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1 Introduction and summary

Quantum entanglement significantly distinguishes quantum states from classical states.

It can characterize conformal field theories [1–4] and topological phases [5–7]. In

Gauge/Gravity correspondence [8–10], the structure of quantum entanglement in quantum

field theories (QFTs) living on the boundary is expected to be related to the gravity in the

bulk [11–14]. There has been a lot of work done to reveal how the structure of quantum en-

tanglement on the boundary corresponds to the geometry in the bulk [15–25]. Therefore it

is important to uncover the fundamental features which quantum entanglement possesses.

(Rényi) entanglement entropy is one of the useful quantities to investigate them.

However the definition of (Rényi) entanglement entropy in gauge theories has sub-

tleties [26–41]. In gauge theories, physical states have to be gauge invariant. They obey

constraints which guarantee their gauge invariance. They make it difficult to divide the

Hilbert space into subsystems A and B because the physical degrees of freedom in A

depends on the freedom in B due to the constraints. Their boundary is ∂A. Then the def-

inition of (Rényi) entanglement entropy needs a precise method of dividing Hilbert space
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and defining the reduced density matrix ρA which is given by tracing out the degrees of

freedom in B,

ρA = trBρ. (1.1)

On the other hand, the entropy in QFTs depends on a UV cutoff (ultraviolet cutoff)

δ because by definition it has the UV divergence. It is given by a series expansion in

conformal field theories. The physical degrees of freedom around ∂A have the significant

effect on the terms which depend on δ. The method of dividing the Hilbert space is expect

to affect the degrees of freedom around ∂A in the direct fashion. In the present paper, we

study the changes of (Rényi) entanglement entropy ∆S
(n)
A which is defined by subtracting

the entropy for the ground state from the one for the locally excited state, which is defined

by acting with a local operator on the ground state. Here we assume that the operator

is located far from ∂A. We will explain it more in the next section. As in [42–48], their

changes do not possess the UV divergence. More precisely, they measure how the local

operator changes the structure of quantum entanglement. Therefore, they are expected to

avoid the subtleties which (Rényi) entanglement entropy has.

In this paper we study ∆S
(n)
A in 4d Maxwell gauge theory, which is a free CFT [49].

The previous works [44–46] show the time evolution of ∆S
(n)
A can be interpreted in terms of

relativistic propagation of entangled quasi-particles which are created by local operators.

In the free theories, the late-time value of ∆S
(n)
A is given by a constant, which depends

on the operators. It comes from the quantum entanglement between quasi-particles. As

in [46], the late-time entanglement structure depends on the kind of quasi-particles. The

authors in [47] show that in the specific 2d CFTs, it is related to the quantum dimension

of the operator which acts on the ground state. The authors in [48, 50] have shown that

in holographic theories the late time value of ∆S
(n)
A logarithmically increases similarly to

the behavior of entanglement entropy for the local quenches [51, 52]. ∆S
(n)
A in the finite

temperature system was investigated by the authors in [53]. Many works have been done to

study the fundamental properties of ∆S
(n)
A [54–59]. The time evolution and late-time value

of ∆S
(n)
A depend on theories and the quasi-particles created by the local operator. Then

we study how the structure of quantum entanglement is changed by gauge invariant local

operators such as electric and magnetic fields. In particular, we study how the late-time

structure of quantum entanglement depends on them. More precisely, we study the effect

of quasi-particles on the structure. We also study whether ∆S
(n)
A for a gauge invariant

locally excited state reflects electric-magnetic duality.

Summary. Here, we briefly summarize our results in this work. We study how the

various local gauge invariant operators change the structure of quantum entanglement by

measuring the time evolution of ∆S
(n)
A for various gauge invariant local operators. We also

study whether ∆S
(n)
A is invariant under the electric-magnetic duality transformation.

Electric-magnetic duality. As it will be explained later, ∆S
(n)
A for locally excited states

is invariant under the transformation Ei → −Bi and Bi → Ei where E and B are electric

and magnetic fields, respectively.
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Ei or Bi. If only Ei or Bi acts on the ground state, the time evolution of ∆S
(n)
A depends

on the one which acts on the ground state. Because ∆S
(n)
A reflects the electric-magnetic

duality, the entropy for Bi is equal to that for Ei, which is the electric field along the same

direction as that of magnetic field. ∆S
(n)
A for the electric and magnetic fields along the

direction vertical to the entangling surface increases slower than those for fields along the

directions parallel to the surface. However there are no differences between the effects of

electromagnetic field and that of scalar one on the entanglement structure at the late time.1

Composite operators. If the composite operator such as B2 acts on the ground state,

they lead to the late-time structure of quantum entanglement in the same manner as a

specific scalar operator. Then the late-time value of ∆S
(n)
A for that can be interpreted in

terms of quasi-particles created by the scalar operator. However ∆S
(n)
A for some specific

operators (e.g, E2B3) constructed of both electric and magnetic fields can not be interpreted

in terms of the scalar quasi-particles but of electromagnetic ones, which is explained in

section 4. Here B3 (E3) and B2 (E2) are the magnetic (electric) fields along the direction

perpendicular to ∂A as we will explain it later.

Late-time algebra. We interpret the late-time values of ∆S
(n)
A in terms of electromag-

netic quasi-particles created by an electromagnetic field, and derive a late-time algebra

which they obey. There are commutation relations between the particles of the same kinds

of fields . As we will show later, there are also additional relations between E2 (E3) and

B3 (B2), which are parallel to the entangling surface. They make the effect of electro-

magnetic fields different from that of scalar fields on the late-time structure of quantum

entanglement.

Organization. This paper is organized as follows. In section 2, we will explain locally

excited states and how to compute ∆S
(n)
A in the replica trick. We study the time evolution

and late-time value of ∆S
(n)
A for various gauge invariant local operators in section 3. We

interpret the late-time value of ∆S
(n)
A in terms of entangled quasi-particles in section 4.

We study how they have the effect on the late-time structure of quantum entanglement.

We finish with the conclusion, future problems and the detail of propagators is included

in appendices.

2 How to compute excesses of (Rényi) entanglement entropy

By measuring the excess of (Rényi) entanglement entropies ∆S
(n)
A , we study how lo-

cal gauge-invariant operators changes the structure of quantum entanglement in the 4d

Maxwell gauge theory:

S = −1

4

∫
d4xFµνFρσg

µρgνσ, (2.1)

where Fµν = ∂µAν − ∂νAµ and gµν = diag (−1, 1, 1, 1).

1When only a component of the electric or magnetic one acts on the ground state, we do not consider

the linear combination of them in this paper.
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Figure 1. The location of local gauge invariant operator in Minkowski spacetime.

In this section, we explain the definition of locally excited state and how to compute

∆S
(n)
A in the replica method.

The definition of locally excited states. The locally excited state is defined by acting

with a gauge invariant local operator O such as Fµν on the ground state:

|Ψ〉 = NO(−t,−l,x) |0〉 . (2.2)

where N is a normalization constant and |0〉 is a gauge invariant state. As in figure 1, O
is located at t = −t, x1 = −l and x = (x2, x3).

Subsystem. As in the previous works [44–47], the subsystem A is defined by (t = 0,

x1 ≥ 0) as in figure 1. In free theories ∆S
(n)
A approaches to a constant, which comes from

quantum entanglement between entangled quasi-particles. In this paper we would like to

study how the constant depends on gauge invariant operators. Therefore the region in

figure 1 is chosen as A.

Excesses of (Rényi) entanglement entropy. Here we explain more about the defini-

tion of ∆S
(n)
A . (Rényi) entanglement entropy for the ground state is a static quantity, which

does not depend on time. Then we define the excesses of (Rényi) entanglement entropy

∆S
(n)
A by subtracting S

(n)
A for the ground state from those for locally excited states,

∆S
(n)
A = S

(n),EX
A − S(n),G

A , (2.3)

where S
(n),EX
A and S

(n),G
A , are (Rényi) entanglement entropies for the excited states in (2.2)

and the ground state |0〉, respectively. In the sense that ∆S
(n)
A does not depend on δ, it is

a “renormalized” (Rényi) entanglement entropy.

2.1 The replica trick

We would like to study the time evolution of ∆S
(n)
A in 4d Minkowski spacetime. However in

this paper we do not directly study the changes of entanglement structure in the spacetime.

Instead, we compute ∆S
(n)
A in Euclidean space by the replica trick. After that we perform
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the analytic continuation, which we will explain later. Then we compute the real time

evolution of ∆S
(n)
A .

As in [44–47], a reduced density matrix in Euclidean space is given by

ρ = Ñ 2O(τe,−l,x) |0〉 〈0| O†(τl,−l,x), (2.4)

where τ is Euclidean time. By introducing a polar coordinate, (τl,e,−l) is mapped to

(r1,2, θ1,2) as in figure 2.

The reduced density matrix of ρ introduced above, which is our interest now, can be

written in the form of path integral

[ρA]Φ1,Φ2
=
(
ZEX1

)−1
∫
DΦO†(x1)O(x2)e−S[Φ]δ(Φ(−∆, xi)−Φ1(xi)) ·δ(Φ(∆, xi)−Φ2(xi))

(2.5)

where the indices i, µ is i = 1, 2, 3, µ = 0, 1, 2, 3, and xi runs over the region A, which is in

this case x1 > 0 and x2, x3 ∈ R. The Φ1 = Φ1(xi) and Φ2 = Φ2(xi) introduced in the path

integral inside the δ-function with a positive value ∆� 1 (which is taken to the zero limit

in the end), represent the boundary condition at region A. ZEX1 is defined as

ZEX1 =

∫
DΦO†(x1)O(x2)e−S[Φ]. (2.6)

The n-th power of the reduced density matrix is written as

[ρnA]Φ1,Φ2
=
(
ZEX1

)−n ∫
DΦ

(
n∏
l=1

O†(xl1)O(xl2)

)
e−Sn[Φ]δ(Φ(−∆, xi)− Φ1(xi))

· δ(Φ(∆, xi)− Φ2(xi)). (2.7)

Note that since the path integral is performed over an n-sheeted Riemann surface, the

action is now represented as Sn[Φ]. xl1, x
l
2 represent the operator insersion points on the

l-th sheet, and the boundary condition Φ1,Φ2 is now at the 1-st and n-th Riemann sheet,

respectively.

Thus, in the replica trick (Rényi) entanglement entropies for (2.4) and the ground state

are respectively given by taking the trace log of (2.7),2

S
(n),EX
A =

1

1− n
log

[∫
DΦO†(r1, θ

n
1 )O(r2, θ

n
2 ) · · · O(r1, θ

1
1)†O(r2, θ

1
2)e−Sn[Φ](∫

DΦO(r1, θ1
1)†O(r2, θ1

2)e−S1[Φ]
)n

]
,

S
(n),G
A =

1

1− n
log

[ ∫
DΦe−Sn[Φ](∫
DΦe−S1[Φ]

)n
]
,

(2.8)

where θk1,2 = θ1,2 +2(k−1)π. The actions Sn and S1 are defined on the n-sheeted geometry

Σn (see figure 3) and the flat space Σ1, respectively. By substituting (Rényi) entanglement

entropies in (2.8) into (2.3), ∆S
(n)
A is given by

∆S
(n)
A =

1

1− n
log

[〈
O†(r1, θ

n
1 )O(r2, θ

n
2 ) · · · O†(r1, θ

1
1)O(r2, θ

1
2)
〉

Σn〈
O†(r1, θ1

1)O(r2, θ1
2)
〉n

Σ1

]
(2.9)
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Figure 2. The location of local gauge invariant operator in Euclidean space.

We only need to compute propagators on Σn in order to compute ∆S
(n)
A in free field the-

ories. The two point function of gauge fields Aa is defined by −〈Aa(r, θ,x)Ab(r
′, θ′,x′)〉 =

Gab (r, r′, θ − θ′,x− x′). If we choose a specific gauge,3 their Green’s functions obey the

same equation of motion as that for 4d free massless scalar field theory,

∂2
rG

a
b (r, r

′, θ−θ′,x−x′)+
1

r
∂rG

a
b (r, r

′, θ−θ′,x−x′) (2.10)

+
1

r2
∂2
θG

a
b (r, r

′, θ−θ′,x−x′)+∂2
xG

a
b (r, r

′, θ−θ′,x−x′)=−
δab δ(r−r′)δ(θ−θ′)δ2(x−x′)

r
,

where a = {τ, x1, x2, x3}.4

The solution of the equation is given by

Gab
(
r, r,′ θ − θ′,x− x′

)
=

δab sinh
(
t0
n

)
8nπ2rr′ sinh t0

(
cosh

(
t0
n

)
− cos

(
θ−θ′
n

)) , (2.11)

where t0 is defined by

cosh t0 =
r2 + r′2 + (x2 − x′2)2 + (x3 − x′3)2

2rr′
. (2.12)

(2.11) has been obtained by the authors in [44–46, 48, 60, 61].

Analytic continuation. After computing Green’s functions on Σn in Euclidean space,

we perform the following analytic continuation,

Aτ = iAt, ∂τ = i∂t, τl = ε− it, τe = −ε− it, (2.13)

where ε is a smearing parameter which is introduced to keep the norm of the excited

state finite. Analytic-continued Green’s functions depend on ε. We are interested in the

behavior of ∆S
(n)
A in the limit ε → 0. Their leading behavior (∼ O

(
1
ε4

)
) are summarized

in appendix A.

2This formula was introduced in [42, 43] . For detail of computation, see also [44–47].
3The chosen gauge corresponds to Feynman gauge in Minkowski spacetime.
4Ga

b ≡ δacGcb where δac = diag(1, 1, 1, 1).

– 6 –
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Figure 3. A picture of n-sheeted geometry Σn.

Gauge independence. The quantity ∆S
(n)
A does not depend on the choice of gauge

fixing or boundary condition, since ∆S
(n)
A is the difference of the Rényi EE of ground

state and excited state. More precisely, when we decompose the Hilbert space into two

components, as discussed in [26], we need to specify a precise boundary condition. Here,

we assume that this boundary condition can be imposed by an insertion of a corresponding

local operator at the boundary. On the other hand, as is discussed in [45], the operator at

the boundary does not contribute to the result since l
ε � 1. Therefore, through out the

computation of ∆S
(n)
A , the result does not depend on the boundary condition. Moreover,

we are allowed to choose an arbitrary boundary condition. Thus, we can set a gauge

invariant boundary condition for the Green’s functions of gauge invariant operators, so

that the result will be gauge invariant.

3 Excesses of (Rényi) entanglement entropy

In this section, we study the time evolution and the late time value of ∆S
(n)
A in the following

three cases.

(i) Only one electric or magnetic field O = Ei, Bi acts on the ground state. The time

evolution of ∆S
(n)
A depends on the operator which acts on the ground state. If

electromagnetic fields are changed by Fµν → F̃µν = 1
2εµνρσF

ρσ, ∆S
(n)
A does not

change. Here εµνρσ is an antisymmetric tensor. The late-time value of ∆S
(n)
A does

not depend on the operator. It can be interpreted in terms of the quasi-particle

created by a scalar operator φ.

(ii) Composite operators which act on the ground state are constructed of only electric or

magnetic fields such as E2 and B2. ∆S
(n)
A for E2 is equivalent to the entropy for B2.

Thus ∆S
(n)
A for them are invariant under the electric-magnetic duality transformation.

There are no differences between their effect on the (Rényi) entanglement entropy.

Its late-time values can be interpreted in terms of quasi-particles, which are created

– 7 –
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by the operator constructed of massless free scalar fields
∑3

a=1(φa)2. Here a denotes

the kinds of fields.

(iii) Local operators are constructed of both electric and magnetic fields such as E2
1 +B2

1 ,

B3E2 and B · E. The late-time value of ∆S
(n)
A shows that there is a significant dif-

ference between the effect of E1 (B1) and E2,3 (B2,3) on the late-time entanglement

structure. Here E1 (B1) is the electric (magnetic) field along the direction vertical

to the entangling surface. On the other hand, E2,3 (B2,3) is the electric (magnetic)

field along the direction parallel to the entangling surface. As it will be explained in

the next section, the difference comes from the commutation relation between elec-

tromagnetic quasi-particles created by E2 (E3) and the particles created by B3 (B2).

3.1 O = Ei or Bi

Here locally excited states are defined by acting with only Ei or Bi on the ground state.

∆S
(n)
A is given by (2.9) in the replica method with Euclidean signature. After performing

the analytic continuation in (2.13) and taking the limit ε→ 0, their time evolution is given

as follows. ∆S
(n)
A vanishes before t = l(> 0), but after t = l, it increases. The detail of

their time evolution is summarized in table 1. After taking the late time limit (0 < l� t),

they are given by

∆S
(n)
A ∼ log 2. (3.1)

Their late time value is the same as that for φ in free massless scalar field theories with

any spacetime dimensions. It can be interpreted as (Rényi) entanglement entropy for

maximally entangled state in 2-qubit system. Therefore they do not show the difference

between the effect of electromagnetic fields and that of free scalar one on the late-time

structure of quantum entanglement. However, the time evolution of ∆S
(n)
A depends on the

local operator which acts on the ground state as in figure 4. Even at t ∼ l, time evolution

of ∆S
(n)
A depends on the one which acts on the ground state. If O = B2,3 or E2,3 acts on

the ground state, ∆S
(n≥2)
A is given by

∆S
(n)
A ∼ n

n− 1

(
3(t− l)

4l

)
+ · · · , (3.2)

where · · · are contributions from the higher order O
((

t−l
l

)2)
. ∆S

(n≥2)
A for O = E1 or B1

at t ∼ l is given by

∆S
(n)
A ∼ n

n− 1

(
3(t− l)2

4l2

)
+ · · · . (3.3)

· · · are contributions from the higher order O
((

t−l
l

)3)
. Their time evolution shows that

quasi-particles created by E2,3 (B2,3) enter the region A faster than those generated by

E1 (B1). These behaviors seem to be natural since particles created by E1 (B1) do not

propagate along the direction parallel to x1.

∆S
(n)
A in table 1 shows that they are invariant under the transformation,

Fµν →
1

2
εµνρσF

ρσ, (3.4)

– 8 –
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2 4 6 8 10
t / l0.0

0.2

0.4

0.6

0.8

ΔSA
2

Figure 4. The time evolution of ∆S
(2)
A for E1 (B1) and E2,3 (B2,3). The horizontal and vertical

axes correspond to time t/l and ∆S
(2)
A , respectively. The red and blue lines correspond to ∆S

(2)
A

for E1 (B1) and E2,3 (B2,3), respectively.

O ∆S
(n)
A

E1 or B1
1

1−n log
((
− (l+t)2(l−2t)

4t3

)n
+
(

(t−l)2(l+2t)
4t3

)n)
E2,3

1
1−n log

((
−l3−3lt2+4t3

8t3

)n
+
(
l3+3lt2+4t3

8t3

)n)
Table 1. ∆S

(n)
A for O in the region 0 < l ≤ t.

where εµνρσ is an anti-symmetric tensor. Under the transformation in (3.4), the local

operator Ei (Bi) changes to −Bi (Ei). Therefore, this duality changes a locally excited

state to a different one.

3.2 Composite operators constructed of only electric or magnetic fields

The excited states which we consider here are generated by acting with the following

operators: (a) EiEj or BiBj , (b) E2 or B2. We study the time evolution and the late-time

value of ∆S
(n)
A for them.

3.2.1 O = EiEj or BiBj

First we consider ∆S
(n)
A for the excited states generated by acting with EiEj or BiBj on

the ground state. When i = j, the late time-value of ∆S
(n)
A is given by

∆S
(n)
A = − 1

1− n
log

4n

2n + 2
. (3.5)

It is the same as that of ∆S
(n)
A for φ2 in the massless free scalar field theories as in [44, 45].

Therefore, the late-time value of ∆S
(n)
A ((Rényi) entanglement entropy of operator) can be

interpreted in terms of entangled quasi-particles created by φ2.

– 9 –
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O D1 N1 N2 N3

E2
1 or B2

1

(
2
(

1
16

)2)n (
2 (f1)2

)n (
2 (f2)2

)n
22n (f1f2)n

E2
2,3 or B2

2,3

(
2
(

1
16

)2)n (
2 (f3)2

)n (
2 (f4)2

)n
22n (f3f4)n

E1E2,3 or E1B2,3

or B1E2,3 or B1B2,3

(
1
16

)2n
(f1)n (f3)n (f2)n (f4)n (f2)n (f3)n + (f1)n (f4)n

E2E3 or B2B3

(
1
16

)2n
(f3) 2n (f4) 2n 2 (f3) n (f4) n

E2B2 or E3B3

((
1
16

)2)n
(f3) 2n (f4) 2n 2 (f3) n (f4) n

E1B1

(
1
16

)2n
(f1) 2n (f2) 2n 2 (f1) n (f2) n

Functions f1 = − (l−2t)(l+t)2

64t3
f2 = (l+2t)(l−t)2

64t3
f3 = l3+3lt2+4t3

128t3
f4 = −l3−3lt2+4t3

128t3

Table 2. ∆S
(n)
A = 1

1−n log
[
N1+N2+N3

D1

]
for O in the region 0 < l < t.

0 2 4 6 8 10 12
t / l0.0

0.2

0.4

0.6

0.8

1.0

ΔSA
2

Figure 5. The time evolution of ∆S
(2)
A for E1E1 and E2E2. The horizontal and vertical axes

correspond to time t/l and the excess of ∆S
(2)
A , respectively. The blue line represents the evolution

for E1E1, and the red line for E2E2. In the limit t→∞, they are all log 8
3 .

When i 6= j, ∆S
(n)
A at the late time is given by

∆S
(n)
A = log 4, (3.6)

which can be interpreted as maximum (Rényi) entanglement entropy for ρA =
1
4diag(1, 1, 1, 1). It is the same as ∆S

(n)
A for the excited state given by acting with the

operator φaφb on the ground state. Here a, b denote the kind of scalar fields, and a 6= b.

There are two kinds of massless free scalar fields. The time evolution of ∆S
(n)
A for them is

summarized in table 2. Table 2 shows ∆S
(n)
A is invariant under the transformation in (3.4).

The time dependence of each excitation is displayed in figures 5 and 6. The evolutions

without taking the limit t → ∞ is different. However, amazingly the ∆S
(2)
A agree in the

limit t→∞, for each cases.
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0 2 4 6 8 10 12 14
t / l0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ΔSA
2

Figure 6. The time evolution of ∆S
(2)
A for E1E2, E2E3 (E2B2) and E1B1. The horizontal and

vertical axes correspond to time t/l and the excess of ∆S
(2)
A , respectively. The red line represents

the evolution for E1E2, the blue line for E2E3 (E2B2) and the green line for E1B1. In the limit

t→∞, they are all 2 log 2.

3.2.2 O = E2 or B2

In order to study whether E1 acts on the late-time structure of quantum entanglement dif-

ferently from E2,3,5 we study the late-time value of ∆S
(n)
A for the given locally excited state:

|Ψ〉 = NE2(−t,−l,x) |0〉 . (3.7)

Before studying its late-time value, we comment on its time evolution. Before t = l, ∆S
(n)
A

for the state in (3.7) vanishes and after t = l, it increases. Its time evolution is summarized

in table 3.

After t = l, as in table 3, ∆S
(n)
A is given by

∆S
(n)
A =

1

1− n
log

[
N1 +N2 + P1 + P2 + P3

D

]
, (3.8)

where D, Ni and Pi are defined in table 3. If we take the late time limit (0 < l � t), the

ratios of Pi and Ni to D reduce to constant numbers [62],(
N1

D

) 1
n

=

(
N2

D

) 1
n

= 4−1,

(
P1

D

) 1
n

=

(
P2

D

) 1
n

=

(
P3

D

) 1
n

=

(
1

6

)
, (3.9)

where we ignore the higher order contribution O
(
l
t

)
. Amazingly, the sum of them is 1.

Therefore if the effective reduced density matrix is defined by

∆S
(n)
A =

1

1− n
log [trA (ρeA)n], (3.10)

then the matrix is given by

ρeA =
1

24
diag(6, 4, 4, 4, 6). (3.11)

5The effect of E1 can be different from that of E2,3 on the structure since we choose t = 0, x1 ≥ 0 as the

subsystem A.
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O D1 N1 N2 P1 P2 P3

B2orE2
(

2 · 3
(

1
16

)2)n (
2f2

1 + 2 · 2f2
3

)n (
2f2

2 + 2 · 2f2
4

)n
22nfn1 f

n
2 22nfn3 f

n
4 22nfn3 f

n
4

B2
1 + E2

1

(
2 · 2

(
1
16

)2)n (
2 · 2f2

1

)n (
2 · 2f2

2

)n
22nfn1 f

n
2 22nfn1 f

n
2 0

E2B3

(
22
(

1
4·8
)2)n (

2 (g1)2 + 2 (g3)2
)n (

2 (g2)2 + 2 (g4)2
)n

22n (g2)n (g3)n 22n (g1)n (g4)n 0

or E3B2

FµνFµν

(
2 · 2

(
1
16

)2
+ 2 · 42

(
1

4·8
)2)n (

2 · 2f2
1 + 2 · 42g1 · g3

)n (
2 · 2f2

2 + 2 · 42g2 · g4

)n
2 · 22n (f1)n (f2)n 2 · 42n (g1)n (g2)n 2 · 42n (g3)n (g4)n

or B ·E

B2E3 −B3E2

(
4 · 2

(
1

4·8
)2)n (

2 · 2g2
3 + 2 · 2g2

1

)n (
2 · 2g2

4 + 2 · 2g2
2

)n
22n (g3)n (g2)n 22n (g1)n (g4)n 0

Functions g1 = (l+t)3

4·64t3
g2 = (t−l)3

4·64t3
g3 =

(l+t)(l2−4lt+7t2)
4·64t3

g4 =
(t−l)(l2+4lt+7t2)

4·64t3

Table 3. ∆S
(n)
A = 1

1−n log
[
N1+N2+P1+P2+P3

D1

]
for O in the region 0 < l < t.

The excess of n−th (Rényi) entanglement entropy, entanglement entropy and Min entropy

are respectively given by

∆S
(n)
A =

1

n− 1
log

(
12n

3 · 2n + 2 · 3n

)
,

∆SA =
log(24)

2
,

∆S
(∞)
A = log 4,

(3.12)

which can be interpreted in terms of quasi-particles created by
(
φ1
)2

+
(
φ2
)2

+
(
φ3
)2

, which

is constructed of three kinds of free scalar fields. Therefore, there are no differences between

the effect of E1 and that of E2,3 on the late-time structure of quantum entanglement. As in

the table 2, ∆S
(n)
A for E2 is equivalent to that for B2. Therefore, they are electric-magnetic

duality invariants.

3.3 Composite operators constructed of both electric and magnetic fields

In the previous two subsections we study how the entanglement structure changes at the

late time if either electric or magnetic fields act on the ground state. However, we do not

uncover how it changes at the late time when both of them act on the ground state. Here

we study ∆S
(n)
A for (a) E2

1 +B2
1 , (b) EiBj and (c) FµνFµν and B ·E, which can show that

Ei and Bi act on the late-time structure of quantum entanglement differently from scalar

fields such as φa.

3.3.1 E2
1 + B2

1

Here in order to study whether there are differences between the effects of electric and

magnetic fields on the late-time structure of quantum entanglement, we study ∆S
(n)
A for

the following excited state:

|Ψ〉 = N
(
E2

1 +B2
1

)
(−t,−l,x) |0〉 . (3.13)

Before investing the late time value of ∆S
(n)
A , let’s study the time evolution of ∆S

(n)
A .

∆S
(n)
A vanishes before t = l. After t = l, its time evolution is summarized in table 3. If
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we take the late time limit t → ∞, the late time value of ∆S
(n)
A reduces to the (Rényi)

entanglement entropy whose effective reduced density matrix is given by

ρeA =
1

4
diag (1, 1, 1, 1) . (3.14)

Its entropies are given by

∆S
(n)
A = ∆SA = ∆S

(∞)
A = log 4. (3.15)

It shows there are no differences between the effects of electric and magnetic fields on the

late-time structure.

3.3.2 EiBj

Here let’s find out how the operators constructed of both electric and magnetic fields, EiBj ,

affect the late-time structure of quantum entanglement. The late-time values of ∆S
(n)
A for

EiBj except for E2B3 and E3B2 are the same as (3.6). Their time evolution is summarized

in table 2.

On the other hand, after t = l the time evolution of ∆S
(n)
A for E2B3 or E3B2 is

summarized in table 3. We can see that it has the electric-magnetic duality from the

table 3. The late-time value of ∆S
(n)
A is given by (Rényi) entanglement entropy whose

reduced density matrix is given by

ρeA =
1

64
diag(25, 7, 7, 25). (3.16)

Its entropies are given by

∆S
(n)
A = −

log
(
21−6n (7n + 25n)

)
n− 1

,

∆SA = log

(
64

5 · 59/1677/32

)
,

∆S
(∞)
A = 2 log

(
8

5

)
.

(3.17)

It shows how different the effect of E1 (B1) is from that of E2,3 (B2,3) on the structure.

The value can not be interpreted in terms of quasi-particles created by scalar fields such

as φaφb. As we will explain later, in the entangled quasi-particle interpretation, there is a

commutation relation between the quasi-particle created by E2 (B2) and that by B3 (E3).

3.3.3 B · E and FµνF
µν and B2E3 −B3E2

We finally study ∆S
(n)
A for more complicated operators, B ·E, FµνF

µν and B2E3 −B3E2.

Before t = l, ∆S
(n)
A for them vanishes, but after t = l, it increases. Their details are

summarized in table 3.6 It shows that ∆S
(n)
A for B ·E is the same as that for FµνFµν .

6∆S
(n)
A is commuted by the Green’s functions in appendix B.
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The effective reduced density matrices for B · E (FµνFµν ) and B2E3 − B3E2 are

given by

ρeA =
1

192
diag (30, 30, 16, 16, 49, 49, 1, 1) , for O = B ·E (FµνFµν),

ρeA =
1

128
diag (50, 50, 7, 7, 7, 7) , for O = B2E3 −B3E2.

(3.18)

Entropies are respectively given by

∆S
(n)
A =

1

n− 1
log

(
26n−13n

16n + 30n + 49n + 1

)
,

∆SA = log

32 · 311/16 48

√
2
7

7 · 55/16

 ,

∆S
(∞)
A = log

(
192

49

)
.

(3.19)

which are for O = B ·E (or FµνFµν), and

∆S
(n)
A = −

log
(
21−7n (2 · 7n + 50n)

)
n− 1

,

∆SA = log

(
64
(

2
7

)7/32

5 · 59/16

)
,

∆S
(∞)
A = 2 log

(
8

5

)
,

(3.20)

which are for O = B2E3 − B3E2. As we will explain in the next section, they can be

reproduced by using a late-time algebra which electromagnetic quasi-particles obey.

The time dependence of E2, FµνFµν and B2E3 −B3E2 are shown in figure 7. We can

see that their ∆S
(2)
A increases diffently and reach different finite values in the limit t→∞.

As we see in the following section, we find significant differences in the late time algebra

between E2 and the others.

4 A late-time algebra

We interpret the late-time value of ∆S
(n)
A in terms of quasi-particles. More precisely, let’s

interpret the effective reduced density matrix in (3.10) in terms of quasi-particles. The

effective reduced density matrix for the excited state generated by a composite operator

O(−t,−l,x) is defined by

∆S
(n)
A =

1

1− n
log [trA (ρeA)n] =

1

1− n
log
[
trA

(
N̂ 2O |0〉 〈0| O†

)n]
, (4.1)

where N̂ is a normalization constant. The operator O is assumed to be constructed of

electric and magnetic fields.7 As in [44–46, 48], these fields can be decomposed into left

7Here ρeA is not the same as the reduced density matrix for the locally excited state. It is for a “effective”

state N̂O |0〉. It is different form the “original” locally excited state.
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2 4 6 8 10
t / l

0.5

1.0

1.5

2.0

ΔSA
2

Figure 7. The time evolution of E2, FµνFµν and B2E3 −B3E2. The horizontal and vertical axes

correspond to time t/l and the excess of ∆S
(2)
A respectively. The red line represents the evolution

for E2, the blue line for FµνFµν and the green line for B2E3 −B3E2.

moving and right moving electromagnetic quasi-particles as follows,

Ei = EL†i + ER†i + ELi + ERi ,

Bi = BL†
i +BR†

i +BL
i +BR

i ,
(4.2)

where since we take x1 ≥ 0 as A in this paper, left-moving and right-moving quasi-particles

correspond to particles included in B and A at late time, respectively. The ground state

for them is defined by

EL,Ri |0〉L,R = BL,R
i |0〉L,R = 0,

|0〉 = |0〉L ⊗ |0〉R .
(4.3)

The late-time algebra which quasi-particles obey is given by[
EL,Ri , EL,R†j

]
= Cδij ,[

BL,R
i , BL,R†

j

]
= Cδij ,

(4.4)

which is obtained so that the results by the replica trick are reproduced. Here C is a real

number.8 In the gauge theory in addition to (4.2), we need the following commutation

relation for different particles:[
EL,R3 , BL,R†

2

]
= XR,L,

[
EL,R2 , BL,R†

3

]
= YR,L, (4.5)

where XR,L and YR,L are given by

XR = −XL = YL = −YR,

X2
R,L = Y 2

R,L =
9

16
C2.

(4.6)

8The redefinition of quasi-particles can absorb the constant C.
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Here XR,L and YR,L are real numbers.9 The commutation relation between electric (mag-

netic) quasi-particles is determined so that the effective density matrices computed by (4.4)

are consistent with (3.11) respectively. The relation for the quasi-particles of E1 should be

the same as that for B1 so that the effective density matrix in (4.1) reproduces ∆S
(n)
A for the

matrix in (3.14). That relation between quasi-particles generated by E2 (E3) and those by

B3 (B2) reproduces the matrix in (3.16). We also check that ∆S
(n)
A for O = B·E (FµνFµν),

B3E2 −B2E3 are reproduced by using the commutation relation in (4.4) and (4.5).

The relation in (4.5) shows that the effect of fields along the direction vertical to

∂A is significantly different from that along the direction parallel to ∂A on the late-time

structure. It makes the effects of electromagnetic fields different from that of free scalar

fields on the late-time structure of quantum entanglement.

5 Conclusion and future problems

We have studied how gauge invariant operators such as Ei, Bi and the composite operators

constructed of them changes the structure of quantum entanglement by studying ∆S
(n)
A . We

studied whether ∆S
(n)
A for locally excited states created by gauge invariant local operators

reflects the electric-magnetic duality. ∆S
(n)
A , which we studied in this paper, is invariant

under the duality transformation. If only Ei or Bi acts on the ground state, without

taking the late time limit, the time evolution of ∆S
(n)
A depends on them. Due to the

duality, ∆S
(n)
A for Ei is equal to that for Bi. Around t = l, ∆S

(n)
A for E2,3 (B2,3) increases

slower than that for E1 (B1). However they can not show the difference between the effects

of electromagnetic fields and that of scalar fields on the late-time structure because the

late-time values of ∆S
(n)
A for them can be interpreted in terms of quasi-particle created by

scalar fields.

On the other hand, the late-time values of ∆S
(n)
A for the specific operators constructed

of both electric and magnetic fields can not be interpreted in terms of quasi-particles by

scalar fields. They show that there are differences between the effects of electromagnetic

fields and that of scalar fields on the late-time structure of quantum entanglement. If

their late-time values are interpreted in terms of electromagnetic quasi-particles in (4.2),

there are commutation relations between E2 (E3) and B3 (B2), which make the effect

of electromagnetic field significantly different from that of scalar fields on the late-time

structure. The effect of E1 and B1 on the late-time structure is different from that of E2,3

and B2,3.

Future problems. We finish with comments on a few future problems:

• In this paper we only consider 4d Maxwell gauge theory which has conformal sym-

metry. D( 6= 4) dimensional Maxwell gauge theory is not a CFT. Therefore, it is

interesting to generalize the analysis in 4d Maxwell theory to that in the theories

with general dimensions.

9We find the correspondence between propagators and commutation relations. The commutations can

be defined by the late time limit of propagators. We will discuss the detail of the correspondence in [62].

When we use this correspondence, XL = − 3
4
C.
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• We expect that the structure of the late-time algebra depends on the spacetime

dimension D. Then, it is also interesting to study it in general dimensions.
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A Green’s functions

The relation between Ei, Bi and field strengths which are defined in Euclidean space is

given by

Ei = −iFτi, B1 = −F23, B2 = F13, B3 = −F12. (A.1)

The analytic continued Green’s functions are defined by

〈
E1(θ)E1(θ′)

〉
= FE1E1(θ − θ′),〈

E2(θ)E2(θ′)
〉

=
〈
E3(θ)E3(θ′)

〉
= FE2E2(θ − θ′),〈

B1(θ)B1(θ′)
〉

= FB1B1(θ − θ′),〈
B2(θ)B2(θ′)

〉
=
〈
B3(θ)B3(θ′)

〉
= FB2B2(θ − θ′),〈

E2(θ)B3(θ′)
〉

= FE2B3(θ − θ′),〈
B3(θ)E2(θ′)

〉
= FB3E2(θ − θ′),〈

E3(θ)B2(θ′)
〉

= FE3B2(θ − θ′),〈
B2(θ)E3(θ′)

〉
= FB2E3(θ − θ′).

(A.2)

If the limit ε→ 0 is taken, their leading terms for n = 1 are given by

FE1E1(θ1 − θ2) ∼ 1

16π2ε4
,

FE2E2(θ1 − θ2) ∼ 1

16π2ε4
,

FB1B1(θ1 − θ2) ∼ 1

16π2ε4
,

FB2B2(θ1 − θ2) ∼ 1

16π2ε4
.

(A.3)

That for the arbitrary n in 0 < t < l are the same as given in (A.3).
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That for the arbitrary n in 0 < l ≤ t are given by

FE1E1(θ1−θ2)=FE1E1(θ2−θ1) ∼−(l−2t)(l+t)2

64π2t3ε4
,

FE2E2(θ1−θ2)=FE2E2(θ2−θ1) ∼ l3+3lt2+4t3

128π2t3ε4
,

FB1B1(θ1−θ2)=FB1B1(θ2−θ1) ∼−(l−2t)(l+t)2

64π2t3ε4
,

FB2B2(θ1−θ2)=FB2B2(θ2−θ1) ∼ l3+3lt2+4t3

128π2t3ε4
,

FE2B3(θ1−θ2)=FE2B3(θ2−θ1) ∼ 3(t−l)(l+t)
128π2t2ε4

,

FB3E2(θ1−θ2)=FB3E2(θ2−θ1) ∼ 3(t−l)(l+t)
128π2t2ε4

,

FE3B2(θ1−θ2)=FE3B2(θ2−θ1) ∼ 3(l−t)(l+t)
128π2t2ε4

,

FB2E3(θ1−θ2)=FB2E3(θ2−θ1) ∼ 3(l−t)(l+t)
128π2t2ε4

,

FE1E1(θ1−θ2+2π)=FE1E1(θ2−θ1−2π)

=FE1E1(θ1−θ2−2(n−1)π)=FE1E1(θ2−θ1+2(n−1)π) ∼ (l−t)2(l+2t)

64π2t3ε4
,

FE2E2(θ1−θ2+2π)=FE2E2(θ2−θ1−2π)

=FE2E2(θ1−θ2−2(n−1)π)=FE2E2(θ2−θ1+2(n−1)π) ∼−l
3+3lt2−4t3

128π2t3ε4
,

FB1B1(θ1−θ2+2π)=FB1B1(θ2−θ1−2π)

=FB1B1(θ1−θ2−2(n−1)π)=FB1B1(θ2−θ1+2(n−1)π) ∼ (l−t)2(l+2t)

64π2t3ε4
,

FB2B2(θ1−θ2+2π)=F
(n,l)
B2B2(θ2−θ1−2π)

=FB2B2(θ1−θ2−2(n−1)π)=F
(n,l)
B2B2(θ2−θ1+2(n−1)π) ∼−l

3+3lt2−4t3

128π2t3ε4
,

FE2B3(θ1−θ2+2π)=FE2B3(θ2−θ1−2π)

=FE2B3(θ1−θ2−2(n−1)π)=FE2B3(θ2−θ1+2(n−1)π) ∼ 3(l−t)(l+t)
128π2t2ε4

,

FB3E2(θ1−θ2+2π)=FB3E2(θ2−θ1−2π)

=FB3E2(θ1−θ2−2(n−1)π)=FB3E2(θ2−θ1+2(n−1)π) ∼ 3(l−t)(l+t)
128π2t2ε4

,

FE3B2(θ1−θ2+2π)=FE3B2(θ2−θ1−2π)

=FE3B2(θ1−θ2−2(n−1)π)=FE3B2(θ2−θ1+2(n−1)π) ∼ 3(t−l)(l+t)
128π2t2ε4

,

FB2E3(θ1−θ2+2π)=FB2E3(θ2−θ1−2π)

=FB2E3(θ1−θ2−2(n−1)π)=FB2E3(θ2−θ1+2(n−1)π) ∼ 3(t−l)(l+t)
128π2t2ε4

.

(A.4)

The contribution of the other propagators is much smaller than those in (A.4).
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B Other bases

We introduce new bases O1,2 = E2±B3
2 , O3,4 = E3±B2

2 . Their Green’s functions in (0 < t <

l) are given by

〈O1O1〉 (θ1 − θ2) ∼ 1

4 · 8π2ε4
,

〈O2O2〉 (θ1 − θ2) ∼ 1

4 · 8π2ε4
,

〈O3O3〉 (θ1 − θ2) ∼ 1

4 · 8π2ε4
,

〈O4O4〉 (θ1 − θ2) ∼ 1

4 · 8π2ε4
,

(B.1)

and those in (0 < l ≤ t) are given by

〈O1O1〉 (θ1−θ2)=〈O1O1〉 (θ2−θ1) ∼
(l+t)

(
l2−4lt+7t2

)
4 · 64π2t3ε4

,

〈O2O2〉 (θ1−θ2)=〈O2O2〉 (θ2−θ1) ∼ (l+t)3

4 · 64π2t3ε4
,

〈O3O3〉 (θ1−θ2)=〈O3O3〉 (θ2−θ1) ∼ (l+t)3

4 · 64π2t3ε4
,

〈O4O4〉 (θ1−θ2)=〈O4O4〉 (θ2−θ1) ∼
(l+t)

(
l2−4lt+7t2

)
4 · 64π2t3ε4

,

〈O1O1〉 (θ1−θ2+2π)=〈O1O1〉 (θ2−θ1−2π)

=〈O1O1〉 (θ1−θ2−2(n−1)π)=〈O1O1〉 (θ2−θ1+2(n−1)π) ∼− (l−t)3

4 · 64π2t3ε4
,

〈O2O2〉 (θ1−θ2+2π)=〈O2O2〉 (θ2−θ1−2π)

=〈O2O2〉 (θ1−θ2−2(n−1)π)=〈O2O2〉 (θ2−θ1+2(n−1)π) ∼−
(l−t)

(
l2+4lt+7t2

)
4 · 64π2t3ε4

,

〈O3O3〉 (θ1−θ2+2π)=〈O3O3〉 (θ2−θ1−2π)

=〈O3O3〉 (θ1−θ2−2(n−1)π)=〈O3O3〉 (θ2−θ1+2(n−1)π) ∼−
(l−t)

(
l2+4lt+7t2

)
4 · 64π2t3ε4

,

〈O4O4〉 (θ1−θ2+2π)=〈O4O4〉 (θ2−θ1−2π)

=〈O4O4〉 (θ1−θ2−2(n−1)π)=〈O4O4〉 (θ2−θ1+2(n−1)π) ∼− (l−t)3

4 · 64π2t3ε4
.

(B.2)

The Green’s functions 〈OiOj 6=i〉 vanish.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[57] W.-Z. Guo and S. He, Rényi entropy of locally excited states with thermal and boundary

effect in 2D CFTs, JHEP 04 (2015) 099 [arXiv:1501.00757] [INSPIRE].

[58] P. Caputa, T. Numasawa and A. Veliz-Osorio, Out-of-time-ordered correlators and purity in

rational conformal field theories, PTEP 2016 (2016) 113B06 [arXiv:1602.06542] [INSPIRE].

[59] M.M. Sheikh-Jabbari and H. Yavartanoo, Excitation Entanglement Entropy in 2d Conformal

Field Theories, arXiv:1605.00341 [INSPIRE].

[60] M.A. Metlitski, C.A. Fuertes and S. Sachdev, Entanglement Entropy in the O(N) model,

Phys. Rev. B 80 (2009) 115122 [arXiv:0904.4477] [INSPIRE].

[61] M.E.X. Guimaraes and B. Linet, Scalar Green’s functions in an Euclidean space with a

conical-type line singularity, Commun. Math. Phys. 165 (1994) 297 [INSPIRE].

[62] M. Nozaki and N. Watamura, in preparation.

– 22 –

http://dx.doi.org/10.1088/1742-5468/2012/01/P01016
https://arxiv.org/abs/1109.5673
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.5673
http://dx.doi.org/10.1103/PhysRevLett.112.111602
https://arxiv.org/abs/1401.0539
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.0539
http://dx.doi.org/10.1007/JHEP10(2014)147
https://arxiv.org/abs/1405.5875
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.5875
http://dx.doi.org/10.1007/JHEP02(2016)150
https://arxiv.org/abs/1507.04352
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.04352
http://dx.doi.org/10.1103/PhysRevD.90.041701
https://arxiv.org/abs/1403.0702
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.0702
http://dx.doi.org/10.1093/ptep/ptu122
https://arxiv.org/abs/1405.5946
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.5946
http://dx.doi.org/10.1016/j.physrep.2014.12.003
https://arxiv.org/abs/1302.0884
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.0884
http://dx.doi.org/10.1007/JHEP02(2015)171
https://arxiv.org/abs/1410.1392
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.1392
http://dx.doi.org/10.1088/1742-5468/2007/10/P10004
https://arxiv.org/abs/0708.3750
http://inspirehep.net/search?p=find+EPRINT+arXiv:0708.3750
http://dx.doi.org/10.1007/JHEP05(2013)080
https://arxiv.org/abs/1302.5703
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.5703
http://dx.doi.org/10.1007/JHEP01(2015)102
https://arxiv.org/abs/1410.2287
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.2287
https://arxiv.org/abs/1604.00965
http://inspirehep.net/search?p=find+EPRINT+arXiv:1604.00965
http://dx.doi.org/10.1007/JHEP10(2015)173
https://arxiv.org/abs/1507.01157
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.01157
http://dx.doi.org/10.1103/PhysRevD.92.065010
http://dx.doi.org/10.1103/PhysRevD.92.065010
https://arxiv.org/abs/1507.00582
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.00582
http://dx.doi.org/10.1007/JHEP04(2015)099
https://arxiv.org/abs/1501.00757
http://inspirehep.net/search?p=find+EPRINT+arXiv:1501.00757
http://dx.doi.org/10.1093/ptep/ptw157
https://arxiv.org/abs/1602.06542
http://inspirehep.net/search?p=find+EPRINT+arXiv:1602.06542
https://arxiv.org/abs/1605.00341
http://inspirehep.net/search?p=find+EPRINT+arXiv:1605.00341
http://dx.doi.org/10.1103/PhysRevB.80.115122
https://arxiv.org/abs/0904.4477
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.4477
http://dx.doi.org/10.1007/BF02099773
http://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,165,297%22

	Introduction and summary
	How to compute excesses of (Rényi) entanglement entropy
	The replica trick

	Excesses of (Rényi) entanglement entropy
	O= E(i) or B(i)
	Composite operators constructed of only electric or magnetic fields
	O = E(i) E(j) or B(i) B(j)
	O = E**2 or B**2

	Composite operators constructed of both electric and magnetic fields
	E**2(1) + B**2(1)
	E(i)B(j)
	B cdot E and F(mu nu)F**(mu nu) and B(2) E(3) - B(3) E(2)


	A late-time algebra
	Conclusion and future problems
	Green's functions
	Other bases

