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Introduction. The supergravity theories with 8 real supercharges provide a very inter-

esting arena for the construction and study of supersymmetric solutions because they have

enough symmetry to be tractable and exhibit interesting properties such as the attractor

mechanism of their black-hole and black-string solutions [1–5] but not so much symmetry

that only a few models are permitted.1

Most of the work on these theories has been devoted to the 4-and 5-dimensional ones

for different reasons: for a given matter content many models are possible; they are the

effective theories of type II superstrings compactified on Calabi-Yau 3-folds (times a circle in

the 4-dimensional case); they have rich geometrical structures known as Special Geometry

(Kähler in d = 4, real in d = 5); they admit supersymmetric black-hole solutions etc.

In fact, most of whose supersymmetric solutions have been classified in refs. [9–15] and

refs. [16–23] respectively.

1A general but deep review of all these theories can be found in ref. [6] and for the 4-dimensional

case, only, in ref. [7]. The 4- and 5-dimensional ones are also reviewed in ref. [8], with emphasis on the

supersymmetric bosonic solutions.
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Much less work has been done in the 6-dimensional theories (often called N = (2, 0), d =

6 supergravities because they have chiral fermions), whose structure is not as rich and which

are not associated to Calabi-Yau compactifications. The pure supergravity theory, first con-

structed in ref. [24] by dimensional reduction from 11-dimensional supergravity [25] contains

the graviton, gravitino and a 2-form with anti-selfdual 3-form field strength and it does

not admit a covariant action, which makes it more complicated to work with. This theory

can be coupled to vector multiplets (which have no scalars), tensor multiplets (which have

real scalars which always parametrize the same symmetric space SO(1, nT )/SO(nT ) and

2-forms whose 3-form field strengths are selfdual) and hypermultiplets (with scalars that

parametrize arbitrary quaternionic-Kähler manifolds). One way to avoid the complications

of having to deal with chiral 2-forms2 is to consider theories with just one tensor multiplet

so the two chiral 2-forms of opposite chiralities combine into one unconstrained 2-form.

These theories can describe the effective theory of the truncated, toroidally compactified

Heterotic String (metric, Kalb-Ramond 2-form and dilaton) and, coupled to vector multi-

plets and hypermultiplets were constructed in refs. [26–28]. The coupling to an arbitrary

number of tensor multiplets was described in ref. [29] and has attracted much less attention

because it has not been identified as the effective field theory of some string or M-theory

compactification yet and it cannot be gauged, at least in any conventional sense, because

it does not have vectors that can be used as gauge fields. The coupling to tensors, vectors

and hypermultiplets with some gaugings was described in ref. [30], which is the reference

that we are going to use here.

The supersymmetric solutions of most of these theories have not yet been classified

either. The only N = (2, 0), d = 6 supergravity theories considered have been the pure

supergravity theory in refs. [31, 32] and a theory with one tensor multiplet and a triplet of

vector multiplets with SU(2) and U(1) gaugings via Fayet-Iliopoulos terms in ref. [33].

In this paper we are going to study the often disregarded N = (2, 0), d = 6 supergravity

theories that have several tensor multiplets with or without vector multiplets as a prepara-

tion to classify their supersymmetric solutions and to study how these solutions are related

to the supersymmetric solutions of the N = 2, d = 5 theories by dimensional reduction

on a circle [34]. We are also going to use these results to construct new supersymmetric

solutions of the N = (2, 0), d = 6 supergravity theories in absence of a classification.

Let us explain how we intend to achieve these goals.

In general, the supersymmetric solutions of theories related by dimensional reduc-

tion are also related: all the supersymmetric solutions of the lower-dimensional theory

can be uplifted to supersymmetric solutions of the higher-dimensional theory while all the

supersymmetric solutions of the higher-dimensional theory admitting translational isome-

tries [35]3 can also be reduced along the associated directions to supersymmetric solutions

2That is: 2-form potentials with selfdual or anti-selfdual 3-form field strengths.
3In the case of toroidal compactification. The general condition is that the Killing spinors of the higher-

dimensional solutions can also be understood as spinors of the lower-dimensional theory. This requires

the spinors to have a particular dependence (or independence) on the coordinates of the compactification

manifold which, in turn, requires the solution to meet certain conditions. In toroidal compactifications the

isometries associated to the circles must act without fixed points (be translational isometries). In more
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of the lower-dimensional theories. Thus, one can get new supersymmetric solutions of one

of the theories from known supersymmetric solutions of the other one.4 The basic reason

for this correspondence is that the Killing spinor equations of the higher-dimensional the-

ory always give the Killing spinor equations of the lower-dimensional one and, if the latter

admit solutions, also do the former. As explained in the footnote, it may not be true the

other way around.

Two conditions have to be met in order to apply this simple solution-generating

technique:

1. One has to know which theories are related by dimensional reduction.

2. The detailed relation (“dictionary”) between the fields of the higher- and lower-

dimensional theories must also be known.

In our case it does not seem to be widely known which models of N = 2, d = 5

supergravity are related by dimensional reduction to which models of N = (2, 0), d = 6

supergravity theories, actually. Thus, our first task (section 1) will be to perform the

dimensional reduction of a general, ungauged, N = (2, 0), d = 6 supergravity theory with

an arbitrary number of tensor and vector multiplets5 to d = 5 and identify to which model

of N = 2, d = 5 supergravity. A careful identification of the 5-dimensional fields will

provide us with the dictionary we need to reduce and uplift solutions (section 2).

The identification of the 5-dimensional models leads to a surprise: there are two dif-

ferent families of models of N = (2, 0), d = 6 supergravity related to the same family of

models of N = 2, d = 5 supergravity: the family of models with 1 tensor multiplet and

nV vector multiplets (that we are going to call N = 2A, d = 6 theories)6 and the family of

models with only nT = nV + 1 tensor multiplets (that we are going to call N = 2B, d = 6

theories) give exactly the same family of models of N = 2, d = 5 supergravity coupled

to nV 5 = nV + 2 vector multiplets with a symmetric tensor CIJK with non-vanishing

components C0 r+1 s+1 = 1
3!ηrs with r, s = 0, · · · , nV + 1 and (ηrs) = (+− · · ·−).

This situation is analogous to what happens when we dimensionally reduce the two

maximal 10-dimensional supergravities, N = 2A and N = 2B, on a circle and we find the

same 9-dimensional maximal supergravity7 [36]. In that case, this coincidence is interpreted

as a manifestation at the effective field theory level of the T-duality existing between the

two type II superstrings [37–39]. The relation between the fields of the two 10-dimensional

general cases the conditions have not been studied. Observe that this possible problem only arised in the

dimensional reduction and never in the oxidation because, by assuming the lower-dimensional solution to

be supersymmetric we are assuming the problem has not arisen in the reduction and the lower-dimensional

solution has been obtained from a supersymmetric higher-dimensional solution. From a more general

perspective: dimensional reduction can break symmetries but dimensional oxidation can never do that.
4Of course, the same can be done with non-supersymmetric solutions.
5The hypermultiplets do not couple to the vector and tensor multiplets and, clearly, their reduction

leads to 5-dimensional hypermultiplets with exactly the same quaternionic-Kähler geometry.
6These are the theories related to the toroidal compactification and truncation of the Heterotic String.

We also consider the 6-dimensional theories obtained by dualizing the 3-form field strength, related to the

compactification of the type IIA superstring on K3. We call them N = 2A∗, d = 6 theories.
7It is unique.
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supergravities and those of the 9-dimensional one leads to a direct relation between the 10-

dimensional fields of the two theories: the type II generalization of the Buscher T-duality

rules [40–42] that transform a solution of one of the 10-dimensional theories admitting one

isometry into another solution of the other theory (also admitting one isometry) [36].

In the present case it is not clear which is the superstring theory associated to the

N = 2B, d = 6 theories (if any), but the relation we have found leads to a new generalization

of the Buscher rules transforming 6-dimensional solutions of these theories admitting one

isometry (section 3).

In section 4, we are going to exploit the results of section 2 to construct new super-

symmetric solutions of the 6-dimensional theories we are discussing (N = 2A, 2A∗, 2B)

by uplifting solutions of the N = 2, d = 5 theories they all reduced to. We are going to

add a new twist to this story, though. The relations between the fields of two ungauged

supergravity theories related by standard dimensional reduction do not change if we gauge

both of them in the same way. Thus, we can use the uplifting formulae of section 2 to

uplift supersymmetric solutions of the same models of N = 2, d = 5 supergravity but, now,

with non-Abelian gaugings.

The supersymmetric solutions of general models of gauged N = 2, d = 5 supergravity

were classified in refs. [22, 23], but the construction of explicit examples in the theories with

non-Abelian gaugings has only been successfully completed recently in refs. [46, 47]. The

method used was essentially the same we are going to use here: the uplifting of solutions

of the 4-dimensional non-Abelian gauged theories which are better understood [14, 48–52].

We are just going to consider the simplest solution in ref. [46] to illustrate the procedure,

but this will be enough to produce interesting 6-dimensional solutions.

The uplifting of non-Abelian solutions to the N = 2A, 2A∗ theories is well justified,

but, what is the justification for the N = 2B case if these theories cannot be gauged? We

believe that a gauged N = 2B, d = 6 theory can be defined at least when the theory is

compactified on a circle. The situation is analogous to that of several coincident M5-branes

which, at least when wrapped on a circle, must be described by a non-Abelian theory of

chiral 2-forms. We do not know how to write such a theory, but at the massless level, we

know it is effectively described by a standard non-Abelian theory of vector fields in one

dimension less (the theory of coincident D4-branes). We do not know how to describe the

non-Abelian N = 2B, d = 6 supergravity theory, which only has chiral 2-forms, but we

know that, when compactified on a circle, at the massless level, the theory is described by

a standard gauged theory of N = 2, d = 5 supergravity with 1-forms as gauge fields. It is

in this limited sense that the non-Abelian solutions of N = 2B, d = 6 supergravity that we

are going to construct should be interpreted.

Finally, section 5 contains our conclusions and directions for future work.

1 From six to five dimensions

In this section we are going to consider the dimensional reduction of general theories of

ungauged N = (2, 0), d = 6 supergravity coupled to nT tensor multiplets and nV vector

multiplets to five dimensions. We first review the bosonic sector of the theory explaining
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our conventions.8 As usual, we denote the 6-dimensional objects with hats. In particu-

lar, µ̂, ν̂, . . . = 0, · · · , 5 and â, b̂, . . . = 0, · · · , 5 are, respectively, 6-dimensional world and

tangent space indices. Our metric has mostly minus signature.

The bosonic fields of the nV vector multiplets, labeled by i, j, . . . = 1, · · · , nV , are just

the 1-form fields Âi = Âiµ̂dx̂
µ̂. Their 2-form field strengths F̂ i = 1

2 F̂
i
µ̂ν̂dx̂

µ̂ ∧ dx̂ν̂ are

defined as

F̂ i ≡ dÂi ⇔ F̂ iµ̂ν̂ ≡ 2∂[µ̂Â
i
ν̂] , (1.1)

and are invariant under the gauge transformations

δÂi = dΛ̂i , (1.2)

for arbitrary 0-forms Λ̂i.

The bosonic fields of the supergravity multiplet are the Sechsbein êâµ̂, and a 2-form

potential B̂0 = 1
2B̂

0
µ̂ν̂dx̂

µ̂∧dx̂ν̂ which satisfies an anti-selfduality constraint whose explicit

form depends on the couplings to the matter fields and will be given shortly.

The bosonic fields of the nT tensor multiplets, labeled by α, β, . . . = 1, · · · , nT , are

the 2-form potentials B̂α
µ̂ν̂ satisfying selfduality constraints whose explicit form will also

be given shortly, and the real scalars ϕα. These fields can be seen as coordinates in

the coset space SO(1, nT )/SO(nT ). It is convenient to use as coset representative the

SO(1, nT ) matrix L̂r
s, r, s, . . . = 0, 1, · · · , nT and it is customary to use the following

notation: L̂r
s = (L̂r, L̂r

α) (that is, L̂r ≡ L̂r0). Then, by definition, these functions satisfy

ηrs = ηtuL̂r
tL̂s

u = L̂rL̂s − L̂rαL̂sα , ηrs = diag(+,−,−, · · · ,−) . (1.3)

Using ηrs to raise and lower indices we find

L̂rL̂sηrs = L̂rL̂r = 1 . (1.4)

Finally, we define the symmetric SO(1, nT ) matrix

Mrs ≡ δtuL̂rtL̂su = 2L̂rL̂s − ηrs . (1.5)

An SO(1, nT )-symmetric σ-model for the scalars ϕα can be constructed as usual:

L̂s
r∂âL̂

s
tL̂u

t∂âL̂ur = −∂âL̂r∂âL̂r , (1.6)

where we have used the above properties of the coset representative. A simple parametriza-

tion of the functions L̂r in terms of the physical scalars is provided by

L̂0 =
(

1− ϕβϕβ
)−1/2

, L̂α = ϕα
(

1− ϕβϕβ
)−1/2

, ⇒ ϕα = L̂α/L̂0. (1.7)

The matter and supergravity 2-forms are combined into a single SO(1, nT ) vector

(B̂r) = (B̂0, B̂α), with 3-form field strengths Ĥr = 1
3!Ĥ

r
µ̂ν̂ρ̂ dx̂

µ̂ ∧ dx̂ν̂ ∧ dx̂ρ̂ defined by

Ĥr = dB̂r +
1

2
crijF̂

i ∧ Âj ⇔ Ĥr
µ̂ν̂ρ̂ = 3∂[µ̂B̂

r
ν̂ρ̂] +

3

2
crijF̂

i
[µ̂ν̂Â

i
ρ̂] , (1.8)

8They are, essentially, those of ref. [30].

– 5 –



J
H
E
P
1
2
(
2
0
1
6
)
1
1
2

where crij is an array of constant positive-definite matrices. They are invariant under the

gauge transformations

δB̂r = dχ̂r − 1

2
crijF̂

iΛ̂j , (1.9)

for arbitrary 1-forms χ̂r, and they are constrained to satisfy the (anti-) selfduality constraint

MrsĤ
s = −ηrs ? Ĥs , where ηrs = diag(+,−,−, · · · ,−) . (1.10)

Using this constraint in the Bianchi identity of the 3-form field strengths

dĤr − 1

2
crijF̂

i ∧ F̂ j = 0 , (1.11)

one obtains the equation of motion of the 2-forms:

d
(
Mrs ? Ĥ

s
)

+
1

2
cr ijF̂

i ∧ F̂ j = 0 . (1.12)

It is convenient to work with the action of the theory but, in general, these theories

do not have a covariant action, due to (anti-) selfduality constraints satisfied by the 3-

forms [24]. Nevertheless, sometimes, it is possible to construct pseudoactions [53] which give

the correct equations of motion of the theory upon use of the (anti-) selfduality constraints

in the Euler-Lagrange equations that follow from them. The action of the dimensionally

reduced theory can then be derived by following these directions:

1. Dimensionally reduce the pseudoaction and the (anti-) selfduality constraints in the

standard way.

2. Poincaré-dualize the highest-rank potentials arising from the (anti-) selfdual poten-

tials in the dimensionally-reduced pseudoaction.

3. Identify the resulting potentials with the lowest-rank potentials arising from the

(anti-) selfdual potentials. This identification should be completely equivalent to

the use of the dimensionally reduced (anti-) selfduality constraint in the action.

A well-known example of this procedure is the dimensional reduction to d = 9 of the

N = 2B, d = 10 supergravity theory [54–56] carried out in ref. [57]: in this case there is a

RR 4-form potential Ĉ(4) whose 5-form field strength Ĝ(5) is self-dual Ĝ(5) = ?10Ĝ
(5) and

the equations of motion can be derived from the pseudoaction constructed in ref. [53] by

imposing a selfduality constraint. The dimensional reduction of the 4-form potential Ĉ(4)

gives rise to a 4- and a 3-form C(4), C(3) potentials whose 5- and 4-form field strengths

G(5) and G(4) are related by the dimensionally reduced selfduality constraint G(5) ∼ ?G(4).

Following the above recipe, in ref. [57] the pseudoaction and selfduality constraint were

reduced to d = 9 first. Then, the 9-dimensional 4-form potential C(4) was Poincaré-

dualized into a 9-dimensional 3-form potential C̃(3) in the pseudoaction. At this point the

theory has two different 3-form potentials C̃(3) and C(3) and the selfduality constraint takes

the form G̃(4) = G(4) indicating that the two 3-forms are one and the same C̃(3) = C(3).

Making this identification in the pseudoaction gives the correct 9-dimensional action.

– 6 –
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In the case at hands, the bosonic equations of motion (in particular, eq. (1.12)) can be
found by varying the pseudoaction

Ŝ =

∫
d6x̂
√
|ĝ|
{
R̂−∂âL̂r∂âL̂r+

1

3
MrsĤ

r
âb̂ĉĤ

s âb̂ĉ−L̂rc
r
ijF̂

i
âb̂F̂

j âb̂− 1

4
cr ij ε̂

âb̂ĉd̂êf̂ B̂r
âb̂F̂

i
ĉd̂F̂

j
êf̂

}
.

(1.13)

and imposing on the resulting Euler-Lagrange equations the (anti-) selfduality conditions

eqs. (1.10). However, due to the Chern-Simons term, this action is gauge invariant if and

only if the following condition holds [58]

ηrsc
r
i(jc

s
kl) = 0 , (1.14)

and we will assume this condition to hold through our work. Only then one gets consistent

five-dimensional theories.

1.1 Reduction of the fields

Having described the bosonic sector of the theories we want to study, we are now ready to

reduce them to d = 5.

We are going to follow the standard procedure proposed in ref. [59] with the particular

conventions of ref. [8]. Thus, we assume that none of the fields depends explicitly on the

compact coordinate, that we will call z, we split the world and tangent-space indices as

follows

µ̂ = µ, z , â = a, z , (1.15)

and we decompose the components of the Sechsbein basis (which we choose to be upper-

triangular) êâµ̂ into those of a Fünfbein eaµ, a (Kaluza-Klein (KK)) vector Aµ and a KK

scalar k as follows:(
êâµ̂

)
=

(
eaµ kAµ
0 k

)
,

(
êâ
µ̂
)

=

(
ea
µ −Aa

0 k−1

)
, (1.16)

where Aa = ea
µAµ.

The scalars are the same z-independent functions in both dimensions. In particular,

L̂r = Lr.

The vector fields Âi decompose into vector fields Ai and scalar fields li as follows:

Âia ≡ Aia ⇔ Âiµ = Aiµ + liAµ , (1.17)

Âiz ≡ k−1li ⇔ Âiz = li . (1.18)

This leads to the following decomposition of the vector field strengths:

F̂ iab = F iab = F iab + liFab , (1.19)

F̂ iaz = k−1∂al
i , (1.20)

where F i and F are the 5-dimensional field strengths

F i ≡ dAi , F ≡ dA . (1.21)

– 7 –
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Each 2-form B̂r produces a 2- and 1-form in five dimensions (Br and Ar respectively).

They will be related by the (anti-) selfduality constraints. It turns out that the following

definitions give potentials with good gauge transformation properties:

B̂r
µz ≡ Arµ +

1

2
crijl

iAjµ , (1.22)

B̂r
µν ≡ Br

µν −A[µA
r
ν] − crijA[µA

i
ν]l
j . (1.23)

The 3-form field strengths Ĥr decompose as follows:

Ĥr
abc ≡ Hr

abc , (1.24)

Ĥr
abz ≡ k−1Frab ≡ k−1

[
F r + crijl

iF j +
1

2
crijl

iljF

]
, (1.25)

where

Hr = dBr − 1

2
F ∧Ar − 1

2
F r ∧A+

1

2
crijF

i ∧Aj , (1.26)

F r = dAr . (1.27)

This completely fixes the reduction of fields and field strengths. Plugging these decom-

positions in the pseudoaction eq. (1.13) together with the decomposition of the Levi-Civita

symbol

ε̂abcdez ≡ εabcde , (1.28)

we get in a straightforward manner the 5-dimensional pseudoaction

S =

∫
d5x
√
|g|k

{
R− 1

4
k2F 2 − ∂µLr∂µLr + 2k−2Lrc

r
ij∂µl

i∂µlj

+
1

3
MrsH

rHs − k−2MrsFrFs − LrcrijF iF j

+
k−1ε

6
√
|g|
cr ij

[
Hr
(
F ilj − 2∂liAj

)
− 3FrF iAj

]}
,

(1.29)

where the indices are assumed to be contracted in the obvious way: FrFs ≡ FrµνFs µν ,

εHrcr ij(F ilj − 2∂liAj) = εµνρκσHr
µνρcr ij(F iκσlj − 2∂[κl

iAjσ]), etc.

Finally, we make a rescaling of the metric in order to express the action in the “Einstein

frame” metric gE µν (minimal coupling to Ricci scalar) in the following way:

gµν = k−2/3gE µν , (1.30)

and redefine the KK scalar k in order to give it a kinetic term with standard normalization

k = e
√

3/8φ . (1.31)

– 8 –



J
H
E
P
1
2
(
2
0
1
6
)
1
1
2

The result, up to total derivatives, is the pseudoaction

S =

∫
d5x
√
|gE |

{
RE +

1

2
(∂φ)2 − ∂µLr∂µLr + 2e−

√
3/2φLrc

r
ij∂µl

i∂µlj − 1

4
e
√

8/3φF 2

− e−
√

2/3φMrsFrFs − Lrcrijeφ/
√

6F iF j +
1

3
e
√

2/3φMrsH
rHs

+
ε

6
√
|gE |

cr ij
[
Hr
(
F ilj − 2∂liAj

)
− 3FrF iAj

]}
.

(1.32)

The reduction of the (anti-) selfduality constraints eqs. (1.10) offers no problems and

becomes a duality relation between the 2- and 1-form potentials Br, Ar

MrsH
s = −e−

√
2/3φηrs ? Fs . (1.33)

The equations of motion of the 5-dimensional theory can be obtained by varying the

above pseudoaction and imposing the duality constraints. However, in order to identify

the 5-dimensional theories obtained with models of N = 2, d = 5 supergravity coupled to

vector multiplets it is convenient to eliminate this constraint. We carry out this task next.

1.2 Dualization

Following the procedure outlined at the beginning of this section, we are going to Poincaré

dualize the 2-forms Br into 1-forms Ãr. First, we are going replace the 2-forms Br by

their 3-form field strengths Hr as variables of the pseudoaction eq. (1.32). This is possible

because the pseudoaction only depends on the 2-forms through their field strengths. How-

ever, we have to add a Lagrange-multiplier term to enforce the Bianchi identities of the

Hr, which have the form

4∂[µH
r
νρσ] + 6F r [µνFρσ] − 3crijF

i
[µνF

j
ρσ] = 0 . (1.34)

The Lagrange-multiplier term to be added to the pseudoaction to enforce the Bianchi

identity is (again, with the indices contracted in the obvious way)

ε√
|gE |

Ãr

(
∂Hr +

3

2
F rF − 3

4
crijF

iF j
)
, (1.35)

where the Lagrange multiplier is the 1-form field Ãr.

Adding this term to the pseudoaction and integrating it by parts we get

S =

∫
d5x
√
|gE |

{
RE +

1

2
(∂φ)2 − ∂µLr∂µLr + 2e−

√
3/2φLrc

r
ij∂µl

i∂µlj − 1

4
e
√

8/3φF 2

− e−
√

2/3φMrsFrFs − Lrcrijeφ/
√

6F iF j +
1

3
e
√

2/3φMrsH
rHs

+
ε

6
√
|gE |

[
cr ijH

r(F ilj − 2∂liAj)− 3cr ijFrF iAj

+3F̃r(H
r +

3

2
FAr +

3

2
F rA− 3

2
crijF

iAj)

]}
, (1.36)
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where

F̃r ≡ dÃr . (1.37)

Since in this pseudoaction Hr is an independent field, we can compute its field equation,

which will relate it to F̃r. It is given by

MrsH
s = −1

2
e−
√

2/3φ ?
[
cr ij

(
F ilj − 2∂liAj

)
+ 3F̃r

]
, (1.38)

This equation can be used to eliminate completely Hr from the pseudoaction and from

the duality relation eq. (1.33). After this operation, the 2-forms Br have disappeared from

both, having been replaced by the dual 1-forms Ãr. We only write explicitly the constraint

after this replacement (and some massaging):

F̃r =
2

3

(
ηrsF

s + cr ij∂
(
liAj

) )
, (1.39)

which implies the following algebraic relation between potentials

Ãr =
2

3
ηrsA

s +
1

3
cr ijl

iAj , (1.40)

that we can use in the pseudoaction to eliminate completely Ãr. After this operation the 1-

forms Ar are the only fields remaining from the reduction of the 2-forms Br. Furthermore,

there are no constraints to be imposed and the pseudoaction is the standard action

S =

∫
d5x
√
|gE |

{
RE +

1

2
(∂φ)2 − ∂µLr∂µLr + 2e−

√
3/2φLrc

r
ij∂µl

i∂µlj

− 1

4
e
√

8/3φF 2 − 2e−
√

2/3φMrsFrFs − Lrcrijeφ/
√

6F iF j

+
ε√
|gE |

(
ηrsF

rF sA− cr ijF iF jAr
)}

.

(1.41)

1.3 Identification with five-dimensional supergravity

The next step is to identify the previous theory as a model of N = 1, d = 5 supergrav-

ity coupled to nV 5 vector multiplets. These theories9 contain nV 5 + 1 1-form fields AI ,

I, J, . . . = 0, 1, · · · , nV 5 and nV 5 scalars φx, x, y, . . . = 1, · · · , nV 5, and their interactions (in

fact, the whole theory) are determined by the constant and completely symmetric tensor

CIJK . In particular, the scalar manifold is the nV 5-dimensional hypersurface in RnV 5+1

defined by the cubic equation

CIJKh
I(φ)hJ(φ)hK(φ) = 1, (1.42)

the kinetic matrix of the vector fields aIJ(φ) is given by

aIJ = −2CIJKh
K + 3hIhJ , (1.43)

9We use the conventions of refs. [60] and [21].
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where the hI(φ) are defined by

hI ≡ CIJKhJhK , (1.44)

and the σ-model metric gxy(φ) is given by

gxy ≡ 3aIJ
∂hI

∂φx
∂hJ

∂φy
= −2CIJK

∂hI

∂φx
∂hJ

∂φy
hK . (1.45)

The action is given by

S =

∫
d5x
√
|g|

{
R+

1

2
gxy∂µφ

x∂µφy − 1

4
aIJF

IF J +
ε

12
√

3
√
|g|
CIJKF

IF JAK

}
.

(1.46)

In order to identify the models corresponding to the theories we have obtained by

dimensional reduction, we start by rescaling the vector fields

A→ 1√
12
A , Ar → 1√

12
Ar , Ai → 1√

12
Ai , (1.47)

so that the action becomes

S =

∫
d5x
√
|gE |

{
RE +

1

2
(∂φ)2 − ∂µLr∂µLr + 2e−

√
3/2φLrc

r
ij∂µl

i∂µlj

− 1

48
e
√

8/3φF 2 − 1

12
Lrc

r
ije

φ/
√

6(F iµν + liFµν)(F jµν + ljFµν)

− 1

6
e−
√

2/3φMrs

(
F rµν + crijl

iF jµν +
1

2
crijl

iljFµν

)
×
(
F sµν + csijl

iF jµν +
1

2
csijl

iljFµν

)

+
ε

12
√

3
√
|gE |

(
1

2
ηrsF

rF sA− 1

2
cr ijF

iF jAr
)}

. (1.48)

Comparing this theory with eq. (1.46) we first see that nV 5 = nT + nV + 1 (there

is a total of nT + nV + 2 1-forms). We can decompose the 5-dimensional index I as

I = 0, r + 1, i+ nT + 1 where the indices take the values r = 0, . . . , nT , i = 1, . . . , nV and

identify

A0 = A , AI=r+1 = Ar , AI=i+nT +1 = Ai , (1.49)

where the fields in the l.h.s.’s are those of eq. (1.46) and the fields in the r.h.s.’s are those

of eq. (1.48).

We can also identify the components of the CIJK tensor that characterizes the model

of N = 2, d = 5 supergravity

C0 r+1 s+1 =
1

3!
ηrs , Cr+1 i+nT +1 j+nT +1 = − 1

3!
cr ij . (1.50)

We will discuss later the properties of these models, picking two particular subfamilies.

Now, knowing CIJK and the expected forms of aIJ and gxy, we can identify the scalar

fields of eq. (1.48) with the scalar functions hI and the physical scalars φx.
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The components of aIJ in eq. (1.48) are

a00 =
1

12

[
e2φ/

√
6 + 2Lrξ

re−φ/
√

6
]2
,

a0 r+1 =
1

3
Mrsξ

se−
√

2/3φ,

a0 i+nT +1 =
1

3
Lrc

r
ijl
je−φ/

√
6
(
e2φ/

√
6 + 2Lsξ

se−φ/
√

6
)
,

ar+1 s+1 =
2

3
e−
√

2/3φMrs,

ar+1 i+nT +1 =
2

3
e−
√

2/3φMrsc
s
ijl
j ,

ai+nT +1 j+nT +1 =
2

3
e−
√

2/3φMrsc
r
ikc

s
jll
kll +

1

3
eφ/
√

6Lrc
r
ij ,

(1.51)

where ξr ≡ crijlilj and we have made some simplifications by using the properties LrLr = 1,

ξrξr = 0, ξrcr ijl
i = 0 and Mrs = 2LrLs − ηrs. Finally, if we use as physical scalar

fields (φx) = (φ1, · · · , φnV +nT +1) = (φ, ϕα, li), we see from (1.48) that only the diagonal

components of gxy are non-vanishing:

g11 = 1 ,

gα+1β+1 = −2∂αL
r∂βLr,

gi+nT +1 j+nT +1 = 4e−
√

3/2φLrc
r
ij .

(1.52)

Comparing these expressions with the formulae eqs. (1.43) and (1.45) for the theories

with symmetric tensor given by eq. (1.50) we conclude that the scalar functions hI are

given by

h0 = 2e−2φ/
√

6 , hr = Lreφ/
√

6 + ξre−2φ/
√

6 , hi = −2e−2φ/
√

6li . (1.53)

For the sake of convenience we also give the hI :

h0 =
1

6

(
e2φ/

√
6 +2ξrL

re−φ/
√

6
)
, hr =

2

3
Lre

−φ/
√

6 , hi =
2

3
e−φ/

√
6cr ijL

rlj . (1.54)

We are interested in two particular cases which correspond to models of the same

family characterized by the symmetric tensor with non-vanishing components C0ab = 1
3!ηab

with (ηab) = diag(+ − · · ·−) and a, b = 1, · · · , n for some value of n that depends on the

model: n = nT for nV = 0 and n = nV + 1 for nT = 1. These models can be identified

with the Riemannian symmetric spaces SO(1, 1) × SO(1, n)/SO(n) by simple inspection

of the metric in eqs. (1.52). However, it is not difficult to see that the scalar manifold

is, topologically, the symmetric space SO(2, n)/SO(1, n), which is that of AdSn+1: this

manifold can be identified with the hypersurface(
X0
)2

+
(
X1
)2 − (X2

)2 − · · · − (Xn)2 = 1 , (1.55)
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in Rn+2. Any change of coordinates such that10

(
X0
)2

+
(
X1
)2

=
1

2
h0
(
h1
)2
, (X2)2 =

1

2
h0(h2)2 , · · · (Xn)2 =

1

2
h0(hn)2 , (1.56)

brings the above definition of the hypersurface to the cubic form

1

2
ηabh

0hahb = 1 , (1.57)

that characterizes the models under discussion. It is also easy to see in this cubic form

that the conformal transformations of ηab (the group SO(2, n)), compensated by rescalings

of h0, leave invariant the definition.

Although the scalar manifold is the same manifold of AdSn+1, as metric spaces they are

totally different because the metric in Rn+2 is not the SO(2, n)-symmetric one, but aIJ .

Furthermore, observe that only the subgroup SO(1, 1) × SO(1, n) ⊂ SO(2, n) is linearly

realized on the hI coordinates of the Real Special Geometry.

1.3.1 Case nV = 0

If we begin with a six-dimensional theory with an arbitrary number nT of tensor multiplets

and no vector multiplets, we arrive to the model with nV 5 = nT + 1 characterized by

C0rs =
1

3!
ηrs , (1.58)

and with the parametrization

h0 = 2e−2φ1/
√

6 , hr = eφ
1/
√

6Lr , (1.59)

with Lr = Lr(φ2, · · · , φnT +1).

The nV 5 = nT + 1 scalars of these models parametrize the coset

SO(1, 1)×SO(1, nT )/SO(nT ). Upon dimensional reduction one obtains an ST [2, nT + 1]

model of N = 2, d = 4 supergravity coupled to nV 4 = nV 5 + 1 = nT + 2 vector multiplets

parametrizing the coset space SL(2,R)
SO(2) ×

SO(2,nT +1)
SO(2)×SO(nT +1) .

1.3.2 Case nT = 1

Let us start from a six-dimensional theory with nT = 1 and an arbitrary number of vector

multiplets nV and let us choose the coefficients cr ij to be

c0 ij = c1 ij = δij , (1.60)

which is a particularly simple solution of the constraint eq. (1.14). These theories contain

two 2-forms of opposite selfduality that can be combined into a single, unconstrained,

2-form that can be identified with the Kalb-Ramond field, a single scalar that can be

identified with the dilaton field and a set of Abelian vector fields. These theories can be

obtained by toroidal compactification to 6 dimensions and subsequent truncation of the

10These n + 1 relations need to be suplemented by another one such as, for instance, X1/X0 = h1 to

have the change of coordinates completely defined.
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Heterotic String theory, assuming that the number of Abelian vectors does not exceed 16.

We will show later how to rewrite it in the standard form. Now we just want to show that,

after dimensional reduction, these theories also belong to the same family as those of the

nV = 0 case.

With the above choice of coefficients, the parametrization of h̃i is given by11

h̃0 = 2e−2φ/
√

6 , h̃1 = L̃0eφ/
√

6 + l2e−2φ/
√

6 ,

h̃2 = L̃1eφ/
√

6 − l2e−2φ/
√

6 , h̃i = −2e−2φ/
√

6li .

(1.61)

These functions satisfy the equation

1 = C̃IJK h̃
I h̃J h̃K =

1

2
h̃0

[(
h̃1
)2
−
(
h̃2
)2
]
− 1

2

(
h̃1 + h̃2

)
h̃ih̃i . (1.62)

However, we are free to make linear transformations of the h̃I and AI in order to

obtain equivalent theories. In particular, if we perform the transformation (h̃0, h̃1, h̃2, h̃i)→
(h0, hr), with r = 1, 2, i+ 2, given by

h̃0 = h1 + h2,

h̃1 =
1

2

(
h0 + h1 − h2

)
,

h̃2 =
1

2

(
h0 − h1 + h2

)
,

h̃i = hi+2 ,

(1.63)

we find that the new variables satisfy

1 =
1

2
h0
(
(h1)2 − (h2)2 − hi+2hi+2

)
=

1

2
h0hrhsηrs ≡ CIJKhIhJhK , (1.64)

so these models are equivalent to those with C0rs = 1
3!ηrs.

We conclude that N = (2, 0), d = 6 supergravity coupled to nT tensor multiplets gives

the same five-dimensional supergravity model as N = (2, 0), d = 6 supergravity coupled

to just 1 tensor multiplet and and nV = nT − 1 vector multiplets. Furthermore, the 5-

dimensional theory that one obtains by dimensional reduction of those two 6-dimensional

theories can be embedded in Heterotic String theory.

These two 6-dimensional supergravity theories, dimensionally reduced on a circle, are

dual in the same sense in which the 10-dimensional N = 2A and N = 2B supergravity

theories are T-dual [36], a fact related to the T-duality of the type IIA and IIB superstring

theories compactified on circles of dual radii [37–39]. Before we can interpret this duality

between supergravity theories in the context of superstring theory as a large-small radii

or coupling constant duality (for instance) we need to find the dictionary that relates the

fields of both 6-dimensional theories. This dictionary will be the analogous of the Buscher

rules for T-duality [36, 40–42, 61] and it will allow us to transform any solution of one of

these theories admitting one isometry into a solution of the dual theory.

11We are going to denote the objects of these theories with tildes.
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The initial step to derive this dictionary will be to find out how each solution of the 5-

dimensional theory can be oxidized to two different solutions of two different 6-dimensional

theories: one which only contains chiral 2-forms and one with a non-chiral 2-form and

vector fields.

To simplify the discussions, in what follows we are going to call the 6-dimensional

supergravity theories with just one tensor multiplet and nV vector multiplets and c0 ij =

c1 ij = δij , N = 2A theories and the dual theories with nT = nV + 1 tensor multiplets and

no vector multiplets, N = 2B theories.

Now we will focus on the 5-dimensional theories with nV 5 = nV + 2 vector multiplets

which have these two possible 6-dimensional origins.

2 Uplifting solutions to six dimensions

Let us consider the family of N = 2, d = 5 theories coupled to nV 5 = nV + 2 vector

multiplets and symmetric tensor CIJK , I = 0, · · · , nV + 2 given by C0 r+1 s+1 = 1
3!ηr+1 s+1,

r, s, . . . = 0, · · · , nV + 1. The scalar functions hI can be parametrized in terms of the

physical scalars by

h0 = 2e−2φ1/
√

6 hr+1 = Lreφ
1/
√

6 , (2.1)

where the functions Lr only depend on the scalars φ2, · · · , φnV +2, and satisfy

LrLsηrs = 1 . (2.2)

The action can be written in terms of these functions and the scalar φ1 and takes

the form

S =

∫
d5x
√
|g|

{
R+

1

2
(∂φ1)2 − ∂µLr∂µLr −

1

48
e4φ1/

√
6F 0F 0 − 1

6
e−2φ1/

√
6MrsF

r+1F s+1

+
ε

24
√

3
√
|g|
ηrsF

r+1F s+1A0

}
, (2.3)

where

Lr = ηrsL
s , and Mrs = 2LrLs − ηrs . (2.4)

For our purposes, though, it is convenient to express everything in terms of the hI :

Lr = hr+1
√
h0/2 , Lr = hr+1/

√
h0/2 , Mrs = 4

hr+1hs+1

h0
− ηrs. (2.5)

According to our previous discussion, this theory can be uplifted to two different 6-

dimensional theories.

2.1 Uplift to N = 2B, d = 6 supergravity

N = 2B, d = 6 supergravity is the name that we have given to the theories of N =

(2, 0), d = 6 supergravity coupled to nT = nV + 1 tensor multiplets only. The equations of

motion of this theory can be obtained form the pseudoaction

Ŝ =

∫
d6x̂
√
|ĝ|
{
R̂− ∂âL̂r∂âL̂r +

1

3
M̂rsĤ

r
âb̂ĉĤ

s âb̂ĉ

}
, (2.6)
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supplemented by the (anti-) selfduality conditions

M̂rsĤ
r = −ηrs ? Ĥs . (2.7)

Then, according to the results in section 1, the 6-dimensional fields of this theory can

be expressed in terms of those of the 5-dimensional theory eq. (2.3) as follows:

Scalars. The physical scalars ϕ̂α, and the functions L̂r, with α = 1, · · · , nV + 1 and

r = 0, · · · , nV + 1, are given by

ϕ̂α = φα+1 ,

L̂r(ϕα) = hr+1(h0/2)1/2 .
(2.8)

Metric. The 6-dimensional metric components are the following

ĝzz = −
(
h0/2

)−3/2
,

ĝµz = − 1√
12

(
h0/2

)−3/2
A0

µ ,

ĝµν = (h0/2)1/2gµν −
1

12

(
h0/2

)−3/2
A0

µA
0
ν ,

(2.9)

or, equivalently

dŝ2 = −(h0/2)−3/2

[
dz +

1√
12
A0

]2

+ (h0/2)1/2ds2 . (2.10)

2-forms. We only need to know the component B̂r
µz of the 2-forms, because the rest of

components are determined through the duality relations eqs. (2.7). We have

B̂r
µz =

1√
12
Ar+1

µ . (2.11)

It can also be useful to have the expression of the 3-form field strengths in the Viel-

bein basis:

Ĥr
abz =

1√
12

(h0/2)2F r+1
ab ,

Ĥr
abc = − 1

2
√

12
(h0/2)Mr

sεabcdeF
s+1 de ,

(2.12)

where one has to take into account that F s+1 de and εabcde are five-dimensional quantities.

2.2 Uplift to N = 2A, d = 6 supergravity

N = 2A, d = 6 supergravity is the name that we have given to the theories of N =

(2, 0), d = 6 supergravity coupled to nT = 1 tensor multiplets and nV vector multiplets

with c0 ij = c1 ij = δij with i = 1, · · · , nV . Since in this case the two 2-forms have opposite

chirality, they can be combined into a single, unrestricted, 2-form that we are going to
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denote by B̃ (no indices) and there is a covariant action from which one can derive directly

the equations of motion. It takes the form

S̃ =

∫
d6x̃
√
|g̃|
{
R̃+

1

2
(∂ϕ̃)2 +

1

3
e
√

2ϕ̃H̃2 − eϕ̃/
√

2F̃ iF̃ i
}
, (2.13)

where now we are using tildes instead of hats in order to distinguish these fields from the

previous ones and from the 5-dimensional ones. In this action, i = 1, · · · , nV and the

3-form field strength is defined as

H̃ = dB̃ + F̃ i ∧ Ãi . (2.14)

This theory is obtained when we parametrize the functions L̃r, r = 0, 1 as

L̃0 = cosh
(
ϕ̃/
√

2
)
, L̃1 = sinh

(
ϕ̃/
√

2
)
, (2.15)

and H̃ and B̃ are related to the fields H̃r and B̃r (which appear in (1.13)) by

B̃ = B̃0 − B̃1 , H̃ = H̃0 − H̃1 . (2.16)

This theory can be obtained from the compactification of N = 1, d = 10 supergrav-

ity coupled to vector multiplets (the effective field theory of the Heterotic String) on T 4

followed by a truncation. In particular, the scalar ϕ̃ is related to the dilaton field of the

Heterotic String by

ϕ̃ = −
√

2φHet . (2.17)

Now, as we have seen, this theory, also gives (2.3) when reduced to five dimensions. In

order to find the relations among the fields, we have to use the linear transformation (1.63).

This gives us directly the transformation of vector fields. Also, on taking into account the

parametrizations (2.1) and (1.61) we get the relation between the different scalar fields.

This leads to the following expressions for the 6-dimensional fields in terms of the 5-

dimensional ones:

Scalar. The dilaton is related to the five-dimensional scalars by

eϕ̃/
√

2 = 2−1/2h0
(
h1 + h2

)1/2
. (2.18)

Metric. The KK scalar φ and the KK vector Aµ are given by

e−2φ/
√

6 =
1

2

(
h1 + h2

)
, Aµ =

1√
12

(
A1
µ +A2

µ

)
, (2.19)

and, therefore, the metric is given by

g̃zz = −23/2
(
h1 + h2

)−3/2
,

g̃µz = −
√

2/3
(
h1 + h2

)−3/2 (
A1

µ +A2
µ

)
,

g̃µν =
1√
2

(
h1 + h2

)1/2
gµν −

1

3
√

2

(
h1 + h2

)−3/2 (
A1 +A2

)
µ

(
A1 +A2

)
ν

(2.20)

or, equivalently, by

ds̃2 = −23/2
(
h1 + h2

)−3/2
[
dz +

1√
12

(
A1 +A2

)]2

+ 2−1/2
(
h1 + h2

)1/2
ds2 . (2.21)
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Vectors. The 1-form potentials are given by

Ãiz = − hi+2

h1 + h2
,

Ãiµ =
1√
12

[
Ai+2

µ + Ãiz
(
A1

µ +A2
µ

)]
,

(2.22)

or, equivalently, by

Ãi =
1√
12
Ai+2 − hi+2

h1 + h2

[
dz +

1√
12

(
A1 +A2

)]
. (2.23)

2-form. The components B̃µz can be easily found to be

B̃µz =
1√
12

(
A1

µ −A2
µ

)
. (2.24)

Now the components B̃µν are independent and have to be explicitly given. They do

not have a simple expression, though, and we must content ourselves with the field strength

components instead:

H̃µνz =
1√
3

(
h1 + h2

)−1
{[

h1 −
[
h0
(
h1 + h2

)]−1
]
F 1

µν

−
[
h2 +

[
h0
(
h1 + h2

)]−1
]
F 2

µν + hiF iµν

}
, i ≥ 3 ,

H̃µνρ = − 1

4
√

3
(h0)−2 εµνραβ√

|g|
F 0αβ +

√
3

2
(A1

[ρ +A2
[ρ)H̃µν]z .

(2.25)

2.3 Uplift to N = 2A∗, d = 6 supergravity

The theory that we have called N = 2A, d = 6 supergravity is not uniquely defined. One

can obtain another theory that we are going to call N = 2A∗, d = 6 supergravity by

dualizing the field strength H̃ into another field strength H̆ given by12

H̆ = −e
√

2ϕ̃ ? H̃ . (2.26)

It turns out that this new field strength is an exact 3-form:

H̆ = dB̆ , (2.27)

and H̆ and B̆ are related to Ĥr and B̂r in the theory of eq. (1.13) with nT = 1, arbitrary

nV and c0 ij = c1 ij = δij by13

H̆ = Ĥ0 + Ĥ1 , B̆ = B̂0 + B̂1 . (2.28)

The action for this theory is

S̆ =

∫
d6x̆
√
|ğ|

{
R̆+

1

2
(∂ϕ̆)2 +

1

3
e−
√

2ϕ̆H̆2 − eϕ̆/
√

2F̆ iF̆ i − ε

3
√
|g|
H̆F̆ iĂi

}
. (2.29)

12In the Einstein frame this is the only field which is modified in this transformation. We will denote all

the field of this theory with ˘ accents anyway.
13Observe that the absence of Chern-Simons term in H̆ is due to the cancellation of those in Ĥ0 and Ĥ1

and not to the vanishing of the constants crij .
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This theory can be obtained from the effective field theory of the type IIA superstrings

compactified on K3 [39, 62–65] followed by a truncation. In particular, the scalar ϕ̆ (which

is equal to ϕ̃), is related to the dilaton of that superstring theory by

ϕ̆ =
√

2φIIA . (2.30)

The different coupling of the dilaton field to the vector fields (comparing with the

N = 2A case) is mainly due to the fact that they are RR fields in this case instead of

NSNS fields.

All the fields have the same relation with the five-dimensional ones as the tilded ones,

except for the 2-form B̆, whose components µz now are given by

B̆µz =
1√
12
A0

µ . (2.31)

The 3-form field strength is given by

H̆µνz =
1√
12
F 0

µν ,

H̆µνρ = − 1

8
√

3
(h0)2(h1 + h2)

εµνραβ√
|g|

{[
h1 −

[
h0
(
h1 + h2

)]−1
]
F 1αβ

−
[
h2 +

[
h0
(
h1 + h2

)]−1
]
F 2αβ + hiF i αβ

}
+

√
3

2

(
A1

[ρ +A2
[ρ

)
H̆µν]z , i ≥ 3 .

(2.32)

3 Maps between six-dimensional theories

Putting together all our results we can write the following generalization of the Buscher

rules between the N = 2A, 2A∗ and 2B theories:

From N = 2B to N = 2A.

e
√

2ϕ̃ = − 2
(
L̂0 + L̂1

)
/ĝzz ,

g̃zz = − 23/2
(
L̂0 + L̂1

)−3/2
|ĝzz|−1/2 ,

g̃µz = − 23/2
(
L̂0 + L̂1

)−3/2
|ĝzz|−1/2

(
B̂0 + B̂1

)
µz
,

g̃µν = 2−1/2
(
L̂0 + L̂1

)1/2 [
|ĝzz|1/2ĝµν + |ĝzz|−1/2ĝµz ĝνz

]
− 23/2

(
L̂0 + L̂1

)−3/2
|ĝzz|−1/2

(
B̂0 + B̂1

)
µz

(
B̂0 + B̂1

)
νz
,

Ãiz = − L̂i+1/
(
L̂0 + L̂1

)
,

Ãiµ = B̂i+1
µz − L̂i+1

(
B̂0 + B̂1

)
µz
/
(
L̂0 + L̂1

)
,

B̃µz =
(
B̂0 − B̂1

)
µz
.

(3.1)
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From N = 2A to N = 2B.

∣∣ĝzz∣∣ = 2
3
2 e
− 3

2
√

2
ϕ̃ ∣∣g̃zz∣∣− 1

2 ,

ĝµz = −2
3
2 e
− 3

2
√

2
ϕ̃ ∣∣g̃zz∣∣− 1

2

(
B̃0 + B̃1

)
µz
,

ĝµν = 2−
1
2

∣∣g̃zz∣∣ 1
2 e

ϕ̃

2
√

2
(
g̃µν − g̃µz g̃νz/g̃zz

)
+ 2

3
2 e
− 3

2
√

2
ϕ̃ ∣∣g̃zz∣∣− 1

2

(
B̃0 + B̃1

)
µz

(
B̃0 + B̃1

)
νz
,

L̂0 = 2−
3
2 e
− ϕ̃

2
√

2
∣∣g̃zz∣∣ 1

2 + 2−
1
2 e

ϕ̃

2
√

2
∣∣g̃zz∣∣− 1

2

(
1 + ÃrzÃ

r
z

)
, r > 1 ,

L̂1 = −2−
3
2 e
− ϕ̃

2
√

2
∣∣g̃zz∣∣ 1

2 + 2−
1
2 e

ϕ̃

2
√

2
∣∣g̃zz∣∣− 1

2

(
1− ÃrzÃrz

)
, r > 1 ,

L̂r = −
√

2
∣∣g̃zz∣∣− 1

2 e
ϕ̃

2
√

2 Ãr−1
z , r ≥ 2 ,

B̂0
µz =

1

2

(
B̃µz + g̃µz/g̃zz

)
,

B̂1
µz =

1

2

(
−B̃µz + g̃µz/g̃zz

)
,

B̂r
µz = Ãr−1

µ − Ãr−1
z g̃µz/g̃zz , r ≥ 2 . (3.2)

3.1 From N = 2B to N = 2A∗

e
√

2ϕ̆ = − 2
(
L̂0 + L̂1

)
/ĝzz ,

ğzz = − 23/2
(
L̂0 + L̂1

)−3/2
|ĝzz|−1/2 ,

ğµz = − 23/2
(
L̂0 + L̂1

)−3/2
|ĝzz|−1/2

(
B̂0 + B̂1

)
µz
,

ğµν = 2−1/2
(
L̂0 + L̂1

)1/2 [
|ĝzz|1/2ĝµν + |ĝzz|−1/2ĝµz ĝνz

]
− 23/2

(
L̂0 + L̂1

)−3/2
|ĝzz|−1/2

(
B̂0 + B̂1

)
µz

(
B̂0 + B̂1

)
νz
,

Ăiz = − L̂i+1/
(
L̂0 + L̂1

)
,

Ăiµ = B̂i+1
µz − L̂i+1

(
B̂0 + B̂1

)
µz
/
(
L̂0 + L̂1

)
,

B̆µz = ĝµz/ĝzz .

(3.3)
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From N = 2A∗ to N = 2B.∣∣ĝzz∣∣ = 2
3
2 e
− 3

2
√

2
ϕ̆ ∣∣ğzz∣∣− 1

2 ,

ĝµz = −2
3
2 e
− 3

2
√

2
ϕ̆ ∣∣ğzz∣∣− 1

2 B̆µz ,

ĝµν = 2−
1
2

∣∣ğzz∣∣ 1
2 e

ϕ̆

2
√

2
(
ğµν − ğµz ğνz/ğzz

)
+ 2

3
2 e
− 3

2
√

2
ϕ̆ ∣∣ğzz∣∣− 1

2 B̆µzB̆νz ,

L̂0 = 2−
3
2 e
− ϕ̆

2
√

2
∣∣ğzz∣∣ 1

2 + 2−
1
2 e

ϕ̆

2
√

2
∣∣ğzz∣∣− 1

2

(
1 + ĂrzĂ

r
z

)
, r > 1 ,

L̂1 = −2−
3
2 e
− ϕ̆

2
√

2
∣∣ğzz∣∣ 1

2 + 2−
1
2 e

ϕ̆

2
√

2
∣∣ğzz∣∣− 1

2

(
1− ĂrzĂrz

)
, r > 1 ,

L̂r = −
√

2
∣∣ğzz∣∣− 1

2 e
ϕ̆

2
√

2 Ăr−1
z , r ≥ 2 ,

B̂0
µz =

1

2

(
B̃µz + ğµz/ğzz

)
,

B̂1
µz =

1

2

(
−B̃µz + ğµz/ğzz

)
,

B̂r
µz = Ăr−1

µ − Ăr−1
z ğµz/ğzz , r ≥ 2 .

(3.4)

4 Applications

We are now ready to exploit the relations between 5- and 6-dimensional theories that we

have uncovered. There is one more twist that we can add to them, though: observe that if

we had dimensionally reduced the gauged N = 2A, d = 6 theory we would have obtained

a gauged N = 2, d = 5 supergravity theory and the relation between the physical fields of

these two gauged theories would be exactly the same we have obtained in the ungauged

case. This is true as long as the gauge group does not change in the process of dimensional

reduction (as in the case of generalized dimensional reduction [59]). Then, we can use

the formulae we have obtained to uplift solutions of the 5-dimensional gauged theories to

solutions of the 6-dimensional gauged theories and vice-versa.

There are some points to be discussed and clarified before carrying out this program.

First of all we must discuss the possible gaugings of these theories. The N = 2A, d = 6

theories can be gauged in essentially two ways:

1. We could just gauge a subgroup of the SO(nV ) group that rotates the vector fields

among themselves. The only fermion fields this global symmetry acts on are the

gaugini, which carry the same indices as the vector fields and an Sp(1) ∼ SU(2)

R-symmetry index which remains inert under these transformations. Observe that

the only scalar of the theory, the dilaton, is also inert.

2. We can gauge the whole R-symmetry group, SO(3) or a SO(2) subgroup of it using

Fayet-Iliopoulos terms.14 Observe that one needs vectors transforming in the same

fashion. Thus, in this case one would be gauging SO(3) or a SO(2) subgroup of

SO(nV ) which, on top of acting on some the SO(nV ) indices of the vectors and

gaugini, would also act on the R-symmetry indices of all the fermions of the theory,

which would now be charged.

14This is the theory considered in ref. [33], for instance.
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The dimensional reduction of these gauged 6-dimensional theories would be the models

of N = 1, d = 5 supergravity that we have found, characterized by the CIJK tensor with

non-vanishing indices C0rs = 1
3!ηrs, with exactly the same kind of gaugings (with our

without Fayet-Iliopoulos terms). The main difference with the 6-dimensional theories is

that, in the non-Abelian case, the gauge group acts on the scalars that originate in the 6th

component of the 6-dimensional vector fields and these transformations are isometries of

the σ-model metric. The relations between 5- and 6-dimensional fields can be used directly

in the gauged case but we must take into account that in order to get the CIJK tensor in

the form C0rs = 1
3!ηrs we had to make linear combinations of several different vector fields.

This can only be done if they have the same transformation properties under the group to

be gauged, which is not the case. Thus, we only must gauge vector fields not involved in

these redefinitions.

TheN = 2B, d = 6 theories cannot be gauged, at least in a conventional way. However,

it is believed that there are 6-dimensional gauge theories based on chiral 2-forms associated

to coincident M5-branes. The main reason is that, when compactified on a circle, M5-branes

behave as D4-branes and the Born-Infeld fields of coincident D4-branes are non-Abelian.

This means that, at least, the non-Abelian theory of 2-forms exists when one of the 6

dimensions is compactified on a circle and, in those conditions, the massless modes are

essentially non-Abelian 1-forms. Actually, there have been several proposals of non-Abelian

theories of 2-forms in 6 dimensions [43–45] and, in general, they consider that one of the 6

dimensions is compactified.

The situation we are facing here is similar and, probably, directly related to the world-

volume theories of the M5-branes. It is clear that, when these theories are compactified

on a circle, at least the massless part of the spectrum (1-forms in d = 5) can be gauged.

We do not know how to formulate the gauging using chiral 2-forms directly in 6 uncom-

pactified dimensions but we do know that, at lowest order, the relation between the 6- and

5-dimensional non-Abelian fields is the same as between the Abelian ones. We can, there-

fore, use the uplifting formulae to construct non-Abelian solutions of a “SO(3)-gauged”

N = 2B, d = 6 theory whose exact 6-dimensional formulation we do not know. Actually,

we can use this relation as a lowest-order formulation of that theory which probably only

exists anyway when one of the 6 dimensions is compactified on a circle.

4.1 Solutions of the SO(3)-gauged N = 2A∗, d = 6 theory

The supersymmetric solutions of the gauged N = 2A, d = 6 theory with Fayet-Iliopoulos

(FI) terms were classified in ref. [33], where some interesting examples were also con-

structed. We can dimensionally reduce them to 5 dimensions using our results but we

prefer to construct supersymmetric solutions of the SO(3)-gauged N = 2A, d = 6 theory

without FI terms by uplifting some of the supersymmetric solutions of the similarly gauged

(no FI terms) N = 2, d = 5 supergravity with no hypermultiplets15 recently constructed in

15These theories are the simplest supersymmetrization of the Einstein-Yang-Mills (EYM) theory and

have been called N = 2, d = 5 Super-Einstein-Yang-Mills (SEYM) theories in ref. [46]. They are related by

dimensional reduction to the N = 2, d = 4 SEYM theories [14, 48–52]. The same relation applies to the 4-

and 5-dimensional solutions.
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ref. [46]. In particular, we are going to uplift an extremal black hole sourced by a BPST

instanton [66].

Thus, let us consider the N = 2, d = 5 SEYM theory with nV 5 = 5 vectors labeled

by x = 1, · · · , 5 or x = 1, 2, A where A,B, . . . label the three directions gauged with

the group SO(3) and with non-vanishing components of CIJK given by C0xy = 1
3!ηxy,

η = diag(+ − − − −−). The solution that we are going to uplift was obtained in a

model with one vector multiplet less but, here, for the reasons explained above, we cannot

gauge the first vector multiplets and so we add one more (x = 2) whose fields will vanish

identically.

The metric is static and spherically symmetric

ds2 = f2dt2 − f−1
(
dρ2 + ρ2dΩ2

(3)

)
, (4.1)

where the metric function f is given by

f−1 = 3 · 2−1/3

{
L2

1

[
L0 −

9

2g2

(
ρ+

λ2

4
ρ3

)−2
]}1/3

, (4.2)

where L0 and L1 are two spherically symmetric harmonic functions16 on R4

L0,1 = a0,1 + q0,1/ρ
2 , (4.3)

a0,1 being integration constants and q0,1 being electric charges. The integration constants

are constrained by the normalization of the metric at infinity, but we are are not going to

impose this condition in 5 dimensions.

There is only one non-trivial scalar that we can write as h1/h0, for instance. In terms

of the scalar functions hI we have

h0 = 2−1/3

 L1

L0 − 9
2g2

(
ρ+ λ2

4 ρ
3
)−2


2/3

, (4.4)

h1 = 22/3

 L1

L0 − 9
2g2

(
ρ+ λ2

4 ρ
3
)−2


−1/3

, (4.5)

h2 = hA = 0 , (4.6)

and

φ1 = 2
L0 − 9

2g2

(
ρ+ λ2

4 ρ
3
)−2

L1
. (4.7)

16Not to be confused with the 6-dimensional scalar functions L̂r.
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Finally, the vector fields of the solution are given by

A0 = − 1√
3

[
L0 −

9

2g2

(
ρ+

λ2

4
ρ3

)−2
]−1

dt ,

A1 = − 2√
3
L−1

1 dt ,

A2 = 0 ,

AA = −1

g

(
1 +

λ2

4
ρ2

)−1

vAL ,

(4.8)

where the vAL are the left-invariant Maurer-Cartan 1-forms of the Lie group SU(2), given

in our conventions in the appendix of ref. [52]. AA is the potential of the BPST instanton

and g is the 5-dimensional gauge coupling constant.

It is now straightforward to uplift this solution to a solution of the N = 2A, d = 6

theory with nT = 1 (by definition) and nV = nV 5 − 2 = 3 (one of the six 5-dimensional

vectors is the KK vector and the other two come from the non-chiral 2-form) and the 3

vectors are the gauge field of the SO(3) gauge group17

Using eqs. (2.18), (2.21), (2.23) and (2.24), we find the following 6-dimensional fields:18

ds̆2 = 2f̆du

[
dv′ − 3

2
(L1 − a1)du

]
− f̆−1

(
dρ2 + ρ2dΩ2

(3)

)
,

f̆ =

√
2

3

{
L1

[
L0 −

2

9g2

(
ρ+

λ2

4
ρ3

)−2
]}−1/2

,

e
√

2ϕ̆ =
1

2
L1

[
L0 −

2

9g2

(
ρ+

λ2

4
ρ3

)−2
]−1

,

ĂA = − 1√
12g

(
1 +

λ2

4
ρ2

)−1

vAL ,

H̆ = −1

6
dv′ ∧ du ∧ d

[
L0 −

2

9g2

(
ρ+

λ2

4
ρ3

)−2
]−1

+
3

2
q1ω3 ,

(4.10)

and where ω3 is the volume form of the round 3-sphere of unit radius whose metric is dΩ2
(3).

If, for instance, we use the Euler coordinates (θ, φ, ψ) such that

dΩ2
(3) =

1

4

[
(dψ + cos θdφ)2 + dθ2 + sin2 θdφ2

]
, (4.11)

17Globally, the instanton solution requires the group to be SU(2).
18We have renamed the coordinates z and t as u and v, respectively, since they are conjugate null

coordinates in 6 dimensions. Then, we have shifted one of them v = v′+ 3
2
a1u. The null coordinates u and

v′ can be expressed in terms of time (τ) and space (y) coordinate as

u =
1√
2

(τ + y) , v =
1√
2

(τ − y) . (4.9)
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then ω3 = 1
8 sin θdθ ∧ dφ ∧ dψ, and the 2-form B̆ can be written in this coordinate patch,

up to gauge transformations, as

B̆ = −1

6

[
L0 −

2

9g2

(
ρ+

λ2

4
ρ3

)−2
]−1

dv′ ∧ du+
3

16
q1 cos θdψ ∧ dφ . (4.12)

Observe that now ĂA carries a factor of 1/
√

12 with respect to the potential of the

BPST instanton. The reason behind this apparent inconsistency is that the rescaling of the

potentials is harmless in the Abelian case but brings the non-Abelian 2-form field strength

to an unconventional form. To bring it back to the standard form we just have to rescale

the coupling constant. Thus, the 6-dimensional coupling constant is given in terms of the

5-dimensional one by

ğ =
√

12g . (4.13)

The metric ds̆2 is typical that of a superposition of a string lying in the z direction

and a wave with momentum ∼ q1 in the same direction. The 3-form field strength H̆

indicates that the string is dyonic, with electric and magnetic charges ∼ q0, q1. This kind

of solutions are very well known as they are particular cases of 3-charge configurations dual

to the D1D6W one.19 The additional ingredient here is the BPST instanton that modifies

the metric function f̆ . The string part of this solution is also clearly related to the “gauge

dyonic string” solution of the Heterotic string effective action compactified to 6 dimensions

constructed in ref. [67] by adding Yang-Mills instantons in the transverse directions to the

dyonic string found in ref. [68] (see also ref. [69]).

We have left intentionally undetermined the integration constants a0, a1 because differ-

ent choices can leave, as we are going to see, to physically inequivalent solutions, depending

on whether we demand asymptotic flatness or not.

Asymptotic limit. Let us first consider the ρ→∞ limit. There are two possibilities:

1. If we choose the two integration constants in the harmonic functions L0,1 to be non-

vanishing, a0a1 > 0

f̆ ∼
√

2/3
√
a0a1

, e
√

2ϕ̆∞ =
a1

2a0
, and H̆ρv′u ∼

q0

3a2
0

1

ρ3
. (4.14)

First of all, we see that the metric is asymptotically flat. The normalization f̆ = 1

fixes the integration constants in terms of just ϕ̆∞:

a0 =
1

3
e−ϕ̆∞

√
2 , a1 =

2

3
e+ϕ̆∞

√
2 . (4.15)

This solution describes the superposition of the dyonic string and pp-wave mentioned

above. The charges of the string can be easily computed and are given by

Q ≡ 1

2π2

∫
S3
∞

e−
√

2ϕ̆ ? H̆ = −3q0 , P ≡ 1

2π2

∫
S3
∞

H̆ =
3

2
q1 . (4.16)

19Only two out of the three different charges are independent in this solution. This is necessary to have

a consistent truncation to minimal supergravity.
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The instanton field falls too fast at infinity to give any contributions to charges,

masses or momenta.

2. If both integration constants vanish a0 = a1 = 0,20 as long as q1

(
q0 − 8

3ğ2

)
f̆ remains

always finite and strictly real and positive for all finite values of ρ and the whole metric

is regular. In the ρ→∞ limit the fields behave as

f̆ ∼ ρ2

R2
∞
, e

√
2ϕ̆∞ =

q1

2q0
, and H̆ρv′u ∼ −

1

3q0
ρ , (4.17)

where we have defined the constant

R2
∞ ≡

√
9q0q1

2
, (4.18)

which depends on the charges but not on the modulus ϕ̆∞, and the metric takes a

direct product form

ds̆2
∞ = R2

∞

(
2du′dv′′ρ2 − 3q1du

′ 2 − dρ2

ρ2

)
−R2

∞dΩ2
(3) , (4.19)

where u = R2
∞u
′ and v′ = R2

∞v
′′.

The transverse part of the metric is that of a round 3-sphere of radius R∞. The rest

turns out to be the metric of an AdS3 space of radius R∞ as well: computing its

Riemann tensor we find

R(3)
µνρσ = − 2

R2
∞
g

(3)
µ[ρg

(3)
σ]ν . (4.20)

Thus, the second choice of integration constants gives a solution which is asymptoti-

cally AdS3×S3 with radii equal to R∞. Observe that, in the Abelian case (which we

can always recover by eliminating the instanton field) the solution would be globally,

and not just asymptotically, AdS3×S3. In the ρ→∞ limit we recover essentially this

Abelian solution because the instanton field vanishes and, in particular, the 3-form

field strength H̆ takes the form

H̆ =
3

2
q1 [−π3 + ω3] , (4.21)

where π3 and ω3 are the volume forms of unit-radii AdS3 and S3, respectively. In

the coordinates we are using, the first is given by

π3 = ρdρ ∧ dv′′ ∧ du′ . (4.22)

Now we are interested in studying the near-horizon (ρ → 0) limits of these two

solutions.

20If only one of them vanished, the dilaton would not be well defined.
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Near-horizon limit. For any values of the integration constants a0, a1 (that is: for

the two different solutions identified above), in the limit ρ → 0, the Ricci scalar and

the Kretschmann invariant of the full metric remain finite. Thus, we expect to have a

well-defined ρ → 0 metric which in the asymptotically-flat case will be interpreted as a

near-horizon metric. In both cases we have the the following asymptotic expansions:

L0,1 ∼
q0,1

ρ2
+O(1), f̆ = ρ2/R2

h +O(ρ4) , (4.23)

where21

R2
h ≡

√
9q1(q0 − 8/(3ğ2))

2
, (4.24)

which is well defined as long as q1(q0−8/(3ğ2)) > 0 (in particular, q1 6= 0). We will assume

that this condition holds. Then, rescaling the null coordinates as u = R2
hu
′, v′ = R2

hv
′′ the

metric takes the same form we found above

ds̆2
h = R2

h

(
2ρ2du′dv′′ − 3q1du

′ 2 − dρ2

ρ2

)
−R2

hdΩ2
(3) , (4.25)

which is that of AdS3 × S3 with radii equal to Rh. The fact that this near-horizon limit

is the same as in the case of the pure dyonic string solutions (with no pp-wave) [70] is

somewhat surprising.

In this limit the dilaton takes a constant and finite value,

e
√

2ϕ̆ =
q1

2
(
q0 − 8

3ğ2

) , (4.26)

while the vectors are simply proportional to the left-invariant Maurer-Cartan 1-forms ĂA =
1
ğ v

A
L. Recalling the definition of the left-invariant Maurer-Cartan forms V = vATA =

−u−1du for the SU(2) group representative u and the su(2) generators TA, we conclude

that the gauge fields are proportional to a pure gauge configuration, i.e. they describe a

meron field, analogous to the one found in ref. [33]. Finally, in the ρ→ 0 limit the 3-form

field strength H̆ takes exactly the same form as in the ρ → ∞ limit eq. (4.21), but we

should notice that the coordinates we are using in the AdS3 are different.

Summarizing, we have found two solutions:

1. The first solution, which is asymptotically flat and has a regular horizon. Asymp-

totically it cannot be distinguished from the well-known dyonic string solution (plus

pp-wave) that one can obtain by eliminating the instanton field. This behaviour is

similar to that of the colored black holes constructed in refs. [46, 49, 50]. In the

near-horizon limit it has an AdS3 × S3 metric with radius Rh whose value, given in

eq. (4.24) does have a contribution from the instanton field.

2. The second solution is a globally regular metric that interpolates between two AdS3×
S3 solutions with radii R∞ and Rh given, respectively, in eq. (4.18) and eq. (4.24).

We will discuss these solutions further in the Conclusions section.
21Compare this expression with eq. (4.18).
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4.2 Solutions of the SO(3)-gauged N = 2A, d = 6 theory

Dualizing the 3-form field strength of the N = 2A∗, d = 6 theory solutions we just obtained

according to eq. (2.26) we can get very similar solutions of the N = 2A, d = 6 theory which

will have, however, very different string-frame metrics and (possibly) Kalb-Ramond field.

H̃ = −1

3
dv ∧ du ∧ dL−1

1 −
3

2
ρ3∂ρ

[
L0 −

2

9g2

(
ρ+

λ2

4
ρ3

)−2
]
ω3 . (4.27)

Since, in this case, the 3- and 2-form field strengths are defined as

H̃ = dB̃ + F̃A ∧ ÃA +
1

3!
g̃εABCÃ

A ∧ ÃB ∧ ÃC , (4.28)

F̃A = dÃA − 1

2
g̃εABCÃ

B ∧ ÃC , (4.29)

and the gauge fields are those of the BPS instanton

ÃA = −1

g̃

1

1 + λ2

4 ρ
2
vAL , (4.30)

we find that

dB̃ = −1

3
dv ∧ du ∧ dL−1

1 + 3q0ω3 , (4.31)

and using the Euler coordinates as in eq. (4.12), we obtain the 2-form field

B̃ = −1

3
L−1

1 dv ∧ du+
3

8
q0 cos θdψ ∧ dφ , (4.32)

which has no non-Abelian contributions.

4.3 Solutions of the “SO(3)-gauged” N = 2B, d = 6 theory

As we have already mentioned, there is no possible gauging in any conventional sense of

the N = 2B, d = 6 supergravity theory because it has no vector fields. However, it can be

argued that, at least when the theory is compactified in a circle, a gauged N = 2B, d = 6

supergravity theory exists whose massless (in the 5-dimensional sense) sector is given by a

gauged N = 2, d = 5 theory related to the former by dimensional reduction in the Abelian

case.

We have also stressed that the relation between the fields of two gauged supergravities is

the same as in the ungauged case, as long as their gauge groups are identical. Then, we can

use the formulae obtained in the dimensional reduction of the standard N = 2B, d = 6 to

ungauged N = 2, d = 5 supergravity to uplift solutions of the SO(3)-gauged 5-dimensional

theory to this conjectured SO(3)- gauged N = 2B, d = 6 supergravity. We are going

to apply this idea to the non-Abelian black-hole solution we have uplifted to the gauged

N = 2A and N = 2A∗, d = 6 theories. Eliminating the BPST instanton from the solution

we obtain a solution of the standard (ungauged) N = 2B, d = 6 theory.
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Thus, using eqs. (2.8), (2.10), (2.11), calling u and v the coordinates z and t and

shifting v′ = v + 3a0u we get the following solution

dŝ2 =

(
2

3L1

)
2du

{
dv′ − 3

[
(L0 − a0)− 2

9g2

(
ρ+

λ2

4
ρ3

)−2
]
du

}

−
(

2

3L1

)−1 (
dρ2 + ρ2dΩ2

(3)

)
,

L̂r = δr1 ,

B̂1
uv′ =

1

3
L−1

1 ,

B̂A
µudx

µ = − 1

2
√

6g
vAL .

(4.33)

This solution has the typical form of a solution describing the superposition of a

self-dual string with charge ∼ q1 and a pp-wave with momentum ∼ q0 but there is a

non-conventional non-Abelian contribution to this wave which can be interpreted as an

instanton expressed in 2-form variables. This non-Abelian contribution, as in the previous

cases, falls off too fast at infinity to give a contribution to the wave’s momentum and,

therefore, the solution has the same asymptotic behaviour as the standard solution with

no non-Abelian contribution. It also seems to be regular everywhere as long as L1 6= 0

(but we always choose a1 and q1 with equal signs).

In this solution the string charge and the pp-wave momentum are independent and can

be set to zero independently.Setting both to zero gives a non-standard, purely non-Abelian

pp-wave solution.

Asymptotic limit. There are two possible choices of the integration constant a1 which

give physically inequivalent solutions:22

1. a1 = 1 gives an asymptotically (ρ → ∞ limit) flat metric with the string-plus-wave

interpretation mentioned above.

2. a1 = 0 gives a metric that, with the usual rescaling of u and v′, takes the form

dŝ2 = R2

{[
2du′ 2dv′′ρ2 − 3

(
q0 −

2

9g2

(
1 +

λ2

4
ρ2

)−2
)
du′ − dρ2

ρ2

]
− dΩ2

(3)

}
.

(4.34)

In the ρ→∞ limit this metric is that of AdS3×S3 with radii

R2 = 3q1/2 , (4.35)

but, for all finite values of ρ it is different from it, except when the non-Abelian

contribution is eliminated.

22Observe that a0 has disappeared from the solution.
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Near-horizon limit. For the two solutions a1 = 1, 0 one obtains the same metric in the

ρ → 0 (near-horizon) limit: an AdS3×S3 with radii R given by eq. (4.35). The difference

between this metric and the one obtained in the ρ → ∞ limit for the second solution is

that in the near-horizon limit there is a non-Abelian contribution in the guu component,

although this does not affect the value of the radii of the factor spaces.

5 Conclusions

We have found a very interesting relation between two families of models of N = (2, 0), d =

6 supergravity that can be used to transform solutions of one of them admitting one

isometry into solutions of the other. The relation is based on the fact that they reduce

to the same family of models of N = 2, d = 5 supergravity, a fact that we have used to

construct new 6-dimensional supersymmetric non-Abelian solutions by uplifting a known

5-dimensional solution.

It is natural to expect that the relation between 6-dimensional supergravities is related

to a string duality, but more work is necessary in order to identify the string compactifica-

tions that produce the 6-dimensional theories that only have chiral 2-forms.

We have only uplifted the simplest non-Abelian 5-dimensional solution (a black hole),

but one should consider more possibilities like the non-Abelian black ring or rotating black

hole of ref. [47]. As in the 5- and 4-dimensional cases, the non-Abelian does not contribute

to any of the quantities one can measure at infinity, like the mass, but it does modify

the near-horizon geometry, with a negative contribution to the entropy. This means that,

for the same asymptotic data there are several black-body configurations with different

entropies and the non-Abelian one, having the least entropy, should be unstable. An

intriguing possibility is that the solution that interpolates between two different AdS3×S3

geometries is somehow related to an instanton associated to that instability. Work in this

direction is underway [71].

Finally, a long-standing problem that remains unsolved as yet is the microscopical

interpretation of the entropy of all the black objects with non-Abelian fields found so far.

We believe that the work presented here will help to find the embedding of these solutions

in a string theory, providing the first step to solve it.
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