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1 Introduction

The study of five-dimensional supersymmetric field theories utilizing string theory was

initiated in [1–3]. Subsequently, many five-dimensional gauge theories have been realized

using brane constructions in type IIA [4, 5] as well as type IIB string theory [6–8]. In

the realm of supersymmetric field theories, superconformal theories (SCFTs) take a special

place. The case of five-dimensional SCFTs is particularly interesting since there exists a

unique superalgebra with SO(2, 5) conformal symmetry, SU(2) R-symmetry, and sixteen

supercharges (eight Poincare and eight special conformal supercharges). Together they

form the superalgebra F (4) [9–11]. It is an interesting fact that in five dimensions the

maximal superconformal theory has sixteen supercharges, unlike in dimensions three, four,

and six, where the maximal number of supercharges is thirty-two.

Many of the known five-dimensional field theories allow for limits where the rank of

the gauge group(s) can be taken to be large. Consequently, a holographic dual of the

superconformal phase of such theories should exist. Solutions containing an AdS6 factor

had previously been found in massive IIA supergravity [4, 5, 12] as well as in type IIB

supergravity [13–15]. However, all of these solutions suffer from singularities, where the

supergravity approximation breaks down.

Recently,1 in a series of papers [16–18], new solutions of type IIB supergravity were

constructed using a warped product of AdS6×S2 over a two-dimensional Riemann surface

Σ with boundary. These solutions are completely regular away from isolated points on the

boundary of Σ. The poles have a clear physical interpretation as the remnants of semi-

infinite (p, q) five-branes. These branes can be interpreted as the semi-infinite external

five-branes which are used to construct five-dimensional field theories using (p, q) five-brane

webs [6–8]. The singularities do not affect the calculation of some holographic observables,

such as the entanglement entropy of a spherical region and the free energy on a sphere [22].

However, the fact that the solutions are a warped product of AdS6 × S2 over a two-

dimensional surface makes it very hard to determine the full Kaluza-Klein spectrum of

fluctuations or to calculate holographic correlation functions.

A simpler setting for AdS6/CFT5 duality is given by six-dimensional F (4) gauged

supergravity. F (4) gauged supergravity was first constructed in [23]. The theory can be

coupled to six-dimensional vector multiplets and the general Lagrangian, supersymmetry

transformations, and possible gaugings can be found in [24]. These theories have supersym-

metric AdS6 vacua, and determining the spectrum of linearized supergravity fluctuations

dual to primary operators as well as correlation functions is straightforward [25–27]. For

some additional work on the use of F (4) gauged supergravity in holography, see e.g. [28–31].

Apart from local operators, a CFT in general also contains extended defect operators,

such as Wilson lines, surface operators, domain walls, and interfaces. A p-dimensional

defect in a d-dimensional CFT is called conformal when it is SO(2, p) invariant, i.e. when

it preserves the conformal transformations acting on its p-dimensional worldvolume. A

special class of conformal defects are the so-called superconformal defects, which preserve

some fraction of the supersymmetry of the SCFT as well. This implies that the preserved

1For earlier work in this direction see [19–21].
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sub-superalgebra even part even part real form susys

A1 ⊕B3 A1 ⊕B3 SO(5, 2)⊕ SO(3) 0

A2 ⊕A(0, 1) A2 ⊕A1 ⊕U(1) SO(2, 1)⊕ SU(3)⊕ R 4

A1 ⊕D(2, 1; 2) A1 ⊕A1 ⊕A1 ⊕A1 SO(2, 1)⊕ SU(2)3 8

A(0, 3) U(1)⊕A3 SO(2, 4)⊕ R 8

C(3) U(1)⊕ C2 SO(2, 3)⊕ SO(2) 8

Table 1. Sub-superalgebras of F (4).

symmetries of such a defect form a superalgebra. Hence a classification of possible su-

perconformal defects in a SCFT amounts to finding all the sub-superalgebras lying inside

the original superalgebra of the SCFT with a bosonic SO(2, p) factor. Such an analysis

was undertaken for the maximal superalgebras with 32 supercharges and defects with 16

supercharges (so-called half-BPS defects) in [32].

For five-dimensional SCFTs the superalgebra is the particular real form of F (4) which

has SO(5, 2) ⊕ SU(2)R as its bosonic symmetry algebra. The sixteen supercharges trans-

form in the 8 ⊗ 2 representation under the bosonic symmetry group. Happily, the sub-

superalgebras of F (4) have been classified in [33, 34] and are given along with their relevant

real forms in the following table.

By identifying the SO(2, p) factor in the even part of the sub-superalgebras with the

conformal symmetry of a p-dimensional defect, one can see that there should be supercon-

formal line defects with p = 1 preserving 4 and 8 supersymmetries, as well as p = 3 and

p = 4 dimensional defects preserving 8 supersymmetries. Holographic duals to the p = 1

defects preserving 8 supersymmetries were explored in [35, 36]. The goal of the present

paper is to find a realization of the p = 4 dimensional half-BPS defect in six-dimensional

gauged supergravity.

There are two ways to construct defects in AdS spaces. The first is the so-called probe

approximation, where one considers a probe brane or string which is embedded in the

supergravity background preserving the correct symmetries. In the probe approximation,

one considers a small number of branes and neglects the backreaction of the branes on

the geometry. One example is found in the holographic dual of four-dimensional N = 4

SU(N) Super Yang-Mills theory, in which a half-BPS Wilson line in the l-th antisymmetric

representation is realized as a probe D5-brane [37]. The probe D5-brane has an AdS2×S4

worldvolume and l units of electric flux through the AdS2. The worldvolume is embed-

ded inside the AdS5 × S5 vacuum of type IIB supergravity and the symmetries of the

superconformal defect are realized by the isometries of the embedding. More complicated

representations can be achieved by adding additional probe branes.

Second, one can construct solutions in supergravity without adding branes using a

Janus ansatz [38]. To obtain a supergravity solution describing a p-dimensional defect,

one considers a warped product of an AdSp+1 factor (potentially combined with other

compact manifolds whose isometries realize additional symmetries) over a one- or two-

– 3 –
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dimensional base manifold. For the example of a half-BPS Wilson line discussed above,

the solution [39, 40] is built on a product AdS2 × S2 × S4 warped over a two-dimensional

Riemann surface. Using the Janus ansatz, solutions corresponding to various half-BPS

defects have been constructed in M-theory [41, 42] as well as in type IIB supergravity [43,

44]. These solutions are all quite complicated due to the warped product form, the fact

that fluxes of the antisymmetric tensor fields are turned on, and the fact that all quantities

depend on the two-dimensional base manifold.

A simpler class of supersymmetric Janus solutions corresponding to defects of co-

dimension one can be obtained in (d + 1)-dimensional gauged supergravity theories by

considering a metric ansatz of an AdSd factor warped over a one-dimensional interval. The

only other fields which are taken to have a nontrivial dependence on the interval are the

scalars. Supersymmetric Janus solutions in five- and four-dimensional gauged supergravity

were constructed in [45–47].

The complicated structure of the full type IIB duals of five-dimensional SCFTs makes it

very hard to construct the defect solutions which, by the analysis of the sub-superalgebras,

should exist. We therefore follow the simplified setting outlined above to construct su-

persymmetric Janus solutions corresponding to four-dimensional defects in six-dimensional

gauged F (4) supergravity. There is however a price to pay, since it is very difficult to lift

lower dimensional gauged supergravity solutions to ten or eleven dimensions,2 and a clear

understanding of the dual CFT is generally not available. However, the simplicity of the

system makes finding solutions in the lower dimensional gauged supergravity a worthwhile

exercise.

The plan of the present paper is as follows: in section 2 we review the essential features

of matter coupled F (4) gauged supergravity which will be needed in the rest of the paper.

In section 3 we describe the Janus ansatz describing a co-dimension one defect and discuss

the holographic dictionary for the supergravity scalars. In section 4 we derive the BPS

equations by imposing the vanishing of the fermionic supersymmetry transformations for

eight of the sixteen supersymmetries. We obtain three coupled nonlinear ordinary differ-

ential equations, which are summarized in subsection 4.5. In section 5 we solve the BPS

equation numerically and show that the requirement of obtaining smooth and regular so-

lutions reduces the three initial conditions for a generic solution to a one parameter family.

In addition, we use the holographic dictionary to give a field theory interpretation of our

solutions. In section 6 we discuss various open questions and avenues for further research.

Finally, in the appendices we include some additional information, including an outline

of our gamma matrix conventions, a brief review of the pseudo-Majorana condition, and

details on the choice of coset representative used in our calculations.

2 Matter coupled F (4) gauged supergravity

The theory of matter coupled F (4) gauged supergravity was first studied in [24, 26], with

some applications and extensions given in [27, 28]. We model the brief review below on

the latter.

2Such a lifting has been successfully performed in the case of N = 8 five-dimension supergravity; see [46].
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2.1 The bosonic Lagrangian

The field content of the 6-dimensional supergravity multiplet is

(eaµ, ψ
A
µ , A

α
µ, Bµν , χ

A, σ) (2.1)

The field eaµ is the 6-dimensional frame field, with spacetime indices denoted by µ, ν,

and local Lorentz indices denoted by a, b. The field ψAµ is the gravitino with the index

A,B = 1, 2 denoting the fundamental representation of the gauged SU(2)R group. The

supergravity multiplet contains four vectors Aαµ labelled by the index α = 0, . . . 3. It will

often prove useful to split α = (0, r) with r = 1, . . . , 3 an SU(2)R adjoint index. Finally,

the remaining fields consist of a two-form Bµν , a spin-1
2 field χA, and the dilaton σ.

The only matter in the d = 6, N = 2 theory is the vector multiplet, which has the

following field content

(Aµ, λA, φ
α)I (2.2)

where I = 1, . . . , n labels the distinct matter multiplets included in the theory. The

presence of the n new vector fields AIµ allows for the existence of a further gauge group G+

of dimension dimG+ = n, in addition to the gauged SU(2)R R-symmetry. The presence

of this new gauge group contributes an additional parameter to the theory, in the form of

a coupling constant λ. Throughout this section, we will denote the structure constants of

the additional gauge group G+ by CIJK . However, these will not play a large role in the

rest of the paper, since we will soon restrict to the case of only a single vector multiplet

n = 1, in which case there is no additional gauge group G+.

More important for our purposes will be the 4n scalars φαI . Generically in (half-

)maximal supergravity, the dynamics of vector scalars is dictated by a non-linear sigma

model with target space G/K; see e.g. [48]. The group G is the global symmetry group of

the theory, while K is the maximal compact subgroup of G. As such, in the current case

the target space is to be identified with the following coset space,

SO(4, n)

SO(4)× SO(n)
(2.3)

A convenient way of formulating this non-linear sigma model is to have the scalars φαI

parameterize an element L of G. This coset representative L is an (n + 4) × (n + 4)

matrix with matrix elements LΛ
Σ, for Λ,Σ = 1, . . . n + 4. We may use this to construct a

left-invariant 1-form,

L−1dL ∈ g (2.4)

where g = Lie(G). To build a K-invariant kinetic term from the above, we decompose

L−1dL = Q+ P (2.5)

where Q ∈ k = Lie(K) and P lies in the complement of k in g. Explicitly, one finds the

coset space vielbein forms to be given by,

P Iα =
(
L−1

)I
Λ

(
dLΛ

α + fΛ
ΓΠA

ΓLΠ
α

)
(2.6)
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where the f Γ
ΛΣ are structure constants of the gauge algebra, i.e.

[TΛ, TΣ] = f Γ
ΛΣ TΓ (2.7)

We may then use P to build the Lagrangian for the vector multiplet scalars as,

Lcoset =
1

4
ePIαµP

Iαµ (2.8)

where e =
√
|det g| and we’ve defined P Iαµ = P Iαi ∂µφ

i, for i = 0, . . . , 4n − 1. Having

expressed the coset space non-linear sigma model as such, we may now write down the

full bosonic Lagrangian of the theory. We will be interested in the case in which only the

metric and the scalars are non-vanishing. In this case we have

e−1L = −1

4
R+ ∂µσ∂

µσ − 1

4
PIαµP

Iαµ + V (2.9)

with the scalar potential V given by

V = e2σ

[
1

36
A2 +

1

4
BiBi +

1

4
(CIt CIt + 4DI

tDIt)

]
−m2e−6σN00

+me−2σ

[
2

3
AL00 − 2BiL0i

]
(2.10)

The scalar potential features the following quantities,

A = εrstKrst Br = εrstKst0

CtI = εtrsKrIs DIt = K0It (2.11)

The so-called “boosted structure constants” K are given by,

Krsα = g ε`mnL
`
r(L
−1) m

s Lnα + λCIJKL
I
r(L
−1) J

s LKα

KαIt = g ε`mnL
`
α(L−1) m

I Lnt + λCMJKL
M
α(L−1) J

I LKt (2.12)

We remind the reader that r, s, t = 1, 2, 3 are obtained from splitting the index α into a 0

index and an SU(2)R adjoint index. Also appearing in the Lagrangian is N00, which is the

00 component of the matrix

NΛΣ = L α
Λ

(
L−1

)
αΣ
− L I

Λ

(
L−1

)
IΣ

(2.13)

2.2 Supersymmetry variations

We now move on to the supersymmetry variations of the spinor fields. To begin, we first

give some comments on our notation.

In addition to labelling the 4 vector fields of the supergravity multiplet, the index α

will be used to label Pauli matrices and the identity matrix 12 via

σαAB = (δAB, σ
rA
B) (2.14)

– 6 –
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We will make use of the matrix γ7, defined as

γ7 = iγ0γ1γ2γ3γ4γ5 (2.15)

and satisfying (γ7)2 = −1. The indices A,B are raised and lowered with the SU(2)

invariant tensor εAB as follows:

T ...A... = εAB T ... ...
B

T...A... = T B
... ... εBA (2.16)

The indices α, β are raised/lowered with a Kronecker delta δαβ , while the indices I, J are

raised/lowered with minus the Kronecker delta −δIJ . This is because (α, I) is an index of

the global isometry group SO(4, n).

We may now write the supersymmetry transformations of the fermions as,

δψµA = DµεA + SABγµε
B (2.17a)

δχA =
i

2
γµ∂µσεA +NABε

B (2.17b)

δλIA = iP Iriσ
r
AB∂µϕ

iγµεB − iP I0iεAB∂µϕiγ7γµεB +M I
ABε

B (2.17c)

where we have defined

SAB =
i

24
[Aeσ+6me−3σ(L−1)00]εAB−

i

8
[Bte

σ − 2me−3σ(L−1)t0]γ7σtAB

NAB =
1

24
[Aeσ−18me−3σ(L−1)00]εAB+

1

8
[Bte

σ+6me−3σ(L−1)t0]γ7σtAB

M I
AB = (−CIt + 2iγ7DI

t)e
σσtAB − 2me−3σ(L−1)I 0γ

7εAB, (2.18)

In the above, the matrix σrAB defined as σrAB ≡ σrCBεCA is symmetric in A,B.

3 Janus ansatz

In this section we present the explicit supergravity model that we will be considering in

this paper, and discuss the Janus ansatz which will be used to derive the BPS equations

in the next section. In addition, we discuss the subtleties which appear in the holographic

dictionary for this ansatz.

3.1 Choice of model

For simplicity, we restrict ourselves to the case of F (4) gauged supergravity coupled to a

single vector multiplet. The generalization to the case of additional vector multiplets is

straightforward. The full scalar manifold in this case is given by

M =
SO(4, 1)

SO(4)
× SO(1, 1) ∼= H4 × R+ (3.1)

– 7 –
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where the R+ is parameterized by the dilaton eσ. To specify the non-linear sigma model

on H4 concretely, we choose the coset representative

L =
3∏

α=0

eφ
αKα

(3.2)

where the Kα are the non-compact generators of SO(4, 1). We give the explicit form of

these generators in appendix B. With this choice of coset representative, the metric on the

scalar manifold descending from (2.6) is

Gij = diag(cosh2 φ1 cosh2 φ2 cosh2 φ3, cosh2 φ2 cosh2 φ3, cosh2 φ3, 1) (3.3)

Having chosen a coset representative, we may calculate explicitly the scalar potential (2.10),

from which we find

V (σ, φi) = g2e2σ − 1

8
me−6σ

[
− 32ge4σ coshφ0 coshφ1 coshφ2 coshφ3 + 8m cosh2 φ0

+m sinh2 φ0

(
− 6 + 8 cosh2 φ1 cosh2 φ2 cosh(2φ3) + cosh(2(φ1 − φ2))

+ cosh(2(φ1 + φ2)) + 2 cosh(2φ1) + 2 cosh(2φ2)

)]
(3.4)

Note that φ0 is an SU(2) singlet, while the others three scalars φr form an SU(2) triplet.

The equations of motion follow from the Lagrangian (2.9), and are given by

� σ =
1

2

δV

δσ
(3.5)

for the dilaton and

� φi + ∂µφi ∂µ(logGii) =
2

Gii

δV

δφi
+

1

2Gii

δGjk
δφi

∂µφ
j∂µφk (3.6)

for the vector multiplet scalars. Einstein’s equation takes the form,

Rµν = 4∂µσ∂νσ + ∂µφ
i∂νφ

jGij + gµνV (3.7)

For g = 3m and vanishing value of the scalar fields, a solution to these equations is the

supersymmetric AdS6 vacuum of radius l2 =
(
4m2

)−1
[26, 27].3

In the AdS/CFT correspondence, the masses of supergravity fields are related to the

scaling dimensions of their dual operators. For scalars in six dimensions, this relation is

m2l2 = ∆(∆− 5) (3.8)

The masses of the scalars can be determined by considering small fluctuations around the

AdS6 vacuum. From the scalar potential (3.4), one finds the masses to be [24, 26]

m2
σl

2 = −6 m2
φ0 l

2 = −4 m2
φr l

2 = −6 , r = 1, 2, 3 (3.9)

3For g = m, there is another AdS6 vacuum of radius l2 = 5/(4m2) [23]. Since this solution violates

the BPS equation coming from the dilatino variation, it is non-supersymmetric and provides a dynamical

realization of the subalgebra in the first line of table 1.
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It follows from (3.8) that the SU(2) singlet φ0 is dual to an operator of dimension ∆φ0 =

4. On the other hand, σ and the SU(2) triplet φr have masses which lie in the double

quantization window

− 25

4
≤ m2l2 ≤ −21

4
(3.10)

where an alternate quantization is possible [49]. If alternate quantization is chosen, these

fields correspond to operators of scaling dimension two. However, this choice of boundary

condition is inconsistent with supersymmetry since the dual operators are part of conserved

current supermultiplets, which constrains the dimension of the scalar operators to be ∆σ =

∆φr = 3 [25]. Therefore we impose standard quantization on σ and φr.

We recall that in AdS with Poincaré coordinates, the holographic dictionary gives a

field theory interpretation to the near-boundary expansions of the scalar fields. In the

following, it will be convenient to split the Poincaré coordinates as

ds2 = − l
2

ξ2

(
dξ2 + dx2

⊥ − dt2 +

3∑
i=1

dx2
i

)
(3.11)

The coordinate x⊥ measures the distance away from the four-dimensional defect located

at x⊥ = 0. The coordinates t, xi with i = 1, 2, 3 span the worldvolume of the defect. Then

according to the holographic dictionary, the linearized solutions for the scalar fields near

the boundary of AdS6 at ξ = 0 behave as

φ ∼ ξ5−∆φ1(t, x) + ξ∆φ2(t, x) + · · · (3.12)

where we identify φ1 and φ2 with the source and expectation value, respectively, for the

operator dual to the field φ.

3.2 Janus ansatz

In this paper we will be interested in constructing supergravity solutions that describe

four-dimensional defects in five-dimensional SCFTs. As discussed in the introduction, the

bosonic symmetries of the AdS6 vacuum are SO(5, 2)×SU(2)R, and we aim to construct a

four-dimensional superconformal defect which preserves an SO(4, 2) × U(1)R subgroup of

this.4 Note that SO(4, 2) is the group of isometries of AdS5. Thus to construct such a solu-

tion, we utilize an ansatz for the metric which slices the geometry in terms of AdS5 spaces

ds2 = −
(
du2 + e2fds̃2

)
(3.13)

where the warp factor f only depends on the slicing coordinate u, and the five-dimensional

metric ds̃2 is given by

ds̃2 =
1

ζ2

(
dζ2 − dt2 +

3∑
i=1

dx2
i

)
(3.14)

Furthermore, all scalar fields are taken to depend only on the slicing coordinate u.

4U(1) is the compact group generated by the Lie algebra R listed in the fourth row of table 1.

– 9 –



J
H
E
P
1
2
(
2
0
1
7
)
0
1
8

As for the breaking of SU(2)R to U(1)R, this can be achieved by turning on one of the

φr which is charged under SU(2)R. In particular, in addition to the uncharged scalars σ

and φ0, we choose to switch on the charged scalar φ3. For simplicity, we keep the other

two charged scalars set to zero, i.e. φ1 = φ2 = 0. It is straightforward to verify that this is

a consistent truncation and that it is the most general choice of non-vanishing fields that

can (in principle) preserve SO(4, 2)×U(1)R.

On the AdS domain-wall ansatz with the consistent truncation φ1 = φ2 = 0, the

equations of motion (3.5)–(3.7) take the form

−(σ′′ + 5f ′σ′) =
1

2

δV

δσ

−(φ0′′ + 5f ′φ0′)− φ0′
(
log
(
cosh2 φ3

))′
=

2

cosh2 φ3

δV

δφ0′

−(φ3′′ + 5f ′φ3′) = 2
δV

δφ3′
− 1

2
sinh(2φ3)

(
φ0′
)2

−5
(
f ′′ +

(
f ′
)2)

= 4(σ′)2 + (φ0′)2 cosh2 φ3 + (φ3′)2 − V

f ′′ + 5f ′2 + 4e−2f = V (3.15)

We now briefly review the holographic dictionary for scalar fields in the case of the

Janus ansatz. Since we are only interested in identifying the form of the sources and

expectation values of the dual operators away from the defect, and not in the calculation of

correlation functions, we do not employ the full machinery of holographic renormalization,

instead giving a simplified treatment. For a more complete discussion, see e.g. [50–52]

For the Janus metric ansatz given in (3.13), the AdS6 vacuum is obtained by choosing

e2f = cosh2 u,

ds2 = −

(
du2 +

cosh2 u

ζ2

(
dζ2 − dt2 +

3∑
i=1

dx2
i

))
(3.16)

with the boundary of AdS6 at u → ±∞. It is straightforward to verify that a scalar of

mass m and dimension ∆ in the AdS-sliced AdS6 behaves as follows near u→ +∞,

φ ∼ φ̃1 e
−(5−∆)u + φ̃2 e

−∆u + · · · (3.17)

It is tempting to identify the constants φ̃1 and φ̃2 with the source and expectation value,

respectively, of the operator dual to φ. However, one has to be careful since this identifi-

cation works only for asymptotically AdS6 in Poincaré coordinates, as in (3.12). For the

AdS6 geometry, one can map the Poincaré metric (3.11) to the AdS-sliced metric (3.16) via

x⊥ = ζ tanhu ξ =
ζ

coshu
(3.18)

From (3.18), it follows that at leading order in eu we have the following relation between

the Poincaré coordinates ξ/x⊥ and the coordinate e−u,

e−u =
ξ

2x⊥
(3.19)
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Plugging (3.19) into (3.17) gives in the limit ξ → 0

φ ∼ φ̃1

(
ξ

2x⊥

)5−∆

+ φ̃2

(
ξ

2x⊥

)∆

+ · · · (3.20)

Comparing this expression to (3.12), it follows that both the source and the expectation

value of the operator dual to the scalar field φ depend on the coordinate x⊥, which is the

transverse distance from the location of the four-dimensional defect in the CFT.

Note that while the map (3.18) is only exact for pure AdS geometries, the derivation

of the position dependence holds even for asymptotically AdS spaces as long as one stays

away from the defect, since only the leading behavior in eu is needed. The construction of

a Fefferman-Graham coordinate system which is valid also near the defect is a much more

complicated question which we do not address here; see however [50, 51].

4 BPS equations

In this section, we use the vanishing of the fermionic supersymmetry variations given

in (2.17a)–(2.17c) to obtain a set of four first-order differential equations. These BPS

equations dictate the dynamics of the warp factor f and the three scalars σ, φ0, and φ3

of the theory, while the remaining scalars φ1, φ2 are set to zero as per the aforementioned

consistent truncation. In addition to these differential equations, we obtain an algebraic

constraint that must be satisfied by f, σ, φ0 and φ3 if they are to give rise to a super-

symmetric domain wall solution. The methods used here are similar to those developed

in [53–55] for the study of curved domain walls in five-dimensional gauged supergravity.

4.1 Projection condition

We begin by making the following ansatz for supersymmetry projection condition, which

respects the pseudo-Majorana condition on εA,

iγ5εA = G0εA −G3

(
σ3
)B
A
γ7εB (4.1)

This is a consistent projector if

G2
0 +G2

3 = 1 (4.2)

For the individual SU(2) components, we have

iγ5ε1 =
(
G0 −G3γ

7
)
ε1 iγ5ε2 =

(
G0 +G3γ

7
)
ε2 (4.3)

It can be checked (using the properties of the gamma matrices given in appendix A) that

these two conditions on ε1 and ε2 are consistent with the pseudo-Majorana condition

ε2 = −γ0ε∗1 (4.4)

Because of this condition, we can pick the eight complex components of ε1 as the indepen-

dent spinors.

By enforcing the projection condition (4.1), we have already broken half of the su-

persymmetries. Thus in the following we will demand that no more supersymmetries be

broken.
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4.2 Dilatino variation

On the AdS domain wall ansatz (3.13), the dilatino variation (2.17b) reads

i

2
σ′γ5εA = N0εA +N3

(
σ3
)B
A
γ7εB (4.5)

where we have defined

N0 = −1

4

(
g coshφ3eσ − 3me−3σ coshφ0

)
N3 = −3

4
me−3σ sinhφ0 sinhφ3 (4.6)

Looking at the A = 1 case, we have that

σ′ (iγ5ε1) = 2
(
N0 +N3γ

7
)
ε1 (4.7)

Using the projector (4.1) and rearranging, this becomes[
σ′G0 − 2N0

]
ε1 −

[
σ′G3 + 2N3

]
γ7ε1 = 0 (4.8)

Since we have already imposed the projection condition (4.1), we don’t want to impose any

further conditions on ε1. It thus follows that

σ′ =
2N0

G0
= −2N3

G3
(4.9)

This relation, along with the condition (4.2), determines G0 and G3 in terms of N0 and N3,

G0 = η
N0√

N2
0 +N2

3

G3 = −η N3√
N2

0 +N2
3

(4.10)

where η = ±1 .

4.3 Gaugino variation

On the AdS domain wall ansatz (3.13), the gaugino variation (2.17c) takes the following

form

− i
(

coshφ3
(
φ0
)′
γ7δBA −

(
φ3
)′ (

σ3
)B
A

)
γ5εB = M0γ

7εA +M3

(
σ3
)B
A
εB (4.11)

where we have defined

M0 = 2m e−3σ coshφ3 sinhφ0

M3 = −2g eσ sinhφ3 (4.12)

From the A = 1 component, we get

−
(

coshφ3
(
φ0
)′
γ7 −

(
φ3
)′)

(iγ5ε1) =
(
M0γ

7 +M3

)
ε1 (4.13)
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Using the projector (4.1) and rearranging, we find(
coshφ3

(
φ0
)′
G3 −

(
φ3
)′
G0 +M3

)
ε1

+
(

coshφ3
(
φ0
)′
G0 +

(
φ3
)′
G3 +M0

)
γ7ε1 = 0 (4.14)

As before, we don’t want to impose any more conditions on ε1, since we have already

imposed the condition (4.1). Therefore we obtain a system of two first-order differential

equations that can be diagonalized into the following form

coshφ3
(
φ0
)′

= − (G0M0 +G3M3)(
φ3
)′

= − (G3M0 −G0M3) (4.15)

4.4 Gravitino variation

On the AdS domain wall ansatz (3.13), the A = 1 component of the gravitino varia-

tion (2.17a) takes the following form

Dµε1 = i
(
S0 + S3γ

7
)
γµε1 (4.16)

where we have defined

S0 =
1

4

(
g coshφ3eσ +me−3σ coshφ0

)
S3 =

1

4
m e−3σ sinhφ0 sinhφ3 (4.17)

and the covariant derivative is

Dµε = ∂µε+
1

4

(
ωab
)
µ
γabε (4.18)

We now consider the integrability of (4.16) in two different ways, which together will lead

to a BPS equation for the warp factor f , as well as an algebraic constraint that must be

satisfied to have consistent first order equations.

4.4.1 Integrability condition: first approach

It follows straightforwardly from (4.16) that

[Dm, Dn]ε1 = 2γmn
(
S2

0 + S2
3

)
ε1 (4.19)

The commutator of the covariant derivative gives

[Dm, Dn]ε1 =
1

4
Rmnpqγ

pqε1 (4.20)

On the AdS domain wall ansatz (3.13), the above component of the Riemann tensor is

Rmnpq = (gmpgnq − gmqgnp)
((
f ′
)2

+ e−2f
)

(4.21)

which then gives the following first-order equation for the warp factor(
f ′
)2

+ e−2f = 4
(
S2

0 + S2
3

)
(4.22)
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4.4.2 Integrability condition: second approach

We now rewrite (4.16) in a different manner. First we observe that

Dmε1 = D̃mε1 −
1

2
f ′ef γ̃mγ5ε1 (4.23)

where D̃m is the covariant derivative on the AdS5 domain wall. Using this equation and

our projection condition (4.1) for ε1 results in the following equation

D̃mε1 = −ief γ̃m
(
a− bγ7

)
ε1 (4.24)

where we have defined

a =
1

2
f ′G0 − S0 b =

1

2
f ′G3 − S3 (4.25)

Now we impose the integrability of (4.24). This gives rise to the following formula

e−2f =
(
f ′
)2 − 4f ′ (G0S0 +G3S3) + 4

(
S2

0 + S2
3

)
(4.26)

Finally, we make use of the formula for (f ′)2 in (4.22), which was obtained from the first

integrability condition. One then obtains

f ′ = 2 (G0S0 +G3S3) (4.27)

which is the second form of the BPS equation for f . Furthermore, (4.22) and (4.27) together

give rise to the following algebraic constraint, which must be satisfied when solving the

first-order equations

4
(
S2

0 + S2
3

)
− e−2f = 4 (G0S0 +G3S3)2 (4.28)

From this constraint, as well as from the definition of S3 given in (4.17), we see that if

we do not switch on either φ0 or φ3, then the constraint relation forces e−2f to vanish,

and thus for the wall to become flat. Therefore both φ0 and φ3 are needed to support

the supersymmetric AdS domain wall solution. The required presence of φ3 also matches

with our expectation from the superalgebra considerations discussed in section 3.2, since a

non-trivial profile for φ3 breaks the SU(2)R R-symmetry group to a U(1)R.

4.5 Summary of first-order equations

We now offer a brief review of the results of this section. The first-order equations for the

warp factor f and the scalars σ, φ0, φ3 were found to be

f ′ = 2 (G0S0 +G3S3) (4.29a)

σ′ =
2N0

G0
(4.29b)

coshφ3
(
φ0
)′

= − (G0M0 +G3M3) (4.29c)(
φ3
)′

= − (G3M0 −G0M3) (4.29d)
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For consistency, these were required to satisfy the constraint

4
(
S2

0 + S2
3

)
− e−2f = 4 (G0S0 +G3S3)2 (4.30)

The various functions featured in these equations are defined as

S0 =
1

4

(
g coshφ3eσ +me−3σ coshφ0

)
S3 =

1

4
m e−3σ sinhφ0 sinhφ3

N0 = −1

4

(
g coshφ3eσ − 3me−3σ coshφ0

)
N3 = −3

4
me−3σ sinhφ0 sinhφ3

M0 = 2m e−3σ coshφ3 sinhφ0

M3 = −2g eσ sinhφ3 (4.31)

as well as

G0 = η
N0√

N2
0 +N2

3

G3 = −η N3√
N2

0 +N2
3

η = ±1 (4.32)

5 Numerical solutions of the BPS equations

The BPS equations (4.29a)–(4.29d) are a system of four nonlinear first-order ordinary

differential equations. Because of the constraint (4.30), there are only three independent

functions. An analytic solution of this system is presumably impossible due to the highly

nonlinear nature of the equations. Hence, we will rely on numerical methods to generate

solutions. We note that the methods used in this section are similar to the ones used in [56]

in a different setting.

5.1 Asymptotic AdS expansion

In order to identify proper initial conditions, as well as to obtain a holographic interpre-

tation of solutions to the BPS equations in terms of sources and expectation values of the

operators dual to the scalar fields, we perform an expansion in the regime where the scalar

fields all decay and the metric approaches an asymptotically AdS form. We make use of

the previous discussion in section 3.2.

We begin by defining an asymptotic coordinate z = e−u, where one side of the asymp-

totic AdS space is reached by taking u → ∞. Consequently, an asymptotic expansion

is an expansion around z = 0. For an AdS slicing, there is a second asymptotic region

given by u→ −∞, which allows for a separate expansion. Note that these two asymptotic

regions are not intersecting since they are separated by the region near the defect, where

the asymptotic expansions break down.

The coefficients in these expansions may be solved for order by order using the BPS

equations. One finds explicitly that all coefficients are determined in terms of only three
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independent parameters fk, α, and β, in accord with the fact that there are three indepen-

dent first-order differential equations. The expansions are

f(z) = − log z + fk +

(
1

4
e−2fk − 1

16
α2

)
z2 +O(z4)

σ(z) =
3

8
α2 z2 +

1

4
efkαβ z3 +O(z4)

φ0(z) = α z +

(
5

4
α e−2fk − 23

48
α3

)
z3 +O(z4)

φ3(z) = e−fkαz2 + β z3 +O(z4) (5.1)

The explicit results for dependence of higher order coefficients on the above three param-

eters is listed up to O(z8) in appendix C.

We recall that φ0 is dual to an operator of dimension ∆ = 4, while σ and φ3 are

dual to operators of dimension ∆ = 3. We further recall that (3.17) allows us to identify

the sources and expectation values for the dual operators. With this in mind, we can

observe that the parameters fk and α control the sources for all three operators, whereas

the parameter β controls the expectation value for the operator dual to φ3. In addition,

the sources and the expectation values have a nontrivial dependence on the distance x⊥
away from the defect, as given by (3.20).

The power series (5.1) allows one to set the initial conditions for the numerical integra-

tion of the BPS equation at a very small distance away from z = 0. The space of generic

initial conditions is three-dimensional and parameterized by fk, α, and β. Numerical inte-

gration shows that for a generic choice of initial conditions, the solution becomes singular

at finite distance in u and hence the supergravity approximation breaks down. Unlike the

regular solutions discussed later where a second asymptotic region can be glued smoothly

and the solutions describe a defect, for the singular solution there is no second asymptotic

region and it is possible to interpret the singular solutions as holographic realizations of

boundary conformal field theories [57]. The fact that the geometry is singular and that

a clear microscopic picture is lacking where the singularity could for example be replaced

by a brane [58] limits the usefulness of these solutions. Thus in the next section, we turn

towards a study of the conditions required for obtaining non-singular solutions.

5.2 Regular Janus solutions

The first thing to note is that obtaining a regular Janus solution will necessarily involve

gluing together solutions with opposite values of η on either side of the domain wall. Indeed,

we may rewrite the BPS equation (4.29b) for the dilaton σ as

σ′ = 2η
√
N2

0 +N2
3 (5.2)

from which it is clear that unless η changes sign, σ will grow indefinitely in one direction.

A similar technique of gluing together to obtain regular solutions was also implemented

in [45] for the case of a domain wall in five-dimensional gauged supergravity.
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When gluing the solutions on either side together, we must ensure smoothness at the

gluing point. For example, in the case of σ, note that

σ′(u)
η→−η−−−−→ −σ′(u)

u→−u−−−−→ −σ′(−u) (5.3)

Smoothness at the origin amounts to the demand that the quantities on the left and right

be identified for u = 0. In other words, we require that

σ′(0) = 0 (5.4)

In the same way, one may show that smoothness requires that both f ′(0) and (φ0)′(0)

vanish as well. It is reassuring that this method of smoothly gluing two solutions together

ensures that the warp factor f(u) has a turning point at the location of the domain wall,

a characteristic of regular Janus solutions. We make the particular choice of

η = −sgn(u) (5.5)

so that this turning point is a minimum. This choice of η implies further that σ and φ0

have a maximum at the domain wall.

From the definition of σ in (5.2), it is clear that the smoothness condition (5.4) demands

N0(0) = 0 N3(0) = 0 (5.6)

Using the definitions of N0 and N3 in (4.31), this in turn requires that

σ(0) =
1

4
log

[
coshφ0(0)

coshφ3(0)

]
(5.7)

as well as

φ0(0) = 0 or φ3(0) = 0 (5.8)

In fact, the case with vanishing φ0(0) does not give rise to acceptable solutions. To see this,

first consider φ0(0) = 0 and φ3(0) 6= 0. From (5.7), it follows that σ(0) < 0. This is unac-

ceptable for the following reason. Recall that for the choice of η in (5.5), σ(u) obtains a max-

imum at u = 0, and furthermore is monotonically decreasing in either direction away from

u = 0. However, since σ(u) must vanish at large values of u in order for the geometry to be

asymptotically AdS, it follows that σ(u) must be non-negative. Thus we cannot have σ(0) <

0. For the case of φ0(0) = φ3(0) = 0, one finds that σ(0) = 0. The same arguments as above

then demand that σ(u) vanish identically. In this case, we are simply unable to support a

curved domain wall solution. We thus keep φ0(0) non-zero, instead choosing φ3(0) = 0.

It may be checked that for φ3(0) vanishing and σ(0) as given in (5.7), the smoothness

conditions of f and φ0 are satisfied as well — that is, we automatically have f ′(0) = 0 and

(φ0)′(0) = 0. On the other hand, (φ3)′(0) does not vanish, and thus φ3 is not smooth at

the origin. A simple way to resolve this problem is to switch the sign not only of η, but

also of φ3 as we cross the domain wall. In this case we have

(φ3)′(u)
η→−η−−−−→ −(φ3)′(u)

u→−u−−−−→ −(φ3)′(−u)
φ3→−φ3−−−−−→ (φ3)′(−u) (5.9)
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Figure 1. Smooth Janus solutions for the four scalar fields. As mentioned in the main text, we

take −φ3 with η = +1 for u < 0, and φ3 with η = −1 for u > 0.

Smoothness again requires that we identify the terms on the ends, but we see that it is no

longer necessary for (φ3)′(0) to vanish. Furthermore, the switch φ3 → −φ3 does not affect

the discussion of the previous paragraphs, since all of the BPS equations are completely

invariant under this transformation.

Numerical tests indicate that this completes the list of conditions that must be satisfied

by solutions which are smooth at the origin and regular at all points. To summarize, we

must patch together solutions of opposite φ3 and η on either side of the domain wall, while

also enforcing the smoothness constraints

f ′(0) = 0 σ′(0) = 0 (φ0)′(0) = 0 (5.10)

These three constraints are satisfied by demanding that φ3(0) vanish and by choosing σ(0)

to be related to φ0(0) as per (5.7). The smooth solutions obtained in this way are labeled

by a single independent parameter φ0(0).

An example of these solutions is shown in figure 1 for the case of φ0(0) = 0.1. To

obtain these plots, we made the particular choice of plotting −φ3 for u < 0 and φ3 for

u > 0. Choosing the opposite sign conventions for φ3 gives an equally valid result. As

mentioned before, we have also required that η be given by (5.5), so that f experiences a

minimum at the domain wall.
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5.3 IR expansion

As seen above, in order to obtain smooth and everywhere regular solutions, we must con-

strain the values of σ, φ0, and φ3 at u = 0 via two independent relationships at the origin.

In practice though, it is always necessary to impose these constraints not at the origin, but

rather at a point very near to the origin, in order to avoid divergences in the numerics. As

such, it will be necessary to understand the behavior of the power series expansions of the

scalar fields around u = 0.

As in the UV case, the coefficients in the IR expansions may be solved for order by

order via the BPS equations. One finds explicitly that all coefficients are determined in

terms of only a single parameter φ0
0. In particular, one finds

f(u) = −1

4
log
[
coshφ0

0

]
+

1

16

(
5 + 3 cosh 2φ0

0

)
sech

3
2φ0

0 u
2 +O(u4)

σ(u) =
1

4
log
[
coshφ0

0

]
− 3

8

sinh2 φ0
0

cosh
3
2 φ0

0

u2 +O(u4)

φ0(u) = φ0
0 − 2

sinhφ0
0

cosh
1
2 φ0

0

u2 +O(u4)

φ3(u) =
sinhφ0

0

cosh
3
4 φ0

0

u− 1

48

(
57 + 31 cosh 2φ0

0

) sinhφ0
0

cosh
9
4 φ0

0

u3 +O(u5) (5.11)

The expansion coefficients up to O(u8) are listed in appendix C.

The assumption that a power series expansion around u = 0 exists implies smoothness

at the origin, so we expect to reproduce the smoothness conditions identified in the previous

section. Indeed, it is clear from the above that φ3(0) = 0 and that σ(0) is related to φ0(0)

as per (5.7). Furthermore, we see that f , σ, and φ0 are even functions of u, whereas φ3 is

an odd function of u, reversing sign as one crosses the domain wall. These are indeed the

requirements for smoothness that were found before.

The existence of this power series ensures that the initial conditions for the numerical

integration of the BPS equation can be set not only at u = 0, but also at a non-zero but

sufficiently small distance away from the origin. This justifies the techniques used to obtain

the numerical solutions of figure 1.

5.4 Relations between the asymptotic parameters for regular solutions

The fact that there exists only one free parameter in the IR implies that the three seemingly

independent parameters fk, α, and β found in the UV must actually be subject to a pair

of relationships which constrains them to only a single independent parameter. Though

a closed form relationship between the parameters seems difficult to find, numerical rela-

tionships are readily obtained. To do so, we first use the IR expansion (5.11) to set the

initial conditions for the scalar fields at a location u0 very close to u = 0. We then use

Mathematica to integrate the BPS equations to large values of u, and then fit the resulting

function to the UV expansion (5.1) to obtain fk, α, and β for the particular IR initial

condition parameter φ0
0. Repeating this for various values of φ0

0 gives the plots of figure 2.

– 19 –



J
H
E
P
1
2
(
2
0
1
7
)
0
1
8

5 10 15 20

ϕ0
0

20

40

60

80

100

α

5 10 15 20

ϕ0
0

-2

2

4

6

fk

5 10 15 20

ϕ0
0

3000

2000

1000

β

Figure 2. Dependences of the UV expansion parameters fk, α, and β on the IR expansion param-

eter φ00.
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Figure 3. Plots of β vs α and fk vs α. The relationships between the three parameters fk, α, and

β may in principle be used to express the UV asymptotic expansion (5.1) in terms of only a single

independent parameter.

Note that the CFT interpretation of the IR parameter φ0
0 is not clear since it is defined

at a point deep in the bulk of the spacetime. It is however straightforward to eliminate φ0
0

and obtain the functional relationships between pairs of UV parameters. For example, in

figure 3 we plot β vs. α as well as fk vs. α. We can interpret this result as implying that

the sources and expectation values for a smooth defect solution are completely determined

in terms of the parameter α which controls the source of the operator dual to φ0.
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6 Discussion

In this paper we have constructed new solutions of six-dimensional gauged supergravity

coupled to one vector multiplet, which provide a holographic realization of a defect in the

dual five-dimensional CFT. The initial conditions of the solution are fine-tuned such that

two sides of an AdS5-sliced Janus solution can be glued together smoothly. On the CFT

side, the fine-tuning corresponds to a choice of a single parameter which controls the sources

and expectation values of the dimension three and four operators dual to the scalars which

are turned on. The regular solutions correspond to a special class of RG defect where the

sources which trigger the RG flow depend on the distance away from the co-dimension one

defect. These supergravity solutions are a concrete example of the conclusion derived from

the classification of sub-superalgebras of the superconformal algebra F (4) — namely that

half-BPS solutions corresponding to co-dimension one superconformal defects must break

the SU(2) R-symmetry group to U(1).

There are several possible directions for future research. In the present paper, we

constructed only the simplest example of gauged supergravity with a single vector multiplet.

Adding more vector multiplets allows for additional symmetries, which on the CFT side are

interpreted as global flavor symmetries. It would therefore be interesting to generalize the

solution constructed in the present paper to more complicated matter content and gaugings.

One advantage of constructing solutions in six-dimensional gauged supergravity instead

of the ten-dimensional IIB supergravity is that the more complicated warped nature of

the ten-dimensional gauged supergravity makes the calculation of holographic observables,

such as correlation functions, very challenging. The simpler solutions in six dimensions

may be a better starting point. It is an interesting and challenging question whether the

solutions found here or generalizations thereof could be lifted to solutions of ten-dimensional

supergravity.

Another interesting point is to understand the nature of the fine-tuning of the initial

conditions needed to obtain regular defect solutions instead of singular solutions. On the

CFT side, the vacuum is deformed by position-dependent sources, and it would be very

interesting to understand the fine-tuning which leads to the correlation of the strength of

the sources and the expectation values of the operators.

As mentioned in section 3.1, the masses of some of the scalars with nontrivial profiles lie

in the window where an alternative quantization is allowed, corresponding to dual operators

of dimension two instead of three for σ and φ3. It would be interesting to investigate the

interpretation of this alternate quantization for the kind of defect we have constructed. As

was mentioned before, such a defect would necessarily be non-supersymmetric.

Finally, analysis of the sub-superalgebras of F (4) in table 1 implies that in addition to

the four-dimensional defect constructed here, there should also exist half-BPS defects with

one- and three-dimensional worldvolumes. A study of the former was begun in [35], in which

Wilson loops for a family of 5dN = 1 SCFTs were examined. The calculation on the gravity

side was carried out by embedding probe strings/branes in massive type IIA supergravity

backgrounds. Similar calculations were carried out for type IIB in [36], in which boundary-

anchored probe (p, q)-strings were embedded in supergravity backgrounds corresponding

– 21 –



J
H
E
P
1
2
(
2
0
1
7
)
0
1
8

to the near-horizon geometry of five-brane webs. In the dual five-dimensional CFT, such

probe strings are expected to correspond to Wilson-‘t Hooft loops in the fundamental

representation [59]. Seeing as the analysis in both of the above cases was complicated by

the warped ten-dimensional geometry, it would be interesting to investigate whether such a

holographic defect solution can be more readily constructed in six-dimensional supergravity.

Similar statements hold for the three-dimensional defect. In that case, one possibility for a

holographic dual would be to consider an AdS4×S1 slicing of the six-dimensional spacetime,

where the S1 realizes the rotational symmetry around the defect.

We plan to return to these questions in future works.
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A Gamma matrix conventions

We use the following basis for the gamma matrices.

γ0 = σ2 ⊗ 12 ⊗ σ3

γ1 = iσ2 ⊗ 12 ⊗ σ1

γ2 = i12 ⊗ σ1 ⊗ σ2

γ3 = i12 ⊗ σ3 ⊗ σ2

γ4 = iσ1 ⊗ σ2 ⊗ 12

γ5 = iσ3 ⊗ σ2 ⊗ 12

With these choices, we have that

γ7 = iγ0γ1γ2γ3γ4γ5 = iσ2 ⊗ σ2 ⊗ σ2 (A.1)

All gamma matrices are anti-symmetric. All gamma matrices are real except γ0, which is

Hermitian.

Important for the current work is the fact that in d = 6, there do not exist spinors ε

satisfying a reality condition of the form

ε = γ0ε
∗ (A.2)

However, if we consider two separate spinors ε1 and ε2, a similar condition can be satisfied

ε1 = γ0ε
∗
2 ε2 = −γ0ε

∗
1 (A.3)

This condition defines a pair of pseudo-Majorana (or symplectic-Majorana) spinors.
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B Coset representative

As stated in (3.2), we take our coset representative to be given by

L =

3∏
α=0

eφ
αKα

(B.1)

where Kα are the non-compact generators of SO(4, 1). As was done in [28], we parameterize

the group generators by basis elements

(exy)zw = δxzδyw w, x, y, z = 1, . . . , 5 (B.2)

in terms of which the non-compact generators can be written as

Kα = eα+1,5 + e5,α+1 (B.3)

C UV and IR expansion coefficients

C.1 UV coefficients

The UV expansion of (5.1) can be written as

f(z) = fk + f0 log z + f1 z + f2 z
2 + f3 z

3 + f4 z
4 + . . .

σ(z) = σ2 z
2 + σ3 z

3 + σ4 z
4 + . . .

φ0(z) = φ0
1 z + φ0

2 z
2 + φ0

3 z
3 + φ0

4 z
4 + . . .

φ3(z) = φ3
2 z

2 + φ3
3 z

3 + φ3
4 z

4 + . . . (C.1)

The coefficients are obtained by solving the BPS equations order by order. All coefficients

may be expressed in terms of three free parameters fk, α, and β, as follows

f0 = −1

f1 = 0

f2 =
1

16

(
4e−2fk−α2

)
f3 = 0

f4 =
1

512

(
−16e−4fk−88e−2fkα2+5α4

)
f5 = − 1

40
e−fkαβ

(
8+e2fkα2

)
f6 =

1

12288
e−6fk

(
64+4176e2fkα2−4764e4fkα4−192e8fkα2β2−e6fk

(
799α6+768β2

))
f7 = − 1

4480
e−3fkαβ

(
−1568+2116e2fkα2+289e4fkα4

)
f8 =

1

262144
e−8fk

(
−256−99072e2fkα2+227808e4fkα4+1152e10fkα4β2

−16e6fk(9773α6−1408β2)−e8fkα2(3513α6+56320β2)
)
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σ2 =
3

8
α2

σ3 =
1

4
efkαβ

σ4 =
3

64
α2(−4e−2fk+7α2)

σ5 = − 3

64
e−fkαβ(−4+e2fkα2)

σ6 =
1

2048

(
1688e−2fkα4−529α6+256β2−16e−4fkα2(55+8e6fkβ2)

)
σ7 = − 3

5120
e−3fkαβ

(
1120−2016e2fkα2+473e4fkα4

)
σ8 =

3

40960
e−6fk

[
9920α2−24880e2fkα4+96e8fkα4β2

−9e6fkα2(115α6−512β2)+20e4fk(883α6−128β2)
]

φ0
1 = α

φ0
2 = 0

φ0
3 =

1

48

(
60e−2fkα−23α3

)
φ0

4 =
1

4
β
(

4e−fk−efkα2
)

φ0
5 =

1

640

(
−1400e−4fkα+1540e−2fkα3−37α5

)
φ0

6 =
1

40
e−3fkβ

(
−40+28e2fkα2+11e4fkα4

)
φ0

7 =
1

3584
e−6fkα

(
5880−6370e2fkα2−875e4fkα4+392e8fkα2β2+2e6fk(641α6−112β2)

)
φ0

8 =
1

17920
e−5fkβ

(
11200−3920e2fkα2−14692e4fkα4+2591e6fkα6

)
φ3

2 = e−fkα

φ3
3 = β

φ3
4 =

1

8
e−3fkα

(
−20+23e2fkα2

)
φ3

5 =
5

16
β
(
−4e−2fk+5α2

)
φ3

6 =
1

768
e−5fkα

(
1680−2408e2fkα2+1167e4fkα4+192e6fkβ2

)
φ3

7 =
1

1280
β
(

1120e−4fk−528e−2fkα2+889α4
)

φ3
8 =

1

5120
e−7fkα

(
−6720+1360e2fkα2+6860e4fkα4

+384e8fkα2β2+3e6fk
(
455α6+1024β2

))
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C.2 IR coefficients

The IR expansion of (5.11) is given to order O(u8) by

f(u) = f0 + f1 u+ f2 u
2 + f3 u

3 + f4 u
4 + . . .

σ(u) =
1

4
log
[
coshφ0(u)

]
+ σ2 u

2 + σ3 u
3 + σ4 u

4 + . . .

φ0(u) = φ0
0 + φ0

1 u+ φ0
2 u

2 + φ0
3 u

3 + φ0
4 u

4 + . . .

φ3(u) = φ3
1 u+ φ3

2 u
2 + φ3

3 u
3 + φ3

4 u
4 + . . . (C.2)

As mentioned in section 5.3, the scalars f , σ, and φ0 are even in u, and thus all odd

coefficients vanish. On the other hand, φ3 is odd in u. The non-zero coefficients are then,

f0 = −1

4
log
[
coshφ0

0

]
f2 =

1

16

(
5 + 3 cosh 2φ0

0

)
sech

3
2φ0

0

f4 =
1

96

(
4− 27 cosh4 φ0

0 + 15 cosh 2φ0
0

)
sech3φ0

0

f6 =
1

11796480

[
816480 cosh

3
2 φ0

0 + sech
9
2φ0

0

(
347026− 1174629 cosh 2φ0

0

+187326 cosh 4φ0
0 + 85941 cosh 6φ0

0

)]
f8 = − 1

10321920
sech6φ0

0

(
726755− 1032504 cosh 2φ0

0 + 232092 cosh 4φ0
0

+113400 cosh 6φ0
0 + 29889 cosh 8φ0

0

)
σ2 =

1

8
sech

3
2φ0

0 sinh2 φ0
0

σ4 = − 11

192

(
5 + 3 cosh 2φ0

0

)
sechφ0

0 tanh2 φ0
0

σ6 =
1

92160

(
38555 + 36156 cosh 2φ0

0 + 10281 cosh 4φ0
0

)
sech

9
2φ0

0 sinh2 φ0
0

σ8 = − 1

2580480
sech4φ0

0 tanh2 φ0
0

(
1195346 + 1317981 cosh 2φ0

0

+784446 cosh 4φ0
0 + 184851 cosh 6φ0

0

)
φ0

2 = −2 sech
1
2φ0

0 sinhφ0
0

φ0
4 =

1

6

(
15 sinhφ0

0 − sechφ0
0 tanhφ0

0

)
φ0

6 = − 1

5760
sech

7
2φ0

0 sinhφ0
0

(
2195 + 6396 cosh 2φ0

0 + 3441 cosh 4φ0
0

)
φ0

8 =
1

161280
sech5φ0

0 sinhφ0
0

(
−14170 + 84987 cosh 2φ0

0

+132522 cosh 4φ0
0 + 53685 cosh 6φ0

0 )

φ3
1 = sech

3
4φ0

0 sinhφ0
0

φ3
3 = − 1

48
sech

9
4φ0

0 sinhφ0
0

(
57 + 31 cosh 2φ0

0

)
φ3

5 =
1

30720
sech

15
4 φ0

0

(
19606 sinhφ0

0 + 6725 sinh 3φ0
0 + 4383 sinh 5φ0

0

)
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φ3
7 = − 1

20643840
sech

21
4 φ0

0

(
10980773 sinhφ0

0 − 1308275 sinh 3φ0
0

+3667761 sinh 5φ0
0 + 1434249 sinh 7φ0

0

)
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