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1 Introduction

Reproducibility is a basic tenet of science — in particular as regards experimental results

— but it also applies to theoretical subjects. In fields were many researchers work, this

is no great problem. However, there are areas of theoretical physics which are not that

populated. The theory of massless higher helicity fields in Minkowski light-front space-time

is one such area. This is so even though higher spin gauge field theory itself has become a

very active subject.1

In the early 1990’s, R. Metsaev studied quartic interactions for higher spin fields [4, 5]

in the light-front gauge. As I have been myself interested in that problem for a long time

1There indeed seems to be a renewed interest in Minkowski space higher spin theory as evidenced for

instance by recent work [1–3].
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I have decided to see if I can reproduce Metsaev’s results and perhaps extend on them,

using the momentum space vertex operator approach of our 1987 paper [6]. Based on

systematisation and extension of the results of that paper — done in [7] and [8] — the

present paper offers a first step in the study of the general quartic vertex operator.2

As regards the contents of the Metsaev papers, there are two main results (apart from

a formal solution for the quartic interaction itself): first, that there are quartic vertices

that are Poincaré invariant by themselves independently of the cubic vertices. Second, that

the coefficients for the cubic vertices are determined to have a certain form by Poincaré

invariance at the quartic level. The first result we will be able to verify in the present

paper. The second result will be investigated in a subsequent paper. A detailed term-by-

term comparison is planned for a separate work.

One further object of the present paper is to understand the very structure of the light-

front vertex computations. Due to the complexity of the problem, such understanding will

presumably be critical to an attempt at the quintic order. Of course, after that, proceeding

order by order is likely to be too hard and not very illuminating. The more interesting goal

is an all orders existence proof of Minkowski light-front higher spin interactions. Such a

proof — if it indeed can be constructed — must rely on generic properties of the deformation

equations for the vertices and deep understanding of what the equations mean.

This is the plan: section 2 sets up the free field theory (for more details, see [7]). In

section 3 some very useful results on cubic and quartic momentum kinematics is reviewed

(for more details, see [8]). The quartic kinematics is crucial for the efficient study of the

interactions and seems not to have been explicitly stated before. Section 4 sets up the

general scheme for light-front interactions (for more details, see [7]). Section 5 derives the

well known cubic vertex operator, but in a streamlined form amenable to generalisation

to higher orders. In section 6 then, the homogeneous part of the quartic vertex operator

is studied.

The terminology homogeneous stems from the fact that the equations determining the

vertex operator of order ν are first order differential equations in the light-front p+ mo-

mentum with right hand sides given by lower order vertices. In this paper we only study

the solution to the corresponding homogeneous equation. This means that we are study-

ing quartic interactions that are independent of the cubic interactions.3 The calculations

needed are spelled out in detail (which has not been done before) in order to better un-

derstand them. In section 7, the generic structure of quartic vertices will be discussed and

examples of homogeneous contact interactions will be given.

Consequences of the existence of solutions to the homogeneous equation are discussed

in section 8. The constructibility assumption — in the sense that quartic amplitudes can

be reconstructed from the cubic interaction vertices only — made in BCFW derivations

of the quartic higher spin amplitude [10, 11] (for a review from a light-front perspective,

2As far as I’m aware of, there are other groups working on this problem at the present time. This is very

good and hopefully we will be able to settle the question (through independent but related efforts) about

the existence of consistent quartic interactions in the near future.
3Such interactions have been previously studied by M. Taronna in a covariant formalism in [9].
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see also [12]) may not apply.4 Provided higher order consistency does not rule out the

new quartic vertices, their presence may circumvent BCFW based no-go arguments as to

the possibility of a consistent Minkowski space-time higher spin theory. The question of

constructibility has also been recently discussed within a concrete tree level calculation of

a scalar four-point amplitude [1] with a tower of higher spin particles in the channel. For

further comments on this, see section 8.5

Let me end the introduction with a comment about the philosophy guiding this work.

Throughout the text, I have inserted some understanding remarks. It has for a long time

been my opinion that the problem of constructing free-standing higher spin theories (as

opposed to when higher spins occur as excitations in other models) is to a large extent

a problem of controlling the inherent complexity of the problem (see my paper [15]). In

AdS spaces this is achieved by the Vasiliev equations [16–20], but in Minkowski space-time

we have nothing of that strength. It could perhaps be speculated that in order to solve

the problem one would need to go outside the context of set-based mathematics and work

in some more general category [21] in order to dissolve the problem by raising the level

of abstraction. But as physicists, we still want to make computations and get real and

complex functions out.

On the other hand, the D = 4 light-cone is as concrete as it gets. Working with only

physical fields is a great simplification, especially in four dimensions where there are just the

two helicities for each and every spin. The backside is the non-covariance of the formalism

that easily produces formulas that are hard to handle. The understanding remarks are

meant to highlight what is in my opinion important (although often simple) insights into

to workings of the light-front formalism. Looked upon in the right way, the light-front may

be more transparent than it seems at first. And as some workers has noted (in particular

S. Ananth [22]), the light-front formalism is very close to the spinor helicity formalism

(further explored in a recent paper [3]) and to twistor theory [23], furthermore hinting at

an underlying simplicity that we just haven’t uncovered yet.

2 Free light-front higher helicity fields

Fields of all integer helicities can be collected in a Fock space field

|Φ(p)〉 =

∞∑
λ=0

1√
λ!

(
φλ(p)(ᾱ†)λ + φ̄λ(p)(α†)λ

)
|0〉 (2.1)

where p is short for p, p̄ and γ = p+. This Fock space field is real in the sense that

|Φ(p)〉† = 〈Φ(p)| =
∞∑
λ=0

1√
λ!
〈0|
(
φ̄λ(p)(α)λ + φλ(p)(ᾱ)λ

)
(2.2)

4BCFW constructibility of flat space higher spin theory in relation to quartic interactions has also been

discussed in [13, 14] based on [10, 11].
5It should perhaps be pointed out that the considerations in the present paper are entirely within

classical field theory. We are searching for classical interaction terms contributing to a Poincaré invariant

action for a higher spin theory formulated on the Minkowski light-front. Inconsistencies may well turn up

in the corresponding quantum theory, even though the vertices found here may evade one particular kind

of inconsistency.
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The two-dimensional complex internal Fock space is spanned by oscillators α† and ᾱ† where

[α, ᾱ†] = [ᾱ, α†] = 1 (2.3)

In the interacting theory, a shorthand notation is used: |Φr〉 stands for |Φ(γr, pr, p̄r)〉
expanded over α†r and ᾱ†r and correspondingly for 〈Φr|. In an ν-order interaction term, r

will run from 1 to ν and serve as a label on the fields. The field (2.1) is subject to the

tracelessness constraint T |Φ〉 = 0 with T = ᾱα that prevents mixed excitations such as

α†ᾱ†. However, the theory works just as well if such excitations are allowed (for details,

consult [7]). The free theory Hamiltonian is

H(0) =
1

2

∫
γdγdpdp̄〈Φ(p)|h|Φ(p)〉 with h =

pp̄

γ
and γ = p+ (2.4)

3 Kinematics

The kinematics of the interactions are such that for an order ν interaction we have mo-

mentum conservation
ν∑
r=1

pr =

ν∑
r=1

p̄r =

ν∑
r=1

γr = 0 (3.1)

It is convenient to write the transverse momentum dependence in terms of the combinations

Pij = γipj − γjpi and P̄ij = γip̄j − γj p̄i (3.2)

The number of Pij for an order ν vertex is n = ν(ν−1)/2. Due to momentum conservation,

only n − 2 of those are linearly independent. For the cubic, ν = 3, this means that there

is only one P = P12 = P23 = P31 and similarly for P̄.

Based on this it is possible to derive linear recombination formulas. Let cr be arbitrary

variables, then we have for the cubic

3∑
r=1

crpr =
1

3

(
3∑
r=1

crγr

)(
3∑
s=1

ps
γs

)
− 1

3

(
3∑
r=1

Srcr

)
P (3.3)

where Sr = 1/γr+1 − 1/γr+2. In this formula, the objects

3∑
s=1

ps
γs

and P (3.4)

are independent basis vectors in the two-dimensional transverse momentum space

(p1, p2, p3).

For the quartic [8] we have in the {P12,P34} basis (corresponding to the s-channel)

4∑
r=1

crpr =
1

4

(
4∑
r=1

crγr

)(
4∑
s=1

ps
γs

)
− 1

4

(
4∑
r=1

S12,rcr

)
P12−

1

4

(
4∑
r=1

S34,rcr

)
P34 (3.5)

In this formula, the objects
4∑
s=1

ps
γs
, P12 and P34 (3.6)
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are independent basis vectors in the three-dimensional transverse momentum space

(p1, p2, p3, p4). The coefficients S12,r and S34,r are rational functions of the γ’s given by

S12,1 =
3γ2 + γ1

γ2(γ1 + γ2)
S34,3 =

3γ4 + γ3

γ4(γ3 + γ4)
(3.7)

S12,2 = − 3γ1 + γ2

γ1(γ1 + γ2)
S34,4 = − 3γ3 + γ4

γ3(γ3 + γ4)
(3.8)

S12,3 =
γ3(γ1 − γ2)

γ1γ2(γ1 + γ2)
S34,1 =

γ1(γ3 − γ4)

γ3γ4(γ3 + γ4)
(3.9)

S12,4 =
γ4(γ1 − γ2)

γ1γ2(γ1 + γ2)
S34,2 =

γ2(γ3 − γ4)

γ3γ4(γ3 + γ4)
(3.10)

The coefficients are listed so that it is easy to see that the formula is symmetric under the

interchange of labels 1↔ 3 and 2↔ 4. Similar formulas can be written for t-channel and

u-channel variables.

Remark 1 (Understanding the kinematics) The importance of the formulas (3.3)

and (3.5) cannot be over stressed. The cubic equation was used in light-front string field

theory in the 1980’s. The quartic is to the best of my knowledge new, and it generalises to

any interaction order [8]. One way of viewing these equations is to see that they allow us

to separate the kinematical from the truly dynamical, the dynamics pointing in the Pij and

P̄ij directions. The meaning of this comment will be clear as we continue.

4 Interactions

The interaction Hamiltonian of order ν is written as

H(ν−2) =
1

ν

∫ ν∏
r=1

γrdγrdprdp̄r〈Φr|V1...ν〉 (4.1)

where the ν-th order vertex is

|V1...ν〉 =

(
g

κ

)4−ν

exp ∆ν |01...ν〉Γ−1
ν δ(

∑
rγr)δ(

∑
rpr)δ(

∑
rp̄r) (4.2)

where Γν = γ1γ2 · · · γν . The power of the coupling is determined by dimensional analysis

and g has mass dimension 0 and κ mass dimension −1. There are further dimensionful

factors in the ∆ν operators so that the spin 1 coupling come out as dimensionless.

In the following, the momentum integrations will be considered to be included as part

of the Fock space inner product 〈 | 〉. The momentum delta functions and the factor Γ−1
ν

will be included in the vacua. This gives the following shorthand expressions, where we

also give the dynamical Lorentz generators

H(ν−2) =
1

ν

ν∏
r=1

〈Φr|V1...ν〉

J−(ν−2) =
1

ν

ν∏
r=1

〈Φr|x̂(ν)|V1...ν〉

J̄−(ν−2) =
1

ν

ν∏
r=1

〈Φr|ˆ̄x(ν)|V1...ν〉

(4.3)
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The vertex |V1...ν〉 and the vacuum |∅1...ν〉 are given by

|V1...ν〉 = (gκ−1)4−ν exp ∆ν |∅1...ν〉
|∅1...ν〉 = Γ−1

ν δ(
∑

rγr)δ(
∑

rpr)δ(
∑

rp̄r)|01...ν〉
(4.4)

Interaction data is encoded in the ∆ν and the x̂(ν) and ˆ̄x(ν). The dynamical generators to

all orders are now given by

H = H(0) +

∞∑
ν=3

H(ν−2) (4.5)

and similar expressions for the dynamical Lorentz generators J− and J̄−. The dynamical

part of the Poincaré algebra then yields recursive equations for ∆ν and the x̂ν and ˆ̄xν . In

trying to solve these equations we need an ansatz. The form of such an ansatz is restricted

by the kinematical part of the algebra (see [7] for details).

The operators (4.3) generate transformations according to

δG|Φ〉 = [|Φ〉, G] (4.6)

The exact workings of the commutator [·, ·] can be found in reference [7]. For two generic

dynamical generators A and B and a field |Φχ〉 we have

[δA, δB]|Φχ〉 = 0 (4.7)

Expanding this equation a few orders in the interaction we get

Free: [δ
(0)
A , δ

(0)
B ]|Φχ〉 = 0

Cubic:
(
[δ

(0)
A , δ

(1)
B ] + [δ

(1)
A , δ

(0)
B ]
)
|Φχ〉 = 0

Quartic:
(
[δ

(0)
A , δ

(2)
B ] + [δ

(2)
A , δ

(0)
B ]
)
|Φχ〉 = −[δ

(1)
A , δ

(1)
B ]|Φχ〉

(4.8)

The general form of these deformation equations can be written as

(
[δ

(0)
A , δ

(ν)
B ] + [δ

(ν)
A , δ

(0)
B ]
)
|Φχ〉 = −

ν−1∑
µ=1

(
[δ

(µ)
A , δ

(ν−µ)
B ] + [δ

(ν−µ)
A , δ

(µ)
B ]

)
|Φχ〉 (4.9)

The left hand side will be called the differential commutator and the right hand side

the source commutator. The equations become first order differential equations for the

γr dependence of the ∆ν operators. The differential commutator can be further reduced

to a concrete form suitable for calculation. We list the three differential commutators

corresponding to the dynamical part of the algebra.

ν∑
r=1

j−r |V1...ν〉 −
ν∑
r=1

hrx̂(ν)|V1...ν〉 (4.10a)

ν∑
r=1

j̄−r |V1...ν〉 −
ν∑
r=1

hr ˆ̄x(ν)|V1...ν〉 (4.10b)

ν∑
r=1

j̄−r x̂(ν)|V1...ν〉 −
ν∑
r=1

j−r ˆ̄x(ν)|V1...ν〉 (4.10c)
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In these expressions, j− and j̄− are the free theory dynamical Lorentz generators

j− = xh+ ip
∂

∂γ
− i

γ
Mp

j̄− = x̄h+ ip̄
∂

∂γ
+
i

γ
Mp̄

(4.11)

where M = α†ᾱ− ᾱ†α is the helicity operator.

General ansatz: the ansatz for the contributions to ∆ν can be taken as

Y r1...rks1...slt1...tmu1...unα†r1 . . . α
†
rk
ᾱ†s1 . . . ᾱ

†
sl
pt1 . . . ptm p̄u1 . . . p̄un (4.12)

where summations are understood and the complex conjugate should be added. The Y are

symmetric in the r, s, t, u labels separately. However, the transverse momentum structure is

dramatically simplified by instead using the combinations Pij and P̄ij (see formulas (3.2)).

This will be done henceforth.

There is one further point that can be simplified for a generic vertex operator. The

oscillator basis always takes the same form apart form the range of the label sums

{1, 2, . . . , ν}. Introduce the shorthand notation

A†
kl̄

= α†r1 . . . α
†
rk
ᾱ†s1 . . . ᾱ

†
sl

(4.13)

with complex (not hermitean) conjugates

A†
k̄l

= ᾱ†r1 . . . ᾱ
†
rk
α†s1 . . . α

†
sl

(4.14)

There is of course permutational symmetry in the field labels ri and sj that is implicit in

A†
kl̄

and A†
k̄l

.

Remark 2 (Understanding the advantage of this formulation) This setup and

formalism may seem redundant but it has the advantage that the higher spin fields

themselves may be factored out of the computations. Colour ordering issues for odd spin

fields does not interfere with the derivations of the equations for the vertex operators.

Such questions can be postponed until particular vertices for particular fields need to be

written down. All interaction data is maintained by the Y -functions in the operators ∆.

Furthermore, the dependence on transverse momenta is expressed in powers of the Pij and

P̄ij variables. Thus, interaction data is essentially encoded in these integer powers and

rational functions of the p+
i momenta, that is, the γi variables.

5 Review of the cubic vertex operator

For the cubic vertex we may use the general ansatz

∆3 = %Y (k)(l)mn
(
A†
kl̄
Pm P̄n +A†

k̄l
P̄m Pn

)
(5.1)

where Y (k)(l)mn are real rational functions of the γr to be determined and % is a dimensionful

coupling factor. The notation (k) and (l) serves as a reminder that the Y -functions have

– 7 –
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full permutational symmetry in the field labels ri and sj respectively. The formula should

be interpreted such that k and l are summed k = 1, 2, . . . and l ≤ k and the explicit form is

Y (k)(l)mnA†
kl̄

=
∑

r1...rk,s1...sl

Y r1...rks1...slmnα†r1 . . . α
†
rk
ᾱ†s1 . . . ᾱ

†
sl

(5.2)

Note that k − l = n−m from j-rotational invariance in the transverse space. The ansatz

is such that ∆ν is real. For m = n (and therefore k = l) the two terms in the ansatz

are equal. The ansatz is redundant as it stands since terms with P P̄ corresponds to field

redefinitions of the free hamiltonian. They can be removed by keeping only terms with

either m = 0 or n = 0. Thus it is enough to use

∆3 = %3Y
(k)(l)n

(
A†
kl̄
P̄n +A†

k̄l
Pn
)

(5.3)

with m = 0 and n = k − l.
The ansatz for the Lorentz prefactor x̂3 is such that there is one term for each term in

∆3 but with one factor less of P̄. Correspondingly, the ansatz for the Lorentz prefactor ˆ̄x3

is such that there is one term for each term in ∆3 but with one factor less of P. Thus

x̂3 = arxr + %3c
(k)(l)nA†

kl̄
P̄n−1

ˆ̄x3 = ārx̄r + %3c̄
(k)(l)nA†

k̄l
Pn−1

(5.4)

A note on the coupling factors: the coupling factor %3 will be suppressed in the

ensuing computations only to be reinstated at the end. The notation %ν will be used to

distinguish coupling factors corresponding to different vertex orders ν. As we will see, the

dimension of the coupling factors will depend on k and l so we can write %ν(k,l) to keep

track of this fact.

5.1 Computation of a differential commutator

Let us do the commutator (4.10a), that is
∑ν

r=1 j
−
r |V1...ν〉 −

∑ν
r=1 hrx̂(ν)|V1...ν〉. There are

four terms contributing to this commutator and we list and compute them one by one.

Terms from xh: these are (see the first formula of (4.11))∑
r

xrhr|V 〉 =
∑
r

(
hrxr + [xr, hr]

)
|V 〉

=
∑
r

hr
(
[xr, e

∆] + e∆xr
)
|∅〉+ i

∑
r

pr
γr
|V 〉

=
∑
r

hr[xr, e
∆]|∅〉+

∑
r

e∆hrxr|∅〉+ i
∑
r

pr
γr
|V 〉

(5.5)

In the last line, the second and the third terms will cancel contributions from the other

parts of the commutator (4.10a). To compute the first term, note that hr[xr, ·] will act on

each and every P and P̄ in ∆ with the result

3∑
r=1

hr[xr,P] = 0 and
3∑
r=1

hr[xr, P̄] =
i

3

(
P

3∑
r=1

p̄r
γr

+ P̄
3∑
r=1

pr
γr

)
(5.6)

– 8 –



J
H
E
P
1
2
(
2
0
1
6
)
1
3
4

The first term on the last line of (5.5) therefore becomes

in

3
Y (k)(l)n

(
P

3∑
r=1

p̄r
γr

+ P̄
3∑
r=1

pr
γr

)
P̄n−1

Akl̄|V 〉 (5.7)

Terms from ip ∂
∂γ

: these terms are computed using

3∑
r=1

pr
∂

∂γr
P = 0 and

3∑
r=1

pr
∂

∂γr
P̄ =

1

3

(
P̄

3∑
r=1

pr
γr
− P

3∑
r=1

p̄r
γr

)
(5.8)

and noting the action on the |∅〉 vacuum∑
r

pr
∂

∂γr
Γ−1δ(

∑
rγr) = −

∑
r

pr
γr
δ(
∑

rγr) (5.9)

Using this we get

i
∑
r

pr
∂

∂γr
e∆|∅〉 = i

∑
r

(
pr
∂∆

∂γr

)
e∆|∅〉+ i

∑
r

e∆pr
∂

∂γr
|∅〉

= i
∑
r

pr
∂Y (k)(l)n

∂γr
P̄n Akl̄|V 〉+ i

∑
r

pr
∂Y (k)(l)n

∂γr
Pn Ak̄l|V 〉

+
in

3
Y (k)(l)n

(
P̄

3∑
r=1

pr
γr
− P

3∑
r=1

p̄r
γr

)
P̄n−1

Akl̄|V 〉−i
∑
r

pr
γr
|V 〉

(5.10)

where the last term cancels the third term from the last line of (5.5).

Terms from − i
γ
Mp: the annihilators in M act on the creators in ∆ inserting a term

p/γ for every α† and a term −p/γ for every ᾱ†. The result is (here we need explicit indices)

− iY r1...rks1...sln

(
pr1
γr1

+ . . .+
prk
γrk
− ps1
γs1
− . . .− psl

γsl

)
P̄n Akl̄|V 〉

+ iY r1...rks1...sln

(
pr1
γr1

+ . . .+
prk
γrk
− ps1
γs1
− . . .− psl

γsl

)
Pn Ak̄l|V 〉

(5.11)

Then there remains to compute the second term in (4.10a). This essentially entails

commuting the prefactor x̂ through e∆. We do it first for the coordinate piece, then for

the oscillator piece.

Terms from arxr: the computation runs as follows

−
∑
t

ht

(∑
r

arxr

)
|V 〉) =−

∑
t

hte
∆
∑
r

ar[xr,∆]|∅〉 −
∑
t

e∆ht
∑
r

arxr|∅〉 (5.12)

The second term cancels the second term of (5.5) provided we choose all ar = 1/ν. This

is because all xr are equal on the vacuum, a consequence of momentum conservation, or

locality in transverse directions. We are left with the first term. It is also zero since∑3
r=1 ar[xr, P̄] ∼

∑3
r=1 γ̃r = 0 when all ar are equal.
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Terms from c(k)(l): these terms commute with everything in the vertex and so just

become multiplications. The contribution is

− c(k)(l)n P̄n−1
∑
r

hrAkl̄|V 〉 (5.13)

where
∑

r hr = −P P̄ /Γ.

5.2 The cubic differential equations

Collecting the non-cancelling terms from (5.7), (5.10), (5.11) and (5.13), we get two equa-

tions, one with oscillator basis Akl̄|V 〉[
i
∑
r

pr
∂Y (k)(l)n

∂γr
P̄n +

2in

3
Y (k)(l)n P̄n

∑
r

pr
γr

+ Γ−1c(k)(l)n P P̄n

− iY r1...rks1...sln

(
pr1
γr1

+ . . .+
prk
γrk
− ps1
γs1
− . . .− psl

γsl

)
P̄n
]
Akl̄|V 〉 = 0

(5.14)

and one with oscillator basis Ak̄l|V 〉[
i
∑
r

pr
∂Y (k)(l)n

∂γr
Pn +iY r1...rks1...sl

(
pr1
γr1

+ . . .+
prk
γrk
− ps1
γs1
− . . .− psl

γsl

)
Pn
]
Ak̄l|V 〉 = 0

(5.15)

Expanding out these equations, we get two equations for each concrete index combination

r1 . . . rks1 . . . sl. Since there is no source for the cubic differential, factors of P and P̄ can

now be factored out. This finally gives

i
∑
r

pr
∂Y (k)(l)n

∂γr
+

2in

3
Y (k)(l)n

∑
r

pr
γr

+ Γ−1c(k)(l)n P

− iY r1...rks1...sln

(
pr1
γr1

+ . . .+
prk
γrk
− ps1
γs1
− . . .− psl

γsl

)
= 0

(5.16)

and

i
∑
r

pr
∂Y (k)(l)n

∂γr
+ iY r1...rks1...sln

(
pr1
γr1

+ . . .+
prk
γrk
− ps1
γs1
− . . .− psl

γsl

)
= 0 (5.17)

Both these differential equations must be satisfied for any cubic vertex. We note that they

are linear in transverse momentum. As they stand, they can be easily solved by adding

and subtracting them and using the recombination formula (3.3). In the next section the

equations will be solved in a way amenable to generalisation to higher orders.

5.3 Solution of the cubic differential equations

We apply the recombination formula (3.3) to the derivative term to obtain

∑
r

pr
∂Y (k)(l)n

∂γr
=

1

3

∑
r

γr
∂Y (k)(l)n

∂γr

3∑
s=1

ps
γs
− 1

3

∑
r

Sr
∂Y (k)(l)n

∂γr
P (5.18)
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and to the M -rotational term

Y r1...rks1...sln

(
pr1
γr1

+ . . .+
prk
γrk
− ps1
γs1
− . . .− psl

γsl

)
=

1

3
Y r1...rks1...sln

(
k

3∑
s=1

ps
γs
−
[
Sr1
γr1

+ . . .+
Srk
γrk

]
P

)

− 1

3
Y r1...rks1...sln

(
l

3∑
s=1

ps
γs
−
[
Ss1
γs1

+ . . .+
Ssl
γsl

]
P

) (5.19)

Inserting these formulas into (5.16) and (5.17) we can extract linearly independent parts of

the differential equations. First, adding and subtraction the equations along the direction∑
ps/γs yield ∑

r

γr
∂Y (k)(l)n

∂γr
+ nY (k)(l)n = 0 (5.20a)

−(k − l) + n = 0 (5.20b)

This is at first a surprising result. The first equation is precisely the same equation that

follows from the j+− homogeneity constraint (see [7]). However, this is the light-front

reflection of the fact that cubic amplitudes are determined by little group scaling (see

for instance [24]). The second equation is the helicity balance equation coming from j-

invariance. Combining we get∑
r

γr
∂Y (k)(l)n

∂γr
= (l − k)Y (k)(l)n (5.21)

We then recover the fundamental solutions generating all higher spin cubic interactions

Y r1...rks1...sln =
γs1 . . . γsl
γr1 . . . γrk

(5.22)

As a check, we see that these functions solve the differential equation (5.17).

Next we extract the equations along the direction P from (5.16)

− i

3

∑
r

Sr
∂Y (k)(l)n

∂γr
+ Γ−1c(k)(l)n

+
i

3
Y r1...rks1...sln

(
Sr1
γr1

+ . . .+
Srk
γrk
− Ss1
γs1
− . . .− Ssl

γsl

)
= 0

(5.23)

and from (5.17)

− i

3

∑
r

Sr
∂Y (k)(l)n

∂γr
− i

3
Y r1...rks1...sln

(
Sr1
γr1

+ . . .+
Srk
γrk
− Ss1
γs1
− . . .− Ssl

γsl

)
= 0 (5.24)

These equations yield two different expressions for the c-functions

c(k)(l)n =
2i

3
Γ
∑
r

Sr
∂Y (k)(l)n

∂γr
(5.25)
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and

c(k)(l)n = −2i

3
ΓY r1...rks1...sln

(
Sr1
γr1

+ . . .+
Srk
γrk
− Ss1
γs1
− . . .− Ssl

γsl

)
(5.26)

Thus we see that the c-functions are determined by the Y -functions.

As regards the cubic coupling factors, we now see that the mass dimension of %3 is

l − k. In terms of κ we have %3(k,l) ∼ κk−l.

6 The homogeneous part of the quartic vertex

In choosing an ansatz for the quartic vertex, we may consider terms with the following

transverse structure Pm12 P̄
n
34, P̄m12 Pn34 and Pm12 Pn34, P̄m12 P̄

n
34. We will work through an ansatz

with the first two types of terms in detail, and only record the final result (section 6.6) for

an ansatz with the last two types of terms.

For the quartic vertex we then try

∆4 = %4Y
(k)(l)mn

(
A†
kl̄
Pm12 P̄

n
34 +A†

k̄l
P̄m12 Pn34

)
(6.1)

The terms should be interpreted such that k and l are summed over the oscillator bases

and n−m = k − l. The ansatz for the Lorentz prefactor x̂4 is such that there is one term

for each term in ∆4 but with one factor less of P̄12 or P̄34. Correspondingly, the ansatz for

the Lorentz prefactor ˆ̄x4 is such that there is one term for each term in ∆4 but with one

factor less of P12 or P34. Thus the ansatz becomes

x̂4 = arxr + %4c
(k)(l)mn
12 A†

kl̄
Pm12 P̄

n−1
34 +%4c

(k)(l)mn
34 A†

k̄l
P̄m−1

12 Pn34 (6.2)

and ˆ̄x4 is the complex conjugate of x̂4. We run through the computation of one of the

differential commutators just as for the cubic. The coupling %4 will not be shown.6

6.1 Computation of a quartic differential commutator

Again there are four terms contributing to this commutator (4.10a).

Terms from xh: as for the cubic we get

4∑
r=1

xrhr|V 〉 =

4∑
r=1

hr[xr, e
∆]|∅〉+

4∑
r=1

e∆hrxr|∅〉+ i

4∑
r=1

pr
γr
|V 〉 (6.3)

Again, the second and the third terms will cancel contributions from the other parts of the

commutator. To compute the first term, note that hr[xr, ·] will act on the each and every

P̄12 and P̄34 in ∆ with the result

4∑
r=1

hr[xr, P̄12] =
i

2

(
P̄12

(
p1

γ1
+
p2

γ2

)
+ P12

(
p̄1

γ1
+
p̄2

γ2

))
(6.4)

4∑
r=1

hr[xr, P̄34] =
i

2

(
P̄34

(
p3

γ3
+
p4

γ4

)
+ P34

(
p̄3

γ3
+
p̄4

γ4

))
(6.5)

6For the time being, we take the powers m and n to be positive, but there is nothing in the algebra that

follows that prevents them from taking negative values.
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The first term of (6.3) therefore becomes

in

2
Y (k)(l)mn

(
P̄34

(
p3

γ3
+
p4

γ4

)
+ P34

(
p̄3

γ3
+
p̄4

γ4

))
Pm12 P̄

n−1
34 A†

kl̄
|V 〉

+
im

2
Y (k)(l)mn

(
P̄12

(
p1

γ1
+
p2

γ2

)
+ P12

(
p̄1

γ1
+
p̄2

γ2

))
P̄m−1

12 Pn34 A†
k̄l
|V 〉

(6.6)

Terms from ip ∂
∂γ

: as for the cubic we get

i
∑
r

pr
∂

∂γr
e∆|∅〉 = i

∑
r

(
pr
∂∆

∂γr

)
e∆|∅〉 − i

∑
r

pr
γr
|V 〉 (6.7)

The second term cancels the third term from the last line of (6.3). The surviving terms

are computed using

4∑
r=1

pr
∂

∂γr
P̄12 =

1

2

(
P̄12

(
p1

γ1
+
p2

γ2

)
− P12

(
p̄1

γ1
+
p̄2

γ2

))
(6.8)

4∑
r=1

pr
∂

∂γr
P̄34 =

1

2

(
P̄34

(
p3

γ3
+
p4

γ4

)
− P34

(
p̄3

γ3
+
p̄4

γ4

))
(6.9)

Using this, the first term in (6.7) becomes

i
4∑
r=1

pr
∂Y (k)(l)mn

∂γr

(
A†
kl̄
Pm12 P̄

n
34 +A†

k̄l
P̄m12 Pn34

)
|V 〉

+
in

2
Y (k)(l)mn

(
P̄34

(
p3

γ3
+
p4

γ4

)
− P34

(
p̄3

γ3
+
p̄4

γ4

))
Pm12 P̄

n−1
34 A†

kl̄
|V 〉

+
im

2
Y (k)(l)mn

(
P̄12

(
p1

γ1
+
p2

γ2

)
− P12

(
p̄1

γ1
+
p̄2

γ2

))
P̄m−1

12 Pn34 A†
k̄l
|V 〉

(6.10)

It is clear from the expressions (6.6) and (6.10) that half the terms will add and half the

terms will cancel.

Terms from − i
γ
Mp: the annihilators in M act on the creators in ∆ inserting a term

p/γ for every α† and a term −p/γ for every ᾱ†. The result is

− iY r1...rks1...slmn

(
pr1
γr1

+ . . .+
prk
γrk
− ps1
γs1
− . . .− psl

γsl

)
Pm12 P̄

n
34 A†

kl̄
|V 〉

+ iY r1...rks1...slmn

(
pr1
γr1

+ . . .+
prk
γrk
− ps1
γs1
− . . .− psl

γsl

)
P̄m12 Pn34 A†

k̄l
|V 〉

(6.11)

Then there remains, as for the cubic, to compute the second term in (4.10a). The

prefactor x̂ shall be commuted through e∆. We do it first for the coordinate piece, then

for the oscillator piece.
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Terms from arxr: again we have

−
∑
t

ht

(∑
r

arxr

)
|V 〉) =−

∑
t

hte
∆
∑
r

ar[xr,∆]|∅〉 −
∑
t

e∆ht
∑
r

arxr|∅〉 (6.12)

As before, the second term cancels the second term of (6.3) provided we choose all ar =

1/ν = 1/4. We are left with the first term. It was zero for the cubic, but not here. It is

computed using
4∑
r=1

ar[xr, P̄ij ] =
i

4
(γi − γj) (6.13)

assuming all ar = 1/4. The terms are

− in

4
Y (k)(l)mn(γ3 − γ4)Pm12 P̄

n−1
34

(
4∑
r=1

hr

)
A†
kl̄
|V 〉

− im

4
Y (k)(l)mn(γ1 − γ2) P̄m−1

12 Pn34

(
4∑
r=1

hr

)
A†
k̄l
|V 〉

(6.14)

Terms from c(k)(l): these terms commute with everything in the vertex and so just

become multiplications. The contributions are

−
(
c

(k)(l)mn
12 A†

kl̄
Pm12 P̄

n−1
34 +c

(k)(l)mn
34 A†

k̄l
P̄m−1

12 Pn34

) 4∑
r=1

hr|V 〉 (6.15)

where the sum over the free hamiltonians is

4∑
r=1

hr =
P12 P̄12

γ1γ2(γ1 + γ2)
+

P34 P̄34

γ3γ4(γ3 + γ4)
(6.16)

Remark 3 (Understanding the energy sum) One would perhaps expect the free

hamiltonians to sum to zero, but according to (6.16) that is not the case. This can be

understood as follows. The on-shell condition pµp
µ = 2(−p+p− + pp̄) = 2(−hγ + pp̄) = 0

for a single massless particle is solved on the light-front to yield h = pp̄/γ. But, of

course, 3-momentum conservation for (γ, p, p̄) is not sufficient for energy conservation.

That is an independent requirement. Indeed, requiring four-momentum conservation, so

that s = −(p1 + p2)2 = −(p3 + p4)2, it is easy to see that s = P12 P̄12 /γ1γ2 = P34 P̄34 /γ3γ4.

But then the expression on the right hand side of (6.16) is zero (since the γ’s sum to zero).

See also remark 5.

6.2 The quartic homogeneous differential equations

Adding the contributions we get two differential equations, one for each type of oscilla-

tor basis.
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Basis A†
kl̄

:

(
i

4∑
r=1

pr
∂Y (k)(l)mn

∂γr
− iY r1...rks1...slmn

(
pr1
γr1

+ . . .+
prk
γrk
− ps1
γs1
− . . .− psl

γsl

)

+ inY (k)(l)mn

(
p3

γ3
+
p4

γ4

))
Pm12 P̄

n
34

−
(
in

4
Y (k)(l)mn(γ3 − γ4) + c

(k)(l)mn
12

)
Pm12 P̄

n−1
34

4∑
r=1

hr = 0

(6.17)

Basis A†
k̄l

:

(
i

4∑
r=1

pr
∂Y (k)(l)mn

∂γr
+ iY r1...rks1...slmn

(
pr1
γr1

+ . . .+
prk
γrk
− ps1
γs1
− . . .− psl

γsl

)

+ imY (k)(l)mn

(
p1

γ1
+
p2

γ2

))
P̄m12 Pn34

−
(
im

4
Y (k)(l)mn(γ1 − γ2) + c

(k)(l)mn
34

)
P̄m−1

12 Pn34

4∑
r=1

hr = 0

(6.18)

Or, if we factor out overall powers of transverse momentum bases(
i

4∑
r=1

pr
∂Y (k)(l)mn

∂γr
− iY r1...rks1...slmn

(
pr1
γr1

+ . . .+
prk
γrk
− ps1
γs1
− . . .− psl

γsl

)

+inY (k)(l)mn

(
p3

γ3
+
p4

γ4

))
P̄34−

(
in

4
Y (k)(l)mn(γ3 − γ4) + c

(k)(l)mn
12

) 4∑
r=1

hr = 0

(6.19)(
i

4∑
r=1

pr
∂Y (k)(l)mn

∂γr
+ iY r1...rks1...slmn

(
pr1
γr1

+ . . .+
prk
γrk
− ps1
γs1
− . . .− psl

γsl

)

+imY (k)(l)mn

(
p1

γ1
+
p2

γ2

))
P̄12−

(
im

4
Y (k)(l)mn(γ1 − γ2) + c

(k)(l)mn
34

) 4∑
r=1

hr = 0

(6.20)

6.3 Solution of the quartic homogeneous differential equations

To find solutions to these equations we have to diagonalise them in the basis (3.6). We do

it in two steps to bring out the essence of the procedure (this will be generalisable to higher

order vertices). The sum over the free hamiltonians is rewritten using equation (6.16). The

recombination formula (3.5) is first applied to the derivative terms. This yields (we also

drop the indices on the Y functions where possible without losing information, writing
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Y = Y (k)(l)mn and drop explicit summation signs)[
i

4
γr
∂Y

∂γr

4∑
s=1

ps
γs
− i

4

(
S12,r

∂Y

∂γr

)
P12−

i

4

(
S34,r

∂Y

∂γr

)
P34

− iY r1...rks1...sl

(
pr1
γr1

+ . . .+
prk
γrk
− ps1
γs1
− . . .− psl

γsl

)
+ inY

(
p3

γ3
+
p4

γ4

)]
P̄34

−
(
in

4
Y (γ3 − γ4) + c12

)(
P12 P̄12

γ1γ2(γ1 + γ2)
+

P34 P̄34

γ3γ4(γ3 + γ4)

)
= 0 (6.21)[

i

4
γr
∂Y

∂γr

4∑
s=1

ps
γs
− i

4

(
S12,r

∂Y

∂γr

)
P12−

i

4

(
S34,r

∂Y

∂γr

)
P34

+ iY r1...rks1...sl

(
pr1
γr1

+ . . .+
prk
γrk
− ps1
γs1
− . . .− psl

γsl

)
+ imY

(
p1

γ1
+
p2

γ2

)]
P̄12

−
(
im

4
Y (γ1 − γ2) + c34

)(
P12 P̄12

γ1γ2(γ1 + γ2)
+

P34 P̄34

γ3γ4(γ3 + γ4)

)
= 0 (6.22)

Then we apply the recombination formula to the rest of the non-diagonal terms with

the result

p1

γ1
+
p2

γ2
=

1

2

4∑
s=1

ps
γs

+
1

2

γ1 − γ2

γ1γ2(γ1 + γ2)
P12−

1

2

γ3 − γ4

γ3γ4(γ3 + γ4)
P34

p3

γ3
+
p4

γ4
=

1

2

4∑
s=1

ps
γs
− 1

2

γ1 − γ2

γ1γ2(γ1 + γ2)
P12 +

1

2

γ3 − γ4

γ3γ4(γ3 + γ4)
P34

(6.23)

and a somewhat unwieldy expression for the terms from the transverse rotations

Y r1...rks1...sl

(
pr1
γr1

+ . . .+
prk
γrk
− ps1
γs1
− . . .− psl

γsl

)
=

1

4
Y r1...rks1...sl

(
k

4∑
s=1

ps
γs
−
[
S12,r1

γr1
+ . . .+

S12,rk

γrk

]
P12−

[
S34,r1

γr1
+ . . .+

S34,rk

γrk

]
P34

)

− 1

4
Y r1...rks1...sl

(
l

4∑
s=1

ps
γs
−
[
S12,s1

γs1
+ . . .+

S12,sl

γsl

]
P12−

[
S34,s1

γs1
+ . . .+

S34,sl

γsl

]
P34

)
(6.24)

We can now extract linearly independent parts of the equations. Inserting (6.23)

and (6.24) into (6.21) and (6.22) and picking out the terms along the directions
∑ ps

γs
P̄34

and
∑ ps

γs
P̄12 respectively, we get

γr
∂Y

∂γr
− (k − l)Y + 2nY = 0 (6.25)

γr
∂Y

∂γr
+ (k − l)Y + 2mY = 0 (6.26)
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from which results

γr
∂Y

∂γr
= − (m+ n)Y (6.27a)

k − l = n−m (6.27b)

The first equation is the same homogeneity equation for the Y -functions as we had for the

cubic vertex. It is the same equation as results from j+− invariance of the vertex. The

second equation is the helicity balance of the vertex. Let us pause and understand this.

Remark 4 (Understanding the equations) Both for the cubic and the quartic calcula-

tion we see that the equations (see (5.20a), (5.20b) and (6.27a), (6.27b)) along the
∑
pr/γr

direction just give back the kinematic restrictions of γ-homogeneity (j+− invariance) and

helicity balance (j invariance). The deformation equations in these directions will remain

homogeneous since the source commutator produce no such terms. The dynamical restric-

tions will lie along the directions of linearly independent powers of Pij and P̄ij. For the

cubic, no further restrictions occur, as we have seen from the explicit calculations.

What now remains of the differential equations are the following pieces. From (6.21)

we get

Terms P12 P̄34:

− i

4
S12,r

∂Y

∂γr
− in

2

γ1 − γ2

γ1γ2(γ1 + γ2)
Y

+
i

4

[
S12,r1

γr1
+ . . .+

S12,rk

γrk
− S12,s1

γs1
− . . .− S12,sl

γsl

]
Y r1...rks1...sl = 0

(6.28)

Terms P34 P̄34:

− i

4
S34,r

∂Y

∂γr
+
in

2

γ3 − γ4

γ3γ4(γ3 + γ4)
Y −

(
in

4
Y (γ3 − γ4) + c12

)
1

γ3γ4(γ3 + γ4)

+
i

4

[
S34,r1

γr1
+ . . .+

S34,rk

γrk
− S34,s1

γs1
− . . .− S34,sl

γsl

]
Y r1...rks1...sl = 0

(6.29)

Terms P12 P̄12: (
in

4
Y (γ3 − γ4) + c12

)
1

γ1γ2(γ1 + γ2)
= 0 (6.30)

From (6.22) we get

Terms P34 P̄12:

− i

4
S34,r

∂Y

∂γr
− im

2

γ3 − γ4

γ3γ4(γ3 + γ4)
Y

− i

4

[
S34,r1

γr1
+ . . .+

S34,rk

γrk
− S34,s1

γs1
− . . .− S34,sl

γsl

]
Y r1...rks1...sl = 0

(6.31)
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Terms P12 P̄12:

− i

4
S12,r

∂Y

∂γr
+
im

2

γ1 − γ2

γ1γ2(γ1 + γ2)
Y −

(
im

4
Y (γ1 − γ2) + c34

)
1

γ1γ2(γ1 + γ2)

− i

4

[
S12,r1

γr1
+ . . .+

S12,rk

γrk
− S12,s1

γs1
− . . .− S12,sl

γsl

]
Y r1...rks1...sl = 0

(6.32)

Terms P34 P̄34: (
im

4
Y (γ1 − γ2) + c34

)
1

γ3γ4(γ3 + γ4)
= 0 (6.33)

6.4 Explicit solutions

Equations (6.30) and (6.33) immediately give

c12 =
in

4
Y (γ3 − γ4)

c34 =
im

4
Y (γ1 − γ2)

(6.34)

effectively expressing the dynamical Lorentz generators in terms of the Hamiltonian.

Next adding (6.28), (6.32) and (6.29), (6.31) respectively yield

S12,r
∂Y

∂γr
= (m− n)

γ1 − γ2

γ1γ2(γ1 + γ2)
Y

S34,r
∂Y

∂γr
= (n−m)

γ3 − γ4

γ3γ4(γ3 + γ4)
Y

(6.35)

Expanding the left hand sides and using (6.27a) finally give

γ1γ2

(
∂Y

∂γ1
− ∂Y

∂γ2

)
=
m

2
(γ1 − γ2)Y

γ3γ4

(
∂Y

∂γ3
− ∂Y

∂γ4

)
=
n

2
(γ3 − γ4)Y

(6.36)

Since the equations are symmetric in γ1, γ2 and γ3, γ4 respectively, we can look for

solutions depending on sums and products of these variables. Introduce generic variables

x and y. Then both equations have the form

xy

(
∂

∂x
− ∂

∂y

)
f(x, y) = a(x− y)f(x, y) (6.37)

with a an half-integer. First with z = xy and assuming f(x, y) = f(xy) we get

xy(y − x)f ′(z) = a(x− y)f(z)⇒ zf ′(z) = −af(z) (6.38)

and the solution is f(z) = Cz−a with a coefficient C.

Furthermore, with w = x + y and f(x, y) = f(z, w) we still get zf ′(z) = −af(z).

The w dependence not being fixed by the differential equation. Therefore, a general class
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of solutions are f(x, y) = (xy)−a(x + y)c with c free. This is the kind of p+ momentum

dependence we would expect from a vertex Y -function. Thus we have

Y = C(γ1γ2)−a(γ3γ4)−b(γ1 + γ2)−c(γ3 + γ4)−d (6.39)

As noted, the numbers c and d are not fixed by the differential equations but they enter

the γ-homogeneity equation (6.27a) from which results 2(a + b) + c + d = m + n. But

the (6.36) give 2a = m and 2b = n. Combining these constraints yield c + d = 0. Since

γ3 + γ4 = −(γ1 + γ2) this leaves no room for any dependence on γ1 + γ2 or γ3 + γ4.

More generally, equation (6.37) can be separated by f(x, y) =
∑

mCmgm(x)hm(y).

Doing that verifies the solutions f(x, y) = ρ(x+ y)(xy)−a where ρ is an arbitrary function

of x+y. The Y-functions therefore has a multiplicative dependence ρ12(γ1 +γ2)ρ34(γ3 +γ4)

with arbitrary functions ρ12 and ρ34 of total homogeneity zero. The general solutions to

equations (6.36) are therefore given by the functions

Y =
C

(γ1γ2)a(γ3γ4)b
(6.40)

of homogeneity degree −(m + n) = −2(a + b). These Y -functions solve the homogeneous

equations with m = 2a and n = 2b.

Remark 5 (Understanding the equations) At first sight, the non-conservation of the

free hamiltonians
∑

r hr 6= 0, may seem to be a nuisance. The equations would certainly

simplify if we had
∑

r hr = 0, or rather, if we did not see the terms along the direction∑
r hr at all. Metsaev encounters this problem in [5] (see page 2417) when trying to solve

the non-homogeneous equations for the vertices. One could consider (as is done in the

paper)
∑

r hr = 0 an energy surface and look for solutions that are non-singular on this

surface, the non-singularity requirement being prompted by the need to invert
∑

r hr.

Now we see that the problem reduces to a question of using a suitable basis in the space

of field momenta {p1, p2, p3, p4}, namely, {
∑4

s=1
ps
γs
, P12, P34}. In this basis,

∑
r hr simply

points along the directions P12 P̄12 and P34 P̄34 as in the formula (6.16).

On the other hand, going back to equations (6.21) and (6.22) and specialising them

to the energy surface, we see that the last term of each equation drop out. This will yield

precisely the same equations for the Y -functions as off the energy surface, but we get no

equations connecting the c12- and c34-functions to the Y -functions.

6.5 Consistency checks

So far the equations resulting from the homogeneous differential equations that we have

discussed are (6.27a), (6.27b) (γ-homogeneity and helicity balance), (6.34) (equations for

the Lorentz prefactors) and (6.36) for the Y -functions. There is however more indepen-

dent information to check. Going back and subtracting (6.28), (6.32) and (6.29), (6.31)
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respectively yield[
S12,r1

γr1
+ . . .+

S12,rk

γrk
− S12,s1

γs1
− . . .− S12,sl

γsl

]
Y r1...rks1...sl = (m+ n)

γ1 − γ2

γ1γ2(γ1 + γ2)
Y[

S34,r1

γr1
+ . . .+

S34,rk

γrk
− S34,s1

γs1
− . . .− S34,sl

γsl

]
Y r1...rks1...sl = −(m+ n)

γ3 − γ4

γ3γ4(γ3 + γ4)
Y

(6.41)

The solutions (6.40) satisfy these equations, but there is slight ambiguity to sort out. Shall

we consider γ1γ2 and γ3γ4 as ri and sj indices respectively or vice versa?7 Depending on

which choice we make we get the right or wrong sign on the right hand sides of (6.41). It

turns out that γ1γ2 corresponds to the sj indices (i.e. oscillators ᾱ†) and γ3γ4 to the ri
indices (i.e. oscillators α†). Thus, taking k = n = 2b and l = m = 2a, we check explicitly

the first equation of (6.41) for a Y -function of the form of (6.40)[
S12,r1

γr1
+ . . .+

S12,rk

γrk
− S12,s1

γs1
− . . .− S12,sl

γsl

]
Y r1...rks1...sl

=

[
b
S12,3

γ3
+ b

S12,4

γ4
− aS12,1

γ1
− aS12,2

γ2

]
Y

= (2b+ 2a)
γ1 − γ2

γ1γ2(γ1 + γ2)
Y = (m+ n)

γ1 − γ2

γ1γ2(γ1 + γ2)
Y

(6.42)

The second equation of (6.41) works out similarly.

This is indeed very natural because now the vertices can be written elegantly if we use

the light-front — spinor helicity on-shell dictionary. With

〈ij〉 = 〈pipj〉 =
√

2
Pij√
γiγj

and [ij] = [pipj ] = −
√

2
P̄ij√
γiγj

(6.43)

we get
Pm12 P̄

n
34

(γ1γ2)a(γ3γ4)b
∼ 〈12〉m[34]n (6.44)

6.6 More kinds of vertices

It remains to investigate vertex terms with transverse structure Pm12 Pn34 and P̄m12 P̄
n
34. Here

we will not got through the detailed calculations, but only write down the final differential

equations for the γ structure and contrast to the terms with Pm12 P̄
n
34 and P̄m12 Pn34 treated

above. Here we use the ansatz (not showing coupling factors)

∆4 = Y (k)(l)mn
(
A†
k̄l
Pm12 Pn34 +A†

kl̄
P̄m12 P̄

n
34

)
(6.45)

x̂4 = arxr +
(
c

(k)(l)mn
12 P̄m12 P̄

n−1
34 +c

(k)(l)mn
34 P̄m−1

12 P̄n34

)
A†
kl̄

(6.46)

where k − l = m+ n.

7This ambiguity does not occur for the cubics since in that case the γ’s are distinguished as to whether

they occur in the denominator or the numerator.

– 20 –



J
H
E
P
1
2
(
2
0
1
6
)
1
3
4

We get the following equations
γr
∂Y

∂γr
+ (m+ n)Y = 0

k = l +m+ n = 0

(6.47a)

im

4
Y (γ1 − γ2) + c34 = 0 (6.47b)

in

4
Y (γ3 − γ4) + c12 = 0 (6.47c)(

S12,r
∂Y

∂γr

)
− (m− n)

γ1 − γ2

γ1γ2(γ1 + γ2)
Y = 0 (6.47d)(

S34,r
∂Y

∂γr

)
+ (m− n)

γ3 − γ4

γ3γ4(γ3 + γ4)
Y = 0 (6.47e)

These equations are the same as for vertices with Pm12 P̄
n
34 and P̄m12 Pn34 structure with

just one small difference. The relation between m, n, k and l is different as shown in (6.47a).

This actually forces l = 0 since with the Y -functions of (6.40) with all γ’s in the denomi-

nator we must have k + l = m+ n.

There are also the equations corresponding to the equations of section 6.5.[
S12,r1

γr1
+ . . .+

S12,rk

γrk

]
Y r1...rks1...sl = (n−m)

γ1 − γ2

γ1γ2(γ1 + γ2)
Y[

S34,r1

γr1
+ . . .+

S34,rk

γrk

]
Y r1...rks1...sl = (m− n)

γ3 − γ4

γ3γ4(γ3 + γ4)
Y

(6.48)

For a solution of the form (6.40) we get for the first equation[
S12,r1

γr1
+ . . .+

S12,rk

γrk

]
Y r1...rks1...sl

=

[
a
S12,1

γ1
+ a

S12,2

γ2
+ b

S12,3

γ3
+ b

S12,4

γ4

]
Y

= (2b− 2a)
γ1 − γ2

γ1γ2(γ1 + γ2)
Y = (n−m)

γ1 − γ2

γ1γ2(γ1 + γ2)
Y

(6.49)

7 Quartic vertices

Before writing down explicit formulas for quartic contact vertices, let us first discuss what

to expect. It is known (as many authors have noted) that quartic higher spin interactions

contain an infinite number of derivatives. Therefore they would contain arbitrarily high

powers of transverse momenta on the light-front. In order to understand this, we can

contrast with the situation for cubic vertices where we have the Metsaev bounds.8

These bounds restrict the powers of transverse momenta in the vertices. The origin

of the bounds are actually very easy to understand. They come about as a consequence

8Derived in [6] in four dimensions and generalised to general dimensions by Metsaev.
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of j-invariance and the exclusion of vertices containing powers on P P̄. There are then

basically two types of interaction terms in the Hamiltonian

φλ1φλ2φλ3Y P̄m and φλ1φλ2 φ̄λ3Y P̄m (7.1)

and the complex conjugates thereof. Here, Y stands for the appropriate function of the p+

momenta for the interaction term at hand.

Then j-invariance enforces helicity balance, i.e. m = λ1 +λ2 +λ3 and m = λ1 +λ2−λ3

respectively and we get bounds on the powers of transverse momenta in the vertices. Had

we allowed powers of P P̄ we would have had interaction terms

φλ1φλ2φλ3Y P̄m(P P̄)n and φλ1φλ2 φ̄λ3Y P̄m(P P̄)n (7.2)

with arbitrary powers n since the factors P P̄ have helicity zero. The full list of such vertices

can be found in [7]. The possibility of interaction terms like these has also been noted in a

recent paper [2]. Normally they would not be considered as proper interactions as P P̄ /Γ
is the sum of the free Hamiltonians.

A type of quartic interaction term in the Hamiltonian has the following structure

φλ1φλ2 φ̄λ3 φ̄λ4Y Pm12 P̄
n
34 (7.3)

and the complex conjugates thereof. In this case j-invariance requires the balance equation

λ1 + λ2 − λ3 − λ4 = n −m to hold. This can be satisfied with arbitrarily high powers n

and m.

The presence of interactions of this type can also be understood considering exchange

diagrams with two cubic interactions

φλ1 φ̄λ2 φ̄sYR Pλ2+s−λ1
12 and φsφ̄λ3φλ4YL P̄

λ4+s−λ3
34 (7.4)

with s the exchanged helicity with “propagator” ( P12 P̄34
(γ1+γ2)2

)−1. Qualitatively, this results in

φλ1 φ̄λ2 φ̄λ3φλ4YRYL(γ1 + γ2)2 Pλ2−λ112 P̄λ4−λ334

(
P12 P̄34

)s−1

As arbitrarily high helicities can be exchanged in the channel, this gives interactions with

arbitrarily high powers of transverse momenta.

Typical quartic contact vertex: we can now put together the homogeneous vertex

operator ∆4 based on the solutions (6.40) for the Y -functions. Preliminary we write

Y (k)(l)mn =
1

(γ1γ2)m/2(γ3γ4)n/2
=

1

(γ1γ2)l/2(γ3γ4)k/2
(7.5)

The k indices ri and l indices sj must be carried by γri and γsj . This forces k = n and l = m

(see section 6.5) to be even numbers, and the non-zero Y -functions must take the form

Y (1...1 2...2)(3...3 4...4) =
1

(γ1γ2)l/2(γ3γ4)k/2
(7.6)

where there are l indices 1 and 2 and k indices 3 and 4.

– 22 –



J
H
E
P
1
2
(
2
0
1
6
)
1
3
4

Written as contributions to the quartic ∆4-operator, the solutions to the homogeneous

quartic deformation equations with transverse structure of type Pm12 P̄
n
34, take the form

∆hom
4 =

∑
k,l

Ckl%4,(k,l)
Pk12 P̄

l
34

(γ1γ2)l/2(γ3γ4)k/2
A†
kl̄

+ c.c. (7.7)

where we allow for numerical constants Ckl not determined at this level. The coupling

factors %4,(k,l) have mass dimension −(k + l).

Particular quartic interactions for fields φλ1 , φλ2 , φ̄λ3 and φ̄λ4 can be extracted

from (4.1) and (4.2) by computing

〈1234|φλ1φλ2 φ̄λ3 φ̄λ4ᾱ
λ1
1 ᾱλ22 αλ33 αλ44 exp ∆hom

4 |∅1234〉 (7.8)

Interactions corresponding to the transverse structure of type Pm12 Pn34 can be obtained

similarly.

8 Consequences for the constructibility of quartic amplitudes

The existence of solutions to the homogeneous deformation equations shows that there are

quartic vertices independent of the cubic vertices, at least to this order in the light-front

Poincaré algebra. It remains to study these terms at the next order (quintic) to see if they

survive with non-zero coefficients.

A special approach to quartic amplitudes for massless fields has been investigated by

Benincasa and Cachazo [10] and Benincasa and Conde [11, 25] in order to map out the

consistent interactions among higher and lower spin particles. They use BCFW [26, 27]

recursion to build quartic tree amplitudes out of cubic amplitudes.

Benincasa and Cachazo [10] introduce two concepts, constructibility and the four-

particle test. A theory is constructible if the four-particle tree level amplitudes can be

completely computed from the three-particle amplitudes. The four-particle test amounts

to computing a certain amplitude using two different BCFW deformations and requiring

the results to be equal. Spin 1 (Yang-Mills) and spin 2 (Gravity) pass this test but the test

fails for higher spin in that the dependence of the quartic amplitude on the Mandelstam in-

variants differ for different deformations (see also [12] where these results are reviewed from

a light-front perspective). These results have subsequently been refined in [28] and [29].

In order to throw some light on this issue from the point of view of the homogeneous

equations for the quartic Y -functions, we start by studying the Yang-Mills cubic vertex.

The light-front interaction can be expressed as

g2fabef cde
∫
d4x

1

∂+

(
φa∂+φ̄b

) 1

∂+

(
φ̄c∂+φd

)
where g is Yang-Mills coupling constant. In momentum space this corresponds to Y -

functions of the form
γ2γ4

(γ1 + γ2)(γ3 + γ4)
(8.1)
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This functions has the right homogeneity (zero: m = n = 0) but it does not, and should not,

satisfy the equations (6.36) as it is instead a solution to the non-homogeneous equations

connecting the quartic vertex to the cubic.

The spin 2 quartic interaction is more complex [30, 31], but as it has to have the correct

dimension and conform to the general light-front structure, we can write down the generic

P, P̄ and γ structure
P12 P̄34

(γ1 + γ2)(γ3 + γ4)

The γ-homogeneity is of course correct (the γ dependence in P and P̄ is already discounted),

but the equations (6.36) are not satisfied.

Understanding non-constructibility: in order to understand this better, let us turn

to arbitrary spin s. We have generic contact interactions of the form

Pm12 P̄
n
34

(γ1γ2)l/2(γ3γ4)k/2
(8.2)

The differential equations (6.36) are satisfied with n = k and k = l. Consistent with this,

helicity balance (j invariance) requires k−l = n−m. Then γ-homogeneity (j+− invariance)

is the satisfied since k + l = m+ n.

Let us now see what kind of contact terms the vertex operators (7.7) yield. To get a

spin 1 four-point coupling we need k = l = 2 resulting in powers of (P12 P̄34)2 of transverse

momenta. This is clearly impossible for a pure spin 1 theory with a dimensionless coupling

constant. Likewise for spin 2 we need k = l = 4 resulting in 8 powers of transverse

momenta which clearly is not compatible with a pure spin 2 theory. The general spin s

contact interaction will take the form

L4s (P12 P̄34)2s

(γ1γ2γ3γ4)s
(8.3)

Where L is a parameter of mass dimension −1. Starting from spin 3 there is at least

one new dimensionful coupling constant α3 of mass dimension −2, in general αs of mass

dimension 1 − s. Therefore L4s can be proportional to α2
s′ so that s′ = 2s + 1. A spin 3

homogeneous contact term is therefore at the same level as a spin 7 exchange term. This

is not as weird as it may seem. If we, in an higher spin theory of this type, do allow a

spin 1 contact term of the form (8.3), then that contact interaction is at the same level

as a quartic spin 1 exchange interaction with a spin 3 field in the channel. So if we allow

higher spin fields into lower spin theory — as presumably is unavoidable in full higher spin

theory, then contact terms of the type discussed here may play an important role.

Returning to the discussion about non-constructibility, it is phrased in terms of BCFW

recursion but the phenomena of non-constructibility does not depend on the version of com-

plex amplitude deformation technique. The situation may need some further clarification

though. The basic questions are: (1) Under what conditions can on-shell quartic tree am-

plitudes be reconstructed from the cubic amplitudes (constructibility)? (2) Under what

conditions can all on-shell higher order tree amplitudes be reconstructed from the cubic
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amplitudes (full constructibility)? This has been clearly explained in the paper [32]. The

situation is the following.9

Consider a theory described by a local Lagrangian with interaction vertices of various

orders n. An on-shell tree amplitude An can only depend on interaction vertices with

m ≤ n fields. However, if An can be computed by an on-shell recursion technique, then it

has an expression in terms of lower-point (m < n) on-shell amplitudes. That is, An can be

computed without explicit knowledge of any local n-point contact interactions.

In Yang-Mills theory there are valid recursion relations for all amplitudes with n > 3

external lines and all on-shell amplitudes are completely determined by the cubic vertex.

The quartic vertex is not needed for on-shell amplitudes. But it must be included in the

Lagrangian to make the off-shell Lagrangian gauge invariant. In the light-cone gauge, it is

needed for Poincaré invariance.

In general, reference [32] defines an n-point interaction Y in the local Lagrangian to

be a dependent interaction if it is completely determined by lower-point interactions, for

example through gauge invariance or other symmetries. On the other hand, they refer

to Y as an independent interaction if the Lagrangian is gauge-invariant and respects all

imposed symmetries without the inclusion of Y . Dependent n-point interactions should

not be required as input for on-shell amplitudes, while the information from independent

n-point interactions must be supplied directly as it cannot be obtained recursively from

on-shell amplitudes with less than n external states. This is the situation that we seem to

have for Minkowski higher spin theory as set up on the light-front.

9 Results

The main results of the present paper are

1. The detailed working out of the differential commutator (in this particular approach)

for the quartic vertex. This is generalisable to arbitrary order.

2. Showing the existence of homogeneous solutions to the differential equations for the

quartic vertex and the explicit derivation of light-front quartic contact interactions

that are Poincaré independent of the cubic interactions, thereby confirming previous

light-front results [4, 5] and covariant results [9].

3. Non-constructibility of quartic higher spin amplitudes via BCFW recursion. Al-

though contact terms of the form (8.2) can be constructed for spin 1 and 2 in the

context of higher spin theory as formulated here, terms like these are highly un-

natural and certainly not needed for the consistency of the pure spin 1 and spin 2

theories. For higher spin theory such quartic interactions may be needed to evade

BCFW based no-go arguments. In this context it is interesting to note that in a

concrete tree level quantum calculation, the higher spin “cubic vertices appear to be

inconsistent with the BCFW constructibility condition.” [3]. Clearly these questions

deserve further study.

9Closely following the original explanation in section 6.1 of the cited paper.
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Cautionary remarks: what we have found here is in accordance with and supports

previous analysis of non-constructibility of higher spin amplitudes in references [1, 9, 13, 14].

However, let us end with a caveat as to the further consequences beyond BCFW. The

homogeneous contact four-point interactions found here do not involve an infinite number

of momentum factors for any particular combination of external spin. In this way they

more resemble the fundamental cubic interaction terms. So, although invalidating the

basic BCFW constructibility assumption (as discussed above) it is by no means clear that

their presence saves flat space higher spin theory from other amplitude based inconsistency

arguments.

In a recent set of papers it has been found — in various settings — that higher spin four-

point amplitudes may only allow trivial scattering. In conformal higher spin theory [33] it

was — for instance — found [34] that the four-scalar tree-level scattering amplitude with

a tower of higher spins in the channel vanishes. See also [35] for further results. Similar

results — amplitudes being delta-distributions rather than analytic functions — are also

reported in the AdS/CFT context in [36] and [37].

Nonetheless — in the present authors opinion — it is important to press forward

and try to settle the question of classical consistency of flat space higher spin theory. This

question is also tied to the question of whether there exists an infinite dimensional extension

of the Poincaré (or Lorentz) algebra underpinning such a higher spin theory. For a recent

analysis of this, see [38]. See also comments in [39]. Somewhat ironically it may be the very

existence of such a huge higher spin symmetry that constrains the scattering amplitudes

to be trivial, as discussed in [35, 36].
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