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1 Introduction

Fluxes play a crucial role in all phenomenological aspects of string theory, because their

presence in general induces a potential for the moduli, which can thus be suitably sta-

bilised [1–5] (for a review, see e.g. [6–8]). We are interested in orientifold type-II Calabi-

Yau compactifications with fluxes turned on, whose low-energy effective actions are N = 1

supergravity theories in four dimensions with a given superpotential determined by the

fluxes. In the case of IIB O3-orientifolds, only the NS-NS and RR 3-form fluxes H3 and

F3 can be turned on, and they generate the Gukov-Vafa-Witten superpotential [9]

WIIB/O3 =

∫

(F3 − iSH3) ∧ Ω , (1.1)

where Ω is the holomorphic 3-form of the Calabi-Yau manifold and S is the axion-dilaton.

For IIA O6-orientifolds, one can in general turn on all RR fluxes from F0 to F6 together

with the NS-NS 3-form flux and the metric flux f c
ab, and the superpotential reads [10–15]

WIIA/O6 =

∫

[eJc ∧ FRR +Ωc ∧ (H3 + f · Jc)] , (1.2)

where with Jc and Ωc one denotes the complexified Kähler form and the holomorphic

3-form, and (f · Jc)abc = 3fd
[ab(Jc)c]d.

In this paper we will focus on the specific case of a T 6/[Z2×Z2] orientifold, of which we

now review the standard notation used in [13] (see also [10–12, 16–18]) in order to make the

analysis in the rest of the paper more clear. One factorises the 6-torus as T 6 =
⊗3

i=1 T
2
(i),

and the two Z2’s act as (−1,−1, 1) and (1,−1,−1) respectively on the coordinates of

the three 2-tori. Denoting these coordinates as (xi, yi), one defines the three 2-forms

ωi = −dxi ∧ dyi as the natural basis for closed 2-forms, while the basis for closed 4-forms
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is given by the Hodge duals ω̃i = ∗ωi. The Kähler form J and the holomorphic 3-form Ω

are given by the expressions

J =
3∑

i=1

Aiωi Ω = (dx1 + iτ1dy
1) ∧ (dx2 + iτ2dy

2) ∧ (dx3 + iτ3dy
3) , (1.3)

where Ai and τi are the volumes and complex structure moduli of the three different tori.

The orientifold projection acts like ΩP (−1)FLσ, where ΩP is the world-sheet parity reversal,

FL is the world-sheet left-mover fermionic number and σ is a space-time involution. In the

IIB case, the involution acts on the coordinates as

σB(x
i) = −xi σB(y

i) = −yi , (1.4)

and the untwisted moduli1 are the axion-dilaton S, the complex-structure moduli Ui that

simply coincide with the toroidal complex structures, i.e. Ui = τi, and the complex Kähler

moduli Ti which are given in terms of the Kähler form and the RR 4-form by the expression

Jc = C4 +
i

2
e−φJ ∧ J = i

∑

i

Tiω̃i . (1.5)

In the IIA O6-orientifold, instead, the action of the involution σA is

σA(x
i) = xi σA(y

i) = −yi . (1.6)

This implies that the τi’s are real. The real part of the S and Ui moduli consists of the τi’s

and the dilaton, while their imaginary part consists of the RR 3-form C3. The complexified

holomorphic 3-form has the expression

Ωc = iS(dx1 ∧ dx2 ∧ dx3)− iU1(dx
1 ∧ dy2 ∧ dy3)

− iU2(dy
1 ∧ dx2 ∧ dy3)− iU3(dy

1 ∧ dy2 ∧ dx3) , (1.7)

which is therefore linear in both S and Ui. In the IIA case, it is the B field that complexifies

the Kähler form, so that the Ti moduli are given by the expression

Jc = B + iJ = i
∑

i

Tiωi . (1.8)

The two orientifold models are mapped into each other by performing three T-dualities

along the xi directions, under which operation the moduli Ui and Ti are interchanged.

This operation corresponds to mirror symmetry for this specific orbifold [30].

If one turns on the RR fluxes, it can be easily seen from eqs. (1.1) and (1.2) that one

generates a term in the superpotential which is a cubic polynomial in the U moduli from

the IIB perspective and in the T moduli from the IIA perspective. The RR fluxes are

related by T-duality as

Fab1...bp
Ta←→ Fb1...bp , (1.9)

1One can construct freely acting Z2 ×Z2 orbifolds [19–24] such that the twisted sector does not contain

massless scalars. Orientifolds of freely-acting orbifolds have been constructed in e.g. [25–28]. For a review

on orientifold models, see e.g. [29].
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RR flux IIB IIA

−m Fx1x2x3 F

−qi Fyixjxk Fxiyi

ei Fxiyjyk Fxjyjxkyk

−e0 Fy1y2y3 Fx1y1x2y2x3y3

Table 1. The RR fluxes in the IIB and IIA setup. In each row, the two fluxes are related by three

T-dualities along the x directions. The indices i, j, k denoting the three tori are always meant to

be different, and for the fluxes Fyixjxk and Fxiyjyk the indices are meant to be in the right cyclic

order (i.e. for instance if i = 1, then j = 2 and k = 3). These rules apply to all the other fluxes

we will write down in this paper. In the first column we list the names with which we identify the

fluxes, following [13].

where with a and b we denote any of the internal directions. In IIB, only the 3-form flux

F3 is turned on, and performing three T-dualities along the x directions, this is mapped to

the various fluxes of IIA according to how many indices there are along the x directions.

The result is summarised in table 1. In other words, the IIA and IIB theory give rise to

the same model provided that the fluxes of the two theories are identified as in table 1.

The fluxes are precisely those that are allowed by the orientifold projection in each of the

two theories.

The situation is different when NS-NS geometric fluxes are turned on. In this case,

the H3 flux in (1.1) gives a term which is S times a cubic polynomial in the U moduli for

the IIB theory, while in the IIA theory the H3 flux in (1.2) gives a term linear in S and

one linear in U , while the f flux gives a term linear is ST and one linear in UT . Thus

obviously the two models cannot be identified by mirror symmetry. This is not surprising,

because indeed these fluxes are related to the non-geometric Q and R fluxes by the chain

of T-dualities [10–13]

Habc
Tc←→ −f c

ab
Tb←→ −Qbc

a
Ta←→ Rabc . (1.10)

In particular, in our model this implies that in IIB both the H and Q fluxes can be turned

on, and they are related by T-duality to the IIA fluxes as in table 2. The superpotential

for IIB then becomes [10–13]2

WIIB/O3 =

∫

(F3 − iSH3 +Q · Jc) ∧ Ω , (1.11)

while in IIA one has

WIIA/O6 =

∫

[eJc ∧ FRR +Ωc ∧ (H3 + f · Jc +Q · J2
c +R · J3

c )] . (1.12)

This includes now a term proportional to T times a cubic polynomial in U for the IIB

theory, and terms of the form ST 2, ST 3, UT 2 and UT 3 for the IIA theory. This implies

that the two models are dual, where the duality exchanges the U and T moduli and maps

the fluxes as in table 2.
2The convention for the contraction of indices for the non-geometric fluxes will be given explicitly in

section 2.
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NS-NS flux IIB IIA

h̄0 Hx1x2x3 Rx1x2x3

−āi Hyixjxk −Qxjxk

yi

−ai Hxiyjyk −fxi

yjyk

h0 Hyiyjyk Hyiyjyk

−bii Qxjxk

xi fxi

xjxk

bij Qxkyi

yj
fyi

yjxk

−hi Qxjxk

yi
−Hyixjxk

−b̄ij Qxiyk

xj Qykxj

xi

−h̄i Qyjyk

xi Rxiykyj

−b̄ii Qyjyk

yi
Qyjyk

yi

Table 2. The IIB NS-NS fluxes and their IIA duals. As in [13] we identify the fluxes with the

notation given in the first column. The conventions for the indices are explained in the caption of

table 1.

The IIB superpotential of eq. (1.1) possesses the nice property that it transforms

correctly under S-duality. This property is not shared by the superpotential in eq. (1.11)

where the Q flux is included. In [13] it was shown that one has to add the flux P bc
a , which

is the S-dual of the Q flux. This leads to the superpotential

WIIB/O3 =

∫

([F3 − iSH3] + [(Q− iSP ) · Jc]3) ∧ Ω , (1.13)

and the additional term SP ·Jc∧Ω generates a term linear in ST times a cubic polynomial

in U . Although adding this P flux allows one to recover S-duality invariance, the duality

with the IIA model is spoiled. In [31] the most general form for the superpotential of the

IIB theory was written down using generalised geometry techniques3 in a general case of a

Calabi-Yau O3-orientifold. This superpotential includes naturally fluxes that are related to

the P bc
a flux by perturbative duality transformations. In terms of the S, T and U moduli,

this gives a general expression which is at most linear in S while it is a cubic polynomial in

both T and U . Anyway, an explicit T-duality transformation for the P flux, analogous to

the ones in eqs. (1.9) and (1.10), was not given, and therefore the IIA-equivalent expression

for the superpotential was not derived.

One of the aims of this paper is precisely to perform this additional step. We will

first determine how in general the P bc
a flux transforms under T-duality, making use of the

results of [33], where the complete family of P fluxes was determined in any dimensions.

We will then apply these new T-duality rules to build the terms of the superpotential

that include all the allowed P fluxes both in IIB and IIA theories. This produces an

explicit polynomial form for the superpotential with an additional term proportional to

T 2 times a cubic polynomial in U in the IIB theory, while in IIA one generates a term

3For a discussion on the superpotential in generalised geometry see [32].

– 4 –



J
H
E
P
1
2
(
2
0
1
6
)
1
1
4

proportional to SU and one proportional to U2, both times cubic polynomials in T . As a

result, the expression for the resulting superpotential of each theory is mapped to the one

of the other theory provided that the moduli U and T are interchanged and the P fluxes

in the two theories are identified according to our rule, which amounts to the statement

that the duality between the IIB and IIA model is restored. The IIB expression for the

superpotential coincides with the expression of [31] as far as the P fluxes are concerned.

Turning on fluxes in general modifies the Bianchi identities for the field strengths of

the various potentials in the theory in such a way to produce an effective charge for these

potentials which is given by the integral in the internal directions of a quadratic term in

the fluxes. In particular, the absence of NS branes leads to a set of quadratic constraints

for all the NS-NS fluxes [10–13, 34–38]. By using our T-duality rules, we will manage to

show how these constraints are modified by the inclusion of terms containing both RR

and P fluxes. The RR Bianchi identities, instead, can give a non-vanishing contribution

to the effective number of D-branes, which has to be taken into account in the tadpole

cancellation condition. In IIB, turning on the P bc
a flux leads to a new tadpole that is

cancelled by the addition of a proper number of 7-branes which are the S-duals of the D7-

branes [13]. By turning on more general P fluxes, one then expects that additional branes,

which are related by suitable T-duality transformations to the S-dual of the D7-brane, can

be included.

In a series of papers [39–44], all the 1/2-BPS branes that are present in string theory in

any dimension have been classified according to their properties with respect to the duality

symmetry group of the theory. By carefully analysing this classification, we will manage to

determine a universal T-duality transformation rule for all the branes in string theory. This

will be the second main result of this paper. This rule will allow us to write down all the

branes that are sourced by the P fluxes, and thus all possible tadpole conditions that have

to be imposed. In general, by duality a brane in a given dimension can be mapped to a so

called exotic brane, which is an object that in the higher-dimensional theory is a generalised

KK-monopole, i.e. an object well-defined only in the presence of isometries [45–51]. This

is precisely the case for all the branes that are related by T-duality to the S-dual of the

D7-brane, and as a consequence the tadpole conditions that we find require in general the

inclusion of exotic branes.

The paper is organised as follows. In section 2 we will first review the results of [33] by

writing down all the P fluxes in both the IIB and IIA theories, and then we will derive a

universal T-duality rule for such fluxes which will allow us to write down the most general

form for the superpotential in both the IIB and IIA theories. In section 3 we will derive

a universal T-duality rule for all the branes in string theory, and we will determine all

the exotic branes that can be included in the orientifold model together to the S-dual of

the D7-brane. In section 4 we will apply our T-duality rules to determine how the P

fluxes modify the NS-NS Bianchi identities, and then to derive how they give rise to new

tadpole conditions for the exotic branes discussed in section 3. Finally, section 5 contains

our conclusions.
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2 P fluxes and the superpotential

The aim of this section is to derive the expression of the superpotential containing all the

allowed P fluxes for the IIB and IIA orientifold models discussed in the introduction. We

will first review the results of [33], where the complete family of P fluxes was derived in all

dimensions. We will then derive the rule to transform each of these fluxes under T-duality,

and finally we will use this result to write down the superpotential. In [31] (see also [18])

the most general form of the superpotential generated by geometric and non-geometric

fluxes in IIB was derived. We will show that the T-duality rules that we find reproduce

the same P flux contribution for IIB, and we will also show how the same superpotential

can be written in terms of the IIA fluxes. The inclusion of P fluxes has been considered in

the literature in various contexts, see e.g. [52–55].

From the point of view of the four-dimensional effective action, fluxes give rise to

gaugings, and the way in which a particular flux transforms by the action of the dual-

ity symmetry of the ungauged theory is encoded in the so-called ‘embedding tensor’ [56].

We will consider the embedding tensor of the maximal supergravity theory, and then we

will take into account only the components that survive in the N = 1 model. The rep-

resentations of the global symmetry group of any maximal supergravity theory to which

the embedding tensor belongs were derived in a series of papers [57–60]. In particular,

in four dimensions the embedding tensor belongs to the 912 of E7(7). One is then inter-

ested in decomposing this representation in terms of the perturbative symmetry SO(6, 6)

of the global symmetry group. Considering the embedding E7(7) ⊃ SO(6, 6) × SL(2,R),

this representation decomposes as

912 = (32,3)⊕ (220,2)⊕ (12,2)⊕ (352,1) . (2.1)

The SL(2,R) symmetry is the one that transforms non-linearly the complex scalar made

of the four-dimensional dilaton and the axion dual to the NS-NS 2-form. By further

decomposing SL(2,R) ⊃ R
+, one therefore associates the R

+ weight with the dilaton

weight. In particular one has

(32,3) = 322 ⊕ 320 ⊕ 32−2

(220,2) = 2201 ⊕ 220−1 (2.2)

(12,2) = 121 ⊕ 12−1 ,

where the subscript denotes the R
+ weight. The representation 322 corresponds to the

RR fluxes, the 2201 corresponds to the NS-NS fluxes and the 3520 corresponds to the P

fluxes. This can be seen by decomposing each of the SO(6, 6) representations in terms of

GL(6,R), which we do in detail now.

It is straightforward to see how this decomposition works for the case of the RR fluxes.

The 32 is the spinorial representation θα of SO(6, 6), and according to the convention that

one chooses for the chirality of this spinor, one has the two possible decompositions

θα →







Fa Fabc Fabcde (IIB)

F Fab Fabcd Fabcdef (IIA)
, (2.3)
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corresponding to the RR fluxes of odd rank in the IIB theory and of even rank in the IIA

theory. Obviously this representation contains only geometric fluxes. The T-duality rule

given in eq. (1.9) maps a given flux in one theory to a flux in the other theory. All the

components in eq. (2.3) are connected by chains of T-duality transformations.

The next representation is the 220, which is the representation θMNP of SO(6, 6) with

three antisymmetrised vector indices. This corresponds to the NS-NS fluxes, and indeed

the embedding tensor decomposes under GL(6,R) as

θMNP → Habc f c
ab Qbc

a Rabc . (2.4)

The T-duality rule given in eq. (1.10) connects the different components in the equation

above, but in this case not all the components can be reached by chains of T-dualities

starting for instance from a given H3 flux. More precisely, the components that are not

connected by T-duality to a given H3 flux are fa
ab and Qab

a (with indices not summed). It

is common procedure in the literature not to consider these fluxes, and we will also not

consider them in this paper.

We then move to the representation of the P fluxes, which is the 352 of SO(6, 6).

This is the vector-spinor (i.e. ‘gravitino’) representation θMα̇. By decomposing the whole

representation under GL(6,R) one gets [33]

θMα̇ →







Pa P b1b2
a P b1...b4

a P b1...b6
a P a,b1b2 P a,b1...b4 P a,b1...b6 (IIB)

P b
a P b1b2b3

a P b1...b5
a P a,b P a,b1b2b3 P a,b1...b5 (IIA)

, (2.5)

where the convention for each of the two decompositions is fixed by the corresponding

convention of the spinor, which is given in eq. (2.3). The flux P b1b2
a , which is the second flux

in the IIB decomposition, is the S-dual of theQ flux. In all the fluxes, the indices b1 . . . bp are

completely antisymmetrised, and the representations with all upstairs indices a, b1 . . . bp are

irreducible with vanishing completely antisymmetric part, while the representations with

the a index downstairs and some b indices upstairs are reducible, with the condition that

the singlet is always removed [33].

To conjecture how a single T-duality transformation should act on a given P flux

within the set of fluxes in eq. (2.5), we simply observe that in the embedding tensor θMα̇

the vector index transforms as it should, namely a lower index in a given direction is raised

if one performs a T-duality in that direction, while the spinor index decomposes in the set

of all even or odd antisymmetric indices, and T-duality should remove or add an index

according to whether it is already there or not. As a consequence, one derives the following

T-duality rules

P
b1...bp
a

Ta←→ P a,b1...bpa

P
b1...bp
a

Tbp
←→ P

b1...bp−1

a (2.6)

P a,b1...bp
Tbp
←→ P a,b1...bp−1 ,

which simply summarise the statements above, that is under the action of Ta a downstairs a

index is raised and vice versa, while in the set of antisymmetric indices the rule is precisely

as for the RR fluxes.
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P flux IIB IIA

fi P xkxj

yi
P xi

yi

gji P yjxk

yi
P xixjyj

yi

−ḡii P yjyk

yi
P xixjxkyjyk

yi

gii P xkxj

xi P xi,xi

ḡki P yjxk

xi P xi,xixjyj

−f̄i P yjyk

xi P xi,xixjxkyjyk

−f ′
i P xi,xixjxkyi P yi

xi

g′ki P xi,xixjyiyk P yixkyk

xi

−ḡ′ii P xi,xiyiyjyk P yixjyjxkyk

xi

−g′ii P yi,xixjxkyi P yi,yi

ḡ′ki P yi,yixiyjxk

P yi,yixjyj

f̄ ′
i P yi,yiyjykxi

P yi,yixjxkyjyk

Table 3. Table containing all the P fluxes that can be turned on in the N = 1 orientifold model

for both IIB and IIA. The convention for the indices is explained in the caption of table 1. In the

first column we list the notation that we use to identify each of the fluxes in both theories.

The components of the flux P b1b2
a that one considers are such that b1 and b2 are different

from a, precisely as for the Q flux. Therefore, by applying the T-duality rules in eq. (2.6),

one finds that by performing any chain of T-dualities one always ends up with components

such that if the a index is down, then it is different from any of the b indices, while if it is

up it has to be parallel to the b indices. It is for this reason that in eq. (2.6) we have not

included the rule that maps the flux P
b1...bpa
a to P a,b1...bp under Ta: both these components

are not connected by T-duality transformations to the components of the flux P b1b2
a we

are considering.4 It should also be appreciated that all these rules actually apply to any

dimension, although in this paper we are only interested in the four-dimensional case.

We can now apply these rules to determine all the P fluxes that can be included in the

four-dimensional T 6/[Z2 × Z2] orientifold model. In the case of the O3-orientifold of IIB,

as we have already reviewed in the introduction all the fluxes P bc
a with each of the three

indices along a direction of each of the three different tori can be turned on [13]. Using

the T-duality rules of eq. (2.6), we can then apply three T-duality transformations along

the three x directions to determine the corresponding fluxes from the IIA perspective. The

result is listed in the upper half of table 3. As can be seen from the table, in the IIA

picture one turns on some components of all the P fluxes of the IIA theory that are listed

in eq. (2.5).

It is straightforward to deduce the rule for the P fluxes that survive the orientifold

projection in the IIA theory. With respect to ΩP (−1)FL , the fluxes P a,b, P b1b2b3
a and

4For the same reason, the flux P b1...b6
a of the IIB theory will not be considered in our four-dimensional

model because in this case the index a cannot be different from all the indices b.

– 8 –



J
H
E
P
1
2
(
2
0
1
6
)
1
1
4

P a,b1...b5 are even, while the fluxes P b
a , P

a,b1b2b3 and P b1...b5
a are odd. For the fluxes that are

even, one must have an even number of x and an even number of y indices, while for the

fluxes that are odd both the number of x and y indices have to be odd. The indices of the

fluxes P
b1....bp
a are always grouped in pairs of indices belonging to a given torus, while for

the fluxes P a,b1...bp there is always one index (the a index) which is always an x index and

it is repeated, while again the other indices are grouped in pairs belonging to a given torus.

The a index in the fluxes P
b1...bp
a in the IIA upper half of table 3 is in all cases a y

index, but by analogy with table 2 we assume that it can also be x, provided that again all

indices are grouped in pairs as before. This leads to the first three fluxes in the lower half

of table 3. Now, by performing again three T-dualities along the x directions and using

the T-duality rules of eq. (2.6) we see that in the IIB theory these fluxes are mapped to

P a,b1...b4 . In particular, the a index is x and it is repeated, while the other three indices are

each on a different torus. Given that in the IIB theory the orientifold projection acts in

the same way on the x and y indices, we include the last three fluxes in the IIB side of the

lower half of table 3, which are mapped in the IIA setting to the fluxes P a,b1...bp where now

the repeated index is a y index and all the others are again grouped pairwise as before.

We can now write down the superpotential which contains all the P fluxes compatible

with the orientifold for both the IIB and IIA theory. We start by considering the IIB

superpotential with the P bc
a flux turned on, which is given in eq. (1.13). Performing three

T-dualities along the x directions and using the T-duality rules given in eq. (2.6) we find a

T-dual IIA expression which contains all the IIA P fluxes in the upper half of table 3. We

then extend this to include also the IIA fluxes in the lower half of the table. Collecting all

the terms in a compact notation, we arrive at the expression

WIIA/O6 =

∫

eJc ∧ FRR +Ωc ∧
(

H3 + f · Jc +Q · J2
c +R · J3

c − P 1
1 · Ωc

+ (P 1,1 − P 3
1 ) · Ωc · Jc − (P 1,3 + P 5

1 ) · Ωc · J
2
c − P 1,5 · Ωc · J

3
c

)

.

(2.7)

In this equation, the contraction rules for the NS fluxes are [10–13]

(f · Jc)abc = 3fd
[ab(Jc)c]d

(Q · J2
c )abc =

3

2
Qde

[a (J
2
c )bc]de (2.8)

(R · J3
c )abc =

1

6
Rdef (J3

c )abcdef ,

while the rules for the P fluxes are

(P 1
1 · Ωc)abc =

3

2
P d
[a(Ωc)bc]d

(P 1,1 · Ωc · Jc)abc =
3

2
P d,d(Ωc)d[ab(Jc)c]d

(P 3
1 · Ωc · Jc)abc =

1

2

(
3

4
P d1d2d3
[a (Ωc)bc]d1(Jc)d2d3 −

3

2
P d1d2d3
[a (Ωc)|d1d2|b(Jc)c]d3

)

(P 1,3 · Ωc · J
2
c )abc =

1

2

(
3

2
P d,def (Ωc)de[a(J

2
c )bc]df −

3

4
P d,def (Ωc)d[ab(J

2
c )c]def

)
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(P 5
1 · Ωc · J

2
c )abc =

1

3

(
1

16
P d1...d5
[a (Ωc)bc]d1(J

2
c )d2...d5 +

1

8
P d1...d5
[a (Ωc)|d1d2d3(J

2
c )d4d5|bc]

−
1

4
P d1...d5
[a (Ωc)|d1d2|b(J

2
c )c]d3d4d5

)

(P 1,5 · Ωc · J
3
c )abc =

1

3

(
1

8
P d,de1...e4(Ωc)de1e2(J

3
c )de3e4abc +

1

2
P d,de1...e4(Ωc)de1[a(J

3
c )bc]de2e3e4

−
1

16
P d,de1...e4(Ωc)d[ab(J

3
c )c]de1...e4

)

. (2.9)

Performing again three T-dualities along the x directions on eq. (2.7), we come back to the

IIB superpotential with all P fluxes allowed by the projections. Namely, we find

WIIB/O3 =

∫

[(F3 − iSH3) + (Q− iSP 2
1 ) · Jc − P 1,4 · J 2

c ] ∧ Ω , (2.10)

where the contractions for Q and P 2
1 are [10–13]

(Q · Jc)abc =
3

2
Qde

[a (Jc)bc]de

(P 2
1 · Jc)abc =

3

2
P de
[a (Jc)bc]de , (2.11)

while the last contraction is defined as

(P 1,4 · J 2
c )abc =

3

4
P d,de1e2e3(Jc)de1[ab(Jc)c]de2e3 , (2.12)

which is the only non-vanishing contraction we can introduce consistently with

the orientifold.

The IIB/O3 superpotential we find coincides with the one derived in [31] on the basis

of generalised geometry considerations, and this is a positive test in favour of our T-duality

rules for P fluxes. As far as the IIA/O6 result is concerned, our expression is valid for

the specific orbifold model we are considering, but it would be interesting to investigate

whether the same superpotential can be derived for more general orientifolds and whether

it has a natural explanation in the context of generalised geometry.

We now want to derive the explicit form of the superpotential in terms of the S, T, U

moduli. We use for the fluxes the conventions defined in the first column of tables 1, 2 and 3.

Following [13], we consider the simpler case of three equivalent tori, i.e. the isotropic case.

This greatly simplifies the explicit expressions for the superpotentials in both the IIB and

IIA theory. We consistently remove the indices from all the fluxes qi, ei, ai, bij , hi, fi, gij
and from the corresponding primed and/or barred fluxes in tables 1, 2 and 3. We rename

bii and gii as β and γ, and similarly for the equivalent primed and/or barred fluxes [13].

The IIB/O3 superpotential in eq. (2.10) leads to

WIIB/O3 = e0 + 3ieU − 3qU2 + imU3

+ S
(
ih0 − 3aU + 3iāU2 − h̄0U

3
)

+ 3T
(
− ih− (2b+ β)U + i(2b̄+ β̄)U2 + h̄U3

)
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+ 3ST
(
− f + i(2g + γ)U + (2ḡ + γ̄)U2 − if̄U3

)

− 3T 2
(
f ′ + i(2g′ + γ′)U − (2ḡ′ + γ̄′)U2 − if̄ ′U3

)
, (2.13)

and it can be shown that the IIA/O6 superpotential in eq. (2.7) gives the same expression

with U and T interchanged.

3 T-duality rules and exotic branes

In the IIB T 6/[Z2 ×Z2] O3 orientifold setup the only non-vanishing NS-NS and RR fluxes

are H3, Q and F3. These fluxes induce RR tadpoles, which have to be cancelled by the

addition of D-branes. In particular, the D-branes that survive the projections are D3-

branes and O3-planes, together with D7-branes, which wrap two of the three tori. The D3

and D7-brane charges are induced by the (generalised) Chern-Simons terms
∫

C4 ∧H3 ∧ F3

∫

C8 ∧Q · F3 , (3.1)

where C4 and C8 are the 4-form and 8-form RR potentials. In the equivalent IIA/O6

description only D6-branes spanning either the three x directions or one x and two y

directions, each on a different torus, survive the projections. In this case the charge induced

by the flux results from the generalised Chern-Simons term
∫

C7 ∧ (−H3F0 + f · F2 −Q · F4 +R · F6) . (3.2)

The IIB and IIA tadpole conditions are mapped into each other by performing three T-

dualities along the x directions. In particular the D3/O3 tadpole condition is mapped to

the condition arising from D6/O6 wrapping the three x directions, while the three D7-brane

conditions are mapped to the ones of the other three D6 branes [13].

In the IIB theory, one can study how each of the two tadpole conditions transform

under S-duality. While the D3 tadpole condition is S-duality invariant, the D7 brane is

mapped to its S-dual, whose tadpole is generated by [13]
∫

E8 ∧ P 2
1 ·H3 , (3.3)

where the potential E8 is the S-dual of C8 [61–63]. Our aim is to determine the IIA

equivalent of this expression. In order to do this, in this section we will determine how

this 7-brane transforms under T-duality. In a series of papers, the full classification of 1/2-

BPS branes in type-II string theory compactified on a torus was achieved by analysing the

supersymmetry of the corresponding brane effective action [39–41, 44], while the connection

of this analysis with specific group theory properties of such branes was shown in [42, 43].

This classification was also extended to theories with less supersymmetry in [64–67]. In the

following, we will first review the basic results of this classification and we will then derive

a universal T-duality transformation rule for any brane in string theory, which will give in

particular the IIA branes that are related by duality to the S-dual of the D7-brane in our

model, together with additional branes in IIB that must be included for consistency. In the
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next section, these rules will then be used to determine the full set of tadpole conditions

for these branes.

Following [39, 40], we introduce the non-positive integer number α occurring in the

expression T ∼ gαS that says how the tension of a given brane scales with respect to the

string coupling gS . For example, in ten dimensions one has the fundamental string with

α = 0, the D-branes with α = −1, the NS5-brane with α = −2 and in the IIB theory

one also has the S-dual of the D7-brane which has α = −3. By studying the branes with

different values of α in lower dimensions, what one finds is that apart from the branes that

arise as dimensional reductions of the branes in ten dimensions, there are additional branes

that have no higher dimensional origin. An example of a brane of this type is the α = −2

brane that is obtained by performing two T-dualities in two directions transverse to the

NS5-brane [48, 49]. The corresponding solution describes a metric that in these directions

in not globally defined, i.e. a T-fold [68], and as such it can be considered as a well-defined

geometric solution only in eight dimensions. In [47], the D-dimensional brane solutions

with two transverse directions (so-called defect branes) obtained by performing U-dualities

on brane solutions that arise from ten dimensions have been classified. Typically, from the

point of view of the ten-dimensional theory these solutions are locally well-defined only

in the presence of isometries, and are dubbed ‘exotic branes’ in the literature [45, 46].

Denoting with p + 1 the world-volume directions and with n the number of isometries,

such branes are commonly dubbed pn−α-branes. So the α = −2 brane with two isometries

of [48, 49] is a 522-brane.

In the brane classification of [39–41, 44], the non-geometric nature of a particular brane

corresponds to the fact that the brane is charged with respect to a mixed-symmetry poten-

tial.5 In particular, denoting with Ap,q,r,... a ten-dimensional mixed-symmetry potential in

a representation such that p, q, r, . . . (with p ≥ q ≥ r . . .) denote the length of each column

of its Young tableau, this corresponds to a brane if some of the indices p are isometries and

contain all the indices q, which themselves contain all the indices r and so on. In partic-

ular, the exotic defect branes discussed in [47] correspond to mixed-symmetry potentials

with p = 8 [71], but the analysis of [39–41, 44] is more general because it includes domain

walls and space-filling branes by also including mixed-symmetry potentials with p = 9 and

p = 10.

The D-branes, i.e. the α = −1 branes, are special because they always arise from

D-branes of the ten-dimensional theory. This means that the corresponding potentials are

forms, which are indeed the RR forms of the ten-dimensional theory and their duals, to-

gether with the 10-form C10 associated to the D9-brane in IIB and the 9-form C9 associated

to the D8-brane in IIA. In total one gets

C2 C4 C6 C8 C10 (IIB)

C1 C3 C5 C7 C9 (IIA) . (3.4)

5The mixed-symmetry potentials of the ten-dimensional theories are determined from the infinite-

dimensional Kac-Moody algebra E11 [69]. In [70] it was shown that by dimensionally reducing such poten-

tials one obtains the full spectrum of forms compatible with the gauge and supersymmetry algebras of the

maximal theory in any dimension.
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A single T-duality along the a direction acts on the RR fields in the obvious way: if an n-

form potential Cn of one theory has no index parallel to a, it is mapped to the (n+1)-form

Cn+1 of the other theory where the extra index is a, and vice versa. It is clear that one

obtains all components of all the RR fields listed in eq. (3.4) starting from any particular

field and performing repeated T-dualities in all directions.

The α = −2 branes arise from the ten-dimensional mixed-symmetry potentials [41, 72]

D6 D7,1 D8,2 D9,3 D10,4 , (3.5)

which are the same for the IIB and the IIA theory. The potential D6 obviously corre-

sponds to the NS5-brane, while the mixed-symmetry potential D7,1 corresponds to the

KK-monopole and the potential D8,2 corresponds to the T-fold of [48, 49]. These latter

two are solutions with one and two isometric directions respectively, and denoting with a

and b these directions one obtains that the potentials corresponding to these solutions are

the 6-forms D6 a,a and D6 ab,ab. The KK-monopole solution is obtained by performing a

T-duality on the NS5-brane solution along the direction a transverse to the brane, while

the T-fold solution is obtained by T-dualising the KK-monopole solution along the further

isometry b. By generalising this, one finds that in terms of the α = −2 potentials T-duality

acts as follows: if the potential of one theory has no indices along a, then Ta maps it to a

potential of the other theory with a added on both the first and the second set of indices,

while if the potential of one theory has an index a only along the first set of indices, it

is mapped to the same potential of the other theory. It can easily be shown that these

rules map the NS5-brane to all the other branes corresponding to the mixed-symmetry

potentials in eq. (3.5) by chains of T-dualities.

We now move to the α = −3 branes, whose corresponding mixed-symmetry potentials

are [73]

E8 E8,2 E8,4 E9,2,1 E8,6 E9,4,1 E10,2,2 E10,4,2 E10,6,2 (IIB)

E8,1 E8,3 E9,1,1 E8,5 E9,3,1 E9,5,1 E10,3,2 E10,5,2 (IIA) , (3.6)

and one can recognise in the IIB list the field E8 which is the S-dual of the RR field C8.

We find that the T-duality rule for these potentials is the following: if the potential of one

theory has no indices along a, then Ta maps it to a potential of the other theory with a

added on three sets of indices, while if the potential of one theory has an index a only

along the first set of indices, it is mapped to a potential of the other theory with a added

on the first and the second set of indices. Therefore, for instance the IIB potential E8

with no indices along a is mapped to the IIA potential E9,1,1 where the index a is present

on all three sets of indices. If instead E8 has one index a, then it is mapped to the IIA

potential E8,1 where a appears on both sets of indices. The reader can appreciate that by

performing repeated T-dualities one can map the S-dual of the D7-brane (which we denote

as the 73-brane) to all the exotic branes corresponding to the mixed-symmetry potentials

in eq. (3.6).

The rule we find actually generalises to all the other branes with more-negative α that

occur in string theory. Given a brane with α = −n such that in the corresponding potential
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the a index occurs p times (in p different sets of antisymmetric indices), that this is mapped

by T-duality along a to the brane associated to the potential in which the a index occurs

n− p times. Schematically, we write

α = −n : a, a, . . . , a
︸ ︷︷ ︸

p

Ta←→ a, a, . . . ., a
︸ ︷︷ ︸

n−p

. (3.7)

For instance, the list of the potentials associated to the α = −4 branes can be found in [64],

and by looking at equations 3.6 and 3.7 and tables 9 and 10 of that paper one can show

that the potentials associated to these branes are precisely related by our T-duality rules

for α = −4 in eq. (3.7). Similarly, in the same paper one can find the list of the α = −5

potentials in tables 11 and 12 (IIA) and 13 and 14 (IIB), and again the components of

these potentials that correspond to branes are nicely related by our T-duality rules for

α = −5 in eq. (3.7). Finally, the potentials for the α = −6 branes are given in [64] in

table 14 and equation 3.16, and the reader can check that our rule for α = −6 in eq. (3.7)

works again. We have checked that the rule also works for all the other branes with more

negative value of α. In four dimensions, the lowest value of α is −7, while it is −11 in three

dimensions [44].

We can now move back to the T 6/[Z2 × Z2] orientifold, and apply the rules we have

found to determine where the Chern-Simons term in eq. (3.3) is mapped to in the IIA

theory. The 73-branes correspond to the three components E4xiyixjyj (with i 6= j) of the 8-

form potential E8. By performing three T-dualities along the x directions, this is mapped to

the three components E4xiyixjyjxk,xixjxk,xk (with i, j, k all different) of the potential E9,3,1

of the IIA theory, which corresponds to a 52,13 -brane.6 This component has two y indices,

and by requiring that every component should have an even number of y indices we find the

additional components of E9,3,1 that are listed in table 4. By mapping these components

from IIA back to IIB, we find that in the latter theory one can include also the potentials

E8,4, E9,2,1 and E10,4,2, corresponding to 343, 6
1,1
3 and 52,23 -branes, and by including all these

branes in the IIB orientifold and mapping them back to the IIA theory we arrive at a fully

consistent picture in which also the allowed components of the potentials E8,1 and E10,5,2,

corresponding to 613 and 43,23 -branes, are included. The whole set of allowed potentials is

summarised in table 4.

In the next section, we will show how the inclusion of the P fluxes gives rise to gener-

alised Bianchi identities, and in particular how these give rise to specific tadpole conditions

precisely for the branes that we have listed in table 4. This analysis will also show how

various Bianchi identities that have already been considered in the literature have to be

modified by the inclusion of P fluxes.

4 P fluxes, Bianchi identities and tadpoles

In this section we analyse how the P fluxes modify the various Bianchi identities and

tadpole conditions in our model. In particular, in the first subsection we will show how the

6The 2, 1 denotes the fact that two isometries correspond to an index repeated twice and one isometry

corresponds to an index repeated three times.
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IIB IIA

potential component component potential

E8 E4xiyixjyj E4xiyixjyjxk,xixjxk,xk E9,3,1

E8,4 E4xiyixjyj ,xiyixjyj E4xiyixjyjxk,yiyjxk,xk E9,3,1

E4xiyixjyk,xiyixjyk E4xiyixjykxk,yiykxk,xk

E4xiyixjxk,xiyixjxk E4xiyixjxk,yi E8,1

E4xiyiyjyk,xiyiyjyk E4xiyixjyjxkyk,yixjyjxkyk,xjxk E10,5,2

E9,2,1 E4xiyixjyjyk,xiyk,xi E4 yixjyjxkyk,xjxkyk,xk E9,3,1

E4xiyixjyjxk,yixk,yi E4xiyixjyjxk,xiyixj ,yi

E4xiyixjyjxk,xixk,xi E4xixjyjxk,xj E8,1

E4xiyixjyjyk,yiyk,yi E4xiyixjyjxkyk,xiyixjxkyk,yixk E10,5,2

E10,4,2 E4x1y1x2y2x3y3,xiyixjyj ,xiyi E4 yixjyjxkyk,yiyjxk,yi E9,3,1

E4x1y1x2y2x3y3,xiyjxkyk,xiyj E4 yixjyjxkyk,xjyjyk,yk

E4x1y1x2y2x3y3,xiyixjxk,xjxk E4xiyiyjyk,yi E8,1

E4x1y1x2y2x3y3,xiyiyjyk,yjyk E4x1y1x2y2x3y3,yixjyjxkyk,yjyk E10,5,2

Table 4. The α = −3 branes that can be included in order to cancel the tadpoles generated by

the P fluxes. In all terms, the indices i, j, k are always meant to be all different.

T-duality rules for the P fluxes in eq. (2.6) modify the Bianchi identities for the NS-NS

fluxes, we will determine all the constraints that arise from these Bianchi identities and

will comment on their solution. In the second subsection, we will then move to consider

how the P fluxes lead to tadpole conditions for the α = −3 branes listed in table 4.

4.1 P fluxes and NS-NS Bianchi identities

In the absence of sources and P fluxes, the NS-NS fluxes satisfy the quadratic constraints

fe
[abHcd]e = 0

Qae
[b Hcd]e + fe

[bcf
a
d]e = 0

4Q
[a|e|
[c f

b]
d]e + fe

cdQ
ab
e +RabeHcde = 0 (4.1)

R[ab|e|f
c]
de +Q

[a|e|
d Qbc]

e = 0

R[ab|e|Qcd]
e = 0 ,

which arise from their Bianchi identities [10–13, 34–38]. By S-duality, the Q flux is mapped

to P bc
a , and in [13] it was indeed shown that the second constraint in eq. (4.1) is modified

by the addition of the term −P ae
[b Fcd]e, while the fourth constraint, which is the only other

one that is relevant in the case of the O3 orbifold, is mapped to an equivalent quadratic

constraint for P bc
a . We now determine how the full set of quadratic constraints in eq. (4.1)
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is modified by the inclusion of all the P fluxes in the general case, and then we will analyse

the particular case of the IIB/O3 and IIA/O6 models.

Our method is as follows: we first write down all the possible terms of the form F ·P to

the first equation in (4.1). These terms can only be F3 ∧P1 and P 2
1 ·F5 in IIB, and P 1

1 ·F4

in IIA. Then we consider particular components of these constraints and we act on them

with all possible T-dualities using eqs. (1.9), (1.10) and (2.6). Requiring closure under

T-duality fixes all the coefficients of all the possible terms of the form F · P that can be

added to all the NS-NS quadratic constraints. Finally, we write the resulting expressions

in covariant notation. The final result is that the Bianchi identities become

6fe
[abHcd]e + 4F[abcPd] + 2P ef

[a Fbcd]ef = 0

3Qae
[b Hcd]e + 3fe

[bcf
a
d]e − 3P ae

[b Fcd]e − P a,aeFbcdae +
1

2
P aefg
[b Fcd]efg = 0

−Qab
e fe

cd − 4Q
[a|e|
[c f

b]
d]e −RabeHcde + 2F[cP

ab
d] + P a,abFcda + P b,abFcdb

+ P abef
[c Fd]ef +

1

2
P a,baefFcdaef −

1

2
P b,abefFcdbef = 0 (4.2)

3R[ab|e|f
c]
de + 3Q[ab

e Q
c]e
d + P abce

d Fe − P a,abceFade − P b,abceFbde − P c,abceFcde

+
1

6
P a,abcefgFadefg +

1

6
P b,abcefgFbdefg +

1

6
P c,abcefgFcdefg = 0

6R[ab|e|Qcd]
e + FaP

a,abcd + FbP
b,abcd + FcP

c,abcd + FdP
d,abcd +

1

2
P a,bcdaefFaef

+
1

2
P b,bcdaefFbef +

1

2
P c,bcdaefFcef +

1

2
P d,bcdaefFdef = 0

in the IIB case, and

6fe
[abHcd]e + 4P e

[aFbcd]e = 0

3Qae
[b Hcd]e + 3fe

[bcf
a
d]e − 3P a

[bFcd] − P a,aFbcda +
1

2
P a,aefFbcdaef +

3

2
P aef
[b Fcd]ef = 0

−Qab
e fe

cd − 4Q
[a|e|
[c f

b]
d]e −RabeHcde + 2P abe

[c Fd]e − P a,abeFcdae − P b,abeFcdbe

−
1

3
P abefg
[c Fd]efg +

1

6
P a,abefgFcdaefg +

1

6
P b,abefgFcdbefg = 0 (4.3)

3R[ab|e|f
c]
de + 3Q[ab

e Q
c]e
d + FP abc

d − P a,abcFad − P b,abcFbd − P c,abcFcd

−
1

2
P abcef
d Fef −

1

2
P a,bcaefFdaef −

1

2
P b,bcaefFdbef −

1

2
P c,bcaefFdcef = 0

6R[ab|e|Qcd]
e − FdeP

d,abcde − FceP
c,abcde − FbeP

b,abcde − FaeP
a,abcde = 0

in the IIA case.

The NS-NS quadratic constraints can be relaxed by the inclusion of sources [37, 74].

This obviously also applies to the constraints modified by the inclusion of P fluxes in

eqs. (4.2) and (4.3). In particular, relaxing the first constraints (that we schematically

write as (flux · flux)4 = 0) in both equations induces a charge for the NS5-brane coming

from the generalised Chern-Simons term
∫

D6 ∧ (flux · flux)4 . (4.4)
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As we have discussed in section 3, if we now consider a particular component for D6, and

we perform a T-duality Ta in a direction whose index a is not contained in D6, this is

mapped to D6 a,a which is a component of the mixed-symmetry potential D7,1. Similarly,

the quadratic term in the fluxes (flux · flux)4 is mapped to the component (flux · flux)a3
from the second line of the quadratic constraints in eqs. (4.2) and (4.3), so that the full

Chern-Simons term is mapped to
∫

D6 a,a ∧ (flux · flux)a3 . (4.5)

In this expression, the a index of the potential after the comma in meant to be contracted

with the upstairs index of the flux term, while the other ten indices are all different.

Therefore, the three downstairs indices of the flux term are not along a, and in general

by T-duality starting from the first Bianchi identity one can only reach components such

that the upstairs indices are all different from the downstairs ones. This means that the

constraints of eqs. (4.2) and (4.3) (as well as the ones in eq. (4.1)) are actually more than

what ones gets by simply starting with the first constraints and applying T-dualities. As

we will see, this point turns out to be crucial when we discuss the solutions of the quadratic

constraints in the IIB and IIA orientifold models.7

We can now study the solutions to the constraints in eqs. (4.2) and (4.3) for the IIB/O3

and IIA/O6 orientifolds. In the IIB/O3 case, only the second and fourth equations in (4.2)

are non-trivial, and can be schematically written as

(Q ·H3 − P 2
1 · F3)

a
bcd = 0 (4.6)

and

(Q ·Q− P 1,4 · F3)
abc
d = 0 . (4.7)

The relevant components of eq. (4.6) with a different from b, c, d are (Q ·H3−P 2
1 ·F3)

xj

xiyiyj

and (Q ·H3 − P 2
1 · F3)

yj

xiyixj , which would induce a charge for the KK-monopoles (i.e. 512-

branes) associated to the components D4xkykxj ,xj and D4xkykyj ,yj of the mixed-symmetry

potential D7,1. By substituting the symbols given in the first columns of tables 1, 2 and 3

(and considering for simplicity the isotropic case), one gets the equations

ā(b̄+ β̄)− h̄a− f̄ e+ bh̄0 + gm− q(ḡ + γ̄) = 0

a(b+ β) + e(γ + g) + b̄h0 − āh+ e0ḡ + fq = 0 , (4.8)

where the notation for the isotropic fluxes is as in eq. (2.13). Similarly, eq. (4.7), with

the index d different from a, b, c, leads to the two components (Q · Q − P 1,4 · F3)
xjyjxk

yk

and (Q ·Q− P 1,4 · F3)
xjyjyk

xk , which would induce a charge for the 532-branes associated to

the components D4xiyixjyjxk,xjyjxk and D4xiyixjyjyk,xjyjyk of the mixed-symmetry potential

D9,3. In the isotropic case these constraints are

−b(b+ β) + h(b̄+ β̄)− f ′q + e(g′ + γ′)− ḡ′e0 = 0

b̄(b̄+ β̄)− h̄(b+ β)− q(γ̄′ + ḡ′)− g′m+ f̄ ′e = 0 . (4.9)

7In our model we do not relax the NS-NS Bianchi identities because including α = −2 branes would not

be compatible with N = 1 supersymmetry.
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In the IIA/O6 case, the non-trivial constraints in eq. (4.3) are the second, the third and the

fourth, but actually only the second and the fourth are relevant for the components such

that the upstairs indices are different from the downstairs ones. The second constraint is

(Q ·H3 + f · f + P 1
1 · F2 − P 1,1 · F4 + P 3

1 · F4 + P 1,3 · F6)
a
bcd = 0 , (4.10)

which again would induce a charge for the 512-branes associated to the same D7,1 compo-

nents as in IIB. The constraints in this case are the second equation in (4.8) and the first

in (4.9). The other non-trivial constraint is

(R · f +Q ·Q+ P 3
1F0 − P 1,3 · F2 − P 5

1 · F2 − P 1,5 · F4)
abc
d = 0 , (4.11)

which would induce a charge for the same 532-branes as in the IIB case, leading to the first

equation in (4.8) and the second in (4.9). We therefore have perfect match between the

IIB and the IIA result.

The situation is different if one considers the additional non-trivial constraints that

survive the orientifold projection but are not such that the upstairs and downstairs indices

are all different. In the IIB case, from eq. (4.6) one gets the components (Q·H3−P 2
1 ·F3)

xj

xiyixj

and (Q ·H3−P 2
1 ·F3)

yj

xiyiyj
, which in eq. (4.5) are associated to the components D4xkykyj ,xj

and D4xkykxj ,yj of the mixed-symmetry potential D7,1, and similarly from eq. (4.7). In

the IIA case, neither eq. (4.10) nor eq. (4.11) lead to additional relations, while the non-

trivial relations come from the third constraint in eq. (4.3), which after the orientifold

projection becomes

(−Q · f −R ·H3 + P 3
1 · F2 − P 1,3 · F4 − P 5

1 · F4 + P 1,5 · F6)
ab
cd = 0 . (4.12)

What one finds is that the IIB and IIA constraints that one gets do not match, unless the

additional constraints

q(g + γ) + ḡe− fm+ gq + e(ḡ + γ̄) + e0f̄ = 0 (4.13)

−mf ′ − q(g′ + γ′) + ḡ′e− g′q + e(ḡ′ + γ̄′)− f̄ ′e0 = 0 (4.14)

are satisfied.

In order to understand and solve this mismatch, we remember that the fields listed

in eq. (3.5), that are associated to the α = −2 branes, in the four-dimensional theory

belong to representations of SO(6, 6). In particular, the space-filling branes correspond to

a 4-form potential D4,MNPQ in the 495 representation [41]. This representation not only

contains the fields in eq. (3.5), but also the potentials D8, D9,1, D10 and D10,2 [41]. The

components of the mixed-symmetry potentials in (3.5) with indices after the comma that

are not parallel to any of the other indices are related by T-duality to these additional

potentials.8 In particular, the 8-form field D8 is the one that together to C8 and E8 forms

8In a group-theoretic language, all these components correspond to shorter weights of the 495 represen-

tation of SO(6, 6) with respect to the components considered in section 3 [43].
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the triplet of SL(2,R) [61–63]. In the IIB/O3 setup, the tadpole induced by the fluxes to

this potential was already considered in [13] and arises from the Chern-Simons term
∫

D8 ∧ (Q ·H3 + P 2
1 · F3)2 . (4.15)

By imposing absence of sources for this potential, this leads to the quadratic constraint

Qcd
[aHb]cd + P cd

[a Fb]cd = 0 . (4.16)

By analysing this constraint, one finds that it implies exactly eq. (4.13). In IIB/O3 the

constraints from D9,1 and D10 identically vanish, while the constraint arising from the

D10,2 potential in IIB is

(P 1,4 · F3)
ab = P a,abcdFacd + P b,abcdFbcd = 0 , (4.17)

which leads exactly to the condition (4.14). In the IIA/O6 model, the only non-trival

constraint comes from D9,1, and again it can be shown that it is perfectly compatible with

all the IIB constraints.

What this analysis shows is that when the P fluxes are included, one can consistently

impose all the NS-NS constraints, but this also imposes for consistency that the quadratic

constraints arising from the D8 and D10,2 potentials in IIB have to vanish. On the other

hand, in the previous section we have shown that the P fluxes also induce charges for

the α = −3 branes that can be different from zero. We now want to analyse the tadpole

conditions for these branes.

4.2 P fluxes and tadpoles

Using the T-duality rules for the P fluxes and the E potentials that we have found in this

paper, one can determine, starting from eq. (3.3), all the tadpole conditions for the α = −3

branes listed in table 4 in the presence of P fluxes. In the IIB/O3 theory, there are three

73-branes, each orthogonal to one of the three tori T 2
(i), corresponding to the components

E4xjyjxkyk of the potential E8. Denoting the number of each of these branes as N(73)i ,

from eq. (3.3) one gets [13]

N(73)i +
1

2
[−h0f̄i + h̄0fi + ājgji − aj ḡji] = 0 , (4.18)

where it is understood that the index j is summed. In the IIA theory, these condi-

tions are mapped to the conditions for the 52,13 -branes associated to the components

E4xiyixjyjxk,xixjxk,xk of the potential E9,3,1 (see table 4). This can be shown by evaluating

for these components the constraints coming from the generalised Chern-Simons term

1

2

∫

E9,abc,a × (flux · flux)abc,a1 , (4.19)

where the (flux · flux) term is given by

(flux · flux)abc,ad = − 2P a,a[b|e|f
c]
de + fa

cdP
c,abc + fa

bdP
b,abc + P a,aQbc

d +Qae
d P abc

e

− 2P
a[b|e
d Qa|c]

e +
1

2
P abcef
d fa

ef + P a
dR

abc +
1

2
P a,abcefHdef . (4.20)
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As we have discussed in the previous subsection, since the 52,13 -branes correspond to the

components of the potentials such that the indices abc have to be inside the first 9 indices,

this implies that for these components the index d in eq. (4.20) differs from a, b, c. In

particular, the components E4xiyixjyjxk,xixjxk,xk couple to the terms (flux · flux)x
ixjxk,xk

yk
,

which lead precisely to the tadpole conditions equivalent to eq. (4.18).

In section 3 we have seen that the additional 52,13 -branes that can be included in the

IIA/O6 theory are mapped in the IIB/O3 theory to the 343, 6
1,1
3 and 52,23 -branes associ-

ated to the potentials E8,4, E9,2,1 and E10,4,2 respectively. The tadpole conditions for all

these branes can be easily determined using our rules. We write schematically the flux

contributions to the tadpole conditions for all these branes as

P 2
1 ·H3 ←→E8

P 2
1 ·Q ←→E8,4, E9,2,1 (4.21)

P 1,4 ·Q ←→E10,4,2 .

Similarly, one can compute the tadpole conditions for the 613 and 43,23 -branes in the

IIA/O6 theory.

As an interesting application of our results, we now consider the IIB/O3 theory for

the particular case in which P 1,4 = 0, and look at all the constraints related to P 2
1 · Q

in the presence of exotic branes. From eq. (4.21) one can see that the potential E10,4,2

does not couple to P 2
1 , and therefore we only have to consider, apart from E8 (giving the

constraint (4.18)), the potentials E8,4 and E9,2,1. The generalised Chern-Simons term for

E8,4 is
1

4!

∫

E8,4 ∧ (P 2
1 ·Q)42 . (4.22)

with (P 2
1 · Q)abcdef = 12P

[ab
[e Q

cd]
f ] . We denote with ©abcd the isometry directions. We find

the constraints

N34
3

(©xjyjxkyk) +
1

2
[giib̄ii − ḡkibki + f̄ihi − ḡjibji − fih̄i + gjib̄ji − ḡiibii + gkib̄ki] = 0

N34
3

(©yiyjxkyk)−
1

2
[ḡkih̄j − f̄ib̄kj + ḡkj h̄i − f̄j b̄ki] = 0

N34
3

(©yixjxkyk)−
1

2
[−giib̄jj + ḡjibij + ḡjjbii − gij b̄ji] = 0

N34
3

(©xixjxkyk) +
1

2
[fibkj − gkihj − gkjhi + fjbki] = 0 . (4.23)

As we have already discussed in the previous subsection for the NS-NS fluxes, eq. (4.22)

gives quadratic constraints also for the components that do not correspond to branes, i.e.

components in which some on the downstairs indices are equal to some of the upstairs ones.

These constraints are

giib̄ij − ḡjibjj − ḡijbii + gjj b̄ji = 0

−ḡkib̄ij + f̄ibjj + ḡij b̄ki − gjj h̄i = 0

giibkj − ḡjihj − gkjbii + fj b̄ji = 0
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−ḡkibkj + f̄ihj + gkj b̄ki − fj h̄i = 0 (4.24)

ḡkib̄jj − f̄ibij − ḡjj b̄ki + gij h̄i = 0

−gjibkj + ḡiihj + gkjbji − fj b̄ii = 0

gjib̄jj − ḡiibij − ḡjjbji + gij b̄ii = 0 .

For the E9,2,1 potential, the generalised Chern-Simons term has the form

1

2

∫

E9,2,1 ∧ (P 2
1 ·Q)2,11 , (4.25)

with (P 2
1 · Q)ab,cd = 1

3(−P be
d Qac

e − 2P ce
d Qab

e − P ae
d Qcb

e + Qae
d P cb

e + Qbe
d P ac

e + 2Qce
d P ab

e ). The

exotic branes are the 61,13 -branes, and denoting with //abc the internal directions wrapped

by the branes, and with ©d,©e the isometries corresponding to the index d repeated twice

and the index e repeated three times, the constraints are

N
61,1
3

(//xjyjyi,©xk,©xi)−
1

2
[fkbjj − gjkhj − hkgjj + bjkfj ] = 0

N
61,1
3

(//xixjyj ,©xk,©yi)−
1

2
[gik b̄kj − ḡkkbij − bikḡkj + b̄kkgij ] = 0

N
61,1
3

(//yixjyj ,©yk,©xi) +
1

2
[−gkk b̄ij + ḡikbkj + bkkḡij − b̄ikgkj ] = 0

N
61,1
3

(//xixjyj ,©yk,©yi) +
1

2
[−ḡjkh̄j + f̄k b̄jj + b̄jkf̄j − h̄kḡjj ] = 0 . (4.26)

As in the previous case, we must also consider the quadratic constraints that do not cor-

respond to branes. These are

gkk b̄kj − ḡikbij − ḡjkbjj + f̄khj − bkkḡkj + b̄ikgij + b̄jkgjj − h̄kfj = 0

−fkh̄j + gjk b̄jj + gik b̄ij − ḡkkbkj + hkf̄j − bjkḡjj − bikḡij + b̄kkgkj = 0

−gkkh̄j + ḡik b̄jj + ḡjk b̄ij − f̄kbkj + bkkf̄j − b̄ikḡjj − b̄jkḡij + h̄kgkj = 0

fk b̄kj − gjkbij − gikbjj + ḡkkhj − hkḡkj + bjkgij + bikgjj − b̄kkfj = 0

−2ḡjkbjj + 2f̄khj − gkk b̄kj + ḡikbij + bkkḡkj − b̄ikgij + 2b̄jkgjj − 2h̄kfj = 0

2gik b̄ij − 2ḡkkbkj + fkh̄j − gjk b̄jj − hkf̄j + bjkḡjj − 2bikḡij + 2b̄kkgkj = 0

2ḡjk b̄ij − 2f̄kbkj + gkkh̄j − ḡik b̄jj − bkkf̄j + b̄ikḡjj − 2b̄jkḡij + 2h̄kgkj = 0

−2gikbjj + 2ḡkkhj − fk b̄kj + gjkbij + hkḡkj − bjkgij + 2bikgjj − 2b̄kkfj = 0

gkkbjj − ḡikhj − bkkgjj + b̄ikfj = 0

ḡjk b̄kj − f̄kbij − b̄jkḡkj + h̄kgij = 0

−fk b̄ij + gjkbkj + hkḡij − bjkgkj = 0

−gij h̄j + ḡkk b̄jj + bikf̄j − b̄kkḡjj = 0 . (4.27)

Exactly as we have discussed in the previous subsection, what we have determined

is not yet the full set of constraints. Indeed, the four-dimensional α = −3 space-filling

branes correspond to the 4-form potential E4,MNα̇ belonging to the ‘tensor-spinor’ 1728

representation of SO(6, 6). Together with the potentials in eq. (3.6) that are associated to
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the branes, there are additional potentials that must be included in order to generate the

whole four-dimensional representation. Focusing on the IIB/O3 model, it turns out that

in order to get all the possible constraints for P 2
1 · Q one has to introduce also the fields

E9,3 and E10,2. These potentials occur in the IIB decomposition of E11 and correspond to

roots with zero and negative squared length respectively [75]. In [42] it was shown that

only the E11 roots with positive squared length are associated to branes.

The constraint corresponding to E9,3 is

Q[ab
e P

c]e
d + P [ab

e Q
c]e
d = 0 , (4.28)

and has already been proposed in [13]. In components one gets

−bjj ḡjk + b̄kjgkk + hj f̄k − bij ḡik − gjj b̄jk + fj h̄k + ḡkjbkk − gij b̄ik = 0

b̄ijgik − h̄jfk − bkj ḡkk + b̄jjgjk + ḡijbik − gkj b̄kk − f̄jhk + ḡjjbjk = 0

−bjjgik + b̄kjfk + hj ḡkk − bijgjk − gjjbik + fj b̄kk + ḡkjhk − gijbjk = 0

b̄ij ḡjk − h̄jgkk − bkj f̄k + b̄jj ḡik + ḡij b̄jk − gkj h̄k − f̄jbkk + ḡjj b̄ik = 0 . (4.29)

From the multiplicity analysis of E11 one can show that there are actually three independent

E10,2 potentials [75]: with respect to the SL(2,R) symmetry of the IIB theory, one belongs

to the triplet that also contains D10,2, while the other two are singlets. If only P 2
1 and Q

fluxes are turned on, the constraint arising from the triplet vanishes, while from the two

singlets one gets

Q
e[a
f P b]f

e = 0 , (4.30)

which in components gives

− bkkḡkj + hkf̄j + b̄ikgij − bjkḡjj − bjj ḡjk + hj f̄k + b̄ijgik − bkj ḡkk

+ b̄jkgjj − bikḡij − h̄kfj + b̄kkgkj + b̄kjgkk − bij ḡik − h̄jfk + b̄jjgjk = 0 . (4.31)

One can solve the whole set of equations that we have determined. In particular, in

the isotropic case and without localised sources, a simple solution is

g = ḡ = γ = γ̄ = f = f̄ and b = b̄ = β = β̄ = h = h̄ . (4.32)

A further investigation of the solutions that one can find, as well as a more general analysis

of the constraints when all the allowed fluxes and branes are turned on, is beyond the scope

of this paper.

5 Conclusions

In this paper we have derived the T-duality transformation rules for the P fluxes, and this

allowed us to write their contribution to the superpotential for the T 6/[Z2 × Z2] IIB/O3

and IIA/O6 orientifold models. The IIB/O3 orientifold result reproduces the general ex-

pression found in [31] as far as these fluxes are concerned. The P flux contribution to

the superpotential in the IIB/O3 case amounts to a term proportional to ST and a term
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proportional to T 2, both multiplying cubic polynomial in U . The IIA/O6 superpotential

has the same expression with U and T interchanged. The P fluxes also modify the Bianchi

identities for the NS-NS fluxes, and generate tadpoles for the α = −3 branes. To compute

the tadpole conditions, one has to determine how these branes transform under T-duality,

and we have achieved this in this paper by determining a universal T-duality rule for all

the branes in string theory.

The expressions for the NS-NS Bianchi identities with P fluxes included are given in

eqs. (4.2) and (4.3). These conditions are only compatible with the duality between the

IIB/O3 and the IIA/O6 theory if additional constraints are imposed, which in particular

would imply that a source for the D8 potential that is dual to the dilaton can not be

included.9 As far as the Bianchi identities for the P fluxes are concerned, we claim that

they can be consistently relaxed for all the components that generate charges for the exotic

branes listed in table 4, while they are still satisfied for the other components. We have

used the brane classification carried out in [39–41, 44, 73], and in particular we associate

specific components of mixed-symmetry potentials to exotic branes.

This analysis can be extended in different directions. First of all, one can study in

more detail the solutions of the tadpole conditions that we find, and plug them in the

superpotential in order to minimise the scalar potential. Moreover, one can complete the

analysis by including all the possible fluxes and branes in the model, both in the IIB and

the IIA setup. This would generally lead to a superpotential which is cubic in both the U

and T moduli [13], with more general tadpole conditions than what we find in this paper.

This would be of interest in the context of moduli stabilisation and more generally for

phenomenological applications.

The superpotential of the IIA/O6 theory given in eq. (2.7) was obtained in this paper

by simply requiring the matching with IIB using the mapping dictated by the T-duality

transformation rules that we have found. It would be interesting to understand whether

this expression has a validity for generic IIA/O6 Calabi-Yau compactifications. This would

give the equivalent to the analysis carried out in [31] for IIA as far as P fluxes are concerned.

One could then try to extend this analysis for all the fluxes of the IIA theory.

Obviously, it would be of extreme interest to get any understanding of the dynamics

of the exotic branes that according to our analysis can be consistently introduced to cancel

the charges induced by the P fluxes. We hope that this work could in principle shed some

light on this crucial issue.
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[5] R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional string

compactifications with D-branes, orientifolds and fluxes, Phys. Rept. 445 (2007) 1

[hep-th/0610327] [INSPIRE].

[6] M. Graña, Flux compactifications in string theory: a comprehensive review,

Phys. Rept. 423 (2006) 91 [hep-th/0509003] [INSPIRE].

[7] M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733

[hep-th/0610102] [INSPIRE].

[8] F. Denef, Les Houches lectures on constructing string vacua, arXiv:0803.1194 [INSPIRE].

[9] S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four folds,

Nucl. Phys. B 584 (2000) 69 [Erratum ibid. B 608 (2001) 477] [hep-th/9906070] [INSPIRE].

[10] J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications,

JHEP 10 (2005) 085 [hep-th/0508133] [INSPIRE].

[11] J. Shelton, W. Taylor and B. Wecht, Generalized flux vacua, JHEP 02 (2007) 095

[hep-th/0607015] [INSPIRE].

[12] B. Wecht, Lectures on nongeometric flux compactifications,

Class. Quant. Grav. 24 (2007) S773 [arXiv:0708.3984] [INSPIRE].

[13] G. Aldazabal, P.G. Camara, A. Font and L.E. Ibáñez, More dual fluxes and moduli fixing,
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