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1 Introduction

Conformal field theory (CFT) describing interesting infrared (IR) physics usually arises as

the fixed point of renormalization group flow. A useful perturbative tool to study such kind

of fixed point is the ε-expansion, which has been applied to explore the IR fixed point of

quartic scalar theory in D = 4− ε dimensions, including D = 3 Ising model [1] and critical

O(N) vector model (see [2] for a comprehensive review). In 4 < D < 6, the quartic scalar

interaction becomes irrelevant and the renormalization group flow can instead be triggered

via a cubic scalar interaction. The simplest φ3 theory in 6 − 2ε has been considered long

time ago [3–5], with the Lagrangian L = 1
2(∂φ)2 + 1

6gφ
3. In [5], it was shown that the

1-loop beta function has a non-unitary IR fixed point with imaginary coupling constant

g for D < 6. Continuation of this fixed point to D = 2 describes the Yang-Lee edge

singularity [6, 7] in the Ising model (this is the (2,5) minimal model [8, 9] with negative

central charge). Recently there has been a revival of interests to the renormalization of

quantum field theory with φ3 interaction in D = 6 − 2ε,1 [10–16], motivated by studying

a-theorem in D > 4 or higher spin holography. In particular, the Lagrangian

L =
1

2
(∂φi)2 +

1

2
(∂σ)2 +

g1

2
σφiφi +

g2

6
σ3 (1.1)

was utilized in [10, 12] to investigate the D = 5 critical O(N) vector model.2 An interesting

phenomenon originally noted in [4] and recently rediscovered in [10] is that there exists a

critical value for N , denoted as Ncrit, above which a stable, unitary fixed point was found

1The coefficient 2 in front of ε is our choice of convention.
2See [17] for a study of tensorial O(N) model.
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in 6− 2ε dimension. One-loop renormalization suggests that Ncrit ≈ 1038 [4, 10]. Later, a

3-loop computation implies a much smaller Ncrit [12].

As a non-perturbative approach to CFT, conformal bootstrap dates back to the work

of Alexander Polyakov [18] and also the work of Sergio Ferrara, Raoul Gatto and Aurelio

Grillo [19] in the 1970s. Its later application to two dimensional conformal field theories led

to the famous work of Alexander Belavin, Alexander Polyakov and Alexander Zamolod-

chikov [8], which classified D = 2 minimal models. In D > 2, a significant progress

was made by [20]. Since then, conformal bootstrap has been applied to D = 3 Ising

model [21, 22], O(N) vector models [23, 24], Gross-Neveu(-Yukawa) models [25] and other

CFTs with or without supersymmetry [26–35]. As a powerful non-perturbative method,

for instance, conformal bootstrap has improved the precision of critical exponents in D = 3

Ising model by two orders of magnitude, compared to the Monte-Carlo simulations [24].

In D = 5, attempts to bound the value of Ncrit for critical O(N) vector model has been

carried out through conformal bootstrap approach3 [40–42]. In [41], using the single cor-

relator bootstrap, it was observed that a kink which exists for large enough N ceases to

exist when 15 < Ncrit < 22, under a reasonable assumption on the scaling dimension of

the second lowest O(N) singlet scalar primary. On the other hand, the mixed correlators

bootstrap seems to suggest that Ncrit > 100 [42].

In this work, we explore the possibility of having a CFT in five dimensions with F4

global symmetry. The exceptional Lie group F4 known as the compact real form of Lie

algebra f4, is also the isometry group of the octonionic projective plane OP2 [43]. It

admits a rank-2 and a rank-3 irreducible symmetric invariant tensors denoted by δij and

dijk, where the index transforms as the 26 of F4. The simplest interacting F4 theory can

be written as a scalar theory with a cubic self-interaction

L =
1

2
δij(∂µφ

i)(∂µφj) +
g

6
dijkφ

iφjφk. (1.2)

The cubic interaction is relevant in 6 − 2ε dimensions and may drive the theory to a

nontrivial IR fixed point. From the 3-loop renormalization of the coupling constant, we

indeed observe a stable IR fixed point in D = 6−2ε. We then employ conformal bootstrap

technique to probe such a fixed point in D = 5.95 and D = 5.4 We observe that in D = 5.95

the boundary of the allowed region in the (∆φ,∆
2nd
26 ) plane exhibits a sharp peak exactly

at the value of ∆φ obtained from the Padé[2,1] resummed 3-loop results. In D = 5, a weak

kink is observed near the 3-loop results. The appearance of the kink has to do with fact

that when the anomalous dimension of φi is small, the second lowest scalar primary in 26

is approximately given by dijkφ
jφk with dimension 2∆φ. However, when the anomalous

dimension φi is large enough, the theory acquires notable deviation from the free theory.

In the interacting theory, the operator dijkφ
jφk becomes a conformal descendant of φi.

3See [36–39] for the study of O(N) vector model using non-perturbative method “Functional Renormal-

ization Group”.
4It was shown in [44] that the O(N) vector model in non-integer dimensions was non-unitary. However,

conformal bootstrap approach is still applicable in non-integer dimensions [40–42] and leads to reasonable

results which can be compared with those derived from ε-expansion. We expect the same here for F4

invariant φ3 theory.
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The new second lowest scalar primary in 26 should have much higher dimension that 2∆φ,

yielding a sudden change in ∆2nd
26 .

This paper is organized as follows. In section 2, we present the renormalization of the

theory (1.2) in D = 6 − 2ε using ε-expansion. In particular, we compute the anomalous

dimensions of operators such as φi, φiφi and dijkφ
iφjφk up to O(ε3). We also calculate the

anomalous dimensions of other φ2 operators in 26 and 324 representations at 1-loop level.

In section 3, we derive the set of crossing equations for a CFT with F4 global symmetry and

then apply it to study the fixed points predicted by the loop calculations in D = 5.95 and

D = 5, using numerical conformal bootstrap. We discuss future extensions in section 4.

1.1 3-loop renormalization of generic φ3 theory in 6 − 2ε dimensions

The 3-loop renormalization of generic φ3 theory in D = 6 − 2ε was studied long time

ago by [45, 46] using the modified minimal subtraction (MS) scheme. Recently [15] has

extended the results to 4 loops. Here we only utilize the 3-loop results. The 3-loop beta

function is given by5

β(g) = − ε
2
g+

T2−4T3

8
g3+

66T2T3−11T 2
2−108T 2

3−72T5

288
g5

+
(

821T 3
2−6078T 2

2 T3+12564T2T
2
3−2592T2T5ζ(3)+9288T2T5+11664T 3

3 (1.3)

+51840T3T5ζ(3)−61344T3T5−20736T71−62208T72ζ(3)+20736T72

) g7

41472
+O(g9).

The 3-loop anomalous dimension of φ takes the form

γφ =
T2

12
g2 +

24T2T3 − 11T 2
2

432
g4

+
(

821T 3
2 − 3222T 2

2 T3 + 3060T2T
2
3 − 2592T2T5ζ(3) + 4536T2T5

) g6

62208
+O(g8) ,

(1.4)

and the anomalous dimension of operator O ∼ φiφi (for simplicity, from now on we will

denote the F4 singlet φ2 operator by φ2 ∈ 1, where 1 means the singlet representation of

F4. Similar rule applies to other composite operators carrying a certain representation of

F4) is

γφ2∈1 =
T2

2
g2+

1

48
T2(24T3−T2)g4

−
(

432T3T2ζ(3)−864T 2
3 ζ(3)−380T 2

2 +711T3T2−1170T 2
3−756T5

) T2

1728
g6+O(g8).

(1.5)

5Throughout this paper, we mainly follow the convention used in [15], except that the sign of g2 has

been reversed. Compared with [10, 12], there is a factor of 2 difference in the definition of β(g), and the

numerical factor Area(S5)/(2π)6 = (4π)3 has been included in g2.
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In the above expressions, the constants {T2, T3, T5, T71, T72} are defined as [15]

di1i3i4di2i3i4 = T2δi1i2

dii1i2dji1i3dki2i3 = T3dijk

dii1i2dji3i4dki5i6di1i3i5di2i4i6 = T5dijk

dii1i2dji3i4dki5i6di1i3i7di2i5i8di4i6i9di7i8i9 = T71dijk

dii1i2dji3i4dki5i6di1i3i7di2i5i8di4i8i9di6i7i9 = T72dijk . (1.6)

Using γφ and γφ2∈1, the critical exponents η and ν can be computed via

η = 2γφ(g∗), ν−1 − 2 + η = 2γφ2∈1(g∗) . (1.7)

2 Renormalization of F4 invariant φ3 theory in D = 6 − 2ε

2.1 3-loop renormalization of F4 invariant theory

The identities in (1.6) can be represented by the Birdtrack [47] diagrams as shown in fig-

ure 1. Some formulas used here can be found in [47] (see chapter 16). The 26 representation

of F4 group has the following properties:

• There exists a symmetric invariant rank-2 tensor δij and a totally symmetric invariant

rank-3 tensor dijk carrying indices in this representation;

• Higher rank invariant tensors carrying index in this representation are decomposable

in terms of products of δij and dijk using tree diagrams;

• The symmetric invariant rank-3 tensor dijk satisfies [48]:

+ + =
2α

n+ 2

 + +


dilmdmjk + dijmdmkl + dikmdmjl =

2α

n+ 2
(δijδkl + δilδjk + δikδjl), (2.1)

where the indices {i, j, k, . . . } range from 1 to n. This relation holds for all the

represenations belonging to the F4 family (see table 3). In particular, for F4, n = 26.

The normalization of dijk is represented by

= α ,

dikldjkl = αδij . (2.2)
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From now on we will set α = 1. Notice

= dimm = 0 , (2.3)

since otherwise there would exist an invariant vector vi = dimm.

Contracting (2.1) with from the left and applying (2.2) and (2.3), we get

= −1

2

n− 2

n+ 2
. (2.4)

Contracting (2.1) with from the right, one gets

=
n− 2

4(n+ 2)
+

2

n+ 2
+

1

n+ 2
, (2.5)

where the empty box in the Birdtrack diagram means symmetrization of the two external

indices. On the other hand, the antisymmetrization is given by

= − − +
2

n+ 2

 +



=
n− 6

2(n+ 2)
+

2

n+ 2
. (2.6)

In the first step, we have used (2.1) to replace the top dijmdmkl pair, and in the second

step, we used the fact that the diagram vanishes because it is symmetric with

respect to the two open indices on the left. Combining (2.5) and (2.6), we obtain

=
n− 2

4(n+ 2)

 +

+
10− n

4(n+ 2)




+
1

n+ 2

 +

− 1

n+ 2
. (2.7)
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Notice this equation reduces the number of vertices by two, thus one can apply such an

equality to calculate all the T -constants. The results are given by

T2 = 1 , T3 = − n− 2

2(n+ 2)
, T5 = −n

2 − 10n− 16

2(n+ 2)2
,

T71 =
n3 − 3n2 + 80n+ 100

4(n+ 2)3
, T72 = −

n
(
n2 − 12n+ 20

)
8(n+ 2)3

. (2.8)

Substituting the values of T -constants to (1.4), we obtain the beta function up to three

loops

β(g) = − ε
2
g +

3n− 2

8(n+ 2)
g3 − 35n2 + 296n+ 596

288(n+ 2)2
g5

+
g7

41472(n+ 2)3

(
n3(22032ζ(3)− 22213)− 30n2(8640ζ(3)− 9377)

+36n(4464ζ(3)− 10919) + 373248ζ(3)− 841496

)
, (2.9)

which implies a unitary fixed point resides at

g2
∗ =

4(n+ 2)ε

3n− 2
+

4(n+ 2)
(
35n2 + 296n+ 596

)
ε2

9(3n− 2)3

− (n+ 2)ε3

81(3n− 2)5

(
66096n4ζ(3)− 76439n4 − 821664n3ζ(3) + 722596n3 + 1000512n2ζ(3)

−2776560n2 + 798336nζ(3)− 4560976n− 746496ζ(3)− 1158736

)
. (2.10)

At the fixed point g = g∗, the anomalous dimension of φi is given by

γφ =
(n+ 2)ε

3(3n− 2)
−

2(n+ 2)
(
17n2 − 174n− 296

)
ε2

27(3n− 2)3

− 2(n+ 2)ε3

243(3n− 2)5

(
6804n4ζ(3)− 8185n4 − 86184n3ζ(3) + 84555n3 + 128304n2ζ(3)

−328018n2 + 75168nζ(3)− 557100n− 82944ζ(3)− 160552

)
. (2.11)

The scaling dimension of O ∼ φiφi is given as

∆φ2∈1 = D − 2 + 2γφ(g∗)− 2γφ2∈1(g∗) , (2.12)

where

γφ2∈1 =
2(n+2)ε

3n−2
−

(n+2)
(
47n2−868n−1060

)
ε2

9(3n−2)3

+
ε3

162(3n−2)5

(
95159n5−455946n4+1626712n3+10473520n2 (2.13)

−1296ζ(3)(n+2)(3n−2)(11n3−184n2+116n+288)+10289712n+2039264

)
,

– 6 –
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Figure 1. Birdtrack diagrams defining constants {T2, T3, T5, T71, T72}.

and the scaling dimension of O ∼ dijkφiφjφk (which we denote as φ3 ∈ 1) is given by

∆φ3∈1 = D + 2
∂β

∂g

∣∣∣
g=g∗

,

∂β

∂g

∣∣∣
g=g∗

= ε− (n(35n+ 296) + 596)ε2

9(2− 3n)2

+
ε3

162(2− 3n)4

(
− 71539n4 + 805476n3 − 2259216n2

+1296ζ(3)(3n− 2)(17n3 − 200n2 + 124n+ 288)− 3149648n+ 262128

)
.

(2.14)

Taking n = 26, we have

∆φ =
D − 2

2
+ 0.12281ε− 0.03152ε2 + 0.04248ε3 +O(ε4) ,

∆φ2∈1 = D − 2− 1.22807ε+ 0.05239ε2 − 3.41427ε3 +O(ε4) , (2.15)

∆φ3∈1 = D + 2ε− 1.22930ε2 − 0.13273ε3 +O(ε4) .

– 7 –
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One can see that at D = 5 (ε = 1/2) the scaling dimensions of φi and O ∼ dijkφ
iφjφk

receive decreasing higher loop contributions, indicating that the F4 invariant fixed point

may exist at D = 5. The fact that the anomalous dimension of φi is positive is compatible

with the unitarity of the fixed point.

Finally, we can use Padé approximation to resum these results

Padé[m,n] =
A0 +A1ε+ . . . Amε

m

B0 +B1ε+ . . . Bnεn
, (2.16)

where the coefficients of Ai and Bi are fixed by demanding that the Taylor expansion of

Padé approximation agrees with the loop expansion. For series up to O(ε3), we have two

choices — Padé[2,1] and Padé[1,2]. We will use choose Padé[2,1] to estimate (2.15) in the

following section, because the other choice gives rise to a negative ∆φ2∈1 at D = 5. We

will also provide 1-loop result when necessary.

2.2 1-loop renormalization of φi ×φj operators in 26 and 324 representations

of F4

In this section, we shall compute the 1-loop anomalous dimensions of φ2 operators trans-

forming nontrivially under F4. Minimal subtraction scheme is adopted in the calculation.

We need the following projectors of F4 (n = 26) [47]

P
(1)
ijkl =

1

n
δijδkl ,

P
(26)
ijkl = dijmdklm ,

P
(324)
ijkl =

1

2
δilδjk +

1

2
δikδjl − dijmdklm −

1

n
δijδkl ,

P
(52)
ijkl =

8

n+ 10

(
1

2
δilδjk −

1

2
δikδjl +

n+ 2

8
(dilmdjkm − djlmdikm)

)
,

P
(273)
ijkl =

n+ 2

n+ 10

(
1

2
δilδjk −

1

2
δikδjl − (dilmdjkm − djlmdikm)

)
, (2.17)

which will also be useful in later conformal bootstrap study. Using these projectors, one

can decompose the product representation 26 × 26 into the irreducible representations

listed above. We will now calculate the one-loop anomalous dimensions of operators

O(I) ∼ P
(I)
ijklφ

kφl, I ∈ {1,26,324} . (2.18)

These are the only ones which appear in φi(x)×φj(x). In order to do so, we need to compute

the three point function of the form 〈φi(p)φj(q)O(I)(p + q)〉, which receives contributions

from the two Feynman diagrams in figure 2.

Using Feynman rules, these two diagrams are transferred into

D1 = (−g̃)2P
(I)
klpqdpmidqmjI1 = AI g̃

2P
(I)
ijklI1 , I1 =

∫
dDq

(2π)D
1

(p+ q)2

1

q2
, (2.19)

D2 = (−g̃)2P
(I)
ijpqdpqmdmklI2 = −BI g̃2P

(I)
ijklI2 , I2 =

∫
dDk

(2π)D
1

(p− k)2

1

(k + q)2

1

k2
.

– 8 –
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Figure 2. Renormalization of operator Oij ∼ φiφj .

The index I is not summed in the equations above. Integrals I1 and I2 have been evaluated

in appendix A of [10]. Notice that g̃2 = (4π)3g2, with the numeric factor Area(S5)/(2π)6

absorbed in g̃2. In our case, the 1/ε pole is canceled by counterterms with the coefficients

δφ2∈I = −AI
g̃2

2(4π)3

Γ(ε/2)

(M2)ε/2
+BI

g̃2

12(4π)3

Γ(ε/2)

(M2)ε/2
, (2.20)

from which

γφ2∈I =
1

2
M

∂

∂M
δφ2 =

(
AI
2
− BI

12

)
g̃2

(4π)3
=

(
AI
2
− BI

12

)
g2 . (2.21)

After some calculations, one can check the following relations hold

P
(I)
klpqdpmidqmj = AI ·P(I)

ijkl , P
(I)
ijpqdpqmdmkl = BI ·P(I)

ijkl , (2.22)

where the index I is not summed, and

A1 = 1 , A26 = − n− 2

2(n+ 2)
, A324 =

2

n+ 2
,

B1 = 0 , B26 = 1, B324 = 0 . (2.23)

The scaling dimensions of various operators quadratic in φ can then be computed from

∆O = D − 2 + 2γφ(g∗)− 2γO(g∗) , (2.24)

where γφ(g∗) is given in (2.11) and

γφ2∈1 =
1

2
M

∂

∂M
δφ2∈1

∣∣∣∣
g=g∗

=
1

2
g2
∗

∣∣∣∣
n=26

=
2(n+ 2)ε

3n− 2

∣∣∣∣
n=26

+O(ε2) ,

γφ2∈26 =
1

2
M

∂

∂M
δφ2∈26

∣∣∣∣
g=g∗

=
1− n
3n+ 6

g2
∗

∣∣∣∣
n=26

=
4(n− 1)ε

6− 9n

∣∣∣∣
n=26

+O(ε2) , (2.25)

γφ2∈324 =
1

2
M

∂

∂M
δφ2∈324

∣∣∣∣
g=g∗

=
1

n+ 2
g2
∗

∣∣∣∣
n=26

=
4ε

3n− 2

∣∣∣∣
n=26

+O(ε2) .

One can see that at 1-loop level, the anomalous dimension of O(1) ∼ φiφi agrees with the

result in (1.4).
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∆φ ∆φ2∈1 ∆φ3∈1 ∆φ2∈26 ∆φ2∈324
D = 5.95 1.97807 3.91930 6 3.97807 3.95351

D = 5 1.56141 2.38597 6 3.56141 3.07018

Table 1. Scaling dimensions of operators in D = 5.95 and D = 5 at 1-loop.

∆φ ∆φ2∈1 ∆φ3∈1
D = 5.95 1.97805 3.91931 5.99961

D = 5 1.55670 2.38635 5.83757

Table 2. Scaling dimensions of operators in D = 5.95 and D = 5 obtained from Padé2,1 resummed

3-loop results.

For later comparison with the conformal bootstrap results, we summarize the scaling

dimensions of various operators in tables 1 and 2.

Notice that as a consequence of the equation of motion

�φi =
g

2
dijkφ

jφk , (2.26)

the operatorO(26)∼P
(26)
ijkl φ

kφl becomes a conformal descendant operator of φi. From (2.11),

(2.25) and also table 1, one can see explicitly that ∆φ2∈26 = ∆φ+2 at 1-loop, which should

also hold at higher loop level.

3 Conformal bootstrap

In conformal field theories, the structures of two and three point functions are completely

fixed by conformal symmetry. A four point function in CFT with F4 global symmetry can

be decomposed as

〈φi(x1)φj(x2)φk(x3)φl(x4)〉 =
1

x
2∆φ

12 x
2∆φ

34

∑
I

P
(I)
ijkl

(∑
O∈I

λ2
Og∆O,`O(u, v)

)
with I ∈ {1+,26+,324+,52−,273−} , (3.1)

where the projectors are defined in (2.17). The summation runs over all conformal primary

operators which appear in the OPE of φi × φj . The function g∆,`(u, v) is the so called

conformal block, which depends on the cross ratios

u ≡ x2
12x

2
34

x2
13x

2
24

, v ≡ x2
14x

2
23

x2
13x

2
24

, (3.2)

and is completely fixed by conformal symmetry. In D = 4, the conformal block was first

obtained by Dolan and Osborn in [49, 50]. In other dimensions, the construction can be

found in [23].

Conformal bootstrap approach relies on the fact that operator algebra obeys asso-

ciativity, hence the following two ways of computing four point function should lead to
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equivalent result

〈φi(x1)φj(x2)φk(x3)φl(x4)〉 = 〈φi(x1)φj(x2)φk(x3)φl(x4)〉. (3.3)

This equality is also known as crossing symmetry of four point functions. Notice that the

right hand side of (3.3) is identical to the left hand side upon the replacement {i, x1 →
j, x3}. Initially, the four index tensor dijmdklm appearing in (3.1) and hence in (3.3)

admits three different index structures. After utilizing the relation (2.1), we are left with

two independent tensors djlmdikm and dijmdklm − dkjmdilm, which have definite parities

(ignoring the δ’s) under i↔ k. Making the replacement

dijmdklm →
1

2
(dijmdklm−dkjmdilm)−1

2
dikmdjlm+

1

28
(δijδkl+δilδjk+δikδjl),

1

2
dilmdjkm−

1

2
djimdikm → −

1

4
(dijmdklm−dkjmdilm)−3

4
djlmdikm+

1

56
(δijδkl+δilδjk+δikδjl),

(3.4)

in (3.3) and collecting the coefficients in front of the five independent tensor structures

δijδkl , δikδjl , δilδjk, djlmdikm and dijmdklm − dkjmdilm, we arrive at the set of equations∑
I

∑
O∈I

λ2
O
~V

(I)
∆φ,`O

[∆O] = 0 , with I ∈ {1+,26+,324+,52−,273−} , (3.5)

where the ± refers to the parity under i↔ k. The ~V
(I)

∆φ,`O
[∆O] are given by

~V
(1+)

∆φ,`O
[∆O] ≡



0

0

0
F
26

−H
26


, ~V

(26+)
∆φ,`O

[∆O] ≡



H
2

−F
F
7
F
14

0


, ~V

(273−)
∆φ,`O

[∆O] ≡



7H
18
7F
3

−5F
3
F
3

7H
18


,

~V
(52−)

∆φ,`O
[∆O] ≡



−7H
18

−7F
3

−F
3
F
6
H
9


, ~V

(324+)
∆φ,`O

[∆O] ≡



−H
2

F
13F

7
71F
182
7H
13


. (3.6)

F and H are the shorthand notations for the convolved blocks defined as

F
∆φ

∆O,`O
(u, v) ≡

v∆φg∆O,`O(u, v)− u∆φg∆O,`O(v, u)

u∆φ − v∆φ
,

H
∆φ

∆O,`O
(u, v) ≡

v∆φg∆O,`O(u, v) + u∆φg∆O,`O(v, u)

u∆φ + v∆φ
. (3.7)
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We will now use the above equations to explore the conformal field theory with F4 global

symmetry in D = 5.95 and D = 5. Different from the O(N) conformal bootstrap, here the

fundamental field φi appears in its own OPE due to the cubic self-interaction.

We shall assume that the second lowest scalar primary in the 26+ channel has scaling

dimension ∆ ≥ ∆2nd
26 . (The lowest scalar primary in this channel is just φi.) To test this

assumption, we search for a linear functional α with the following properties

α(~V
(1+)

∆φ,0
[0]) = 1 ,

α(~V
(1+)

∆φ,0
[∆]) ≥ 0 , for ∆ ≥ D − 2

2
,

α(~V
(1+)

∆φ,`
[∆]) ≥ 0 , for ∆ ≥ `+D − 2 , (` = 2, 4, 6 . . . ) ,

α(~V
(26+)

∆φ,0
[∆φ]) ≥ 0 ,

α(~V
(26+)

∆φ,0
[∆]) ≥ 0 , for ∆ ≥ ∆2nd

26 ,

α(~V
(26+)

∆φ,`
[∆]) ≥ 0 , for ∆ ≥ `+D − 2 , (` = 2, 4, 6 . . . ) ,

α(~V
(324+)

∆φ,0
[∆]) ≥ 0 , for ∆ ≥ D − 2

2
,

α(~V
(324+)

∆φ,`
[∆]) ≥ 0 , for ∆ ≥ `+D − 2 , (` = 2, 4, 6 . . . ) ,

α(~V
(52−)

∆φ,`
[∆]) ≥ 0 , for ∆ ≥ `+D − 2 , (` = 1, 3, 5 . . . ) ,

α(~V
(273−)

∆φ,`
[∆]) ≥ 0 , for ∆ ≥ `+D − 2 , (` = 1, 3, 5 . . . ) . (3.8)

For a given choice of (∆φ,∆
2nd
26 ), if such a linear functional α exists, then we have

α

(∑
I

∑
O∈I

λ2
O
~V

(I)
∆φ,`O

[∆O]

)
=
∑
I

∑
O∈I

λ2
Oα(~V

(I)
∆φ,`O

[∆O]) > 0 , (3.9)

which contradicts (3.5). The contradiction simply implies that the second lowest scalar

primary in the 26+ channel should have scaling dimension lower than ∆2nd
26 . We use

“SDPB” [51] to implement numerical bootstrap. For technical reason, we have to restrict

the number of derivatives and the range of spins involved in the numerical calculation. The

maximal derivative orders are chosen to be Λ = 19, 21 or 23 according to necessity, and the

corresponding ranges of spins are set to be ` ∈ {1, . . . 26}∪{49, 50}, ` ∈ {1, . . . 30}∪{49, 50}
and ` ∈ {1, . . . 30} ∪ {49, 50} respectively.

In D = 5.95, the result is shown in figure 3. In this case, ε = 0.025 thus one expects the

perturbative calculation to be valid. The boundary of the allowed region in the (∆φ,∆
2nd
26 )

plane exhibits a sharp peak at ∆φ ≈ 1.978, which coincides precisely with the value of

∆φ given by the Padé[2,1] resummed 3-loop result. The is a highly nontrivial check of

the perturbative calculations performed in previous sections. Since O(26) ∼ dijkφ
iφk is a

descendant operator, one expects the dimension of the second lowest scalar primary in this

channel to be much higher than D − 2 (the classical dimension of O(26)), which is indeed

the case.
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Figure 3. Bootstrap study of F4 invariant φ3 theory in D = 5.95. Allowed region of (∆φ,∆
2nd
26 )

is indicated. The dashed line indicates ∆φ from Padé[2,1] approximation of the 3-loop result. The

curve is obtained at Λ = 19.

The D = 5 result is plotted in figure 4. Unlike the D = 5.95 case, no peak seems to

appear. However, a weak kink is observed at ∆φ ≈ 1.6. The three loop result ∆φ ≈ 1.55670

is indicated by the dashed line. The location of the week kink does not fit the 3-loop result

may be expected, since in this case, ε = 0.5, and the D = 5 fixed point is highly non-

perturbative in nature. We also notice that when increasing the derivative order, the weak

kinks corresponding to different derivative orders tend to converge to a single weak kink.

4 Discussion

The weak kink observed on the D = 5 bootstrap curve indicates the possibility of the

existence of a CFT with F4 flavor symmetry. It would be interesting to further constrain

the D = 5 fixed point using mixed correlators conformal bootstrap [22]. We leave this for

future investigation.

The exceptional Lie group of F4 belongs to the so called F4 family of invariant groups,

which is defined as the family of groups admitting a representation that satisfies the three

conditions listed in section 2.1. According to the Birdtrack classification, there are four

choices, the groups and the dimensions of the relevant representations are listed in table 3.

There exists a fixed point for each of these choices in 6 − 2ε dimensions. In appendix A,

we list the dimensions of various operators computed for these theories at the fixed point.

They are obtained simply by substituting the value of n for each case to formulas given in

section 2.1 and section 2.2. Whether some of these fixed points continue to exist in D = 5

– 13 –
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Figure 4. Bootstrap study of F4 invariant φ3 theory in D = 5. Allowed region of (∆φ,∆
2nd
26 ) is

indicated. The dashed line indicates ∆φ from Padé[2,1] approximation of the 3-loop result. The

red, green and blue curves correspond to Λ = 19, 21, 23 respectively.

Group F4 B1 ≡ A1 A2 C3

φi ∈ n 26 5 8 14

Table 3. F4 family of invariant groups and the dimensions of the relevant representations. Here

we use capital letter to label the compact real form of the Lie algebra.

or even D < 5 is also worth further study. Another interesting question is whether other

resummation method would give us a better estimation of the operator dimension.

It is also possible to consider more general φ3 theory of the form (1.2) which does not

necessarily belongs to the F4 family by relaxing one of the conditions in section 2.1, and

then classifying flavor symmetry groups which allow a stable nontrivial IR fixed point. For

instance, SU(N) with N ≥ 3 possesses a rank-3 symmetric invariant tensor in the adjoint

representation which satisfies the first two conditions but not the third one in eq. (2.1).

The four loop beta function for SU(N) invariant φ3 theory has been computed in [15]. It

would be interesting to carve out the possible IR fixed points in D < 6 using conformal

bootstrap approach.

Besides the F4 family, there is also the so called E6 family of invariant groups [47].

The groups admits an invariant 2-tensor δij and an invariant symmetric 3-tensor dijk (and

its conjugate dijk) carrying indices in some representation and satisfying certain conditions

similar to those listed in 2.1. The groups and dimensions of the relevant representations

are summarized in table 4. One can then write down the Lagrangian

L = ∂µφ
i∂µφ̄i +

g

6
(dijkφ

iφjφk + dijkφ̄iφ̄jφ̄k)
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Group E6 A5 A2 ×A2 A2

φi ∈ n 27 15 3× 3=9 6

Table 4. E6 family of invariant groups and the dimensions of the relevant of representations. Here

the capital letter labels the compact real form of the corresponding Lie algebra.

which is invariant under the E6-family of groups. The SU(3) × SU(3) invariant theory

considered in [15, 52, 53] is just the special case with n = 9. It was argued in [15] that

the formula (1.4) is still applicable after one sets T3 = T72 = 0 (one could check the

corresponding diagrams do not exist if replacing by , and

by or ). Fixing the normalization by choosing T2 = 1, the 1-loop beta

function is given by

β(g) = − ε
2
g +

1

8
g2. (4.1)

One can see that there exists a stable unitary fixed point with g2
∗ = 4ε. It would be

interesting to study renormalization of the φ3 theory invariant under the E6 family at

higher loop level using Birdtrack technique, and figure out whether the 1-loop fixed point

continues to exist at larger value of ε using conformal bootstrap.
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A 3-loop renormalization for F4 family of invariant groups

The F4 family of groups and the corresponding representations listed in table 3 share the

common properties mentioned in (2.1). Moreover, if denoting the relevant representation

in each case by [n], the product of two [n]s admits similar decomposition rules which are

summarized as

[n]× [n]→ [1]+ +

[
3n(n− 2)

n + 10

]
−

+

[
n(n + 1)(n + 2)

2(n + 10)

]
−

+[n]+ +

[
n(n− 1)

2
− 1

]
+

, (A.1)

where the number in the square bracket indicates the dimension of the irreducible rep-

resentation and the subscript ± refers to symmetry properties under the interchange of
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the two indices in the [n] representation. The
[
3n(n−2)
n+10

]
representation corresponds to

the adjoint representation. In this appendix, we will present the 3-loop renormalized

dimensions for operators φi, φiφi and dijkφ
iφjφk and the 1-loop renormalized dimen-

sions for operators P
(n)
ijklφ

kφl and P

(
n(n−1)

2
−1

)
ijkl φkφl, where the projectors Pijkl are defined

in (2.17). Similar to the F4 case, we will denote these operators by {φ, φ2 ∈ 1, φ3 ∈ 1}
and

{
φ2 ∈ n, φ2 ∈ n(n−1)

2 − 1
}

for convenience. In section 2, when discussing the renor-

malization of F4 invariant φ3 theory, we have left n unspecified in the intermediate steps.

Therefore, the results for other members in the F4 family can be obtained by simply sub-

stituting the value of n in each case to eqs. (2.11), (2.12), (2.13), (2.14) and (2.25).

In summary, for F4 group case, n = 26,

∆φ =
D − 2

2
+ 0.12281ε− 0.03152ε2 + 0.04248ε3 +O(ε4) ,

∆φ2∈1 = D − 2− 1.22807ε+ 0.05239ε2 − 3.41428ε3 +O(ε4) ,

∆φ3∈1 = 6− 1.22930ε2 − 0.13273ε3 +O(ε4) ,

∆φ2∈26 = D − 2 + 1.12281ε+O(ε2) ,

∆φ2∈324 = D − 2 + 0.14035ε+O(ε2); (A.2)

for B1 ≡ A1 group case, n = 5,

∆φ =
D − 2

2
+ 0.17949ε+ 0.17489ε2 + 1.44664ε3 +O(ε4) ,

∆φ2∈1 = D − 2− 1.79487ε− 2.64168ε2 − 25.8755ε3 +O(ε4) ,

∆φ3∈1 = 6− 3.88034ε2 − 24.1329ε3 +O(ε4) ,

∆φ2∈5 = D − 2 + 1.17949ε+O(ε2) ,

∆φ2∈9 = D − 2− 0.25641ε+O(ε2) ; (A.3)

for A2 group case, n = 8,

∆φ =
D − 2

2
+ 0.15152ε+ 0.041740ε2 + 0.39753ε3 +O(ε4) ,

∆φ2∈1 = D − 2− 1.51515ε− 0.959179ε2 + 10.0498ε3 +O(ε4) ,

∆φ3∈1 = 6− 2.38935ε2 − 7.72911ε3 +O(ε4) ,

∆φ2∈8 = D − 2 + 1.15152ε+O(ε2) ,

∆φ2∈27 = D − 2− 0.06061ε+O(ε2) ; (A.4)
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for C3 group case, n = 14,

∆φ =
D − 2

2
+ 0.13333ε− 0.01111ε2 + 0.12005ε3 +O(ε4) ,

∆φ2∈1 = D − 2− 1.33333ε− 0.24444ε2 − 5.09869ε3 +O(ε4) ,

∆φ3∈1 = 6− 1.61111ε2 − 2.09496ε3 +O(ε4) ,

∆φ2∈14 = D − 2 + 1.13333ε+O(ε2) ,

∆φ2∈90 = D − 2 + 0.06667ε+O(ε2) . (A.5)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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