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1 Introduction

The passage of gravitational radiation past a pair of nearby inertial detectors produces

oscillations in their relative positions. After the waves have passed, and spacetime locally

reverts to the vacuum, the detectors in general do not return to their initial relative posi-

tions. The resulting displacement, discovered in 1974 [1–11], is known as the gravitational

memory effect. Direct measurement of the gravitational memory may be possible in the

coming years, see e.g. [12, 13]. The effect is a consequence [14] of the fact that the radiation

induces transitions among the many BMS-degenerate [15, 16] vacua in general relativity.

The initial and final spacetime geometries, although both flat, differ by a BMS super-

translation. The displacement is proportional to the BMS-induced shift in the spacetime

metric, which in turn is given by a universal formula involving moments of the asymptotic

energy flux.

Since the initial and final metrics differ, the Fourier transform in time must have a

pole at zero energy. A universal formula for this pole was found in 1965 [17] and is known

as Weinberg’s soft graviton theorem. The complete equivalence of the soft graviton and

displacement memory formulae was demonstrated in [14].

Recently, a new universal soft graviton formula was discovered [18] (see also [19, 20])

that governs not the pole but the finite piece in the expansion of soft graviton scatte-

ring about zero energy. This was shown [21] to be a consequence of the BMS super-

rotations1 of [22] in the same sense that Weinberg’s pole formula is a consequence of

BMS supertranslations.

1The associated symmetry group is the familiar Virasoro symmetry of euclidean two-dimensional con-

formal field theory [22]. This may be usefully embedded in a larger group of all diffeomorphisms of the

sphere [23, 24].
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This discovery immediately raises the question: is there a new kind of gravitational

memory associated with superrotations and the subleading soft theorem? In this paper we

show that the answer is yes. While displacement memory is sourced by moments of the

energy flux through null infinity (I), the new memory is sourced by moments of the angular

momentum flux. Accordingly we call it spin memory. The spin memory effect provides a

cogent operational meaning to the superrotational symmetry of gravitational scattering.

Spin memory has a chiral structure and cannot be measured by inertial detectors.

Instead, we consider light rays which repeatedly orbit (with the help of fiber optics or

mirrors) clockwise or counterclockwise around a fixed circle in the asymptotic region. The

passage of angular-momentum-carrying radiation will induce a relative time delay between

the counter-orbiting light rays, resulting for example in a shift in the interference fringe.

A universal formula for this delay is given in terms of moments of the angular momentum

flux through infinity. The relative time delay for counter-orbiting light rays is the spin

memory effect. It is a new kind of gravitational memory.

This paper is organized as follows. Section 2 outlines the metric and constraint equa-

tions for asymptotically flat spacetimes. Section 3 reviews the displacement memory effect.

Section 4 introduces the spin memory effect. Section 5 uses the constraint equations and

boundary conditions to relate this new memory effect to angular momentum flux. Sec-

tion 6 demonstrates that the spin memory formula is the Fourier transform in time of the

subleading soft graviton formula of [18]. Finally, in section 7, we discuss the infinite family

of conserved charges associated to the infinite superrotational symmetries. Measurements

verifying the conservation laws are described. We close with a short comment on impli-

cations for black hole information. The appendix derives several formulae concerning the

angular momentum of spinning particles on null geodesics.

2 Asymptotically flat metrics

The expansion of an asymptotically flat spacetime metric near I+ in retarded Bondi coor-

dinates takes the form2

ds2 = −du2 − 2dudr + 2r2γzz̄dzdz̄ + 2
mB

r
du2

+

(
rCzzdz

2 +DzCzzdudz +
1

r

(
4

3
Nz −

1

4
∂z(CzzC

zz)

)
dudz + c.c.

)
+ . . .

(2.1)

where u = t − r, γzz̄ = 2
(1+zz̄)2

is the unit metric on S2 (used to raise and lower z and z̄

indices), Dz is the γ-covariant derivative, and subleading terms are suppressed by powers

of r. The Bondi mass aspect mB, the angular momentum aspect Nz, and Czz are functions

of (u, z, z̄), not r. They are related by the I+ constraint equations Guu = 8πGTMuu

∂umB =
1

4

[
D2
zN

zz +D2
z̄N

z̄z̄
]
− Tuu,

Tuu ≡
1

4
NzzN

zz + 4πG lim
r→∞

[
r2TMuu

]
,

(2.2)

2Our definition of Nz, which is proportional to the Weyl tensor (see below) is related to NBT
z of [22] by

4Nz = 4NBT
z + CzzDzC

zz + 3
4
∂z(CzzC

zz).
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and Guz = 8πGTMuz

∂uNz =
1

4
∂z
[
D2
zC

zz −D2
z̄C

z̄z̄
]

+ ∂zmB − Tuz,

Tuz ≡ 8πG lim
r→∞

[
r2TMuz

]
− 1

4
Dz [CzzN

zz]− 1

2
CzzDzN

zz,
(2.3)

where Nzz = ∂uCzz is the Bondi news, TM is the matter stress tensor and Tuu (Tuz) is

the total energy (angular momentum) flux through a given point on I+. The angular

momentum aspect is related to the Weyl tensor component Ψ0
1 on I+ by

Nz = lim
r→∞

r3Czrru. (2.4)

We also note that

ImΨ0
2 = Im lim

r→∞
rγzz̄Cuz̄zr = −Im

[
1

2
D2
zC

zz +
1

4
CzzN

zz

]
. (2.5)

Most of our discussion will concern I+, but the metric expansion near I− in the

retarded Bondi coordinate v = t+ r is

ds2 = −dv2 + 2dvdr + 2r2γzz̄dzdz̄ + 2
mB

r
dv2

+

(
−rCzzdz2 +DzCzzdvdz +

1

r

(
4

3
Nz +

1

4
∂z(CzzC

zz)

)
dvdz + c.c.

)
+ . . .

(2.6)

where here the metric perturbations are functions of (v, z, z̄). The z coordinate on I− is

defined so that (−v, z, z̄) is the PT conjugate of (u, z, z̄): hence they lie on the same null

generator of I and are antipodally located relative to the origin of the spacetime. The I−

constraint equations become Gvv = 8πGTMvv

∂vmB = −1

4

[
D2
zN

zz +D2
z̄N

z̄z̄
]

+ Tvv,

Tvv ≡
1

4
NzzN

zz + 4πG lim
r→∞

[
r2TMvv

]
,

(2.7)

and Gvz = 8πGTMvz

∂vNz = −1

4
∂z
[
D2
zC

zz −D2
z̄C

z̄z̄
]

+ ∂zmB + Tvz,

Tvz ≡ 8πG lim
r→∞

[
r2TMvz

]
− 1

4
Dz [CzzN

zz]− 1

2
CzzDzN

zz.
(2.8)

We use the symbol I+
− (I+

+ ) to denote the past and future S2 boundaries of I+, and

I−± for those of I−. In this paper, we consider spacetimes which decay to the vacuum in

the far past and future I−− and I+
+ . (The more general case requires an analysis of extra

past and future boundary terms.) In particular, we require

Nz|I++ = Nz|I−− = mB|I++ = mB|I−− = 0. (2.9)

– 3 –
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Moreover near all the boundaries I±± of I, the geometry is in the vacuum in the sense that

the radiative modes are unexcited:

Nzz|I±± = ImΨ0
2|I±± = 0. (2.10)

More precisely, following Christodoulou and Klainerman [25], we take Nzz ∼ |u|−3/2

(|v|−3/2) on I+ (I−) as well as a corresponding falloff of the stress tensor.

These conditions do not imply Czz|I±± = 0. Rather, the general solution of (2.10) is

(see e.g [26])

Czz = −2D2
zC, (2.11)

where C is any (u-independent) function of (z, z̄). These solutions are mapped to one

another by BMS supertranslations and exhibit the large vacuum degeneracy in gene-

ral relativity.

As described in [26], to define gravitational scattering one must specify boundary or

continuity conditions on mB and Czz near where I+ and I− meet. The unique Lorentz,

PT and BMS-invariant choice is simply

Czz|I+− = Czz|I−+ , mB|I+− = mB|I−+ . (2.12)

In this paper Nz plays an important role and its determination from the constraint equa-

tion (2.3) also requires a continuity condition. This is a bit tricky because outside the

center-of-mass frame, Nz may grow linearly with u or v near I±± . It follows from (2.3)

and (2.10) that the divergent term is exact: Nz ∼ u∂zmB. Fortunately for us, such exact

terms are irrelevant for our purposes (see section 5). We will need a continuity condition

for the curl of Nz. (2.10), (2.12) and the Bianchi identity imply

∂[zNz̄]|I−+ = ∂[zNz̄]|I+− . (2.13)

We are interested in the difference between the initial and final functions C in (2.11)

on I. This can be determined by integrating the constraint (2.2) as follows (see [14] for

more details). Defining

∆+Czz = Czz|I++ − Czz|I+− , ∆+mB = mB|I++ −mB|I+− = −mB|I+− , (2.14)

and using (2.2) one finds

D2
z∆

+Czz = 2

∫
du Tuu + 2∆+mB. (2.15)

The ∆+C which produces such a ∆+Czz is obtained by inverting D2
zD

2
z̄ :

∆+C(z, z̄) =

∫
d2wγww̄G(z;w)

[∫
du Tuu(w) + ∆mB

]
(2.16)

where the Green’s function is given by

G(z;w) = − 1

π
sin2 Θ

2
log sin2 Θ

2
, sin2 Θ(z, w)

2
≡ |z − w|2

(1 + ww̄)(1 + zz̄)
. (2.17)

– 4 –



J
H
E
P
1
2
(
2
0
1
6
)
0
5
3

An equation similar to (2.16) may be derived for the shift of C on I−. Adding the two

equations, using the boundary condition (2.12), and defining

∆C = ∆+C −∆−C, (2.18)

one arrives at the simple relation

∆C(z, z̄) =

∫
d2wγww̄G(z;w)

[∫
du Tuu(w)−

∫
dv Tvv(w)

]
. (2.19)

3 Displacement memory effect

In this section, we briefly review the standard gravitational memory effect. The passage of

a finite pulse of radiation or other form of energy through a region of spacetime produces

a gravitational field which moves inertial detectors. The final positions of a pair of nearby

detectors are generically displaced relative to the initial ones according to a simple and

universal formula [1–11], which we now review briefly.

Consider two nearby inertial detectors with proper worldline tangent vectors tµ and

relative displacement vector sµ. We take the worldlines to be at large r and extend for

infinite retarded time near I+. sµ evolves according to the geodesic deviation equation

∂2
τ s
µ = Rµλρνt

λtρsν , (3.1)

where τ is the detector’s proper time. At large r in the geometry (2.1), we may approximate

τ ∼ u, tλ∂λ = ∂u and

Rzuzu = −1

2
r∂2
uCzz. (3.2)

It follows that

∂2
us
z̄ =

γzz̄

2r
∂2
uCzzs

z. (3.3)

Integrating twice one finds, to leading order in 1
r , a net change in the displacement

∆+sz̄ =
γzz̄

2r
∆+Czzs

z, (3.4)

where ∆+Czz is given in term of moments of the asymptotic energy flux by the second

derivative of (2.16). (3.4) is the standard displacement memory formula.

4 Spin memory effect

This section describes the new spin memory effect, which affects orbiting objects such as

protons in the LHC, or signals exchanged by eLISA detectors. Consider a circle C of radius

L near I+ centered around a point z0 on a sphere of large fixed r = r0, where L � r0.

This is described by

Z(φ) = z0

[
1 +

Leiφ

2r0

1 + z0z̄0√
z0z̄0

]
+O

(
L2

r2
0

)
(4.1)
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where φ ∼ φ + 2π. A light ray in either a clockwise or counterclockwise orbit (aided by

mirrors or fiber optics) along C starting at φ(0) = 0, has a trajectory φ(u) that obeys

ds2 = 0

= 1− 2r2
0γzz̄∂uZ∂uZ̄ − 2

mB

r0
− r0Czz (∂uZ)2 − r0Cz̄z̄

(
∂uZ̄

)2
[
DzCzz∂uZ +Dz̄Cz̄z̄∂uZ̄

]
+ . . .

(4.2)

where it is here and hereafter assumed that Czz does not change significantly over a single

period. To this order, only the term in square brackets in (4.2) is odd under ∂uZ → −∂uZ.

If two light rays are simultaneously set in orbit in opposite directions, the times at which

they return to φ = 03 will differ by the u-integral of this odd term

∆P =

∮
C

(
DzCzzdz +Dz̄Cz̄z̄dz̄

)
. (4.3)

This formula in fact applies to any contour C, circular or not.

At first glance, it appears from (4.3) that the returns of the counter-orbiting light rays

are desynchronized, even in the vacuum, as long as Czz is nonzero. In fact this is not the

case. For Czz of the vacuum form (2.11), one readily finds that

∆Pvacuum = −2

∮
C
d(DzDzC + C) = 0. (4.4)

Hence desynchronization occurs only during the passage of radiation through I+. The

total relative time delay, integrated over all orbits is

∆+u =
1

2πL

∫
du

∮
C

(
DzCzzdz +Dz̄Cz̄z̄dz̄

)
. (4.5)

This leads to a shift in the interference pattern between counter-orbiting light pulses.

The shift is an infrared effect proportional to the u-zero mode of Czz. This is the spin

memory effect.

5 Spin memory and angular momentum flux

Displacement memory (3.4) can be expressed as an integral of the net local asymptotic

energy flux convoluted with the Green’s function (2.19) on the sphere. In this section we

derive an analogous formulae for spin memory as a convoluted integral involving the net

local asymptotic angular momentum flux.

Taking ∂z̄ of the Guz constraint in (2.3) and ∂z of the complex conjugate Guz̄ con-

straint gives:

∂z∂z̄mB = Re [∂u∂z̄Nz + ∂z̄Tuz] (5.1)

Im
[
∂z̄D

3
zC

zz
]

= 2Im [∂u∂z̄Nz + ∂z̄Tuz] . (5.2)

3The line φ = 0 is a geodesic in the induced geometry of the ring (4.2) only in the limit r →∞. Detectors

at fixed φ are ‘BMS detectors’ of the type discussed in [14]. A finite-r geodesic detector will be boosted

and observe a different ∆P .

– 6 –
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Multiplying (5.2) by the Green’s function

G(z;w) = log sin2 Θ

2
, sin2 Θ(z, w)

2
≡ |z − w|2

(1 + ww̄)(1 + zz̄)
(5.3)

which obeys

∂z∂z̄G(z;w) = 2πδ2(z − w)− 1

2
γzz̄, (5.4)

and integrating over d2z gives:

πIm
[
D2
wC

ww
]

= −Im

∫
d2z∂z̄G (z;w) [∂uNz + Tuz] . (5.5)

Note that the right hand side of (5.5) is invariant under shifts Nz → Nz +∂zX for any real

X, so only the curl part of Nz contributes. Integrating both sides over the disk DC whose

boundary is C and using Stokes’ theorem, (5.5) leads to

π

∮
C
(DwCwwdw +Dw̄Cw̄w̄dw̄) = −2Im

∫
DC

d2wγww̄

∫
d2z∂z̄G(z;w)[∂uNz + Tuz]. (5.6)

Multiplying by 1
2π2L

and integrating over u then yields

∆+u = − 1

π2L
Im

∫
DC

d2wγww̄

∫
d2z∂z̄G(z;w)

[
∆+Nz +

∫
duTuz

]
. (5.7)

where ∆+Nz ≡ Nz|I++ − Nz|I+− = −Nz|I+− is the shift in the angular momentum as-

pect. In many applications — for example geometries which are initially asymptotically

Schwarzschild through subleading order — this term will vanish. Moreover, if ∆+Nz is

exact, i.e. ∆+Nz = ∂zX for any real X, no contribution to the imaginary part appears

in (5.7). Hence (5.7) depends only on the curl of ∆+Nz.

A similar analysis near I− leads to the formula

∆−v = − 1

π2L
Im

∫
DC

d2wγww̄

∫
d2z∂z̄G(z;w)

[
−∆−Nz +

∫
dvTvz

]
. (5.8)

where the contour C and disk DC on I− is defined by the curve defined in equation (4.1)

on I−. This means it will lie in the antipodal spatial direction from the origin. Using the

continuity condition (2.13) on Nz one finds, in analogy to (2.19), an expression relating

time delays and fluxes

∆τ ≡ ∆+u−∆−v = − 1

π2L
Im

∫
DC

d2wγww̄

∫
d2z∂z̄G(z;w)

[∫
duTuz −

∫
dvTvz

]
. (5.9)

The right hand side of (5.9) is related to the local angular momentum flux through I.

Consider the case when Tuz arises from massless particles or localized wave packets which

puncture I+ at points (uk, zk). Then, as we show in the appendix,

Tuz = 8πG
∑
k

δ(u− uk)
[
Luz(zk)−

i

2
hk∂z

]
δ2(z − zk)

γzz̄
, (5.10)
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together with a similar formula for Tvz. Here Luz(zk), (hk) is the orbital (spin) angular

momentum of the kth particle associated to a rotation around (boost towards) the point

zk on the sphere. The leading contribution from such particles to the time delay is

∆τ = −8G

πL

∑
k

(
γzk z̄kIm

∫
DC

d2wγww̄Luz(zk)∂z̄kG(zk;w) + πhk∈C

)
. (5.11)

The second term in (5.11) has the simple interpretation that an object of spin hk passing

through C at (or near) lightspeed induces a time delay of order hk
L , with no factors of r0.

This can be understood as the frame-dragging effect. If C lies a distance of order L from

zk, the first term is typically a factor of L
r0

smaller than the second.

Another interesting case is outgoing quadrupole radiation, with no incoming news or

Tvz on I−.4 The displacement memory effect for configurations of this type is of potential

astrophysical interest and was analyzed in [6]. This is described by the news tensor on I+

Nzz = NY i
zY

j
z (5.12)

for some N(u). As an example, take i = j, Y z
i = z and

N =
α

(2π)1/4
∂ue
−u2+iωu. (5.13)

The resulting angular momentum flux obeys∫
duTuz =

3i

2
α2ω∂z

z2z̄2

(1 + zz̄)4
, (5.14)

so that

Im

∫
du

∫
d2z∂z̄G(z;w)Tuz = 3πα2ω

[
1

30
− w2w̄2

(1 + ww̄)4

]
, (5.15)

using (5.4). The quadrupole contribution to the time delay around a contour C becomes

∆+u =
3α2ω

πL

∫
DC

d2wγww̄

[
w2w̄2

(1 + ww̄)4
− 1

30

]
. (5.16)

For typical choices of C such that the area of DC is order L2/r2
0, we have ∆+u ∼ α2L

r20
.

6 Equivalence to subleading soft theorem

In the sixties, Weinberg [17] showed that scattering amplitudes in any theory with gravity

exhibit universal poles as the energy ω of any external graviton is taken to zero. Re-

cently [18–21, 23, 24, 27, 28] it has been shown that the finite, subleading term in the

ω → 0 expansion also exhibits universal behavior. The coefficient of the leading pole

was shown in [14] to be related by a timeline Fourier transform of the expression for dis-

placement memory. We now show that the subleading term is a Fourier transform of the

expression for spin memory.

4Since we are taking mB |I−− = 0 here, the initial energy would have to enter in a spherically symmetric

wave from I−.
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The subleading soft graviton theorem is a universal relation between (n + 1)-particle

(with one soft graviton) and n-particle tree-level quantum scattering amplitudes [18]

1

2

(
lim
ω→0+

+ lim
ω→0−

)
An+1 (p1, . . . pn; (ωq, εµν)) = S(1)

µν ε
µνAn (p1, . . . pn) , (6.1)

where

S(1)
µν =

iκ

2

n∑
k=1

pk(µJkν)λq
λ

q · pk
(6.2)

and κ =
√

32πG. In this expression, the parentheses denote (µ, ν) symmetrization, q =

(ω, ωq̂) with q̂2 = 1 is the four-momentum, and εµν is the transverse-traceless polarization

tensor of the graviton. We define incoming particles to have negative p0 and take ω positive

for an outgoing graviton. µ, ν indices refer to asymptotically Minkowskian coordinates

given in terms of retarded coordinates as

x0 = u+ r,

x1 + ix2 =
2rz

1 + zz̄
,

x3 =
r(1− zz̄)

1 + zz̄
,

(6.3)

or in terms of advance coordinates as

x0 = v − r,

x1 + ix2 = − 2rz

1 + zz̄
,

x3 = −r(1− zz̄)

1 + zz̄
.

(6.4)

The symmetrized limit in (6.1) projects out the leading Weinberg pole, leaving the sub-

leading finite term of interest here. The linearized expectation value of the asymptotic

metric fluctuation produced in the n-particle scattering process obeys the semiclassical

momentum space formula(
lim
ω→0+

+ lim
ω→0−

)
hαβ (ω, q) = εαβ

(
lim
ω→0+

+ lim
ω→0−

)
An+1 (p1, . . . pn; (ωq, εµν))

An (p1, . . . pn)

= iκεαβε
µν

n∑
k=1

pkµJkνλq
λ

q · pk
.

(6.5)

In the last line, and in similar expressions below, an expectation value of the expression

involving the differential operator Jkνλ acting in the matrix element in An is implicit.

Expression (6.5) characterizes linearized fields by their momenta whereas the new

memory formula (5.9) is given in terms of I values of fields. These are simply related.

Using the large-r stationary phase approximation as in [21, 29]∫
duCzz (u, q̂)−

∫
dvCzz (v, q̂) = −

(
lim
ω→0+

+ lim
ω→0−

)
iκ

8π
∂zX

µ∂zX
νhµν (ω, q̂) , (6.6)

– 9 –
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where Xµ ≡ lim
r→∞

xµ

r and the unit vector q̂ is viewed as a coordinate on I. The hard particle

momenta pk, the soft graviton momentum q, and complex polarization ε−µν = ε−µε−ν are

given in terms of the points zk and z at which they arrive on the on the asymptotic S2 and

their energies Ek, ω

pµk =
Ek

1 + zkz̄k
(1 + zkz̄k, z̄k + zk, i(z̄k − zk), 1− zkz̄k) ,

qµ =
ω

1 + zz̄
(1 + zz̄, z̄ + z, i(z̄ − z), 1− zz̄) ,

ε−µ =
1√
2

(z, 1, i,−z).

(6.7)

Rewriting the soft formula (6.5) in terms of the variables in (6.6) and (6.7), defining Ŝ
(1)
zz ≡

∂zX
µ∂zX

νS
(1)
µν , and acting with D2

z gives [21]

Im

[∫
duD2

zCz̄z̄ −
∫
dvD2

zCz̄z̄

]
=

κ

8π

[
D2
z̄ Ŝ

(1)
zz −D2

z Ŝ
(1)
z̄z̄

]
. (6.8)

The formulae for the angular momentum and stress energy of a particle emerging at zk in

the appendix enables this to be rewritten:

Im

[∫
duD2

zC
zz −

∫
dvD2

zC
zz

]
= −8G

∑
k

γzk z̄kIm

[
Luz(zk)∂z̄kG(zk; z) +

i

2
hk∂zk∂z̄kG(zk; z)

]
= − 1

π
Im

∫
d2w∂w̄G(w; z)

[∫
duTuw −

∫
dvTvw

]
.

(6.9)

where total angular momentum conservation has been used. To summarize, the sublead-

ing soft graviton theorem [18], after some differentiation, change of notation and Fourier

transform, becomes the formula for the contour integrals characterizing spin memory.

7 An infinity of conserved charges

A conserved charge enables one to determine the outcome of a measurement on I+ from

a measurement on I−. For example, for a process which begins and ends in a vacuum,

the total integrated outgoing energy flux across I+ equals the incoming energy flux across

I−. In this section we describe an infinite set of I+ measurements — one for every

contour C — whose outcome is determined by a measurement on I−.

Conserved charges on I+ may be obtained from any moment of the curl ∂[z̄Nz] on I+
− .

Consider for example

Q(z, z̄) = i∂[z̄Nz](z, z̄)|I+− . (7.1)

This can be written using the constraints as an integral over a null generator of I+. Inte-

grating by parts then gives the I+ expression

Q (z, z̄) = −i
∫
du

[
1

4
∂z̄∂z

[
D2
zC

zz −D2
z̄C

z̄z̄
]
− ∂[z̄Tz]u

]
. (7.2)
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On the other hand using the continuity condition (2.13) and integrating by parts, one finds

the I− expression

Q(z, z̄) = −i
∫
dv

[
1

4
∂z̄∂z

[
D2
zC

zz −D2
z̄C

z̄z̄
]
− ∂[z̄Tz]v

]
. (7.3)

Equating (7.2) and (7.3) gives the conservation law:∫
du

[
1

4
∂z̄∂z

[
D2
zC

zz −D2
z̄C

z̄z̄
]
− ∂[z̄Tz]u

]
=

∫
dv

[
1

4
∂z̄∂z

[
D2
zC

zz −D2
z̄C

z̄z̄
]
− ∂[z̄Tz]v

]
.

(7.4)

This conservation law equates the stress energy flux through and a zero mode of the metric

fluctuations along a null generator of I+ to the same quantities on the PT -conjugate

generator of I−. There is one such law for every null generator.

The meaning of the conservation law (7.4) is a bit obscured by the fact that zero modes

of metric fluctuations are hard to measure. However, in the preceding we have found that

the time delay effectively measures a particular combination of the zero modes. Our main

formula (5.9) can be rephrased as a conservation laws for the charge

QC ≡ −
1

π2L
Im

∫
DC

d2wγww̄

∫
d2z∂z̄G(z;w)Nz|I+− , (7.5)

which, as noted above, involves only the curl of Nz. Using (2.13) QC may be rewritten as

a I− charge

QC ≡ −
1

π2L
Im

∫
DC

d2wγww̄

∫
d2z∂z̄G(z;w)Nz|I−+ . (7.6)

Integrating by parts, using the constraints to express (7.5) and (7.6) as integrals over I±,

and equating the two expressions yields

∆+u+
1

π2L
Im

∫
DC

d2wγww̄

∫
d2z∂z̄G(z;w)

∫
duTuz

= ∆−v +
1

π2L
Im

∫
DC

d2wγww̄

∫
d2z∂z̄G(z;w)

∫
dvTvz.

(7.7)

Thus if we measure the component Tvz of the radiative stress-energy flux and the

time delay on C at past null infinity, we can determine a moment of Tuz and the time

delay of an antipodally-located contour at future null infinity. There are infinitely many

such conservation laws — one for every contour C — which infinitely constrain the scatte-

ring process.

Should it persist to the quantum theory, this infinity of conservation laws has consid-

erable implications for the black hole information puzzle. The output of the black hole

evaporation process, as originally computed by Hawking, is constrained only by energy-

momentum, angular momentum and charge conservation. Imposing the infinity of conser-

vation laws (7.7) (together with a second infinity arising from BMS invariance [26]) will

greatly constrain the outgoing Hawking radiation. These constraints follow solely from

low-energy symmetry considerations, and do not invoke any microphysics. It would be in-

teresting to understand how the semiclassical computation of black hole evaporation must

be modified to remain consistent with these symmetries.
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A Massless particle stress-energy tensor

We start with the trajectory of a massless point particle:

xµ(τ) =
pµ

E
τ + bµ (A.1)

where pµ is the particle’s four momentum, with pµp
µ = 0. bµ = (0, bi) = xµ(0) describes

the impact parameter of the straight-line trajectory relative to the spacetime origin. The

orbital angular momentum of this trajectory is:

Lµν = bµpν − pµbν , (A.2)

which implies

bµ =
1

E
Lµ0. (A.3)

The total angular momentum is

Jµν = Lµν + Sµν (A.4)

where Sµν is the intrinsic spin. The large τ behavior of the trajectory (A.1) is:

r(τ) = τ +
1

E2
pµLuµ +O(τ−1)

u(τ) = − 1

E2
pµLuµ +O(τ−1)

z(τ) =
p1 + ip2

E + p3
+

1

E
L z
u +O(τ−2)

(A.5)

where we have used L0µ = Luµ and 1
EL

z
u is O(τ−1). The matter stress-energy tensor of

the point particle is [30]:

TMµν (yρ) = E

∫
dτẋµẋν

δ4(yρ − xρ(τ))√
−g

−∇ρ
∫
dτSρ(µẋν)

δ4(yρ − xρ(τ))√
−g

. (A.6)

Using Szz̄ = ir2γzz̄h near a particle with helicity h, a collection of point particles obeys:

lim
r→∞

r2TMuu =
∑
k

Ekδ(u− uk)
δ2(z − zk)

γzz̄

lim
r→∞

r2TMuz =
∑
k

δ(u− uk)
[
Luz(zk)−

i

2
hk∂z

]
δ2(z − zk)

γzz̄

(A.7)

where uk ≡ − 1
E2
k
pµkLkuµ and

Luz(zk) ≡ lim
r→∞

1

r

∂xµk
∂uk

∂xνk
∂zk

Lkµν

=
b1k(1− z̄2

k)− ib2k(1 + z̄2
k)− 2b3kz̄k

(1 + zkz̄k)2
Ek.

(A.8)
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