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1 Introduction

It is usually very rare to have an exact solution to a quantum mechanical problem. Most

quantum mechanical systems are either solved numerically or using some approximation

scheme, typically relying on some small parameter. The most famous and general ap-

proximation scheme is the perturbative expansion around the Planck constant ~. Perhaps

surprisingly however, the generic expansion coefficients grow factorially with the order,

rendering the series badly divergent, which calls into question the meaning of the per-

turbative expansion itself. Enter the resurgence theory of Écalle, an idea that a proper

definition of the complete solution requires the inclusion of terms non-perturbative in the

coupling which, upon proper definition, are believed to cure all ambiguities and patholo-

gies associated with the pathological series expansion. See for example [1, 2], and more

comprehensive references in [3].

Early connection of this interplay were noticed independently by Zinn-Justin and Bogo-

molny, when considering the contributions of instanton-anti-instanton pair to the partition

function [4, 5]. They proposed that such a pair is ill-defined itself, and upon a certain

—somewhat ad hoc— prescription (the Bogomolny-Zinn-Justin or BZJ prescription in the

literature), contains an ambiguity of the same kind that exists in the Borel summation of

the perturbation theory. They showed that indeed this ambiguity between perturbative and

non-perturbative contributions cancel to leading order. Recently however, the ad-hoc BZJ

prescription found an explanation in terms of Lefshetz thimble decomposition [6–11]. Fur-

thermore these ideas led to methods for solving the Schrödinger equation, such as uniform
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WKB [12–16], exact WKB [17–20]. We also mention a fresh perspective on the problem of

Borel summation [21, 22] in which it was shown that in quantum mechanics perturbation

theory can be recast in a form which completely captures nonperturbative physics.

On the other hand, resurgence in quantum field theory was discouraged due to the

discovery of another source of factorial growth of the perturbation series: the ’t Hooft

renormalons [23], which occurs because of the running of the coupling, and has no ana-

logue in the quantum mechanical systems and ordinary differential Schödinger equation.

Furthermore, the ambiguities coming from the renormalons did not seem to be a result of

semiclassical configurations such as instantons. This stymied works in this direction for

a long time, and it became widely believed that resurgence is not operative in QFTs on

general grounds.

This changed recently due to two parallel but distinct ideologies. On the one hand,

Ünsal and Argyres [24, 25] conjectured that renormalon singularities have a semi-classical

explanation if the problem is approached from the regime of weakly coupled theory via the

idea of adiabatic continuity [26–28]. Indeed in such regimes it was shown that renormalon

singularities disappear [29], and resurgence is likely operative. However this is difficult to

test as no access to high orders of perturbation theory is typically available in QFTs. Nev-

ertheless certain 1+1D models, when dimensionally reduced to quantum mechanics via the

special kind of compactification, has weak-strong coupling adiabaticity and resurgent struc-

ture [30–32]. Resurgence is likewise useful in quantum field theories without renormalon

singularities, for instance the Chern-Simons theory [2, 33] and certain supersymmetric field

theories. Relatedly resurgence also finds its use in topological string theories, where Borel

resummation and resurgence techniques have been used to explore non-perturbative con-

tributions and to turn the asymptotic series of topological string free energy into a finite

function [34–43], culminating in [44–48].

Since resurgence is tightly connected with high orders of perturbation theory, it is of

immense practical use to have an efficient way to computer high orders of perturbation

theory. Recently in [49] a Mathematica package called BenderWu was developed using the

method originally used by C. M. Bender and T. T. Wu [50] for an anharmonic oscillator,

which efficiently computes symbolic perturbative solutions to a generic one dimensional

quantum mechanical problem with the Hamiltonian of the form

H = − ~2

2m

∂2

∂x2
+ V (x) , (1.1)

a second order differential operator, where V (x) is an arbitrary non-singular potential,

around one of its harmonic minima.

Many quantum mechanical problems also exist whose Hamiltonians are difference op-

erators. They can be regarded as the relativistic version of ordinary quantum mechanical

systems, for instance, the relativistic Toda lattices [51], the elliptic Ruijnaars-Schneider

systems [52, 53], the cluster integral systems [54], and etc. A particular type of relativistic

quantum mechanical systems that has recently attracted a lot of attention is quantum

mirror curves, and their studies have been extremely fruitful. Consider topological string

theory whose target space is a toric Calabi-Yau threefold. The mirror curve to the threefold
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is the moduli space of the branes compatible with the toric structure [55]. The quantisation

of the mirror curve gives rise to Hamiltonian operators of the type

H(x, p) =
∑

(r,s)∈I

ar,se
rx+sp , ar,s ∈ R , (1.2)

where I is a finite set of integer pairs, and x, p satisfy the canonical commutation relation

[x, p] = i~. The wave-functions to these Hamiltonians are related to the open topolog-

ical string partition function associated to the branes [56].1 It is later understood that

the quantum mirror curve is more closely related to the refined topological string in the

Nekrasov-Shatashvili limit [58]. The quantum mirror curve defines a spectral problem,

whose quantum-corrected WKB periods coincide with the quantum deformation of the

periods of the Calabi-Yau, while the latter determine the NS topological string free energy

FNS via the so-called quantum special geometry relation [59–61].

The exact solution to the spectral problem, however, remained elusive until [62].

Naively one would conjecture that the spectral problem is solved by the Sommerfeld-type

quantisation condition

∂FNS(~a, ~)

∂ai
= 2π(ki + 1/2) , ki ∈ Z≥0 , (1.3)

where ki are the levels of the eigenenergies, and ~a = (ai) are the quantum periods. The

equation (1.3), nevertheless, cannot be the full story, as the l.h.s., which can be understood

as the quantum phase space, have poles whenever ~ is 2π multiplied by a rational number.

Important non-perturbative corrections were first found in [63] to cancel the poles, which,

after the numerical work [64] that reveals more subtle corrections are needed, led to the

exact spectral theory for quantum mirror curves [62, 65], followed by a detailed study of

wave-functions [66, 67], especially in the special case when ~ = 2π (see related works [68–

70]). One amazing feature of the spectral theory is that it also defines conjecturally a

non-perturbative completion of topological string free energy in the conifold frame, which

coincides with the results of resurgence analysis [48]. This conjecture was proved in a special

example in certain limit in [71]. See review [72] and related works [73–79]. Furthermore, it

has recently become clear that the quantum mirror curve is the quantum Baxter equation

of the cluster integrable system [54] associated to the toric Calabi-Yau threefold. Inspired

by an elegant reformulation [80] of the quantisation condition in [62], a conjectural exact

quantisation condition for the cluster integrable system is also written down [81, 82]. The

interplay between the quantisation conditions for quantum mirror curve and those for

cluster integrable system led to an interesting set of relations for BPS invariants of the

Calabi-Yau [83], and they were proved in a special category of examples in [84].

To study these systems, we will generalise the algorithm presented in [49] to difference

equations of type (1.2) and study their spectrum. We added to the mathematica package

BenderWu2 of [49] a function called BWDifference, which computes efficiently perturba-

1More general branes and the quantisation of their moduli space can also be considered [57].
2The most up-to-date BenderWu package is available at:

http://library.wolfram.com/infocenter/MathSource/9479/
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tive solutions to one dimensional quantum mechanical problems whose Hamiltonian is a

difference operator of the exponential-polynomial type given in (1.2). This allows us to

study the spectral problem of quantum mirror curve perturbativelly to a very high order

(≥ 100) in ~.

When the toric Calabi-Yau threefold is fano, the Hamiltonian operator arising from

the quantisation of mirror curve is unique. Y. Hatsuda [85] argued that in the case of one

particular toric fano Calabi-Yau threefold, the local F0, the perturbative eigenenergies of

the Hamiltonian operator are Borel summable and that the Borel sums of the perturbative

eigenenergies agree well with the numerical spectrum. The study in [85] was up to 36

orders in ~. With the BWDifference function we are able to extend the study of the local

F0 to 100 orders in ~, and confirm that the Bore-Pade partial sums continue to converge

to the exact (numerical) result.

Furthermore we study the perturbative solutions to the Hamiltonian operator asso-

ciated to all toric fano Calabi-Yau threefolds using the function BWDifference in the

BenderWu package, and find strong evidence that the spectrum of all of them is Borel

summable and that the Borel sum gives the correct answer.

The paper is organized as follows. In the next section we describe the adapted Bender-

Wu algorithm that solves perturbatively the Hamiltonian difference operators, and how to

use the Mathematica function that implements the algorithm. In section 3, we explain the

Hamiltonian operators arising from the quantisation of mirror curve in topological string

theory on a toric Calabi-Yau threefold, especially when the Calabi-Yau is fano, before pro-

ceeding to provide evidence that the perturbative eigenenergies of Hamiltonians associated

to all toric fano Calabi-Yau threefolds are Borel summable. Finally in section 4 we con-

clude and discuss possible future directions. We relegate to the appendix the derivation of

the adapted Bender-Wu algorithm, as well as the explanation of the technical observation

that all the Hamiltonians we have considered have a unique classical minimum.

2 The Bender-Wu method for difference equations and the BWDifference

package

In this section, we first describe the Bender-Wu algorithm adapted to solve the eigen-

value problems of Hamiltonian difference operators, and then explain how to use

the function BWDifference in the BenderWu package which implements the adapted

Bender-Wu algorithm.

2.1 The recursion relations

Let us start with the Hamiltonian difference operator of the following form

H(x, p) =
∑
r,s

ar,se
rx+sp , ar,s ∈ R , (2.1)

where x and p satisfy the commutation relation [x, p] = i~. In the coordinate representation,

x is the multiplication by x and p = −i~∂x. We wish to study the eigenvalue problem

of H(x, p)

H(x, p)Ψ(x) = EΨ(x) . (2.2)
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The Hamiltonian operator is an self-adjoint operator over the domain D which consists

of wave-functions Ψ(x) that are not only themselves L2(R) integrable but that exψ and

epψ are also L2(R) integrable. This constraint can be translated to the condition in the

coordinate representation (see for instance [86]) that the wave-function Ψ(x) admits an

analytic continuation into the strip

S−~ = {x− iy ∈ C : 0 ≤ y < ~} , (2.3)

where it is L2(R) along the x-axis for any fixed value of y, and that the limit

Ψ(x− i~ + i0) = lim
ε→0+

Ψ(x− i~ + iε) (2.4)

exists.

To make the analysis à la Bender-Wu, it is convenient to rescale x =
√
~x̂, p =

√
~p̂.

This scaling would not change the eigenvalue E nor the eigenfunction Ψ, provided that

x̂, p̂ satisfy the commutation relation [x̂, p̂] = i. In the coordinate representation, p̂ is the

differential operator −i∂x. The Hamiltonian operator now reads

H
(√

~ x̂,
√
~ p̂
)

=
∑
r,s

ar,se
√
~ (rx̂+sp̂) . (2.5)

Let us further assume that the Hamiltonian as a function has a local minimum at the

origin; in other words, H in small ~ expansion has no linear term in x̂ or p̂. If this is not

the case we can always use a canonical transformation which takes (x, p)→ (x+x0, p+p0)

to achieve this, which amounts to the redefinition of ar,s.
3

Now let us expand the operator in powers of x̂ and p̂. Up to an overall constant, we get

H(
√
~ x̂,
√
~ p̂) =

∑
r,s

ar,s +
~
2

(
Ax̂2 +Bp̂2 + C(x̂p̂+ p̂x̂)

)
+O(~3/2) , (2.6)

where

A =
∑
r,s

r2ar,s , B =
∑
r,s

s2ar,s , C =
∑
r,s

rs ar,s . (2.7)

The eigenvalue equation for H now reads

H
(√

~ x̂,
√
~ p̂
)

Ψ(x) = EΨ(x) . (2.8)

We wish to solve this equation perturbatively in the expansion of small
√
~. We show in

the appendix that the energy E and the wave-function Ψ(x) have the following expansion

Ψ(x) = ei
x2

2
α
∞∑
l=0

∑
k≥0

Ãkl
ψk(x/ξ)√

k!
(~/2)l/2 , E =

∞∑
l=0

El−2~l/2 . (2.9)

where

α = −CB−1 , ξ =

(
B2

AB − C2

)1/4

, (2.10)

3Note that this canonical transformation also affects the wave-function ϕ(x)→ eip0xϕ(x− x0).
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and where ψk(x) is the level k normalized wave-function of a harmonic oscillator with

unit mass and frequency. The prefactor eiαx
2/2 of wave-function expansion comes from

another canonical transformation that makes the second term in the small ~ expansion of

H(
√
~ x̂,
√
~ p̂) (2.6) into the Hamiltonian of a harmonic oscillator.

In the appendix we give the detailed derivation of an algorithm that solves recursively

the expansion coefficients El−2, Ã
k
l . To summarise, we find that in the lowest orders,

E−2 =
∑
r,s

ar,s (2.11)

is the classical energy, E−1 = 0, and

E0 = 2ν + 1 , ν ∈ N0 , (2.12)

where the non-negative integer ν specifies the level of the eigenenergy. Fixing the level ν,

one finds in the lowest orders for the wave-function

Ãν0 = 1 , and Ãk0 = 0 , k 6= ν , (2.13)

where setting Ãν0 to unity is a normalization choice. Furthermore, we can normalize the

wave-function so that

Ãνl = 0 , l ≥ 1 . (2.14)

To obtain higher order solutions, we first define

εl =
2l/2El√
AB − C2

, ãr,s =
ar,s√

AB − C2
, (2.15)

and

β(r, s) = (r − CB−1s)ξ + isξ−1 . (2.16)

Then assuming all the coefficients Ãkl′ and εl′ are known for l′ < l, the coefficients Ãkl and

εl can be computed from the following recursive relations respectively,

Ãkl =
1

2(k − ν)

(
−
b l+2

2
c∑

q=2

∑
r,s

ãr,s
|β|2q

q!

1

2q
F (−k,−q; 1; 2)Ãkl+2−2q

−
b l+2

2
c∑

q=0

∑
3≤n+2q≤l+2

∑
r,s

ãr,s
|β|2q

n!q!

1

2q

(
βn

k!

(k − n)!
F (−k + n,−q; 1 + n; 2)Ãk−nl+2−n−2q

+ β̄nF (−k,−q; 1 + n; 2)Ãk+n
l+2−n−2q

)
+

l−1∑
n=1

εnÃ
k
l−n

)
, k 6= ν . (2.17)

εl =

b l+2
2
c∑

q=2

∑
r,s

ãr,s
|β|2q

q!

1

2q
F (−ν,−q; 1; 2)δl+2,2q

+

b l+2
2
c∑

q=0

∑
3≤n+2q≤l+2

∑
r,s

ãr,s
|β|2q

n!q!

1

2q

(
βn

ν!

(ν − n)!
F (−ν + n,−q; 1 + n; 2)Ãν−nl+2−n−2q

+ β̄nF (−ν,−q; 1 + n; 2)Ãν+n
l+2−n−2q

)
. (2.18)
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From the recursion relation (2.17) and the initial condition (2.13) one also finds that Ãkl = 0

whenever k > 3l + ν.

We have in fact programmed a function called BWDifference for Mathematica which

computes the expansion coefficients Ãkl , εl automatically and added it to the updated

BenderWu package [49]. Before we proceed to explain how the function can be used, we

would like to make three claims here about the structure of the perturbative eigenenergies

and wave-functions:

(i) There is a unique perturbative solution (up to the normalization constant) of the

form (2.9) for any given level number.

(ii) Energy expansion contains only powers of ~, not powers of
√
~.

(iii) The perturbative wave-function can always be constructed to obey

Ψν(x,
√
~) = (−1)νΨν(−x,−

√
~) , (2.19)

to every order in perturbation theory.

To prove claim (i), consider the difference equation of the form (2.8). Let us show that

this equation cannot have two solutions with the same eigenvalue, both of which reduce

to harmonic oscillator solutions as ~ → 0. Indeed if this were the case, the two solutions

must be orthogonal to each other. But this would mean that in the ~ → 0 limit, the two

solutions reduce to orthogonal harmonic oscillator solutions with different eigenenergies.

This violates the assumption that they have the same eigenvalue. Hence we conclude that

only one such solution exists. We can also see that this is the case from the recursion

equations (2.17), (2.18), as choosing the coefficients4 Ãνl uniquely fixes the solution.

Now let us go back to (2.8) and prove the claim (ii). One easy way to see this is to notice

that the eigenenergies of H(x, p) have an expansion in ~ not in
√
~, while the spectrum of

H(x, p) should be identical to that of H(
√
~ x̂,
√
~ p̂). Now if we perform the transformation√

~→ −
√
~ and x→ −x, we find that the function Ψ̃(x,

√
~) = Ψ(−x,−

√
~) is a solution

of the same difference equation with the eigenenergy E(−
√
~). Then we have that〈

Ψ̃ |H|Ψ
〉

= E(
√
~)
〈

Ψ̃|Ψ
〉

(2.20)〈
Ψ |H| Ψ̃

〉
= E(−

√
~)
〈

Ψ|Ψ̃
〉
. (2.21)

By complex conjugating the second equation, and subtracting from the first we get that

either
〈

Ψ̃|Ψ
〉

= 0 or E(
√
~) = E(−

√
~). However we also know that Ψ(−x,−

√
~) and

Ψ(x,
√
~) cannot be orthogonal, because they reduce to the same harmonic-oscillator solu-

tion in the ~ → 0 limit. Hence we must have E(
√
~) = E(−

√
~), i.e. energy must be an

even function in
√
~, which means that the eigenvalue series expansion is in even powers

of
√
~ only.

4This choice is just a choice of normalization.
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Claim (iii) immediately follows from the above. Since Ψν(x, ~) and Ψν(−x,−~) are

wave-functions of the same eigenenergy of level ν, we can construct a new wave-function

of again the same eigenenergy,

Ψ̃ν(x, ~) = Ψν(x, ~) + (−1)νΨν(−x,−~) (2.22)

and it satisfies the condition (2.19). This parity condition implies that

Ãkl = 0 , if (−1)l+k+ν = −1 , (2.23)

which is compatible with the initial condition (2.13) that we choose. From the point of

view of the recursion calculation, if the above condition on Ãkl is satisfied for all l < l̃, then

by virtue of (2.17) we have that Ãk
l̃

for (−1)l̃+k+ν = −1 is given entirely by coefficients

which vanish, and hence they vanish themselves.

Incidentally, from (2.18) we can see that if l is odd, the r.h.s. contains coefficients

which all vanish by (2.23), confirming the claim that only even powers of
√
~ appear in the

expansion of E.

2.2 How to use the BWDifference function

Here we present the BWDifference function which is incorporated into the updated

BenderWu [49] package of Mathematica. This function solves perturbatively the difference

equation of the form

H(X,P )Ψν(x) = EνΨν(x) (2.24)

were ν is the level number and H(X,P ) is the “Hamiltonian” which depends on the mo-

mentum and coordinate displacement operators X = e
√
~x and P = e

√
~p (with p = −i∂x),

in the polynomial manner, i.e. that

H(X,P ) =

smax∑
r=rmin

smax∑
s=smin

cr,s〈〈XrP s〉〉 (2.25)

for integer r and s (note that these can be negative as well). The 〈〈. . . 〉〉 indicates an order-

ing of X and P . A conventional ordering which renders the operator H(X,P ) Hermitian

is given by

〈〈XrP s〉〉 ≡ e
√
~(rp+sx) . (2.26)

This ordering is assumed by the BWDifference function. Furthermore the BWDifference

function assumes that at X = P = 1 (i.e. x = p = 0) the classical function H(X,P ) attains

(at least a local) minimum.

The BWDifference function produces a perturbative expansion of “energy” E at level

ν and an unnormalized wave-function Ψ(x), of the form given in (2.9). As we have shown

in the previous section, the energy is always in powers of ~, not
√
~. This means that all El

in equation (2.9) vanish whenever the l is odd. For this reason the code returns only even

coefficients of E, i.e. returns E2n. From now on when we talk about the “order” of the

perturbative expansion we will mean the number n, rather than the order of
√
~, for which

– 8 –
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we reserve the letter l. Now note that n = −1 is the leading order (i.e. classical energy)

which is identical to E−2 = H(X = 1, P = 1) and is of order 1/~ in our convention.

In order to access the BWDifference function, one must first install the BenderWu

package bundled with this work. Alternatively the most up-to-date version can be down-

loaded at

http://library.wolfram.com/infocenter/MathSource/9479/

After following the installation instructions, the package must be loaded via the

command

<<"BenderWu‘"

This allows the user to access all the functions in the BenderWu package, in particular the

BWDifference function relevant for this work.

Now let us see how the BWDifference function works. It takes in four essential argu-

ments: the form of the Hamiltonian H(X,P ), the name of the two variables X,P as a list

of two elements, i.e. {X,P}, the level ν, and the order lmax to which the energy Eν shall be

computed. The typical syntax is given by

BWDifference[X+P+1/(XP),{X,P},2,5]

which computes the perturbative expansion of the second level, to the 5th order in ~.

Once the computation is done, the function returns a list with three elements. The

first element is the list of coefficients {E−2, E0, E2, E4, E6, E8, E10}, while the second is a

matrix of coefficients Akl where the l-index denotes the rows and the k-index the columns.

The third element is not important for the user, and only serves for proper functioning of

the function BWProcess, which was introduced in [49]. Hence if we execute the command

BWDifference[X+P+1/(XP),{X,P},5][[1]]

we will get a list of perturbation series coefficients εl, which in this case is{
3,

5
√

3

2
,
77

72
,

145

432
√

3
,− 3077

279936

}
(2.27)

Alternatively one can use an option Output->"Energy" instead, i.e.

BWDifference[X+P+1/(XP),{X,P},2,5,Output->Energy]

with the same outcome as before.

– 9 –

http://library.wolfram.com/infocenter/MathSource/9479/


J
H
E
P
1
2
(
2
0
1
7
)
0
1
4

However a better way to use the code is to assign the output to a variable, and use the

function BWProcess introduced already in the original BenderWu package [49] to control

the output without having to recompute the expansion. In other words the benefit of using

the BWProcess function is that one can make a computation to a high order once, and

use the BWProcessto analyze the result without having to recompute the expansion. For

example, if we call the line

BW=BWDifference[X+P+1/(XP),{X,P},2,20];

it assigns the output of BWDifference to a variable BW, and hence contains all the per-

turbative information to order 20 in ~. In order to output the energy coefficients, we can

simply call

BWProcess[BW]

which produces the output{
3,

5
√

3

2
,

77

72
,

145

432
√

3
,− 3077

279936
, . . .

}
where the dots stand for the terms not written. Often the computation will involve many

terms, and the output can be quite bulky. Therefore the BWProcess function has an option

which allows the user to display only the limited order, for example

BWProcess[BW,Order->5]

Furthermore the BWProcess function can be used to specify the lower and upper bounds

of the perturbative order, as in

BWProcess[BW,Order->{5,10}]

which gives an output{
5
√

3

2
,

77

72
,

145

432
√

3
,− 3077

279936
,

25745

1679616
√

3
,− 1621121

906992640

}
To obtain the wave-function coefficients, all we need to do is to use the option

Output->"WaveFunction". For instance, calling the line

BWProcess[BW,Output->"WaveFunction", Order->5]//MatrixForm

produces an output
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −10
3 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 280
9 0 0 0 0 0 0

0 0 0 0 0 20
9 0 0 0 0 0 −15400

27 0 0 0

0 0 0 0 0 0 0 0 −392
9 0 0 0 0 0 1401400

81


The first row is Ak0, which is zero except for k = ν = 2. The second row is Ak1, the third

row Ak1, etc. To get the element A5
3, all we need is take the (4, 6) element of this output,

i.e. calling
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BWProcess[BW, Output -> "WaveFunction"][[4, 6]]

which returns
20

9
.

We can also use an option OutputStyle->"Series" to output the series (2.9) for the

wave-function. For example writing

BWProcess[BW, Output -> "WaveFunction",OutputStyle->"Series",

Order->1]

produces the following output

1− 1

18
gx
(√

3x2 − 3
)

+
1

648
g2
(

3x6 − 15
√

3x4 + 45x2 − 5
√

3
)
,

where g is5
√
~, so g3 is of order ~3. Note that the prefactor of (2.9) is not included. To

include it use the option Prefactor->True

BWProcess[BW, Output -> "WaveFunction",OutputStyle->"Series",

Order->6,Prefactor->True]

e−
1
4

√
3x2− ix

2

4

(
1− 1

18
gx
(√

3x2 − 3
)

+
1

648
g2
(

3x6 − 15
√

3x4 + 45x2 − 5
√

3
))

Let us define the wave-function and energy to the 10th order of ~ with the commands

psi[x_]:=Evaluate[BWProcess[BW, Output -> "WaveFunction",

OutputStyle -> "Series", Order -> 10, Prefacto r-> "True"]];

epsilon = BWProcess[BW, Output -> "Energy", OutputStyle -> "Series"];

The difference equation for the difference operator H = X + P + 〈〈1/(XP )〉〉, with X =

eigx, P = eigp, explicitly reads

ψ(x− ig) + egxψ(x) + e−gx−i
g2

2 ψ(x+ ig) = g2εψ(x) . (2.28)

To verify the above equation to order 20 in g =
√
~, we use execute

Simplify[Series[psi[x - I g] + Exp[x g] psi[x] +

Exp[-x g - I g^2/2] psi[x + I g] - g^2 epsilon psi[x],

{g, 0, 20}]]

which returns o[g21], so that the equation is satisfied at least to the 20th order in g =
√
~.

Finally we discuss briefly the option Imaginary. The solution of the difference equation

ψ(x) need not be real (up to a constant phase), and the coefficients Ãkl can have imaginary

parts. The example we studied so far returns purely real coefficients Ãkl (see appendix A).

When the coefficients are not real, the algorithm may slow down significantly, especially

if large orders need to be computed. In order to improve this, a refined algorithm is built

into the BWDifference function which speeds up the computation when the coefficients

are complex by separating the real and the imaginary parts of the coefficients. To switch

to the refined algorithm, one needs only to add Imaginary->True in the option list of the

BWDifference function. For concrete examples, see the example notebook included in the

BenderWu package.

5Note that this can also be changed by calling the option Coupling->Sqrt[hbar].
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3 Application: quantum mirror curves

We describe here the Hamiltonian operators arising from the quantisation of mirror curves

in topological string theory on toric fano Calabi-Yau threefolds, and then apply our Bender-

Wu algorithm to solve perturbatively the eigenvalue problem of the Hamiltonians.

3.1 Quantum mirror curves

Consider topological string theory on a toric Calabi-Yau threefold [87–90]. A toric Calabi-

Yau threefold XΣ can be succinctly described by its toric fan Σ. The toric fan consists of

nΣ + 3 1-cones and the triangulation of the convex hull of the 1-cones. The 1-cones are

subject to nΣ linear relations

nΣ+3∑
α=1

`(i)α v̄α = 0 , `(i)α ∈ Z , i = 1, . . . , nΣ . (3.1)

The Calabi-Yau condition demands that one can always rotate the toric fan so that the

endpoints of the 1-cones have coordinates

v̄α = (1, rα, sα) , rα, sα ∈ Z . (3.2)

It is therefore enough to present the toric fan by the image of the projection onto the plane

(1, •, •), a triangulated convex integral polygon whose vertices are

vα = (rα, sα) , α = 1, . . . , nΣ + 3 . (3.3)

We call this image the support of toric fan or simply the fan support, denoted by NΣ. A

toric Calabi-Yau threefold can have different fan supports which are related to each other

by SL(2,Z) n Z2(
rα
sα

)
7→

(
arα + bsα + c1

crα + dsα + c2

)
,

(
a b

c d

)
∈ SL(2,Z) , c1,2 ∈ Z , (3.4)

which preserves the linear relation vectors

`(i) = (`(i)α ) . (3.5)

Mirror symmetry dictates that the free energies of topological string theory on the

Calabi-Yau threefold XΣ can be computed from the mirror curve CΣ, a noncompact Rie-

mann surface, whose Newton polygon coincides with the fan support of XΣ. Therefore

given the fan support NΣ with vertices vα, the equation of CΣ reads

nΣ+3∑
α=1

aαerαx+sαy = 0 , x, y ∈ C . (3.6)

The coefficients aα in the equation (3.6) parametrise the complex structure moduli

space of the mirror curve. They are not all independent, as three of them can be scaled

to one through the C∗ scalings on ex, ey and an overall scaling. It is customary to set to
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1 three coefficients associated to vertices on the boundary; the number of internal vertices

gives the genus gΣ of the mirror curve. Due to physics consideration, the gΣ coefficients

associated to internal vertices are called the true moduli, while the remaining coefficients

associated to boundary vertices after fixing the (C∗)3 scaling are called mass parameters.6

In this paper for simplicity we restrict ourselves to fano Calabi-Yau threefolds whose

fan supports are reflexive, in other words convex Newton polygons with only one internal

vertex. Reflexive 2d polygons have been classified up to the SL(2,Z) isometry, and they

are listed in figure 1 (see for instance the construction in [91, 92]). Since they have a single

internal vertex, and it allows for a canonical way of writing down the curve equation by

putting the only internal vertex at the origin. For instance, the canonical equation for the

first polygon in figure 1 is

ex + ey + e−x−y + u = 0 , (3.7)

while the second polygon in figure 1 gives

ex + ey + e−x + e−x−y + u = 0 (3.8)

In these equations u is the true modulus of the model. Note the canonical form still enjoys

the SL(2,Z) isometry acting on the exponents

(ri, si) 7→ (ari + bsi, cri + dsi) ,

(
a b

c d

)
∈ SL(2,Z) . (3.9)

To quantise the mirror curve, we simply promote the coordinates x, y to quantum

operators x, p satisfying the canonical commutation relation [x, p] = i~ through the Weyl

quantisation prescription

erix+siy 7→ erix+sip . (3.10)

Here ~ is assumed to be real. For a genus gΣ mirror curve, one can in principle construct

gΣ mutually non-commutative Hamiltonian operators, each associated to a different true

modulus [65]. The mirror curve of a fano Calabi-Yau threefold is always of genus one, and

thus the associated Hamiltonian is unique. It is obtained by taking the l.h.s. of the canonical

equation of curve, removing the true modulus u, and then performing the quantisation

procedure. In the example of (3.7), we get

H = ex + ep + e−x−p . (3.11)

The SL(2,Z) isometry of the Newton polygon then corresponds to canonical transforma-

tions on x, p.

In this paper, we are interested in the eigenvalue problem of the Hamiltonian operator

associated to a toric fano Calabi-Yau threefold, in the following form7

H(x, p)Ψν(x) = eE
(ν)

Ψν(x) , (3.12)

6With rare exceptions, the topological string on a toric Calabi-Yau threefold engineers a 5d N = 1

supersymetric gauge theory. The true moduli are Coulomb moduli while the mass parameters are either

the masses of hypermultiplets or the fugacity of instanton counting.
7Whether we consider the perturbative series of the eigenvalue of H or its logarithm is a matter of

convention. In the results we discuss the expansion of E .
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where k is the level number. In [62] a conjectural quantisation condition was given using

the (refined) topological string free energies to solve exactly the spectrum of H(x, p). In this

paper, we are interested in the perturbative solution to the Hamiltonian eigenvalue prob-

lem, and we will not need the input of topological string. Clearly the Hamiltonian operator

is of the form (2.1), and so its eigenvalue problem can be treated by our BWDifference

function. We also call the polynomial of ex, ey before quantisation the Hamiltonian func-

tion H(x, y), and it is the analogue of the classical potential in a nonrelativistic quantum

mechanical problem.

Consider the perturbative expansion of E(ν) in terms of ~

E(ν) =

∞∑
n=0

~nE(ν)
n , (3.13)

which is an asymptotic series with zero radius of convergence. Hatsuda in [85] gave evidence

that for the second geometry in the list of figure 1 with the mass parameter set to 1, the

Borel sum of the perturbative eigenenergies for finite values of ~ agrees with the numerical

results, implying the Borel summability of the eigenenergy series. We want to expand

the exploration in [85] to other reflexive geometries with higher precision. The precision of

Borel resummation depends crucially on the order of asymptotic series that is included. [85]

fixed the coefficients of the perturbative eigenenergies by comparing the asymptotic series

with numerical eigenenergies computed by numerous small values of ~, and in this way, [85]

could only obtain up to order 36 of the perturbative eigenenergies for the said geometry.

Our BWDifference function provides a far more efficient way to compute perturbative

eigenenergies. For instance, for the same geometry the BWDifference function can easily

compute the eigenenergy series at level 0 up to order 100 within 240 seconds on an ordinary

desktop computer. This results in an agreement between the Borel sums with the numerical

results for ~ = π up to more than 25 digits, compared to only 12 matching digits in [85].

We analysed all sixteen reflexive Newton polygons listed in figure 1, corresponding

to all possible toric fano Calabi-Yau threefolds, for appropriately chosen values of mass

parameters. We find that for each model the poles of the Borel transforms of the perturba-

tive eigenenergies are never located on the positive real axis of the Borel plane, indicating

Borel summability. Besides, the Borel sums of the eigenenergies have very good agreement

with the numerical results, and the degree of agreement increases consistently when more

orders of perturbative series are used in resummation. We therefore confirm and expand

to all toric fano Calabi-Yau threefolds the observation in [85] that the Borel-Padé resum-

mation captures the exact eigen-energies. The details of the results are discussed in the

next section.

3.2 Results

We first write down in table 1 the Hamiltonian operators for each of the 16 reflexive

Newton polygons listed in figure 1. It is beneficial if we can rearrange the Hamiltonian

operator so that it is invariant under the reflection p 7→ −p. We call such an operator

p-parity even. From the point of view of perturbative calculation via the BWDifference
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1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Figure 1. Sixteen reflexive Newton polygons.

geometry Hamiltonian operator

F1 H = ex + e−x/2+p + e−x/2−p

F2 H = ex +m1e−x + ep + e−p

F3 H = ex + e−x/2+p + e−x/2−p +m1e−x

F4 H = ex + e−x+p + e−x−p +m1e−x

F5 H = ex/2−p + ex/2+p + e−x +m1e−x/2+p +m2e−x/2−p

F6 H = ex + ep + e−x−p +m1e−x +m2e−x+p

F7 H = ex/2−p + ex/2+p + e−x +m1ex +m2e−x/2+p +m3e−x/2−p

F8 H = ex + ep + e−x−p +m1ex+p +m2e−x +m3e−x+p

F9 H = ex+p + ex−p + e−x +m1ex +m2e−p +m3ep

F10 H = ex + ep + e−x−p +m1e−x +m2e−x+p +m3e−x+2p

F11 H = ex + ep + e−x−p +m1e−x +m2e−x+p +m3e−x+2p +m4e−p

F12 H = ex/2−p + ex/2+p + e−x +m1e−x/2+p +m2e−x/2−p +m3e2p +m4e−2p

F13 H = ex + e−x−2p + e−x+2p +m1ep +m2e−p +m3e−x−p +m4e−x+p +m5e−x

F14 H = ex+p/2 +m1ex−p/2 + e−x−3p/2 + e−x+3p/2 +m2e−p +m3ep +m4e−x−p/2 +m5e−x+p/2

F15 H = ex/2−p + ex/2+p + e−x +m1ex +m2e2p +m3e−2p +m4e−x/2+p +m5e−x/2−p

F16 H = ex/2−p + ex/2+p + e−x +m1e−x/2+p +m2e−x/2−p +m3e2p +m4e−2p +m5ex/2+3p +m6ex/2−3p

Table 1. Hamiltonian operators associated to the 16 reflexive Newton polygons arranged in such

a way that with appropriate values of mass parameters they are p-parity invariant, except for

F6, F8, F10, F11 which are marked out in gray.

function, the wave-functions of a p-parity odd Hamiltonian operator are complex, and

the computation is significantly slowed down compared to the cases where wave-functions

are real. This problem can be circumvented by turning on the option Imaginary->True

in the BWDifference function, which then separates the real and the imaginary parts

of complex wave-functions explicitly to cure the slowdown. From the point of view of

numerical calculation, when working in the coordinate representation, the p operator is

−i~∂/∂x. As a consequence, if the Hamiltonian operator is p-parity even, the Hamiltonian

matrix with entries 〈n|H|m〉 would be real symmetric instead of complex Hermitian, and

thus the matrix diagonalisation would be faster.

Here is an appropriate place to recall the method of numerical calculation of spectrum

(see for example [64]). We choose the basis of wave-functions in the domain of H to consist

of the eigenfunctions of the quantum harmonic oscillator with both mass and frequency

set to 1, i.e.

〈x|n〉 = ψn(x) =
1√

2nn!(π~)1/4
e−

x2

2~Hn

(
x√
~

)
, n = 0, 1, . . . . (3.14)
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Here Hn(x) are Hermite polynomials, and they obey the following orthogonality conditions∫ ∞
−∞

e−x
2
Hn1(x+ y)Hn2(x+ z)dx = 2n2

√
πn1!zn2−n1Ln2−n1

n1
(−2yz) , n1 ≤ n2 , (3.15)

where Lαn(z) are Laguerre polynomials. Then for the operator erx+sp, we have

〈n1|erx+sp|n2〉 =
√
n1!n2! e

|z|2
2 zn1 z̄n2

min(n1,n2)∑
k=0

1

k!(n1 − k)!(n2 − k)!

1

|z|2k
, (3.16)

where

z =
√
~/2(r + is) . (3.17)

Clearly the Hamiltonian matrix 〈n1|H|n2〉 is real and symmetric if and only if every mono-

mial erx+sp is paired with erx−sp, in other words, the Hamiltonian operator is p-parity

even.

Among the 16 reflexive Newton polygons, the Hamiltonians of all but four geometries,

namely F6, F8, F10, F11, can be put via a canonical transformation to a form that is p-

parity even for appropriately chosen values of mass parameters. This is the form of the

Hamiltonians presented in table 1.

When mass parameters are non-negative, the Hamiltonian functions for the operators

in table 1 have a unique minimum, as is shown in the appendix B8 for real values of x, y,

which is taken to be the classical ground state. The uniqueness of the classical ground state

also indicates the absence of real instantons, and could be related to the Borel summability

of the spectrum that we find here.

From the point of view of perturbative solutions, the BWDifference function expands

around a minimum of the Hamiltonian function which it assumes to be (x, y) = (0, 0).

Therefore when the actual minimum (x, y) = (x0, y0) is not at the origin, we have to shift

the coordinates x, y by hand

(x, y) 7→ (x+ x0, y + y0) (3.18)

before feeding the Hamiltonian function into the BWDifference function. Furthermore,

the BWDifference function runs much faster if the Hamiltonian function after the shift of

coordinates has no irrational coefficients. We can always achieve this by taking appropriate

values of mass parameters.

As we have seen, in order to most efficiently use the BWDifference function, we would

like to choose rational values of mass parameters such that

• the Hamiltonian operator is p-parity even (not applicable to F6, F8, F10, F11);

• the coordinates (ex0 , ey0) of the minimum of the Hamiltonian function are rational

numbers.

8In the case of F2 the mass parameter has to be positive for the minimum to exist.
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geometry mass parameters geometry mass parameters

F1 − F9 (2, 1, 1)

F2 (1) F10 (5/4, 1, 1)

F3 (14) F11 (3/4, 2, 1, 1/8)

F4 (2) F12 (7/2, 1, 7/2, 1)

F5 (7/2, 7/2) F13 (1, 1, 1/2, 1, 1/2)

F6 (1, 2) F14 (1, 1, 1, 3, 3)

F7 (1, 1, 1) F15 (1, 1, 1, 1, 1)

F8 (1/4, 2, 1) F16 (9/2, 1, 1/4, 9/2, 1, 1/4)

Table 2. Choices of mass parameters. An entry (c1, c2, . . .) means the mass parameters take values

(m1,m2, . . .) = (c1, c2, . . .).

We choose one set of mass parameters for each geometry satisfying these conditions, and

list them in table 2 (F1 has no mass parameter).

Let us focus for the moment on the polygon F2, which represents the Calabi-Yau

threefold called the canonical bundle over the Hirzebruch surface F0 or local F0, and we set

the mass parameter m1 = 1, as indicated in table 2. As already mentioned in section 3.1,

we can compute the perturbative series of the ground state energy up to order 100 with

relative ease. Now given the asymptotic series E(ν)(~), we can compute the Borel transform

B[E(ν)](ζ) =

∞∑
n=0

E(k)
n

n!
ζn , (3.19)

which is a convergent series. The Borel transform may have poles in the ζ-plane, also

known as the Borel plane, and the locations of the poles are the actions of the instantons

of the relevant quantum mechanical system. If no pole lies on the positive real axis, we

can perform the Laplace transformation on the Borel transform

S[E(ν)](~) =

∫ ∞
0

e−ζ/~

~
B[E(ν)](ζ)dζ , (3.20)

which results in an analytic function S[E(ν)](~) that is well-defined for finite values of ~.

The function S[E(ν)](~) has the property that its expansion around ~ = 0 coincides with the

asymptotic series we start with, which is E(ν)(~) in our case. This procedure of obtaining

an analytic function out of an asymptotic series is call Borel resummation. It is called the

Borel-Padé resummation if B[E(ν)](ζ) is replaced by the Padé approximant P[E(ν)](ζ) of

the Borel transform of a truncated series.

To study the Borel plane for the model of local F0 with m1 = 1, we plot in figure 2

the poles of P[E(ν)](ζ) for the series E(ν)(~) truncated at various orders, from order 70

up to order 100, with poles of lower order series more yellowish while poles of higher

order series more blueish. No stable poles of P[E(ν)](ζ) accumulate along the positive real

axis, in accord with the observation that the Hamiltonian function has a unique minimum

for real x, y, and one concludes that it is highly likely the perturbative series E(ν)(~) is

Borel summable.
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Figure 2. Poles of the Padé approximants P[E(ν)](ζ) of the Borel transform for the perturbative

ground state energy for F2 for orders from 70 to 100. The poles which are more yellow are of lower

order, while the poles which are more blue are of higher order Padé approximants.

order ~ = π ~ = 2π ~ = 11π/7

40 2.1549163995859648455449184602 2.881815429880211319432 2.57475086894731333042995

70 2.1549163995859659973128390136 2.881815429926294396204 2.57475086894890393702545

100 2.1549163995859659973135074608 2.881815429926296782625 2.57475086894890395737344

num. 2.1549163995859659973135074591 2.881815429926296782477 2.57475086894890395737295

Table 3. The Borel-Padé sums of the perturbative ground state energy E(0) of the local F0 with

m1 = 1 with various orders of truncation, compared with the stable numerical results. Underlined

are the digits of the Borel-Padé sums which are identical with the numerical results.

The positions of the poles are related to the asymptotic behavior of the coefficients

E
(k)
n . The large order factorial growth of the coefficients E

(ν)
n is expected to be dictated

by the saddles of the phase-space functional associated with the partition function of the

difference operator. Indeed preliminary studies of the model of local F0 indicate that

E
(0)
n (−1)n ∼ n!/(2|S|), where S is the action of a complex instanton tunneling from the

minimum at x = p = 0 to one of the closest complex minima (say p = 0, x = 2πi). On

the other hand, generic cases are complicated by the fact that the instanton actions are

complex (in the local F0 model the leading instanton action is real and negative). We leave

detailed studies of this kind for the future.

We proceed to compute the Borel-Padé sums of the perturbative ground state energy,

evaluate them at ~ = π, 2π, and 11π/7, and compare with the numerical results. As seen
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models ~ = π ~ = 2π ~ = 11π/7 order

F1 1.88885312929110349934403550512 2.56264206862381937081 2.28228027647413480906975 100

F2 2.1549163995859659973135074 2.881815429926296782 2.57475086894890395737 100

F3 2.74101669717594243806 3.3927922195048 3.112100386082561 120

F4 2.1549163995859659973135074 2.881815429926296782 2.57475086894890395737 100

F5 2.850113139905259687 3.634196540335 3.30016753794720 150

F6 2.4073757636270371349 3.24006352538625 2.888601794430404 100

F7 2.6978665638653729660730 3.597651612809098 3.21315711223810717 100

F8 2.50138703088653563645 3.39255629294437 3.0112549349998660 100

F9 2.6978665638653729660730 3.597651612809098 3.21315711223810717 100

F10 2.5058190837155466420 3.4580019916041 3.054589829399109 100

F11 2.6164661244154612 3.65403010865 3.210251444588 150

F12 3.2257191850930277499 4.2098442497572 3.785161831282169 140

F13 3.1191905717052696024792 4.41710867528169 3.86437075506602184 140

F14 3.45068437001909478426792 4.654856221339859 4.13566326073216628 120

F15 3.2995079539638215478335633 4.5447897991133861 4.010681919079852304 140

F16 3.6584971507031114577 4.99018215393 4.4078476317280 170

Table 4. Borel-Padé sums of the perturbative ground state energies for the models listed in table 2.

The presented digits are both stable and identical with numerical results. The last column gives

the orders of perturbative series used in the Borel-Padé sums.

in table 3, both sides agree extremely well: the column of ~ = π agrees to 26 identical

digits when 100 orders of ~ are taken. To better illustrate the success of the Borel-Padé

resummation, we define the matching degree between two numbers x1, x2

d(x1, x2) = − log10

∣∣∣∣x1

x2
− 1

∣∣∣∣ , (3.21)

which roughly speaking gives the number of identical digits between the two. We plot

in figure 3(b) the matching degree between the Borel-Padé sum and the numerical result

against the truncation order of the perturbative series. It is very satisfactory to see that the

matching degree grows up consistently with the perturbation order up to a very high value.

We perform the same analysis for the other 15 models listed in table 2. We find that in

all 15 models, there are no stable poles along the positive real axis in the Borel plane, and we

find agreement between the Borel-Padé sums of the perturbative ground state energy and

the numerical results, the degree of which improves consistently with increasing truncation

order of the perturbative series. The plots of matching degrees for all 15 models are given

in figures 3, 4. Finally, we give in table 4 for all models the digits of the Borel-Padé sums

which are both stabilised and identical with the numerical results.

We mention in passing that the underlying reason for the Borel summability of the

spectrum is likely a consequence of the fact that no real-positive action instanton solutions

exist in the limit of ~ → 0.9 To show this one would need to carefully study the stokes

phenomena as the phase of ~ is varied. We leave it as an open problem for the future.

9The reason for this is that the Hamiltonian operators have a unique minimum as a function of x and p

(see appendix B).
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Figure 3. Plots of numbers of identical digits (measured by matching degree defined in (3.21))

between Borel-Padé sums and numerical results against orders of perturbative series for F1, . . . , F6

with ~ = π (red), ~ = 11π/7 (purple), and ~ = 2π (green). The increasing trend in these plots is a

strong indication of the Borel summability of the spectrum.
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Figure 4. Same as in figure 3 for F9, . . . , F16 with ~ = π (red), ~ = 11π/7 (purple), and ~ =

2π (green).
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4 Conclusions and future prospects

In this paper, we are interested in solutions to the eigenvalue problem of Hamiltonian

operators which are difference operators, and in particular polynomials of ex, ep with the

commutation relation [x, p] = i~. We developed Bender-Wu like recursion relations that

solve eigenenergies and wave-functions perturbatively in small ~, and implemented the

algorithm for Mathematica in a function called BWDifference in the updated BenderWu

package, originally developed in [49]. Our algorithm is very efficient, capable of computing

more than one hundred orders of perturbative solutions for a typical Hamiltonian difference

operator in a reasonable amount of time.

Typical Hamiltonian difference operators appear in the quantisation of mirror curves in

topological string theory on toric Calabi-Yau threefolds. We studied all sixteen toric fano

Calabi-Yau threefolds, whose associated Hamiltonian operators are unique, and computed

the perturbative ground state energies for some choice of mass parameters. We find strong

evidence that the perturbative eigenenergies are Borel summable, and the Borel sums are

exact. Although we only studied and presented explicitly ground states, one can easily

check the situation is the same in excited states. A possible reason for Borel summability

is that the Hamiltonian difference operators arising in mirror curve quantization all have a

unique real minimum as a function of x and p, so that classical equations of motion do not

allow for real-positive-action instantons. However Borel summability (or even convergence)

does not always mean that the re-summation gives the correct result, and non-perturbative

corrections may still arise (see e.g. [9, 10, 93]). Nevertheless the perturbation theory is

factorially growing, and is likely dictated by the complex instanton (or ghost instanton)

solutions which are generically present in such systems. Our BWDifference function can

be used to address such features in detail.

In addition, the mirror curves associated to toric fano Calabi-Yau threefolds are all

genus-1 curves. In quantum mechanical systems with genus-1 curves obey a remarkable

relation — the Álvarez-Casares relation ([12–15], more examples are later found in [9, 10,

16, 94–97]) — between the trivial perturbation theory and perturbation theory around

instantons. Similar relation should exist for the ghost instantons of the quantum mirror

curves. However in this case, as we argued, such nonperturbative objects do not contribute

in the trans-series expansion, but rather dictate the asymptotic growth. Because of this,

we expect a form of self-resurgence [9] to hold, if the analogous Álvarez-Casares relation

holds in quantum mirror curves.

In this paper, we restrict ourselves to quantum mirror curves of fano Calabi-Yau three-

folds. It would also be interesting to look at more generic toric Calabi-Yau threefolds, whose

mirror curves have genera g great than one. There would be two different but related

quantum mechanical problems. The first is again the quantisation of mirror curves. The

associated Hamiltonian operators are no longer unique [65], but each of them still gives rise

to a one-dimensional quantum mechanical system. Alternatively, one could also look at the

cluster integral systems [54] associated to the toric Calabi-Yau threefolds. When the latter

are not fano, the cluster integral systems are higher dimensional, involving g mutually com-

mutative Hamiltonian operators, all of which are difference operators of the exponential-
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polynomial type. In order to study perturbatively the cluster integral systems, we would

need to generalise our algorithm to treat multivariable systems. In addition, it would be

desirable to further generalise the Bender-Wu algorithm for more generic difference oper-

ators, not necessarily of the exponential-difference type. Another interesting question is

whether our Bender-Wu solutions to the Hamiltonian difference operators, assuming wave-

functions can be expanded in terms of the wave-functions of harmonic oscillators, exhaust

all possible wave-functions in the domain D of the Hamiltonian difference operators.
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A The Bender-Wu recursion relations

We derive in detail here the solution to the following eigenvalue problem with Bender-Wu

type recursion relations,

H(
√
~ x̂,
√
~ p̂)Ψ(x) = EΨ(x) , (A.1)

where

H(
√
~ x̂,
√
~ p̂) =

∑
r,s

ar,se
√
~(rx̂+sp̂) , (A.2)

and x̂, p̂ satisfy the commutation relation

[x̂, p̂] = i . (A.3)

The Hamiltonian H(
√
~ x̂,
√
~ p̂) is assumed to have no linear term in x̂, p̂ in small ~

expansion. Therefore

H(x
√
~, p
√
~) =

∑
r,s

ar,s +
~
2

(Ax̂2 +Bp̂2 + C(x̂p̂+ p̂x̂)) +O(~3/2) , (A.4)

where

A =
∑
r,s

r2ar,s , B =
∑
r,s

s2ar,s , C =
∑
r,s

rs ar,s . (A.5)

We wish that in the limit ~→ 0 the Hamiltonian reduces to a harmonic oscillator. Therefore

we perform the canonical transformation

(x̂, p̂) 7→ (ξx̂, ξ−1p̂+ αξx̂) , (A.6)

with

α = −C/B , ξ =

(
B2

AB − C2

)1/4

. (A.7)
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so that to lowest orders the Hamiltonian operator becomes a simple harmonic oscillator

with unit mass and frequency

const. +
~
2

√
AB − C2

(
x̂2 + p̂2

)
. (A.8)

Hence we can define a reduced Hamiltonian

h
(√

~ x̂,
√
~ p̂
)

=
1

(1/2)
√
AB − C2

H
(√

~ ξx̂,
√
~ (ξ−1p̂+ αξx̂)

)
. (A.9)

Now we wish to solve the eigenvalue equation10

h
(√

~ x̂,
√
~ p̂
)
ψ(x) = ~εψ(x) . (A.10)

The eigenvalues and wave-functions are related to those of H
(√

~ x̂,
√
~ p̂
)

by

E =
~
2

√
AB − C2ε , Ψ(x) = ei

α
2
x2
ψ(x/ξ) . (A.11)

We also comment here that although h(
√
~ x̂,
√
~ p̂) is a difference operator, at any finite

order in
√
~ expansion it is a polynomial in x̂, p̂ and thus a finite order differential operator.

In order to solve the eigenvalue problem (A.10), it is convenient to write the coordinate

x̂ and momentum p̂ operators in terms of the creation and the annihilation operators

x̂ =
1√
2

(a† + a) , p̂ =
i√
2

(a† − a) . (A.12)

The operator h becomes

h

~
=

1

g2

∑
r,s

ãr,se
gβ(r,s)a†+gβ̄(r,s)a , (A.13)

where we labeled

g =
√
~/2 , β(r, s) = (αs+ r)ξ + is/ξ , ãr,s =

1√
AB − C2

ar,s . (A.14)

It can be checked by explicit calculations that∑
r,s

ãr,sβ(r, s) =
∑
r,s

ãr,sβ(r, s)2 = 0 ,
∑
r,s

ãr,s|β(r, s)|2 = 2 . (A.15)

It is beneficial to normal order the reduced Hamiltonian by writing all the annihilation

operators to the right of the creation operators. Using the BCH identity we can write h as

h

~
=

1

g2

∑
r,s

ãr,se
gβa†egβ̄ae|β|

2 1
2
g2

(A.16)

10Notice that if h is invariant under p → −p, then for every solution ψ(x) we have that ψ∗(x) is also a

solution. This means that we can always choose a real solution. This in turn will guarantee that all the A

and Ã-coefficient appearing below can be made real with the apropreate choice of normalization.
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or, by expanding the exponents

h

~
=
∑
r,s

∑
n1,n2,n3

ãr,s
βn1 β̄n2 |β|2n3

n1!n2!n3!
gn1+n2+2n3−2 1

2n3
(a†)n1an2 (A.17)

where n1, n2, n3 run from 0 to infinity.

Now we make a formal expansion of the wave-function and eigenvalue

ψ(x) =
∞∑

l,k=0

Akl g
lψk(x) , ε =

∞∑
l=0

εl−2g
l−2 , (A.18)

where ψk(x) are eigenfunctions of the simple harmonic oscillator with unit mass frequency

(i.e. ψν(x) are solutions of the leading order spectral problem). Using the fact that11

(a†)n1an2ψl =

√
k!(k + n1 − n2)!

(k − n2)!
ψk−n2+n1 , (A.19)

we get

∑
n1,n2,n3

∑
r,m

ãr,s
βn1 β̄n2 |β|2n3

n1!n2!n3!

1

2n3

√
k!(k + n1 − n2)!

(k − n2)!
Akl g

l+n1+n2+2n3−2ψk−n2+n1

=
∑
l,n

εn−2A
k
l g
l+n−2ψk .

(A.20)

By equationg powers of g and coefficients of ψk on both sides, we have

∑
n1,n2,n3

∑
r,m

ãr,s
βn1 β̄n2 |β|2n3

n1!n2!n3!2n3

√
(k + n2 − n1)!k!

(k − n1)!
Ak+n2−n1
l−n1−n2−2n3

=
∑
n

εn−2A
k
l−n . (A.21)

Notice that we can formally assume that n1,2,3 run from −∞ to +∞, noting that the

factorials have poles at negative integer values, and that Akl vanishes for negative k or

l. Then we can freely shift n1 → n1 + n2 without worrying about the limits of the sum,

and get

∑
n1,n2,n3

∑
r,m

ãr,s
βn1 |β|2(n2+n3)

(n1 + n2)!n2!n3!

1

2n3

√
(k − n1)!k!

(k − n1 − n2)!
Ak−n1

l−n1−2(n2+n3) =
∑
n

εn−2A
k
l−n . (A.22)

Now we shift n3 → n3 − n2 to get

∑
n1,n2,n3

∑
r,s

ãr,s
βn1 |β|2n3

(n1 + n2)!n2!(n3 − n2)!

1

2n3−n2

√
(k − n1)!k!

(k − n1 − n2)!
Ak−n1
l−n1−2n3

=
∑
n

εn−2A
k
l−n .

(A.23)

11Note that this expression vanishes if n2 > k, as it should, because the factorial function of negative

numbers is infinite.
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Notice that the sum over n2 can now be performed12

∞∑
n2=0

2n2

(n1 + n2)!n2!(n3 − n2)!(k − n1 − n2)!
=


F (−k + n1,−n3; 1 + n1; 2)

(k − n1)!n1!n3!
n1 ≥ 0

F (−k,−n1 − n3; 1− n1; 2)

2n1k!(−n1)!(n1 + n3)!
n1 < 0 .

(A.24)

where F (a, b; c; z) =2 F1(a, b; c; z) is the hypergeometric function. Relabeling n3 by q, n1

by n or −n if n1 is negative, we have that

∑
n≥0,q

∑
r,s

ãr,s
βn|β|2q

n!q!

1

2q

√
k!

(k − n)!
F (−k + n,−q; 1 + n; 2)Ak−nl−n−2q

+
∑
n<0,q

∑
r,s

ãr,s
β−n|β|2q

n!(q − n)!

1

2q−n

√
(k + n)!

k!
F (−k, n− q; 1 + n; 2)Ak+n

l+n−2q

=
∑
n

εn−2A
k
l−n . (A.25)

Finally we make the shift q → q+n in the second summation to make the expression above

in a nicer form.

∞∑
q=0

∑
r,s

ãr,s
|β|2q

q!

1

2q
F (−k,−q; 1; 2)Akl−2q

+

∞∑
n=1

∞∑
q=0

∑
r,s

ãr,s
|β|2q

n!q!

1

2q

(
βn

√
k!

(k − n)!
F (−k + n,−q; 1 + n; 2)Ak−nl−n−2q

+ β̄n
√

(k + n)!

k!
F (−k,−q; 1 + n; 2)Ak+n

l−n−2q

)
=

∞∑
n=0

εn−2A
k
l−n , (A.26)

where on the l.h.s. the n = 0 term has been singled out. This identity is valid for

any k, l ≥ 0.

12This simply follows from the definition of the hypergeometric function

F (a, b; c; z) =

∞∑
s=0

1

s!

(a)s(b)s
(c)s

zs ,

where (a)s = (a)(a + 1) . . . (a + s − 1) = Γ(a+s)
Γ(a)

. If a, b are negative integers −n,−m then we can use the

Gamma-function reflection formula to get that (−n)s = (−1)s n!
(n−s)! . Further if we take that c = q+ 1 with

q ∈ N0, we have that (q + 1)s = (q+s)!
q!

so that

F (−n,−m; q + 1; z) =

∞∑
s=0

q!n!m!

s!(n− s)!(m− s)!(q + s)!
zs ,

which gives
∞∑
s=0

1

s!(n− s)!(m− s)!(q + s)!
zs =

F (−n,−m; 1 + q; z)

q!n!m!
.
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Let us consider some examples for the identity (A.26). When l = 0, only terms with

q = 0, n = 0 contribute, and the identity reduces to∑
r,s

ãr,sA
k
0 = ε−2A

k
0 , ∀k ∈ N0 . (A.27)

Given that not all Ak0 can vanish, one finds the classical energy

ε−2 =
∑
r,s

ãr,s . (A.28)

When l = 1, using the identity (A.15) reduces to

ε−1 = 0 . (A.29)

Next we consider (A.26) when l ≥ 2. Note that the summand of the first summation

when q = 0 always cancels with the term proportional to ε−2 on the r.h.s., and that the

summand of the second summation when (n, q) = (1, 0), (2, 0) vanish due to the identi-

ties (A.15). Therefore (A.26) becomes

(2k + 1− ε0)Akl +

b l+2
2
c∑

q=2

∑
r,s

ãr,s
|β|2q

q!

1

2q
F (−k,−q; 1; 2)Akl+2−2q

+

b l+2
2
c∑

q=0

l+2−2q∑
n=max(1,3−2q)

∑
r,s

ãr,s
|β|2q

n!q!

1

2q

(
βn

√
k!

(k − n)!
F (−k+n,−q; 1+n; 2)Ak−nl+2−n−2q

+ β̄n
√

(k + n)!

k!
F (−k,−q; 1 + n; 2)Ak+n

l+2−n−2q

)
=

l∑
n=1

εnA
k
l−n . (A.30)

Here we have shifted the index l → l + 2 on both sides, n → n + 2 on the r.h.s., and

then singled out the terms proportional to Akl . Now notice that the sums on both the left

and right hand side contain only coefficients Ak
l̃

with l̃ < l. So by inserting l = 0 all that

remains is

(2k + 1− ε0)Ak0 = 0 , k ∈ N0 . (A.31)

Since not all Ak0 vanish, this identity can only be true if for some nonnegative integer ν

ε0 = 2ν + 1, Aν0 = γ 6= 0 and Ak0 = 0 , ∀k 6= ν , (A.32)

where γ is an arbitrary nonvanishing constant. ν serves as the level of the eigenvalue/wave-

function solution. Fixing the level ν, we can normalise the wave-function so that

Aνl = 0 , ∀l > 0 . (A.33)

Following the normalisation of wave-function above, (A.30) gives us two recursion

relations that solve Akl and εl respectively. Assuming that Ak
l̃

and εl̃ are known for all
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l̃ < l, the expansion coefficients Akl and εl can be solved from

Akl =
1

2(k − ν)

(
−
b l+2

2
c∑

q=2

∑
r,s

ãr,s
|β|2q

q!

1

2q
F (−k,−q; 1; 2)Akl+2−2q

−
b l+2

2
c∑

q=0

l+2−2q∑
n=max(1,3−2q)

∑
r,s

ãr,s
|β|2q

n!q!

1

2q

(
βn

√
k!

(k − n)!
F (−k+n,−q; 1+n; 2)Ak−nl+2−n−2q

+ β̄n
√

(k + n)!

k!
F (−k,−q; 1 + n; 2)Ak+n

l+2−n−2q

)
+

l−1∑
n=1

εnA
k
l−n

)
, k 6= ν . (A.34)

and

εlγ =

b l+2
2
c∑

q=2

∑
r,s

ãr,s
|β|2q

q!

1

2q
F (−ν,−q; 1; 2)Aνl+2−2q

+

b l+2
2
c∑

q=0

l+2−2q∑
n=max(1,3−2q)

∑
r,s

ãr,s
|β|2q

n!q!

1

2q

(
βn

√
ν!

(ν−n)!
F (−ν+n,−q; 1+n; 2)Aν−nl+2−n−2q

+ β̄n
√

(ν + n)!

ν!
F (−ν,−q; 1 + n; 2)Aν+n

l+2−n−2q

)
, (A.35)

obtained from (A.30) by taking k 6= ν and k = ν respectively.

The recursion relations can be improved from practical point of view. The appear-

ance of square roots in the formulae slows down significantly the computation when it is

implemented in Mathematica, since Mathematica treats irrational parts as if they were

unevaluated variables. Fortunately we can eliminate the irrational coefficients simply by

rescaling the coefficients Akl and by defining

Ãkl = Akl
√
k! , (A.36)

the recurrence equations then become

Ãkl =
1

2(k − ν)

(
−
b l+2

2
c∑

q=2

∑
r,s

ãr,s
|β|2q

q!

1

2q
F (−k,−q; 1; 2)Ãkl+2−2q

−
b l+2

2
c∑

q=0

l+2−2q∑
n=max(1,3−2q)

∑
r,s

ãr,s
|β|2q

n!q!

1

2q

(
βn

k!

(k − n)!
F (−k + n,−q; 1 + n; 2)Ãk−nl+2−n−2q

+ β̄nF (−k,−q; 1 + n; 2)Ãk+n
l+2−n−2q

)
+

l−1∑
n=1

εnÃ
k
l−n

)
. (A.37)
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and

γεl =
1√
ν!

{ b l+2
2
c∑

q=2

∑
r,s

ãr,s
|β|2q

q!

1

2q
F (−ν,−q; 1; 2)Ãνl+2−2q

+

b l+2
2
c∑

q=0

l+2−2q∑
n=max(1,3−2q)

∑
r,s

ãr,s
|β|2q

n!q!

1

2q

(
βn

ν!

(ν − n)!
F (−ν + n,−q; 1 + n; 2)Ãν−nl+2−n−2q

+ β̄nF (−ν,−q; 1 + n; 2)Ãν+n
l+2−n−2q

)}
. (A.38)

Now by choosing γ = 1√
ν!

we can get rid of the square roots in the above formula

εl =

b l+2
2
c∑

q=2

∑
r,s

ãr,s
|β|2q

q!

1

2q
F (−ν,−q; 1; 2)Ãνl+2−2q

+

b l+2
2
c∑

q=0

l+2−2q∑
n=max(1,3−2q)

∑
r,s

ãr,s
|β|2q

n!q!

1

2q

(
βn

ν!

(ν − n)!
F (−ν + n,−q; 1 + n; 2)Ãν−nl+2−n−2q

+ β̄nF (−ν,−q; 1 + n; 2)Ãν+n
l+2−n−2q

)
. (A.39)

Notice that this choice sets Ãν0 = γ
√
ν! = 1, eliminating the irrational factors from the

equation.

However, another source of irrational factors can be ξ which appears in the definition

of β. However from (A.13), we can see that by defining β̃ to be β = ξβ̃ and appropriately

rescaling of the coupling, the difference equations can be converted to involve only ξ2 in

the imaginary part of β̃.

A little thought reveals that the difference equation can be setup in such a way that the

real part of Ã-coefficients depend only on the even power of ξ2, while the imaginary part

always contains an odd power of ξ2. This means that the real part contains no irrational

factors, for a choice of rational choice of all ar,s, and, if ξ2 is irrational, the imaginary part

of Ã will be always proportional to ξ2, multiplying a rational number.

By splitting the difference equation for Ã into its real and imaginary parts, the irra-

tional coefficients appear in a predictable manner, and such treatment of the difference

equations whenever the imaginary part of Ã is non-vanishing, speeds up the Mathematica

algorithm of the package significantly. To activate this feature one needs to call the option

Imaginary->True in the BWDifference function, as described in the text.

B Proof of uniqueness of minima

We prove here that the Hamiltonian of the form (1.2) with positive ar,s ≥ 0 has a unique

real minimum or no minimum as a function of x and p. Equivalently we can also prove
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that as a function of X = e
√
~x and P = e

√
~p there is a unique minimum such that

P > 0, X > 0.

The proof goes as follows. The minimum satisfies the equation

∂XH = ∂PH = 0 . (B.1)

We have that

∂XH =
∑
r,s

ar,srX
r−1P s =

rmax∑
r=rmin

rXr−1Br = 0 (B.2)

where

Br =
∑
s

ar,sP
s . (B.3)

It is clear that for any P > 0 we have that Br ≥ 0. Now the equation (B.2) can be

multiplied by X−rmin+1 to yield

rmax∑
r=rmin

rXr−rminBr = 0 . (B.4)

Since Br > 0, we have two options. If rmin ≥ 0 then the above polynomial has only positive

coefficients. If rmin < 0 then the coefficients of Xk with k < −rmin have a negative sign,

while the rest are positive. We now invoke the rule of Decartes which says that the number

np of positive real roots of a polynomial is less then or equal to the number of the monomial

sign variations of the coefficient. Since this sign variation is 0 or 1, we must have at most

one solution.

The same argument can be invoked to show that the equation ∂PH = 0 has only one

solution in P for any X > 0. This concludes our proof.

Open Access. This article is distributed under the terms of the Creative Commons
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any medium, provided the original author(s) and source are credited.
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[28] M. Shifman and M. Ünsal, QCD-like Theories on R3 × S1: a smooth journey from small to

large r(S1) with double-trace deformations, Phys. Rev. D 78 (2008) 065004

[arXiv:0802.1232] [INSPIRE].

[29] M.M. Anber and T. Sulejmanpasic, The renormalon diagram in gauge theories on R3 × S1,

JHEP 01 (2015) 139 [arXiv:1410.0121] [INSPIRE].
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