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ber changing interactions are active when the temperature drops below the mass of the

lightest hidden particle. During cannibalism, the hidden sector temperature decreases only

logarithmically with the scale factor. We consider the possibility that dark matter resides

in a hidden sector that underwent cannibalism, and has relic density set by the freeze-out

of two-to-two annihilations. We identify three novel phases, depending on the behavior of

the hidden sector when dark matter freezes out. During the cannibal phase, dark mat-

ter annihilations decouple while the hidden sector is cannibalizing. During the chemical

phase, only two-to-two interactions are active and the total number of hidden particles is

conserved. During the one way phase, the dark matter annihilation products decay out

of equilibrium, suppressing the production of dark matter from inverse annihilations. We

map out the distinct phenomenology of each phase, which includes a boosted dark matter

annihilation rate, new relativistic degrees of freedom, warm dark matter, and observable

distortions to the spectrum of the cosmic microwave background.
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1 Introduction and conclusions

According to the Weakly Interacting Massive Particle (WIMP) paradigm, the Dark Matter

(DM) component of our Universe is composed of non-relativistic particles whose abundance

is set by their annihilations in the early Universe [1–3]. At high temperatures (T > mDM),

DM particles are assumed to be in thermal equilibrium with the Standard Model (SM)

plasma. As the temperature drops below their mass, their abundance starts to decrease

exponentially and number changing annihilation processes like DM DM ↔ SM SM become

inefficient. Eventually, when T/mDM . 1/30, the DM comoving number density freezes

out. The resulting energy density is determined by the DM annihilation cross section, 〈σv〉,

ΩDMh
2 ' 0.1

(20 TeV)−2

〈σv〉
. (1.1)

This result implies that a particle with weak scale mass and electroweak size interactions

(〈σv〉 ≈ (20 TeV)−2 ≈ 3 × 10−26 cm3/s) has a freeze-out abundance that matches the

observed relic density: ΩDMh
2 ≈ 0.1 [4].

Such a framework has various appealing features. The freeze-out mechanism is in-

sensitive to any initial condition or UV physics due to its thermal nature. If DM mainly

annihilates into SM particles, then it must have sizable interactions with the SM, open-

ing up exciting experimental possibilities for its observation. Furthermore, the existence

of new weak scale particles is motivated by theoretical considerations such as solving the

naturalness problem of the Higgs mass.

However, recent experimental results are challenging this picture: DM direct detection

experiments have excluded significant WIMP parameter space [5–7], and are getting close
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to the neutrino background [8]. At the same time, collider and precision searches are

increasingly constraining the possible existence of new physics around the weak scale.

Pending a discovery of a WIMP, it is highly motivated to explore new theories of dark

matter and their experimental tests.

One possibility is that DM is part of a hidden sector of particles that is very weakly

coupled to the SM (see for example refs. [9–22]). At sufficiently high temperatures, inter-

actions within the dark sector will guarantee thermal equilibrium among the dark sector

particles. However, if interactions between the dark sector and the SM are sufficiently

weak, the dark sector temperature TD and entropy sD will in general be different from

the SM ones [11, 16, 19, 22]. The fact that the DM is in equilibrium with a thermal bath

while its energy density evolves to the observed value implies the same insensitivity to UV

dynamics as for standard WIMPs (except for sensitivity to the initial condition that sets

the relative temperatures of the SM and dark sector plasmas).

Most works studying hidden sector dark matter assume that the hidden sector contains

relativistic particles in thermal equilibrium with DM when its annihilations freeze-out. An

alternative possibility is that DM resides in a hidden sector with a mass gap set by the mass

of the Lightest Dark sector Particle (LDP), m0. If the hidden sector is sufficiently weakly

coupled to the SM, this opens up the possibility that DM is not in thermal contact with

radiation when its annihilations decouple. This implies that the hidden sector undergoes

an epoch of cannibalism [11], during which its temperature decreases only logarithmically

with the scale factor. This possibility was first studied by ref. [11], which considers the

possibility that DM freezes out through 3-to-2 annihilations. Recently, some of us proposed

that dark matter may reside in a hidden sector with a mass gap and have abundance that

follows from 2-to-2 annihilations [22]. For additional studies that include cannibalism

see refs. [23–31].

In this paper, we consider the following framework [22]:

• Cannibal dark matter : the abundance of DM is set by the freeze-out of 2-to-2 annihi-

lations in a hidden sector that undergoes an epoch of cannibalism that begins before

DM annihilations decouple.

Our goal is to map out the different possible cosmologies for Cannibal DM, in order to

identify viable models that reproduce the observed relic density. We will find that gapped

hidden sectors have a rich phase structure, with multiple novel avenues for DM freeze-out.

We assume that dark matter resides in a hidden sector with a mass gap, and that the

hidden sector is kinetically decoupled from the SM such that it evolves with an independent

temperature. The hidden sector contains a stable particle, χ, that will constitute DM, as

well as massive unstable particles φi (see figure 1). We can identify three relevant timescales

in the cosmological evolution of the hidden sector:

• tf (and the corresponding dark temperature Tf )— the time after which the rate of

DM number changing processes, Γf , is smaller than the Hubble constant, H,

Γf ≡ neq
χ 〈σ2v〉 < H, (1.2)
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Figure 1. The typical mass spectrum of a gapped hidden sector. χ plays the role of the DM,

which we assume to be stabilized by some symmetry. The various φi are generically unstable. φ0 is

the Lightest Dark sector Particle (LDP) and has nonzero mass. The hidden sector will undergo an

epoch of cannibalism if the temperature drops below the mass of the LDP, Td < m0, while number

changing interactions are still in equilibrium.

where σ2 is the cross section for χχ→ φφ (which is the leading process that changes

DM number density) and neq
χ is the equilibrium number density of χ. Here and below

the indices on the φi are implied. In general, neq
χ ∝ e−(mχ−µχ)/TD includes a chemical

potential, µχ, which as we will see below can play an important role. After tf , the

comoving DM density is conserved.

• tc (and the corresponding dark temperature Tc)— the time after which the rate of

number changing processes in the hidden sector, Γc, falls below H. This timescale is

set by the decoupling of the final n ↔ m process with n 6= m. For example, tc can

be set by the decoupling of φφφ→ φφ with cross section σ3,

Γc ≡ (neq
φ )2

〈
σ3v

2
〉
< H. (1.3)

After the time tc, the total comoving number of particles in the hidden sector is

conserved. However, 2-to-2 processes may still be active and can change relative

particle abundances. A chemical potential is necessary to enforce the conservation of

the total comoving number of hidden sector particles.

• td (and the corresponding dark temperature Td)— the time at which the DM an-

nihilation products, φ, decay more rapidly than the Hubble time (i.e. the Universe

becomes older than the φ lifetime),

Γφ > H. (1.4)

As we discuss below, metastability of φi is a necessary condition for χ to constitute

the totality of the observed DM abundance [22]. If this was not the case, the lightest

of the φi, being non-relativistic, would dominate the dark sector energy density.
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Figure 2. The three phases of cannibal dark matter: cannibal, chemical, and one way. The phase

depends on the ordering of three timescales: tf , tc, and td (which are defined in the text). The

hidden sector undergoes cannibalism in the red shaded region, which begins when Td = m0 at time

tφ. Cannibalism ends whichever occurs first: tc or td, and either ordering is possible for the cannibal

phase. The number of hidden particles is conserved in the blue shaded region, because only 2-to-2

interactions are in equilibrium, implying a nonzero chemical potential.

The key point is that different orderings of these timescales lead to different paramet-

ric scalings for the DM relic density as a function of the fundamental parameters of the

dark sector. We identify three distinct phases, depending on the order of tf , tc, and td
(see figure 2).

• Cannibal phase (tf � tc, td): this is the scenario proposed in ref. [22]. The freeze-out

of DM number changing interactions takes place while the hidden sector is undergoing

cannibalism. The final relic density is exponentially sensitive to the ratio of the LDP

and DM masses, r = m0/mχ. The relic density depends on the χχ ↔ φφ cross

section, σ2. Assuming the Universe to be radiation dominated at freeze-out,

Yχ ∝ (mχMPσ2)
− 1−r

1−2/3 r , (1.5)

where MP ≈ 1.2 × 1019 GeV is the Planck mass and YDM = nDM/sSM is the DM

yield (see eq. (3.18)). The yield is related to the observed relic density: ΩDM/Ω
obs
DM =

mDMYDM/(0.4 eV).

• Chemical phase (tc � tf � td): in this case, at time tc, a chemical potential develops

enforcing the conservation of the total number of hidden sector particles. The DM

relic density depends on the size of the number changing cross section, σ3, through this

chemical potential. The DM relic density depends inversely on its annihilation cross

section, as for a regular WIMP. Assuming the Universe to be radiation dominated

– 4 –
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Figure 3. The phase diagram of cannibal dark matter. There are three phases that describe the

behavior of the hidden sector when DM annihilations freeze-out: cannibal, chemical, and one way.

The phase depends on the ordering of the three timescales: tf , tc, and td. The relic density takes

a different parametric form within each phase, as shown in eqs. (1.5), (1.6), and (1.7).

at freeze-out (see eq. (3.31)),

Yχ ∝
(m4

0MPσ3)1/4

mχMPσ2
. (1.6)

Notice the relic abundance is no longer exponentially sensitive to r.

• One way phase (td � tf any value of tc > tφ): if the lifetime of the states to which

DM is annihilating is shorter than tf , inverse annihilations φφ→ χχ decouple when

φ decays at the time td. After φ decays, forward annihilations χχ → φφ are still

active, but inverse annihilations are suppressed. The resulting DM yield depends on

the width of φ (see eq. (3.39)),

Yχ ∝
1

Γ
1/2
φ M

3/2
P σ2

. (1.7)

These three regimes are displayed in the phase diagram of figure 3. Figure 4 shows the

behavior of the relic abundance, in terms of the relevant parameters, in the three phases

and the transition region between them. In order to draw the curves we use the example

model which will be introduced in section 3.

Cannibal DM has distinctive phenomenology, which we explore below. Most notably,

the DM annihilation rate is generically boosted above the standard value of a thermal

WIMP, σ0 ≈ 3 × 1026 cm3/s. This is a consequence of the novel parametric form of the

DM yield (eqs. (1.5), (1.6), and (1.7)) and the requirement that Cannibal DM match the
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Figure 4. The left side shows the dark matter relic density as a function of σ3 (the cross section of

φφφ→ φφ), for various values of σ2 (the cross section of χχ→ φφ) normalized to the conventional

WIMP value σ0 = 3 × 10−26 cm2/s. Moving from smaller to larger σ3, the phase transitions from

chemical (blue), where Ωχ increases with σ3, to cannibal (red), where Ωχ is independent of σ3.

The right side shows Ωχ as a function of γφ = Γφ/H(mφ). Moving from smaller to larger Γφ, the

phase transitions from cannibal (red), where Ωχ is independent of Γφ, to one way (green) where Ωχ

decreases with Γχ. This figure was made using the model of eqs. (3.1) and (3.2).

observed DM energy density. The parametric form of the boost to the cross section is

summarized in table 1 of section 3. The boost implies that Cannibal DM is easier to see

through indirect detection than standard WIMPs. Observational constraints on cannibal

DM, and future reach, are summarized in figures 10 and 11. Cannibal DM is constrained by

Fermi measurements of γ-rays, Planck measurements of the Cosmic Microwave Background

(CMB), and Lyman-α constraints on warm DM. However, significant parameter space

remains allowed and we find that there is promising reach to discover cannibal DM through

future CMB measurements.

The rest of this paper is organized as follows. In section 2, we follow the evolution of

a decoupled hidden sector as its temperature drops below the mass of the LDP, but when

its number changing interactions are still active. In section 3, we introduce the example

model that we use to describe the evolution of the DM density during the three phases.

In section 4, we study possible observational signatures and constraints on the model.

Appendix A contains a complete description of the system of Boltzmann equations that

we use to determine the DM energy density.

2 Thermodynamics of a non-relativistic hidden sector

We now consider the thermodynamic evolution of the hidden sector. We assume that the

hidden sector and the SM are kinetically decoupled from each other, such that they evolve

with different temperatures. In what follows we will refer to SM and Dark sector quantities

with the subscripts SM and D, respectively.

– 6 –
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If both the SM and the hidden sector are separately in thermal equilibrium, the comov-

ing entropies are separately conserved within each sector. We define the ratio of comoving

entropy densities,

ξ ≡ sSM

sD
, (2.1)

which is constant throughout the cosmological evolution, while thermal equilibrium is main-

tained. For dark sector temperatures TD � m0, the hidden sector entropy is dominated

by relativistic species: sd = (2π2/45)gD∗ST
3
D. This implies that the hidden sector and SM

temperatures (apart from a mild dependence due changing g
1/3
∗S ) are simply proportional

to each other [16],

TD = ξ−1/3

(
gSM
∗S
gD∗S

)1/3

TSM, (2.2)

where gSM
∗S and gD∗S are the number of relativistic degrees of freedom in the SM and the

hidden sector, respectively. Note that for the remainder of this paper, we approximate

gSM,D
∗S ≈ gSM,D

∗ .

Due to the adiabatic expansion of the Universe, the dark temperature TD will even-

tually drop below the mass of the LDP. Assuming thermal equilibrium to hold, the phase

space distribution of a particle species X will be the non-relativistic Boltzmann distribution

fX(p) = eµX(T )/T e−E(p)/T , where we allow the presence of a temperature dependent chem-

ical potential µX . It can be shown that the total comoving entropy is still approximately

conserved in this regime [32],

sD =
∑
X

ρX − µXnX
TD

+ nX ≈
m0 − µ0(TD)

TD
n0 (2.3)

where X = χ, . . . , φ0 sums over dark states and we use the fact that for TD � m0 the

entropy is dominated by the lightest species.1

If the hidden sector has number changing processes that are still active (i.e. Tc � m0),

then the chemical potential vanishes, µ0 = 0. This condition is easily satisfied. For example,

chemical equilibrium can be maintained by 3 → 2 reactions involving the LDP, such as

φ0φ0φ0 → φ0φ0 with thermal cross section 〈σv2〉. The equilibrium φ0 number density is

n̄φ0 ≡ n
eq
φ0

(TD, µ = 0). Requiring n̄2
φ0
〈σv2〉 > H at TD = m0, is equivalent to

〈σv2〉 & 102 ×
ξ2/3g

−4/3
∗0 g

−1/6
∗SM

m4
0MP

(3→ 2) , (2.4)

where g∗0 is the number of degrees of freedom of φ0 (see footnote 1). A similar condition

holds if chemical equilibrium is maintained by 4 → 2 reactions φ0φ0φ0φ0 ↔ φ0φ0 (or

similarly 4→ 3 reactions φ0φ0φ0φ0 ↔ φ0φ0φ0), in this case

〈σv3〉 & 103 ×
ξ2/3g

−7/3
∗0 g

−1/6
∗SM

m7
0MP

(4→ 2, 3) . (2.5)

1Notice that all particles φi for which mi −m0 � TD should be kept in the sum.
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Figure 5. The left side shows the evolution of the dark temperature, TD, versus the SM tempera-

ture, TSM, for a cannibalizing sector with LDP mass m0 = 0.7 GeV. The solid red (dashed orange)

curve corresponds to an initial entropy ratio ξ = ξ0 (103ξ0), where ξ0 ≈ 39. On the right side, the

solid red line shows the behavior of the dark energy density over the SM energy density, ρD/ρSM,

as a function of the SM temperature, for m0 = 0.7 GeV and ξ = ξ0. For comparison, we show the

energy densities of a species in chemical and kinetic equilibrium with the SM, ρeq (dotted black

line, arbitrarily normalized), and of matter, ρD (dashed green line).

Conservation of comoving entropy implies

sD a
3 ∝

(
TD
m0

)1/2

e−m0/TD a3 ⇒ TD ∼
m0

log a3
. (2.6)

The logarithmic dependence of the dark sector temperature on the scale factor is the

defining feature of cannibalism. The hidden sector cannot cool down efficiently as the

Universe expands because number changing annihilations are still efficiently converting the

rest mass of the light, but non-relativistic, particles into kinetic energy [11]. This behavior

is even more striking when one compares the dark sector temperature to the SM one. Using

eqs. (2.1) and (2.3) we find:

TSM

TD
' 0.52 ξ1/3

(
g∗0
g∗SM

)1/3(m0

TD

)5/6

e−m0/3TD , TD < m0. (2.7)

During cannibalism, the SM gets exponentially colder than the dark sector. This behavior

is shown in the left panel of figure 5. At the same time, the energy density of the dark sector

decreases only logarithmically faster than the energy density of a decoupled pressureless

gas (i.e. matter),

ρD ∼
m4

0

a3 log a3
, (2.8)

as shown on the right panel of figure 5. Notice that eventually the energy density of the

hidden sector will dominate over the SM one. This happens during cannibalism if

TD &
3

4
ξ TSM, (2.9)
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corresponding to xE0 ' −2.8+log(ξ4 g∗0g
−1
∗SM)+2.5 log(xE0 ), with xE0 ≡ m0/T

E
D . During can-

nibalism, as a consequence of eq. (2.6), an order one variation in the dark sector temperature

corresponds to an exponential increase in the age of the Universe. This holds independently

of whether the SM or the dark sector dominates the expansion of the Universe,

H(TD) '

0.46 ξ2/3g
2/3
∗0 g

−1/6
∗SM (TD/m0)1/3 m2

0
MP

e
− 2m0

3TD (ρSM > ρD)

0.73 g
1/2
∗0 (TD/m0)3/4 m2

0
MP

e
− m0

2TD (ρSM < ρD).
(2.10)

Assuming for the moment that the LDP is stable, as the dark sector cools the rate

of number changing interactions will eventually drop below the expansion rate. If number

changing processes are dominated by 3 → 2 annihilations, φ0φ0φ0 ↔ φ0φ0, the condition

n̄2
φ0
〈σv2〉 = H gives

x0c '

{
−14.5+log(ξ−1/2g

1/8
∗SMg∗0)+ 3

4 log(m4
0MP 〈σv2〉)−2 log(x0c) (ρSM>ρD)

−17.4 + log(g∗0) + 2
3 log(m4

0MP 〈σv2〉)− 3
2 log(x0c) (ρSM<ρD)

(2.11)

where x0c = m0/Tc. At the time of decoupling the ratio between the SM and the hidden

sector temperature is given by

log
TD
TSM

∣∣∣∣
max

'

{
10.5− 1

2 log(ξg
−3/4
∗SM )+ 1

4 log(α3GeV/m0)− 3
2 log x0c (ρSM>ρD)

9.5− 1
3 log(ξg−1

∗SM)+ 2
9 log(α3GeV/m0)− 4

3 log x0c (ρSM<ρD),
(2.12)

where we parametrize 〈σv2〉 ≡ α3/m5
0. After the decoupling of number changing inter-

actions, the total comoving number density is conserved. This, together with entropy

conservation, implies that the hidden sector temperature begins to decrease rapidly with

the scale factor (see figure 5),
TD
Tc
∼ 1

a2
. (2.13)

Furthermore, a chemical potential for all hidden sector particles is generated,

µ(TD) ∼ m0

(
1− TD

Tc

)
, (2.14)

enforcing the conservation of the total number of particles in thermal equilibrium. We dub

this stage of the thermal evolution of a non-relativistic hidden sector the chemical era. The

evolution of the temperature in the chemical era, eq. (2.13), can be simply understood as

coming from the redshift of the velocity of a typical hidden sector particle, vχ ∼ 1/a. Note

that the chemical era is analogous to the evolution of the SM sector after the decoupling

of double Compton scattering, after which the number of photons is conserved. After this

epoch, the CMB experiences µ-distortions [33].

Eventually, as time passes, the various particles in the hidden sector will lose thermal

contact with the bath. This happens because the rate of momentum exchange in processes

like χφ ↔ χφ inevitably become slower than the Hubble expansion rate. At some point

also φφ → φφ will decouple and the hidden sector will behave as a gas of non-interacting

particles. In general, the thermodynamical treatment given in this section only applies

when χφ↔ χφ exchanges momentum at a rate larger than Hubble. If this is not the case,

the phase space distribution of particles in the thermal bath may deviate substantially

from the Boltzmann distribution.

– 9 –
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2.1 LDP metastability

Our discussion up to this point has assumed a stable LDP. As anticipated in the Introduc-

tion, in general this cannot be the case if DM belongs to the hidden sector and mDM > m0.

A finite LDP lifetime implies a new timescale td ≡ Γ−1
φ to consider. In the following we will

assume the LDP (and all other hidden sector particles lighter than the DM) to be unstable

and ultimately decay to SM particles.2 In order for the decay not to equilibrate the two

sectors, we want to ensure the inverse processes SM SM → φ to be out of equilibrium at

T = Td when φ decays. Imposing n̄γ(Td SM)2ΓSM SM→φ � nφ0(Td)Γφ and using detailed

balance to write n̄γ(Td SM)2ΓSM SM→φ = n̄φ0(Td SM)Γφ we obtain

n̄φ0(Td SM)

nφ0(Td)
� 1, (2.15)

where Td SM is the SM temperature at time td. If the two sectors start with similar tem-

perature above every mass thresholds eq. (2.15) implies the familiar condition

Γφ � H(TSM = mφ). (2.16)

In general however, if the two sectors have the same temperature at early times, eq. (2.16)

can be realized in two ways: nφ can be the equilibrium distribution but Td � Td SM as it

is the case after a epoch of cannibalism; Td ≈ Td SM but nφ � n̄φ because of a chemical

potential. Either one of this possibilities will be realized in the following.

As soon as the LDP starts to decay, all reactions involving it begin to decouple, simply

because its density starts to decrease exponentially. In particular all processes like φ0φ0 ↔
φ0φ0 and χφ0 ↔ χiφ0 will no longer be able to keep the system in thermal equilibrium:

the various assumptions made in the previous section about the phase space distribution of

particles and entropy conservation in the hidden sector begin to fail. A correct treatment

of the thermal evolution from this point on would require us to solve a full unintegrated

Boltzmann equation. This goes beyond the scope of this work. Sticking to the more modest

goal of approximately calculating the DM relic abundance, we will describe the evolution

of the system after td using a sudden decay approximation in which we set nLDP = 0 at

t = td. We will furthermore assume that all particles, such as χ, which were kept in kinetic

equilibrium with the thermal bath by elastic scattering χφ0 ↔ χφ0 will keep a Boltzmann

phase distribution with a temperature redshifting as T ∝ 1/a2.

In this sudden decay approximation, the SM plasma is instantaneously reheated by the

LDP decay products. If the energy density of the LDP dominates over the energy density

of the SM plasma, by energy conservation, the decay of the LDP will reheat the SM to a

larger temperature TRH [3],

TRH ≡
(

45

16π3g∗SM

)1/4√
ΓφMP ' 0.55 g

−1/4
∗SM

√
ΓφMP , (2.17)

with a corresponding increase of the SM entropy.

Notice that if td < tc, cannibalism ends because of the LDP decay. We will discuss the

additional implications of td < tf in the next section.

2Other decay channels can be considered as in ref. [22]. For simplicity we will restrict to SM final states.
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3 Phases of hidden freeze-out

In this section we study DM freeze-out in the thermal background of a non-relativistic

hidden sector, as discussed in the previous section. In order to simplify the discussion, we

introduce a specific model in which all the features discussed above are realized. The hidden

sector we consider is composed of a single Majorana fermion, χ, which plays the role of the

DM, and a real scalar singlet, φ, playing the role of the LDP. The interactions between

these degrees of freedom are described by the most general renormalizable Lagrangian [22],

L =
1

2
∂µφ∂µφ− V (φ) + iχ†σ̄µ∂µχ−

mχ

2
χχ− y + iy5

2
φχχ+ h.c., (3.1)

with

V (φ) =
m2
φ

2
φ2 +

A

3!
φ3 +

λ

4!
φ4. (3.2)

In order to realize the kinematics of the previous section we require mχ > mφ and define

r ≡ mφ/mχ. We also assume that the parameters in the φ potential are such that φ gets

no vacuum expectation value. It is possible to reduce the number of free parameters in

eq. (3.2) by requiring A to arise from the spontaneous breaking of a Z2 symmetry, ϕ↔ −ϕ,

V = −
m2
ϕ

2
ϕ2 +

λ

4!
ϕ4 ⇒ ϕ =

mϕ√
λ

+ φ, mφ =
√

2mϕ, and A =
√

3λmφ. (3.3)

All parameters in the Lagrangian are real. We will furthermore assume the existence of

a coupling

L ⊃ φ

Λ
OSM, (3.4)

where OSM is some dimension 4 operator made of SM fields, mediating φ decay with a

typical width Γφ ∼ m3
φ/Λ

2. In the following we take OSM = F 2
µν or FµνF̃µν , mediating φ

decay to photons. Example Feynman diagrams that generate the cosmologically relevant

processes are shown in figure 6.

The precise evolution of the DM number density is obtained by solving a set of coupled

Boltzmann equations. We are interested in the evolution of 4 variables: TSM, TD, nφ and

nχ, as functions of the scale factor a. As explained in the previous section, Γφ 6= 0 cannot

be treated exactly. For this reason, in our numerical analysis, we consider two different

Boltzmann systems depending on whether a < ad or a > ad, where ad is the scale factor at

which H(ad) = Γφ (i.e. at time td). For a < ad, the dark sector is in thermal equilibrium

and the χ and φ number densities evolve according to two Boltzmann equations,

a−3d(nφa
3)

dt
= Kφ({〈σi〉}, TD, nφ, nχ), (3.5)

a−3d(nχa
3)

dt
= Kχ({〈σi〉}, TD, nφ, nχ). (3.6)

The set {〈σi〉} includes all relevant cross sections, where the specific form of the kernels Kφ,χ
are described in appendix A. Solving these two Boltzmann equations requires knowledge
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Figure 6. Example Feynman diagrams corresponding to the key processes for determining the χ

relic density from the model of eqs. (3.1) and (3.2). DM freezes out when χχ→ φφ, shown to the

left, decouples. The number of hidden particles is conserved after all of the 3 ↔ 2 processes shown

in the middle decouple after time tc. The LDP can decay to the SM through the process φ→ γγ,

shown to the right.

of the scale factor dependence of TD and TSM. Two additional equations are obtained

imposing the separate conservation of the comoving entropy densities,

d(sφa
3 + sχa

3)

dt
= 0 and

d(sSMa
3)

dt
= 0, (3.7)

where sφ and sχ are given by the entropy formula in eq. (2.3). These 4 equations constitute

a closed system that can be solved numerically for a < ad. At a = ad, the thermal

equilibrium assumption that goes into eqs. (3.5) and (3.7) is no longer valid. In order to

estimate the final DM density, we modify the Boltzmann system by using the following

sudden decay approximation:

• We set nφ(a) = 0 for a > ad, dropping the nφ Boltzmann equation and using

nχ(a+
d ) = nχ(a−d ) as a boundary condition for nχ.3

• For a > ad, we set TD(a)/TD(a−d ) = a2
d/a

2 and we drop the equation enforcing the

conservation of the comoving hidden sector entropy.

• As a boundary condition for the SM entropy equation, we use sSM(a+
d ) =

2π2/45g∗SMT
3
RH, where TRH is defined in eq. (2.17).

The exact form of the system of differential equations that we solve to obtain our

numerical results is shown in appendix A. In the following three sections, we provide

an analytic understanding of the dependence of the DM relic abundance on the various

parameters of the model. The analytic formulae we are going to discuss work well when the

three timescales td, tf and tc are well separated and g∗SM can be approximated as constant

3Notice that this assumption can be justified as long as χχ→ χχ exchanges momentum efficiently.

– 12 –



J
H
E
P
1
2
(
2
0
1
6
)
0
3
9

during DM freeze-out (requiring that DM not freeze-out during the QCD phase transition,

for example).

Starting at high temperatures, TD � mχ, the number of relativistic hidden sector

degrees of freedom is g∗D = 1 + 7/8 × 2 = 2.75. If the SM and the hidden sector were in

thermal contact at very high temperatures, for instance above all the SM thresholds, this

fixes the initial condition for ξ,

ξ =
g∗SM

g∗D
≡ ξ0 ≈ 39. (3.8)

Different values for ξ are of course possible if thermal equilibrium between the two sectors

was never attained.4 We allow generic ξ to discuss various semi-analytical estimates in the

following, but fix ξ = ξ0 in all plots (unless otherwise noted).

As time evolves, the hidden sector temperature eventually drops below mφ. In the

following, we assume that this transition happens while the hidden sector is still in chemical

equilibrium. A condition analogous to eq. (2.4) therefore applies, such that the total

number of hidden sector particles is not conserved. If this is the case, as we explained

in the previous section, the hidden sector goes through an epoch of cannibalism. The

number changing processes we consider in the following are 3 → 2 reactions involving χ

and φ, for instance φφφ ↔ φφ, χφφ ↔ χφ, φφφ ↔ χχ, . . .. Typically, φφφ ↔ φφ is

the most efficient of these processes, and its decoupling sets the departure from chemical

equilibrium. Compared to the rate of φφφ ↔ φφ, the rates of 3 → 2 reactions involving

χ are proportional to |y|2 and Boltzmann suppressed by a factor e−(mχ−mφ)/T .5 For these

reasons, their effects are always subleading or negligible. While we include all the processes

in our numerical calculations (through the functions Kφ and Kχ in eq. (3.5)), our analytical

discussion focuses on φφφ ↔ φφ. The thermally averaged cross section for this process,

using the potential in eq. (3.3), is

〈σφφφ→φφv2〉 ≡ σ3 =
25
√

5λ3

3072πm5
φ

+O(TD/mφ) (3.9)

and its perturbative upper limit σmax
3 is obtained setting λ = 16π2. This cross section can

be used to calculate the temperature Tc (see eq. (2.11)) at which cannibalism ends and the

chemical era begins.

The final dark matter abundance depends on the rate of χχ → φφ annihilations.

Depending on the complex phase of the coupling y, this 2→ 2 annihilation cross section is

either s-wave or p-wave. The first case is realized if either y5A 6= 0 or yy5 6= 0. For s-wave

annihilations, taking mφ = 0 for simplicity,

〈σ(s)
χχ→φφv〉 ≡ σ

(s)
2 =

y2
5

(
y + A

8mχ

)2

16πm2
χ

+O(TD/mχ). (3.10)

4There is an upper bound on the value of ξ in the presence of a non-vanishing decay rate. SMSM →
φ processes dump entropy in the hidden sector until TSM ∼ mφ. This implies a minimal ξ of order

m2
φ/(MPΓφ) [34].

5This is true for all processes except φφφ→ χχ when 3mφ > 2mχ. In this case, while it is still true that

the rate is proportional to |y|2, there is no additional Boltzmann suppression.
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In all other cases the cross section is p-wave and, again in the mφ = 0 limit and assuming

y5 = 0 for simplicity,

〈σ(p)
χχ→φφv〉 ≡ σ

(p)
2 =

y2
(
y2 + 10

9
yA
mχ

+ 1
48

A2

m2
χ

)
128πm2

χ

× TD
mχ

+O(T 2
D/m

2
χ) (3.11)

The full expressions, including nonzero mφ and y5, are reported in appendix A.

Neglecting the finite width of φ, freeze-out of the DM number density roughly occurs

at a dark temperature Tf defined by

n̄χσ2 = H. (3.12)

Depending on whether Tc < Tf or Tf < Tc, freeze-out occurs in the cannibal or chemical

phase, respectively, changing the expectation for the relic abundance. The dependence of

the final abundance on the model parameters will be discussed in the next two sections.

Notice that in both cases, when eq. (3.12) is satisfied, both reactions χχ→ φφ and φφ→ χχ

have become inefficient: it is rare for two χs to find each other to annihilate because of

the Boltzmann suppression of their distribution and at the same time even though φs are

exponentially more numerous, the temperature is too low to allow them to annihilate into

the heavier χs. The final comoving number density is then roughly fixed by the equilibrium

value at Tf .

A completely different evolution takes place if φ decays before the χ abundance freezes

out (i.e. the one way phase). At the dark sector decay temperature Td, the rate of χχ→ φφ

annihilations is still larger than Hubble, while the inverse process, φφ→ χχ, decouples. χ

continues to annihilate and, as we show in section 3.3, the final DM abundance is smaller

than the tf < td case.

The yield in the cannibal, chemical, and one-way phase is shown in figure 7 for a

specific choice of parameters.

3.1 Cannibal dark matter review

If Tc � Tf (and Td is smaller than both), then the final DM relic abundance is well

described by a single Boltzmann equation [22]:

a−3d(nχa
3)

d log a
= −σ2

H
(n2
χ − n̄2

χ), (3.13)

where σ2 is the thermal average of the χχ → φφ cross section, which we assume to be

s−wave in the following, for simplicity. To this equation, we add equations describing

conservation of entropy (eq. (3.7)) giving the scale factor evolution of TD and TSM. Note

that eq. (3.13) is the usual freeze-out equation for a WIMP. The non-standard behavior

is the dependence of TD, and hence n̄χand H, on the scale factor. The comoving relic

abundance of χ is approximately equal to the equilibrium number density at freeze-out,

n̄χσ2 = H. (3.14)
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mχ= 1 GeV

mϕ= 0.7 GeV

Cannibal
(σ3=σmax, td>tf )

Chemical
(σ3=10-10 σmax, td>tf )

One way
(σ3=σmax, td=5⨯10-2 s)

σ2=σ0

σ2=∞

1 102 104

10-10

10-8

10-6

10-4

10-2

mχ/TSM

Y
χ

Figure 7. Examples of the DM yield, Yχ = nχ/sSM, verses inverse temperature, mχ/TSM, for

each of the phases of DM freeze-out: cannibal, chemical, and one way. The solid curves show

the behavior of the yield with the χχ → φφ cross section, σ2, fixed to the standard WIMP value

σ0 = 3×10−26 cm3/s. For comparison, the dashed curves show the yield if σ2 is taken large enough

that χ annihilations never decouple. During cannibalism, the equilibrium DM abundance scales as

Y eq
χ ∝ T

3/r−3
SM with r = mφ/mχ. For the cannibal phase, Yχ freezes out at tf . For the chemical

phase, cannibalism ends at tc and then Yχ drops exponentially with TSM until it freezes out at

tf . For the one way phase, Yχ departs from equilibrium when φ decays and then Yχ immediately

freezes out.

Using the equilibrium distribution for χ,

n̄χ(TD) = 2×
(
mχTD

2π

)3/2

e−mχ/TD , (3.15)

and the expression for Hubble as a function of TD in eq. (2.10), we obtain the expression

for the temperature at freeze-out (xf = mχ/Tf ):

(1− αr)xf ' log(h(r)mχMPσ2)− β log(xf ), (3.16)

where

h(r) ' r−1/2−β ×

{
0.3 ξ−2/3g

1/6
∗SM (ρSM > ρD)

0.2 (ρSM < ρD),
(3.17)

and α = 2/3, 1/2 and β = 7/6, 3/4 depending on whether the SM or the hidden sector

dominate the Hubble expansion at freeze-out. In order to calculate the DM yield at freeze-

out, Y f
χ = mχnχ/sSM, we plug eq. (3.16) into (3.15), obtaining

Y f
χ '

1

ξ

2

r5/2xf
×

[
xβf
h(r)

] 1−r
1−αr

(mχMPσ2)−
1−r

1−αr . (3.18)
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mχ= 1 MeV

σ3=σmax

σ3=10-12 σmax
σ2=σ0

σ2=100 σ0

0.2 0.4 0.6 0.8 1.0
10-3
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0.1

1

10

102

103

104

105

r

Ω
χ
/Ω
D
M

mχ= 100 GeV

σ3=σmax

σ3=10-12 σmax
σ2=σ0

σ2=100 σ0

0.2 0.4 0.6 0.8 1.0
10-3

10-2

0.1

1

10

102

103

104

105

r

Ω
χ
/Ω
D
M

Figure 8. Behavior of Ωχ/ΩDM as a function of r, for various choices of mχ, σ2 and σ3. The φ

decay width is such that td � tf , tc, but such that D ∼ O(1). The three regimes discussed in the

text are visible in the plot and are characterized by different slopes of the various curves. On the

leftmost portion of each curve, freeze-out happens in the cannibal phase. Depending on the various

parameters, a certain r∗ is reached such that freeze-out begins to happen in the chemical phase.

For r very close to 1, 2→ 2 freeze-out happens when 1−r < x−1
f and the comoving number density

of χ is equal to that of φ at the freeze-out of 3 → 2 annihilations. In this limit, one recovers the

behavior of ref. [11], as described in the text.

These expressions hold only in the limit in which Tf � Tc, with Tc as in eq. (2.11). In

particular, there is a maximal r beyond which the condition of eq. (2.11) is no longer

satisfied. The ratio between the rate of 3→ 2 reactions and that of 2→ 2 is exponentially

sensitive to r,
n̄2
φσ3

n̄χσ2
∝ e(mχ−2mφ)/TD , (3.19)

and for r > 1/2 a large hierarchy between σ3 and σ2 is needed for Tf � Tc to be satisfied.

The final dark matter abundance is given by

Ωχ

Ωobs
DM

≈


0.3

xf

g
1/2
∗SM

σ0
σ2

Tf
TfSM

× 1
D (ρSM > ρD)

0.3
xf

g
1/2
∗SM

σ0
σ2

T
3/2
f

ξ1/2T
3/2
fSM

× 1
D (ρSM < ρD),

(3.20)

where σ0 = 3 × 10−26 cm3s−1 is the typical WIMP freeze-out cross section, and D is a

dilution factor accounting for the entropy injection due to φ decay. All temperatures are

evaluated at freeze-out of 2 → 2. D is different from 1 only if φ is dominating the energy

density of the Universe at the time it decays. If this is the case D is calculated using the

sudden decay approximation described in section 2.1 and approximately D ≈ T SM
E /TRH,

where TE is the SM temperature when φ starts to dominate the energy density of the

universe. Eq. (3.20) shows that (neglecting D for simplicity) the thermal cross section

needed to obtain the right relic abundance is boosted by a factor corresponding to the

ratio of temperature between the dark sector and the SM at freeze-out. The behavior of

Ωχ/ΩDM, as a function of r, is shown in figure 8.
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3.2 Freezeout with a chemical potential

If Tf < Tc (still assuming Td to be much smaller than both), freeze-out of the χ number

density occurs during the chemical phase, when the total number of dark sector particles

is conserved. In particular, if Tf � Tc, an analytical understanding of the relic density is

easily obtained. The relevant Boltzmann equation for this regime is

a−3d(nχa
3)

d log a
= −σ2

H

(
n2
χ −

n2
φ

n̄2
φ

n̄2
χ

)
. (3.21)

Notice that we allow nφ 6= n̄φ, as number changing interactions have decoupled. Eq. (3.21)

is supplemented by the conditions that the total comoving number and entropy densities

are conserved for T < Tc,

(nφ + nχ)a3 ' nφa3 ' n̄φa3
∣∣
Tc

(3.22)

(sφ + sχ)a3 ' sφa3 '
mφ − µ
T

nφa
3 ' s̄φa3

∣∣
Tc
, (3.23)

where the approximate equalities assume Tc � mχ−mφ, so that the total number density

and entropy are dominated exponentially by φ. As explained in section 2, eq. (3.22) is

enforced by the introduction of the chemical potential µ,

nφ(TD) = eµ(TD)/TD n̄φ(TD), (3.24)

which can be calculated approximately using eq. (3.22),

µ(TD) = mφ

(
1− TD

Tc

)
and

TD
Tc

=
a2
c

a2
. (3.25)

The evolution of the chemical potentials of χ and φ is shown, for an example parameter

point, in figure 9.

Given the nonzero chemical potential, eq. (3.21) implies that if 2→ 2 annihilation are

still active in the chemical era, nχ = n̄cχ = nφn̄χ/n̄φ so that

n̄cχ(TD) = 2×
(
mχTD

2π

)3/2

e−mφ/Tce−(mχ−mφ)/TD , (3.26)

where mφ/Tc = x0c as in eq. (2.11). Eq. (3.21) thus reads as the standard Boltzmann

equation for a thermal relic in which n̄χ gets replaced by n̄cχ. This implies that the usual

condition for sudden freeze-out is replaced by

n̄cχ σ2 = H. (3.27)

During the chemical era, since TD ∼ 1/a2, the Hubble parameter is no longer exponentially

sensitive to the dark sector temperature, but

H(TD) ' H(Tc)×

{
TD/Tc (ρSM > ρD)

(TD/Tc)
3/4 (ρSM < ρD).

(3.28)
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Figure 9. The temperature evolution of the chemical potentials of χ and φ. When T < Tc,

φφφ↔ φφ decouples and χ and φ develop a chemical potential that encodes conservation of hidden

particle number. Initially, µχ = µφ because χχ↔ φφ is in equilibrium, but after DM annihilations

decouple, T < Tf , µχ (µφ) converges to mχ (mφ).

The freeze-out temperature obtained from eq. (3.27) reads

(1− r)xf ' log(h(r)mχMPσ2)− α log(m4
φMPσ3)− β log(xf ) + γ log(xc) (3.29)

where

h(r) ' r−1/2−β ×

{
33 ξ−1/2g

1/8
∗SM (ρSM > ρD)

103 (ρSM < ρD),
(3.30)

and α = 1/4, 1/3, β = 1/2, 3/4 and γ = 0, 3/4 depending on whether the SM or the

hidden sector dominate the Hubble expansion at freeze-out. The DM yield at freeze-out is

given by

Y f
χ '

1

ξ

2xβfx
γ−1
c

r3/2h(r)
×

(m4
φMPσ3)α

mχMPσ2
. (3.31)

We find that Y f
χ is no longer exponentially sensitive to r and it is inversely proportional

to σ2 as in the case for standard freeze-out. This behavior is shown in figure 8. Eq. (3.20)

for the final relic abundance is almost unchanged in the chemical phase

Ωχ

Ωobs
DM

≈


0.3

xf

g
1/2
∗SM

σ0
σ2

Tf
TfSM

× 1
D (ρSM > ρD)

0.3
xf

g
1/2
∗SM

σ0
σ2

T
1/2
c Tf

ξ1/2T
3/2
fSM

× 1
D (ρSM < ρD)

(3.32)

The only explicit difference with respect to the cannibal phase, eq. (3.20), occurs if freeze-

out happens during φ domination, implying that the final abundance in the chemical phase

is enhanced by a factor
√
Tc/Tf .

Note that the curves in figure 8 display a change in behavior as r approaches 1. In

this region, the approximations of eq. (3.22) are no longer valid. If mχ − mφ � Tf ,

the number density of χ is no longer exponentially suppressed with respect to that of φ,
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but nχ ' g∗χ/g∗φ × nφ. In particular this implies that the DM yield is related to the φ

yield at Tc,

Y f
χ '

g∗χ
g∗φ + g∗χ

1

xc

1

ξ
, (3.33)

which is the result of ref. [11].

3.3 Freezeout in the absence of inverse annihilations

The discussions of sections 3.1 and 3.2 assume the inequality tf � td (that is, assumed

φ decays later than DM freeze-out). A careful treatment of what happens dropping this

assumption requires solving the full integro-differential Boltzmann equation describing the

phase space distribution of φ and χ. This is beyond the scope of this work. Here we use a

sudden decay approximation, following the strategy outlined in section 3, to estimate the

final χ abundance. For related studies of the abundance of thermal relics whose annihilation

products decay, see refs. [35, 36].

There is an apparent coincidence of scales in requiring the hidden sector temperature

when φ decays, Td, to fall in between mχ and Tf , since usually mχ/Tf = O(10). Notice

however that if the hidden sector is cannibalizing, an O(1) change in the dark sector

temperature corresponds in principle to an exponential variation in Hubble and thus in the

timescale. To appreciate this one can calculate the ratio between the age of the Universe

at the end of cannibalism and the age of the Universe when TD = mχ. This rate scales

roughly as,

tc
t(TD = mχ)

'

{
10−4 × ξ−1/3(m3

φMPσ3)1/2 (ρSM > ρD)

10−4 × ξ2/3(m3
φMPσ3)1/3 (ρSM < ρD),

(3.34)

depending on whether cannibalism ends during SM or φ domination. This ratio can span

multiple orders of magnitude, and should be compared with the same quantity evaluated

for a hidden sector in equilibrium with radiation. In the latter case, the ratio goes like

(mχ/Tf )2 and so it is at most O(102). In the following we will thus only discuss the

hierarchy td � tf � tc. In principle tc � td � tf is also possible, but again requires a

careful choice for the lifetime of φ. We will thus not discuss this possibility further.

In order to calculate the final DM abundance we follow the sudden decay approximation

to the solution of the Boltzmann system. For a > ad, corresponding to the value of the

scale factor when φ decays, we set nφ = 0 obtaining the following differential equation for χ:

a−3d(nχa
3)

d log a
= −σ2

H
n2
χ. (3.35)

It is straightforward to solve this equation approximately, assuming σ2 to be constant and

nχ(ad) = n̄χ. The solution is

nχ(a) =
n̄χ(ad/a)3

1 + n̄χσ2/Γφ(1− ad/a)
, (3.36)

where we used H(td) ∼ Γφ. Notice that since we assume td � tf , we have n̄χσ2 � Γφ:

even though φφ → χχ processes are not taking place anymore, χχ → φφ are still active
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phase ρD < ρSM ρD > ρSM

cannibal D−1 Tf
TfSM

D−1
T

3/2
f

ξ1/2T
3/2
fSM

chemical D−1 Tf
TfSM

D−1 T
1/2
c Tf

ξ1/2T
3/2
fSM

one way γ
−1/2
φ

Table 1. The boost in the DM annihilation rate for each phase (cannibal, chemical, or one way),

depending on whether the energy density is dominated by the SM (ρD < ρSM) or the dark sector

(ρD > ρSM) when DM annihilations decouple at time tf . The DM annihilation rate is boosted

above the thermal WIMP value (σ0 = 3 × 10−26 cm2/s) by a multiplicative factor proportional to

the value shown in the table.

and deplete the χ abundance. This is completely different from thermal freeze-out, where

both forward and inverse processes stop being active at the same time tf , and the residual

annihilations occurring for t > tf only constitute an order one correction to the final

abundance. After a short transient eq. (3.36) becomes

nχ(a) =
Γφ
σ2

(ad
a

)3
. (3.37)

The final yield is obtained dividing the number density by the entropy density which,

using eq. (2.17), can always be written as

sSM

(
a

ad

)3

=
2π2

45
g∗SMT

3
RH ≈ 0.07 g

1/4
∗SM(ΓφMP )3/2, (3.38)

independently of whether φ is dominating or not the energy density of the Universe when

it decays. We have

Ωχ

Ωobs
DM

' 0.9

g
1/2
∗SM r γ

1/2
φ

σ0

σ2
, (3.39)

where we define γφ ≡ Γφ/H
∣∣
TSM=mφ

and we approximate g∗SM as constant. By eq. (2.16),

γφ � 1 in order for the hidden sector and the SM not to be in thermal equilibrium. This

generally implies a boosted 2 → 2 cross section to reproduce the right relic abundance.

Notice that the boost increases as Γφ gets smaller. This behavior holds until td ≈ tf ,

at which point the boost saturates and Γφ enters only through the dilution factor if φ

dominates the energy density of the Universe.

To summarize this section, the parametric form of the DM relic density is modified

in each phase (see eqs. (3.20), (3.32), and (3.39)), compared to the conventional WIMP

case of eq. (1.1). In order to match the observed relic density, the DM annihilation rate

is generically boosted above the conventional s-wave thermal WIMP value of σ0 = 3 ×
10−26 cm3/s. The parametrics of the boost factor for each phase are collected in table 1.
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4 Probing cannibal dark matter

In this section, we study the observational constraints and future reach to probe cannibal

DM. As a consequence of the out of equilibrium condition, eq. (2.16), cannibal DM is

unobservable in direct detection experiments. Astrophysical and cosmological signatures

are however possible and they stem from three characteristic features of our framework:

• a boosted dark matter annihilation rate (see table 1),

• the existence of a long lived LDP,

• a large temperature ratio between the dark sector and the SM at DM freeze-out.

Even though our discussion will take place within the model introduced in section 3, these

properties are completely general and our conclusions can easily be generalized to other im-

plementations.

In order to investigate the observational constraints and reach, we study the (mχ, σ3)

and (mχ, γφ) planes in figures 10 and 11, respectively. For each figure we study s-wave

(p-wave) annihilations for DM on the left (right). At each point in these planes, we choose

the χχ → φφ cross section, σ2, such that the DM relic density matches observation.

We find that the DM annihilation rate is generically boosted above typical value for a

thermal WIMP. In order to describe the cross section, we define multiplicative boost

factors as follows,

〈σv〉 ≈ Bs ×
(
3× 10−26 cm3/s

)
(s− wave) (4.1)

〈σv〉 ≈ Bp ×
(
1× 10−24 cm3/s

)(mχ

TD

)
(p− wave) (4.2)

Figures 10 and 11 show contours of Bs and Bp, which vary from about 1 to 75. Here we have

fixed ξ = ξ0 ≈ 39, but note that varying ξ can allow for significantly larger boost factors.

Indirect detection and CMB energy injection. DM annihilations at late times are

constrained by both Fermi, through the observation of gamma rays coming from Dwarf

Spheroidal galaxies surrounding the Milky way [37], and by CMB measurements performed

by Planck, that can constrain late time energy injection in the SM plasma affecting the

ionization history of the Universe [4]. In our case χχ→ φ(→ γγ)φ(→ γγ). For our s-wave

model we use the bounds presented in [4, 38, 39]. Constraints on late time annihilation are

typically much less stringent for p-wave annihilations.

Number of relativistic degrees of freedom. If φ decays to SM radiation after the

time of neutrino decoupling, its energy density will increase the temperature of photons

with respect to that of neutrinos, lowering Neff, the effective number of relativistic degrees

of freedom.6 Neff is constrained by CMB measurements performed by Planck [4] which

bound Neff = 3.15 ± 0.23. We also include the projected sensitivity on Neff from CMB

6In [22] the case in which φ decays to decoupled radiation, e.g. a dark photon, was studied. In that case

Neff is increased by the energy released when φ decays.
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Figure 10. Observational reach and constraints on cannibal DM for s-wave (left) and p-wave (right)

annihilations, as a function of the DM mass, mχ, and the 3φ → 2φ cross section, σ3, normalized

to the perturbativity limit σ3max. We set mφ = 0.5mχ and the φ lifetime is chosen such that

γφ ≡ Γφ/H(TSM = mφ) = 10−6. At each point in the plane we choose the χχ → φφ annihilation

rate, σ2, such that Ωχ matches the observed DM relic density. The gray contours describe the

multiplicative boost factors Bs and Bp to the DM annihilation rate, relative to the usual thermal

WIMP value, as defined in the text. The dashed black line delineates the transition between the

cannibal, chemical, and one way phases. In the upper gray region, σ3 becomes non-perturbative,

and in the lower gray region, 3φ → 2φ decouples when TD > mφ, such that the hidden sector

never undergoes cannibalism. In the red shaded region, σ2 becomes non-perturbative. The shaded

blue (green) region is excluded by Fermi (Planck) constraints on 2χ → 2φ → 4γ [4, 37–39]. The

shaded brown region is excluded by the Planck constraint on Neff [4], because φ→ 2γ heats photons

relative to neutrinos, lowering Neff.

Stage-IV experiments for which δNeff = 0.03 at 95% confidence level [43]. We find that

the present Neff bound excludes the possibility of φ dominating the energy density at the

beginning of BBN, so that the prediction of standard BBN for the abundance of helium

and deuterium are not modified (through possible nonstandard evolution of the Hubble

parameter) once the Neff bound is satisfied. In the allowed region in the right panel of

figure 10, φ decays before BBN so there is no reach from CMB-IV experiments. We also

find that once the Neff bound is satisfied, energy injection in the plasma by φ→ γγ decays

does not affect the abundance of light elements as predicted by standard BBN [44].

CMB spectral distortion. Late annihilations χχ → φφ followed by φ → γγ decay

are constrained by the shape of the phase space distribution of the CMB photons [45].

When the SM temperature drops below TDC ≈ 1 keV, double-Compton scatterings become

inefficient and the total comoving number of photons is approximately conserved. Since

Compton scatterings are still active, energy exchange between the photons is still possible

(at least down to TC ≈ 1 eV). The photons injected in the SM plasma by the residual

χχ → φ(→ γγ)φ(→ γγ) annihilations occurring for TC < TSM < TDC give rise to a non-
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Figure 11. Observational reach and constraints on cannibal DM for s-wave (left) and p-wave (right)

annihilations, as a function of the DM mass, mχ and the φ lifetime, γφ ≡ Γφ/H(TSM = mφ). We set

mφ = 0.5mχ and the φφφ → φφ cross section to σ3 = 10−4σ3max, where σ3max is the perturbative

limit. At each point in the plane we choose the χχ→ φφ annihilation rate, σ2, such that Ωχ matches

the observed DM relic density. The gray contours describe the multiplicative boost factors Bs and

Bp to the DM annihilation rate, relative to the usual thermal WIMP value, as defined in the text.

The yellow region is excluded by Lyman-α constraints on the DM free-streaming length [40, 41].

The dashed maroon curve shows the reach of PIXIE [42] to measure spectral distortions to the CMB

caused by 2χ → 2φ → 4γ. The dashed brown curve shows the reach of planned CMB Stage-IV

experiments [43] to measure a deviation to Neff because φ→ 2γ heats photons relative to neutrinos.

The remaining constraints (shaded) and reach (dashed) curves are the same as in figure 10.

vanishing chemical potential for the photon, generating a so-called µ-distortion of the CMB

spectrum [33]. The best bound on this effect was set by FIRAS to be µ < 9× 10−5 at 95%

confidence level [46]. While the current bound is never relevant to us, we include the reach

of future experiments like PIXIE, which are sensitive to sub-GeV masses, that projects

sensitivity to µ & 10−8 [42].

Free-streaming. As DM kinetically decouples from the thermal bath, it starts to freely

diffuse across the Universe. This effect suppresses matter perturbations below the so-called

free-streaming scale, defined as the comoving distance traveled by a DM particle between

the time of kinetic decoupling and the time of matter-radiation equality. In our model,

thermal decoupling for χ happens when the rate of elastic scattering, χφ→ χφ, falls below

the Hubble rate

nφ〈σel〉 < H. (4.3)

Defining T̄k as the dark sector temperature at which eq. (4.3) is realized in the limit Γφ = 0,

we calculate the kinetic decoupling temperature Tk in our setup as Tk = max(Td, T̄k). In

most of the parameter space of our model, kinetic decoupling happens when φ decays,

setting nφ = 0 in our sudden decay approximation. In this case, we can give a simple
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formula for the free-streaming length:

λfs =

∫ teq

tk

v(t)

a(t)
dt ≈ 125 Mpc vk

log(1.3T SM
k /eV)

T SM
k /eV

, (4.4)

where vk ∼
√
TDk /mχ and T SM

k are the velocity of dark matter and the temperature of the

SM, respectively, at the kinetic decoupling of the DM from its thermal bath. This free-

streaming length will generally be larger than for a regular WIMP, due to the fact that the

hidden sector underwent an era of cannibalism resulting in TDk > T SM
k and vk > vWIMP

k .

The strongest constraint on λfs comes from measurements of the Lyman-α forest spectra,

implying λfs . 0.1 Mpc [40, 41].

Each of these constraints and future reach are displayed in figures 10 and 11. We find

a sizable allowed parameter space, for each of the three phases (cannibal, chemical, and

one way), where the DM annihilation rate is boosted above the prediction for a typical

thermal WIMP. The right panel of figure 11 shows that significant parameter space can

be discovered by CMB Stage-IV measurements of Neff and PIXIE measurements of µ-

distortions. We note that it would be interesting for future studies of cannibal DM to

explore more initial conditions for ξ, to consider more SM final states beyond the 2χ →
2φ → 4γ case considered here, and to consider the case that φ decays into dark radiation

instead of the SM (as was considered for the cannibal phase in ref. [22]).

Note added. While completing this work, we became aware of ref. [47], which considers

the one way phase for the non-generic spectrum mφ ≈ mχ. They consider both the limit

tc → tφ and the ordering tc > td.
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A Boltzmann equations

As explained in the text, our sudden decay approximation requires us to solve two different

systems of Boltzmann equations depending on whether t < td or t > td, where td is defined

as td ≡ H−1 = Γ−1
φ . For t < td we have

a3H
dnφa

3

d log a
= Kφ, a3H

dnχa
3

d log a
= Kχ, (A.1)

and an equation for the entropy conservation in the dark sector

a3H
d(sφ + sχ)a3

d log a
= 0. (A.2)
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Starting from the phase space distribution of a particle species in thermal equilibrium in

the hidden sector,

fX(p, TD) = eµX(T )/TDeE(p)/TD =
nX(T )

n̄X(T )
eE(p)/TD , (A.3)

the associated entropy density is given by

sX =

∫
d3p

(2π)3
fX(p)(1− log fX(p)) =

ρX − µXnX
TD

+ nX , (A.4)

where ρX and nX have their usual definitions. Using eq. (A.4), the two entropy conservation

equations in the first line of eq. (A.2) can be turned into an equation for the evolution of

the dark sector temperature as a function of the scale factor.

The two kernels in eq. (A.1) are obtained by integrating the appropriate Boltzmann

equation

KX =
∑∫

dΠXdΠa . . . dΠā . . .× (2π)4δ(4)(pX + pa + . . .− pā + . . .) (A.5)

× SX |MXa...→ā...|2 × [fXfa . . .− fā . . .],

where dΠ = d3p/[2E(2π)3] and the sum is over all the reactions involving X. The factor

SX is a symmetry factor that counts the number of identical X particles in the initial

state. The various squared matrix element in eq. (A.5) are averaged over initial and final

state quantum numbers; furthermore they include the appropriate symmetry factor for all

identical initial and final state particles. The kernels KX can be rewritten as

KX =
∑

∆XγXa...→ā...

(
nX
n̄X

na
n̄a

. . .− nā
n̄ā

. . .

)
, (A.6)

where γXa...→ā... is the rate per unit volume of the Xa . . .→ ā . . . reaction

γXa...→ā... = SX

∫
(dΠX f̄X)(dΠaf̄a) . . .

∫
dΠā . . . (2π)4δ(4)(pX+ . . .−pā+ . . .)|MXa...→ā...|2,

(A.7)

and ∆X counts by how many units the process Xa . . . → ā . . . changes the number of X

particles. The reaction rates are typically written in terms of thermally averaged cross

sections as

γXa...→ā... ≡ 〈σXa...→ā...vn〉n̄X n̄a . . . (A.8)

where n = 1 for 2 → 2 reactions and n = 2 for 3 → 2 ones. The only 2 → 2 process we

include in our calculation is χχ → φφ. Among the various 3 → 2 ones, the only relevant

ones are φφφ→ φφ and φφφ→ χχ.

Neglecting subleading corrections of order T/mχ,

〈σχχ→φφv〉 ≈
y2

5

√
1− r2

128πm2
χ

[
4y(4− r2) + aφr(2− r2)

8− 6r + r4

]2

(A.9)
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for s-wave and

〈σχχ→φφv〉≡
T

mχ
σ0≈

T

mχ

√
1−r2

128πm2
χ

[
3a2

φr
2

(4−r2)2
+

8aφy r(20−13r2+2r4)

(4−r2)(2−r2)2
+

16y2(9−8r2+2r4)

(2− r2)4

]
(A.10)

for p-wave. We defined aφ = A/mφ. Notice that for r = 1, the cross sections vanish

spuriously. In this limit, the corrections of order T/mχ to the thermal average cannot

be neglected. Keeping these subleading corrections, the averaged cross sections become

suppressed by a factor
√
T/mχ in the 1− r � T/mχ limit. We keep the full T dependence

in our codes.

For the 3→ 2 processes, we have

〈σφφφ→φφv2〉 ≈
25
√

5a2
φ(a2

φ + 3λ)2

331776πm5
φ

, (A.11)

and

〈σφφφ→χχv2〉 ≈ 9(y2 + y2
5)r2 − 4y2

221184πr11m5
χ

[
48y2 − 16aφyr − (λ+ 12(y2 + y2

5)− a2)r2
]2√

1− 4
9r2 .

(A.12)

Eq. (A.12) only holds if 3mφ − 2mχ � T . We use the full thermal average in our code.
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