(k, n) + 2
∑̀
a=2

µa = 2k , (C.1)
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for which c(µ(k, n)) 6= 0. These partitions µ(n, k) can be obtained iteratively in k: indeed

to obtain the former we begin with µ(k − 1, n) (for which c(µ(k − 1, n)) 6= 0) and increase

the µa(k − 1, n) by either 1 or 2 in one of the following fashions

• increase µ1(k − 1, n) by two

µ(n, k) = (µ1(k − 1, n) + 2 , µ2(k − 1, n) , . . . , µ`(k − 1, n)) . (C.2)

• increase one of the µa(k − 1, n) (for a > 1) by 1

µ(n, k) = (µ1(k − 1, n) , µ2(k − 1, n) , . . . , µa(k − 1, n) + 1 , . . . , µ`(k − 1, n)) . (C.3)

• add 1 at the end of µ(k − 1, n)

µ(n, k) = (µ1(k − 1, n) , µ2(k − 1, n) , . . . , µ`(k − 1, n) , 1) , (C.4)

For each of the resulting µ(k, n) = (µ1(k, n) , . . . , µ`(k, n)), the coefficients c(µ(k, n)) are

computed as follows

c(µ(k, n)) =



2 if

µa(k, n)− µa+1(k, n) ≤ 2 ∀a = 1, . . . , `− 1 and

µ`(k, n) ≤ 2 and{
µa(k, n)− µa+1(k, n) = 1 for at least one a ∈ {1, . . . , `− 1} or

µ`(n, k) = 1

1 if
µa(k, n)− µa+1(k, n) = 0 or 2 ∀a = 1, . . . , `− 1 and

µ`(k, n) = 2

0 else

(C.5)

To illustrate this procedure we can compute explicitly the first few steps of this iteration:

• k = 0: for k = 0 the length of the partition is restricted by 0 ≤ ` ≤ 0, thus the only

partition which may contribute is µ(0, n) = ∅ for which c(∅) = 1, thus

c
(n)
0 (τ, ε) = 1 . (C.6)

• k = 1: starting from µ(0, n) = ∅ following (C.2) we have the only partition µ(1, n) =

(2), for which c((2)) = 1. Furthermore, in order to satisfy the condition (4.22) we

need to choose r1 = 2, such that

c
(n)
1 (τ, ε) =

θ(n)2

θ(1)2
. (C.7)

• k = 2: starting from µ(1, n) = (2), applying (C.2) and (C.4) we find two new

partitions for k = 1

µ(2, n) =

{
(4)

(2, 1)
(C.8)
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However, for the first possibility we have c((4)) = 0 since µ1(2, n) = 4 > 2, while for

the second possibility we have c((2, 1)) = 2. Finally, in order to compute c
(n)
2 (τ, ε)

we need to find non-negative even integers r1,2 (≤ 4) that satisfy (4.22), i.e.

2n2 + 2(n2 + 1)− r1 − 4r2 = 4n2 − 8 =⇒ r1 = r2 = 2 . (C.9)

Therefore we have

c
(n)
2 (τ, ε) = 2

θ(n− 1)θ(n)2θ(n+ 1)

θ(1)2θ(2)2
. (C.10)

• k = 3: starting from the partition µ(2, n) = (2, 1) we find with (C.2), (C.3) and (C.4)

three new partitions

µ(3, n) =



(4, 1) with c((4, 1)) = 0 ,

(2, 2) with c((2, 2)) = 1 ,

(2, 1, 1) with c((2, 1, 1)) = 2 ,

(C.11)

Here the coefficient c((4, 1)) = 0 since µ1 − µ2 = 4 − 1 > 2. Finally, in order

to calculate the coefficients c
(n)
r (ε, τ), we still need to supplement each of the two

remaining partitions by suitable non-negative even integers (r1, r2, r3) (≤ 4) which

need to satisfy (4.22)

(2, 2) : 2n2 + 4(n2 + 1)− r1 − 4r2 − 9r3 = 6(n2 − 3)

=⇒ (r1, r2, r3) = (4, 2) ,

(2, 1, 1) : 2n2 + 2(n2 + 1) + 2(n2 + 4)− r1 − 4r2 − 9r3 = 6(n2 − 3)

=⇒ (r1, r2, r3) = (2, 2, 2) .

Therefore, we find

c
(n)
3 (τ, ε) =

θ(n− 1)2θ(n)2θ(n+ 1)2

θ(1)4θ(3)2
+ 2

θ(n− 2)θ(n− 1)θ(n)2θ(n+ 1)θ(n+ 2)

θ(1)2θ(2)2θ(3)2
.

(C.12)

We can tabulate the partitions in the following manner
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k µ(k, n) Young diagram of µ(k, n) c(µ(k, n)) ri

0 ∅ — 1 (0)

1 (2) 1 (2)

2 (2, 1) 2 (2, 2)

3 (2, 2) 1 (4, 2)

(2, 1, 1) 2 (2, 2, 2)

4 (4, 2) 1 (2, 4, 2, 0)

(2, 2, 1) 2 (4, 2, 0, 2)

(2, 1, 1, 1) 2 (2, 2, 2, 2)

5 (2, 2, 2) 1 (4, 4, 0, 0, 2)

(4, 2, 1) 2 (4, 2, 2, 4, 0)

(2, 2, 1, 1) 2 (4, 2, 2, 0, 2)

(2, 1, 1, 1, 1) 2 (2, 2, 2, 2, 2)

which give rise to the coefficients c
(n)
k (ε, τ) in (4.18). We have furthermore checked, that

the algorithm described above correctly reproduces all coefficients c
(n)
k (ε, τ) up to k = 8.

and we therefore conjecture that it holds for generic k ∈ N.

D Expansion coefficients

In this appendix we tabulate some of the expansion coefficients that appear for various

partition functions.

D.1 Non-compact brane configuration (N,M) = (3, 1)

We list the first few coefficients φn[c1,c2] appearing in the expansion (4.61) of

Z line
3,1 (τ, tf1 , tf2 ,m = nε, ε,−ε)

φn[n2,n2] = 1 ,

φn[n2−2,n2+1] = φn[n2+1,n2−2] =
θ(n)2

θ(1)2
,
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φn[n2−4,n2+2] = φn[n2+2,n2−4] = 2
θ(n− 1)θ(n)2θ(n+ 1)

θ(1)2θ(2)2
,

φn[n2−6,n2+3] = φn[n2+3,n2−6]

=
θ(n− 1)2θ(n)2θ(n+ 1)2

θ(1)4θ(3)2
+ 2

θ(n− 2)θ(n− 1)θ(n)2θ(n+ 1)θ(n+ 2)

θ(1)2θ(2)2θ(3)2
,

φn[n2−1,n2−1] =
θ(n− 1)θ(n)2θ(n+ 1)

θ(1)4
,

φn[n2−3,n2] = φn[n2,n2−3] =
θ(n− 2)θ(n)3θ(n+ 1)2 + θ(n− 1)2θ(n)3θ(n+ 2)

θ(1)4θ(2)2
,

φn[n2−5,n2+1] = φn[n2+1,n2−5] =
θ(n− 2)θ(n− 1)θ(n)4θ(n+ 1)θ(n+ 2)

θ(1)6θ(3)2

+
θ(n− 3)θ(n− 1)θ(n)3θ(n+ 1)2θ(n+ 2) + θ(n− 2)θ(n− 1)2θ(n)3θ(n+ 1)θ(n+ 3)

θ(1)4θ(2)2θ(3)2
,

φn[n2−7,n2+2] = φn[n2+2,n2−7] =
θ(n− 2)θ(n− 1)2θ(n)4θ(n+ 1)2θ(n+ 2)

θ(1)4θ(2)4θ(3)2

+
θ(n− 3)θ(n− 1)2θ(n)4θ(n+ 1)θ(n+ 2)2 + θ(n− 2)2θ(n− 1)θ(n)4θ(n+ 1)2θ(n+ 3)

θ(1)6θ(2)2θ(4)2

+
θ(n− 4)θ(n− 2)θ(n− 1)θ(n)3θ(n+ 1)2θ(n+ 2)θ(n+ 3)

θ(1)4θ(2)2θ(3)2θ(4)2

+
θ(n− 3)θ(n− 2)θ(n− 1)2θ(n)3θ(n+ 1)θ(n+ 2)θ(n+ 4)

θ(1)4θ(2)2θ(3)2θ(4)2
,

φn[n2−9,n2+3] = φn[n2+3,n2−9] =
θ(n− 3)θ(n− 2)θ(n− 1)2θ(n)4θ(n+ 1)2θ(n+ 2)θ(n+ 3)

θ(1)6θ(2)4θ(5)2

+
θ(n−3)θ(n−1)3θ(n)4θ(n+ 1)2θ(n+ 2)2 + θ(n− 2)2θ(n− 1)2θ(n)4θ(n+1)3θ(n+ 3)

θ(1)6θ(2)2θ(3)2θ(4)2

+
θ(n− 4)θ(n− 2)θ(n− 1)2θ(n)4θ(n+ 1)θ(n+ 2)2θ(n+ 3)

θ(1)6θ(2)2θ(3)2θ(5)2

+
θ(n− 3)θ(n− 2)2θ(n− 1)θ(n)4θ(n+ 1)2θ(n+ 2)θ(n+ 4)

θ(1)6θ(2)2θ(3)2θ(5)2

+
θ(n− 5)θ(n− 3)θ(n− 2)θ(n− 1)θ(n)3θ(n+ 1)2θ(n+ 2)θ(n+ 3)θ(n+ 4)

θ(1)4θ(2)2θ(3)2θ(4)2θ(5)2

+
θ(n− 4)θ(n− 3)θ(n− 2)θ(n− 1)2θ(n)3θ(n+ 1)θ(n+ 2)θ(n+ 3)θ(n+ 5)

θ(1)4θ(2)2θ(3)2θ(4)2θ(5)2
,

φn[n2−2,n2−2] =
θ(n− 3)θ(n)4θ(n+ 1)3 + θ(n− 1)3θ(n)4θ(n+ 3)

θ(1)4θ(2)4

+ 2
θ(n− 2)θ(n− 1)2θ(n)2θ(n+ 1)2θ(n+ 2)

θ(1)4θ(2)4
,
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φn[n2−4,n2−1] = φn[n2−1,n2−4] =
θ(n− 3)θ(n− 2)θ(n− 1)θ(n)3θ(n+ 1)2θ(n+ 2)2

θ(1)4θ(2)4θ(3)2

+
θ(n− 2)2θ(n− 1)2θ(n)3θ(n+ 1)θ(n+ 2)θ(n+ 3)

θ(1)4θ(2)4θ(3)2

+
θ(n− 4)θ(n− 1)θ(n)4θ(n+ 1)3θ(n+ 2) + θ(n− 2)θ(n− 1)3θ(n)4θ(n+ 1)θ(n+ 4)

θ(1)4θ(2)4θ(3)2

+
θ(n− 3)θ(n− 1)2θ(n)3θ(n+ 1)3θ(n+ 2) + θ(n− 2)θ(n− 1)3θ(n)3θ(n+1)2θ(n+3)

θ(1)6θ(2)2θ(3)2
,

φn[n2−3,n2−3] =
θ(n− 3)θ(n− 1)4θ(n)2θ(n+ 1)4θ(n+ 3)

θ(1)8θ(3)4

+ 2
θ(n− 3)θ(n− 2)2θ(n− 1)2θ(n)2θ(n+ 1)2θ(n+ 2)2θ(n+ 3)

θ(1)4θ(2)4θ(3)4

+
θ(n− 5)θ(n− 1)2θ(n)4θ(n+ 1)3θ(n+ 2)2 + θ(n− 2)2θ(n−1)3θ(n)4θ(n+1)2θ(n+5)

θ(1)4θ(2)4θ(3)4

+ 2
θ(n− 4)θ(n− 2)θ(n− 1)θ(n)4θ(n+ 1)3θ(n+ 2)2

θ(1)6θ(2)2θ(3)4

+ 2
θ(n− 2)2θ(n− 1)3θ(n)4θ(n+ 1)θ(n+ 2)θ(n+ 4)

θ(1)6θ(2)2θ(3)4
.

φn[n2−4,n2−4] =
θ(n− 3)θ(n− 2)2θ(n− 1)3θ(n)4θ(n+ 1)3θ(n+ 2)2θ(n+ 3)

θ(1)4θ(2)8θ(3)4

+ 2
θ(n− 4)θ(n− 3)θ(n− 1)3θ(n)5θ(n+ 1)3θ(n+ 2)2θ(n+ 3)

θ(1)6θ(2)6θ(3)2θ(4)2

+ 2
θ(n− 3)θ(n− 2)2θ(n− 1)3θ(n)5θ(n+ 1)3θ(n+ 3)θ(n+ 4)

θ(1)6θ(2)6θ(3)2θ(4)2

+
θ(n− 5)θ(n− 2)2θ(n− 1)2θ(n)4θ(n+ 1)4θ(n+ 2)2θ(n+ 3)

θ(1)8θ(2)4θ(4)4

+
θ(n− 3)θ(n− 2)2θ(n− 1)4θ(n)4θ(n+ 1)2θ(n+ 2)2θ(n+ 5)

θ(1)8θ(2)4θ(4)4

+ 2
θ(n− 5)θ(n− 4)θ(n− 1)2θ(n)5θ(n+ 1)4θ(n+ 2)2θ(n+ 3)

θ(1)4θ(2)6θ(3)4θ(4)2

+ 2
θ(n− 3)θ(n− 2)2θ(n− 1)4θ(n)5θ(n+ 1)2θ(n+ 4)θ(n+ 5)

θ(1)4θ(2)6θ(3)4θ(4)2

+ 2
θ(n− 6)θ(n− 3)θ(n− 1)3θ(n)4θ(n+ 1)3θ(n+ 2)3θ(n+ 3)

θ(1)6θ(2)4θ(3)2θ(4)4

+ 2
θ(n− 3)θ(n− 2)3θ(n− 1)3θ(n)4θ(n+ 1)3θ(n+ 3)θ(n+ 6)

θ(1)6θ(2)4θ(3)2θ(4)4

+ 2
θ(n− 5)θ(n− 3)θ(n− 2)2θ(n− 1)θ(n)4θ(n+ 1)3θ(n+ 2)2θ(n+ 3)2

θ(1)6θ(2)4θ(3)2θ(4)4

+ 2
θ(n− 3)2θ(n− 2)2θ(n− 1)3θ(n)4θ(n+ 1)θ(n+ 2)2θ(n+ 3)θ(n+ 5)

θ(1)6θ(2)4θ(3)2θ(4)4

+
θ(n− 7)θ(n− 2)2θ(n− 1)2θ(n)4θ(n+ 1)3θ(n+ 2)2θ(n+ 3)2

θ(1)4θ(2)4θ(3)4θ(4)4
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+
θ(n− 3)2θ(n− 2)2θ(n− 1)3θ(n)4θ(n+ 1)2θ(n+ 2)2θ(n+ 7)

θ(1)4θ(2)4θ(3)4θ(4)4

+ 2
θ(n− 4)θ(n− 2)2θ(n− 1)4θ(n)2θ(n+ 1)4θ(n+ 2)2θ(n+ 4)

θ(1)8θ(2)4θ(4)4

+ 2
θ(n− 4)θ(n− 3)2θ(n− 2)2θ(n− 1)2θ(n)2θ(n+ 1)2θ(n+ 2)2θ(n+ 3)2θ(n+ 4)

θ(1)4θ(2)4θ(3)4θ(4)4
.

(D.1)

D.2 Compact brane configuration (N,M) = (2, 1)

We list the first few coefficients φn[c1,c2,l] appearing in the expansion (5.26) of

Z2,1(τ, tf1 , tf2 ,m = nε, ε,−ε)

φ̂n[n2,n2,0] = 1 ,

φ̂n[n2+2,n2−2,0] = φ̂n[n2−2,n2+2,−1] =
θ(n)2

θ(1)2
,

φ̂n[n2+4,n2−4,0] = φ̂n[n2−4,n2+4,−2] = 2
θ(n− 1)θ(n)2θ(n+ 1)

θ(1)2θ(2)2
,

φ̂n[n2+6,n2−6,0] = φ̂n[n2−6,n2+6,−3]

=
θ(n− 1)2θ(n)2θ(n+ 1)2

θ(1)4θ(3)2
+ 2

θ(n− 2)θ(n− 1)θ(n)2θ(n+ 1)θ(n+ 2)

θ(1)2θ(2)2θ(3)2
,

φ̂n[n2+8,n2−8,0] = φ̂n[n2−8,n2+8,−4]

=
θ(n− 1)2θ(n)4θ(n+ 1)2

θ(1)2θ(2)4θ(3)2
+ 2

θ(n− 2)θ(n− 1)2θ(n)2θ(n+ 1)2θ(n+ 2)

θ(1)4θ(2)2θ(4)2

+ 2
θ(n− 3)θ(n− 2)θ(n− 1)θ(n)2θ(n+ 1)θ(n+ 2)θ(n+ 3)

θ(1)2θ(2)2θ(3)2θ(4)2
,

φ̂n[n2+10,n2−10,0] =
θ(n− 2)2θ(n− 1)2θ(n)2θ(n+ 1)2θ(n+ 2)2

θ(1)4θ(2)4θ(5)2

+ 2
θ(n− 2)θ(n− 1)2θ(n)4θ(n+ 1)2θ(n+ 2)

θ(1)4θ(2)2θ(3)2θ(4)2

+ 2
θ(n− 3)θ(n− 2)θ(n− 1)2θ(n)2θ(n+ 1)2θ(n+ 2)θ(n+ 3)

θ(1)4θ(2)2θ(3)2θ(5)2

+ 2
θ(n−4)θ(n−3)θ(n−2)θ(n−1)θ(n)2θ(n+1)θ(n+2)θ(n+3)θ(n+4)

θ(1)2θ(2)2θ(3)2θ(4)2θ(5)2
,

φ̂n[n2,n2,−1] =
θ(n− 1)2θ(n+ 1)2

θ(1)4
,

φ̂n[n2+2,n2−2,−1] = φ̂n[n2−2,n2+2,−2] = 2
θ(n− 2)θ(n− 1)θ(n)2θ(n+ 1)θ(n+ 2)

θ(1)4θ(2)2

φ̂n[n2+4,n2−4,−1] = φ̂n[n2−4,n2+4,−3]

=
θ(n− 2)2θ(n)4θ(n+ 2)2

θ(1)6θ(3)2
+ 2

θ(n− 3)θ(n− 1)2θ(n)2θ(n+ 1)2θ(n+ 3)

θ(1)4θ(2)2θ(3)2
,
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φ̂n[n2+6,n2−6,−1] = φ̂n[n2−6,n2+6,−4] =
θ(n− 2)2θ(n− 1)2θ(n)2θ(n+ 1)2θ(n+ 2)2

θ(1)4θ(2)4θ(3)2

+ 2
θ(n− 3)θ(n− 2)θ(n− 1)θ(n)4θ(n+ 1)θ(n+ 2)θ(n+ 3)

θ(1)6θ(2)2θ(4)2

+ 2
θ(n− 4)θ(n− 2)θ(n− 1)2θ(n)2θ(n+ 1)2θ(n+ 2)θ(n+ 4)

θ(1)4θ(2)2θ(3)2θ(4)2
,

φ̂n[n2,n2,−2] = 2
θ(n− 2)2θ(n− 1)2θ(n+ 1)2θ(n+ 2)2

θ(1)4θ(2)4

+ 2
θ(n− 3)θ(n− 1)θ(n)4θ(n+ 1)θ(n+ 3)

θ(1)4θ(2)4
,

φ̂n[n2+2,n2−2,−2] = φ̂n[n2−2,n2+2,−3] = 2
θ(n− 4)θ(n− 1)2θ(n)4θ(n+ 1)2θ(n− 4)

θ(1)4θ(2)4θ(3)2

+ 2
θ(n− 3)θ(n− 2)θ(n− 1)2θ(n)2θ(n+ 1)2θ(n+ 2)θ(n+ 3)

θ(1)6θ(2)2θ(3)2

+ 2
θ(n− 3)θ(n− 2)2θ(n− 1)θ(n)2θ(n+ 1)θ(n+ 2)2θ(n+ 3)

θ(1)4θ(2)4θ(3)2)
,

φ̂n[n2+4,n2−4,−2] = φ̂n[n2−4,n2+4,−4]

= 2
θ(n− 3)θ(n− 2)2θ(n− 1)2θ(n)2θ(n+ 1)2θ(n+ 2)2θ(n+ 3)

θ(1)4θ(2)6θ(3)2

+ 2
θ(n− 3)2θ(n− 2)θ(n− 1)θ(n)4θ(n+ 1)θ(n+ 2)θ(n+ 3)2

θ(1)6θ(2)4θ(4)2

+ 2
θ(n− 4)θ(n− 2)θ(n− 1)3θ(n)2θ(n+ 1)3θ(n+ 2)θ(n+ 4)

θ(1)6θ(2)4θ(4)2

+ 2
θ(n− 4)θ(n− 3)θ(n− 2)θ(n− 1)2θ(n)2θ(n+ 1)2θ(n+ 2)θ(n+ 3)θ(n+ 4)

θ(1)4θ(2)4θ(3)2θ(4)2

+ 2
θ(n− 5)θ(n− 2)θ(n− 1)2θ(n)4θ(n+ 1)2θ(n+ 2)θ(n+ 5)

θ(1)4θ(2)4θ(3)2θ(4)2
, (D.2)

E Contributing partitions for (N,M) = (3, 1) and m = ε

To analyse the restrictions on the sum over partitions in the case N = 3, we consider

two generic Young diagrams (ν1, ν2) and try to restrict their forms by analysing their

contributions to the partition function (3.14)

• contribution of the (ν2,1 − 1)th box in the first row of ν2

i2 = 1 , j2 = ν2,1 − 1 (E.1)

For this box, we have z
(2)
1,ν2,1−1 = ε(ν2,1 − 1 − (ν2,1 − 1)) = 0, therefore, the Young

diagram ν2 is not allowed to have a second column, but is restricted to consist of a

single column.
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• contribution of the last box in the second row of ν1

i1 = 2 , j1 = ν1,2 (E.2)

such that v
(1)
2,ν1,2

= −ε(ν1,2−2−ν1,2 +2) = 0, therefore, the Young diagram ν1 cannot

have a second row and is restricted to consist of a single row.

• restrictions on the form of ν1

Here we have to distinguish four different possibilities

– ν1 = ∅: in this case we have no restriction on the form of ν2

– ν1 = : in this case we have z
(1)
1,1 = ε(1 + νt2,1 − 1− 1), which restricts ν2 to be

ν1 = , ν2 ∈
{
∅, , , . . .

}
, (E.3)

and in particular excludes (ν1, ν2) = ( , ).

– ν1 = : in this case we have z
(1)
1,1 = ε(2+νt2,1−1−1) and z

(1)
1,2 = ε(2−1−2) 6= 0,

which restricts the form of ν2

ν1 = , ν2 ∈
{

, , , . . .
}
, (E.4)

which particularly excludes (ν1, ν2) = ( , ∅)

– ν1 = , with length ν1,1 ≥ 3: in this case we consider the contribution of

the box ν1,1 − 1 in the first row of ν1

i1 = 1 , j1 = ν1,1 − 1 ≥ 2 , (E.5)

for which we have z
(1)
1,ν−1,1−1 = ε(ν1,1− 1− (ν1,1− 1)) = 0. Therefore, the length

ν1,1 < 3 is restricted.

Summarising, we are left with the following three sets of configurations

(ν1, ν2) ∈
{

(∅, ∅) , (∅, ) ,
(
∅,

)
,
(
∅,

)
, . . .

}
, (E.6)

(ν1, ν2) ∈
{

( , ∅) ,
(
,
)
,
(

,
)
, . . .

}
, (E.7)

(ν1, ν2) ∈
{

( , ) ,
(

,
)
,
(

,
)
, . . .

}
. (E.8)

• restrictions on the form of ν2

We can further constrain the three classes of contributions (E.6) — (E.7):
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– ν1 = ∅ (see (E.6)): in this case we consider the first box in the second row of ν2

∅ i2 = 2 , j2 = 1 , (E.9)

which yields v
(2)
2,1 = −ε(ν2,1 + 0−2−1 + 2) = ν2,1−1 and therefore only ν2,1 = 0

contributes, which restricts (E.6) to the following cases

(ν1, ν2) ∈ {(∅, ∅) , (∅, )} , (E.10)

– ν1 = (see (E.7)): the case ( , ∅) contributes to the partition function, while

for the cases ν2,2 6= 0 we consider the first box in the third row of ν2

i2 = 3 , j2 = 1 , (E.11)

which yields v
(2)
3,1 = −ε(ν2,1 + 1 − 3 − 1 + 2) = −ε(ν2,1 − 1) and therefore only

ν2
3,1 = 0 contributes, which restricts (E.7) to the following contributions

(ν1, ν2) ∈
{

( , ∅) ,
(
,
)}

. (E.12)

– ν1 = (see (E.8)): in this case we consider the first box in the third row of ν2

i2 = 3 , j2 = 1 , (E.13)

which yields v
(2)
3,1 = −ε(ν2,1 + 1 − 3 − 1 + 2) = −ε(ν2,1 − 1) and therefore only

ν2,1 = 0 contributes, which restricts (E.7) to the following contributions

(ν1, ν2) ∈
{

( , ) ,
(

,
)}

(E.14)
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