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1 Introduction

The effects of double parton scattering (DPS), i.e. the scattering with two partons of a

hadron participating in the hard subprocess, are usually expected to be small in comparison

to a single parton scattering contribution. However, at very high energies the effect of

multiple parton interactions increases and presents an important part of the total cross

section, see e.g. [1–3]. It is known that DPS processes can form strong background for

Higgs searches [4, 5], as well as, be dominant channel for particular reactions, e.g. in the

double Drell-Yan process p+ p → W+ +W+ [6]. Therefore, the practical interest to DPS

processes is constantly increasing.

From the theoretical side, the DPS processes are studied rather weakly. One of the

reasons is the cumbersome kinematic structure of DPS. The double parton distributions

(DPDs), the analogs of parton distribution functions for DPS, are functions of many vari-

ables: two momentum fractions and three transverse coordinates (or one transverse co-

ordinate in the integrated case), say nothing of dependencies on two factorization scales.

Additionally, DPDs have reach polarization and color structure, and even the leading order

factorization formula for unpolarized and integrated double Drell-Yan involves more than

dozen presumably independent DPDs [7, 8]. Nonetheless, during recent years there was sig-

nificant progress in the theoretical understanding of DPS processes, due to the formulation

of appropriate factorization theorems [7–9].

Apart from increased number of various functions, the DPS factorization theorems

resemble the factorization formula for transverse momentum dependent (TMD) processes,

see e.g. [10]. It is not accidental since the dominant field modes are the same for TMD pro-

cesses and DPS processes. This analogy grants the possibility to re-use the TMD experience

during consideration of DPDs. For example, at NLO all the evolution properties for DPDs

can be presented via corresponding evolution properties of TMD distributions [7, 8, 11].

In this work, we concentrate on the study of DPS soft factors, which are essential

part of DPS factorization theorems. Soft factors represent the underlying interaction of

soft gluons and contain the mixture of rapidity divergences related to both hadrons. This

substructure should be decomposed into the parts with rapidity divergences belonging to a

given hadron. Only after such decomposition a finite, i.e. meaningful, parton distributions

can be defined. Naturally, the decomposition introduces the rapidity parameter. The

anomalous dimension for the rapidity parameter scaling also can be deduced from the soft

factor. Therefore, the study of the soft factor is an important part of the study of DPS

factorization theorems.

At NLO the soft factors are nearly trivial objects. This order is given by single gluon

exchange diagrams only. Therefore, DPS soft factors at NLO scatter into NLO TMD

soft factors [7, 8]. At NNLO many non-trivial aspects of perturbative expansion arise.

The most important one is that simultaneous interaction of several Wilson lines becomes

possible, and thus, one can expect highly interesting dynamics. However, the difficulty of

consideration also grows. For example, the properties of TMD soft factor, although known

for a long time, have been explicitly demonstrated at NNLO only recently [12].

– 2 –



J
H
E
P
1
2
(
2
0
1
6
)
0
3
8

The soft factors for DPS are rather involved objects composed of four half-infinite light-

like cusps of Wilson lines positioned at four different points in the transverse plane and

connected in all possible ways. Consideration of such an object within a usual diagrammatic

is a serious calculation problem, mostly due to confusing combinatoric of the color flow. The

structure of perturbative series is exceptionally simplified within the generating function

approach for web diagrams, formulated in [13, 14]. Within this approach, one should

calculate the generating function, which is unique for a given geometry (in the case of

TMD-like soft factors, the only important point is two light-like directions). Various matrix

elements such as TMD soft factor, DPS soft factors, are obtained by a projection operation

on the generating function. In this way, the usually difficult diagrammatic combinatoric is

reduced to a couple of lines of simple algebraic manipulations.

One of the most attractive features of the generating function approach is an effi-

cient organization of the expression. In particularly, it allows to avoid the calculation of

whole sectors of diagrams, showing their equivalence with lower perturbative orders. As we

demonstrate in this work, the consideration of the generating function at NNLO immedi-

ately shows the possibility to present any DPS soft factor in terms of TMD soft factors at

this order. This fact is not trivial, since the NNLO expression contains products of TMD

soft factor, but does not contain new functions. On the level of diagrams it implies that

diagrams in particular combinations cancel each other, while in other combinations scatter

into one-loop integrals. To find such combinations can be a tricky task, but they reveal

automatically within the generating function approach.

In this paper we demonstrate that at NNLO DPS soft factors are given by a simple

combination of TMD soft factors. Having at hands DPS soft factors at NNLO we study the

structure of rapidity divergences and present the rapidity evolution equations at NNLO.

It appears that some important results can be obtained without referring to expressions

for diagrams. For example, the factorization of rapidity divergences for DPD soft factor at

NNLO appears to be direct consequence of the rapidity factorization for TMD soft factor.

We also perform the explicit calculation within the δ-regularization scheme [12] and confirm

the results of the general analysis. The expression for the NNLO generating function for

web diagrams presented here for the first time can be also used in other applications.

In the section 2 we review the derivation of factorization formula for double Drell-Yan

process following articles [7–9, 15, 16]. This section is mostly needed to introduce the

compact notation and necessary details about DPS soft factors. In the section 3.1 we give

a short introduction to generating function approach for web diagrams. In sections 3.2

and 3.3 we discuss the details of evaluation of the generating function for DPS soft factors

at NLO and NNLO, respectively. The particular form of projecting operators for DPS soft

factors is given in section 3.4. In sections 3.5, 3.6, 3.7 we perform the projection operations

and obtain the expression for DPS soft factors in terms of TMD soft factors. The origin

of the simple structure of DPS soft factors is discussed in 3.6. In section 4 we discuss the

influence of NNLO expression on the DPS factorization theorem. In particular, we show

the factorization of rapidity divergences and define individual DPDs in section 4.1. The

rapidity evolution equations at NNLO are given in section 4.2. The consideration is done

in the most general case of unintegrated DPS. The important case of integrated DPS is

obtained from these results and presented in the section 5.
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Technical details of the evaluation are collected in the set of appendices. In the ap-

pendix A we compare our notation with the notation used in [7] and [8]. The explicit

expressions for diagrams, as well as, their analysis are given in appendix B. The expres-

sions for basic loop integrals that participate in the generating function are collected in

appendix C.

2 Factorization of double parton scattering

In this section we review some aspects of the double parton scattering factorization. The

main aim of this section is to introduce notation and make connections with previous works.

The consideration presented here is very superficial, and is an extraction from [7–9, 15, 16],

to which we refer for the proofs. To get access to the leading order factorized cross-

section we use the SCET II technique. The consideration is in many aspects similar to

the consideration of Drell-Yan process at moderate transverse momentum [8, 10, 17–19]

(the so-called TMD factorization). Within this context, our main attention is devoted to

the geometry of the double-parton scattering and to the color flow. Thus, we skip many

important questions of DPS redirecting the reader to the literature [7–9, 15, 16].

2.1 Leading order factorization for double-Drell-Yan

The cross-section of double Drell-Yan process is given by the following matrix element [7, 8]

dσ

dX
= dσ̂{µ}

∫
d4z1,2,3e

iq1·(z1−z4)eiq2·(z2−z3) (2.1)

〈P1P2|T̄{J†µ4(z4)J
†µ3(z3)}T{Jµ2(z2)J

µ1(z1)}|P1P2〉,

where dσ̂{µ} is a leptonic tensor and Jµ ∼ q̄γµq is the quark-to-vector boson current.

Throughout the text an index enclosed in curly brackets denotes the set of indices of the

same kind, e.g. here dσ̂{µ} = dσ̂µ1µ2µ3µ4 . As usual, we define two light-like vectors n

and n̄ along the largest components of P1 and P2 correspondingly, with n · n̄ = 1. The

vector decomposition reads vµ = nµv− + n̄µv+ + vµ, where v are transverse components

(P1 = P2 = 0) and v2 > 0. The phase-space element dX denotes the complete phase-space

of produced bosons, i.e.

dX = dx1dx̄1dq1 dx2dx̄2dq2 = s−2dq21dY1dq1 dq22dY2dq2,

with xi = q+i /P
+
1 , x̄i = q−i /P

−
2 (in the reference frame), s = (P1 + P2)

2 is center-mass-

energy and Yi = ln(q+i /q
−
i )/2 is the rapidity of produced boson. The large components

of momenta are q+i ∼ q−i ∼ P+
1 ∼ P−

2 ∼ Q, where Q is a generic large scale. One of the

coordinates, say z4, can be set to zero due to translation invariance, but we keep it explicit

for homogeneity of notation and for later convenience. Also in the following we often use

the shorthand notation for set of arguments (b1, b2, b3, b4) as b1,2,3,4 (the order indices is

important). In the following, although we introduce the notation convenient for our study,

we try to be close to the notation and normalizations of [15].

Integrated double Drell-Yan process attracts even more practical interest. The inte-

grated cross-section has the phase-space element dX = dx1dx̄1 dx2dx̄2. It can be obtained

– 4 –
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from the unintegrated cross-section (2.1) by the integration over the transverse momenta

q1,2. Consequently the expressions for the integrated anomalous dimensions, soft factors

and over elements can be obtained from the unintegrated ones. In the following sections

we consider only the general case of unintegrated kinematics. The expressions for the

integrated case are collected in the section 5.

Following the SCET II factorization procedure we consider the quark field in the back-

ground gluon field, separating soft and collinear modes [17, 20–22],

qaj (z) = W aa′

n [z,−∞]ξa
′

n,j(z) +W aa′

n̄ [z,−∞]ξa
′

n̄,j(z), (2.2)

q̄aj (z) = ξ̄a
′

n,j(z)W
a′a
n [−∞, z] + ξ̄a

′

n̄,j(z)W
a′a
n̄ [−∞, z],

where a, a′ are color indices, j is spinor index, W aa′
n [z1, z2] is a (soft) Wilson line from the

point z1 to z2, and field ξn is the “large” component of quark field along vector n. The

explicit definition of Wilson line is

Wn[z1, z2] = P exp

(
−ig

∫ z2

z1

dxnµAa
µ(x)t

a

)
. (2.3)

The relation inverse to (2.2) is obtained by applying corresponding “large-component”

projector

ξan,j(z) = W̃ aa′

n [z,−∞]Pn
jj′q

a′

j′ (z), (2.4)

and similar for anti-quark and n̄ components. Here Pn = γ+γ− is the projector in n-

direction. The Wilson line W̃ has the same formal definition as W , but instead of soft

gluons it consists of collinear ones.

Substituting the field decomposition (2.2) into the matrix element (2.1) one obtains a

large set of terms. The central point of the SCET approach is that at the leading order

of factorization and in the absence of Glauber interaction (which has been proved in [9]),

the field ξ does not interact with soft-gluons, and soft-gluon can be split up into separate

matrix element. Then the cross-section is presented in the form

dσ

dX
= dσ̂{ij}

∫
d4z1,2,3e

iq1·(z1−z4)eiq2·(z2−z3)
∑

v̄i,vi=n,n̄

(2.5)

×〈P1P2|T̄{ξ̄a4v̄4,j4ξ
b4
v4,i4

(z4)ξ̄
a3
v̄3,j3

ξb3v3,i3(z3)}T{ξ̄
a2
v̄2,j2

ξb2v2,i2(z2)ξ̄
a1
v̄1,j1

ξb1v1,i1(z1)}|P1P2〉
×〈0|T̄{Λa4b4

v̄4v4(z4)Λ
a3b3
v̄3v3(z3)}T{Λ

a2b2
v̄2v2(z2)Λ

a1b1
v̄1v1(z1)}|0〉+ . . . ,

where we extract the Lorentz structures from currents and absorb them into the tensor

σ{ij}. The symbol Λ denotes a light-like cusp of half-infinite Wilson lines located at posi-

tion z,

Λab
v1v2(z) = W ac

v1 [−∞, z]W cb
v2 [z,−∞]. (2.6)

Note, that Λab
vv(z) = δab. The dots in (2.5) denote the terms suppressed by powers of

s [21, 22]. The hard matching coefficients of the vector currents to SCET fields are hidden

inside the function σ{ij}. The separation of the hard part introduces the renomalization
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scales µ’s for each hard sub-process. In the following hard renormalization scales are taken

equal to µ for brevity.

The further consideration is based on the following assumptions that are correct at the

leading order of factorization in the region Λ2
QCD ≪ q21 ∼ q22 ≪ s [7, 8, 10, 17, 21]:

• Soft radiation does not resolve collinear scales, therefore, soft Wilson lines can be

expanded at light-cone origin, Λ(z) → Λ(b), where b is the transverse component of z;

• The “large” components of quark fields couple only to the hadron with corresponding

momentum, i.e. ξn couples to hadron P1, while ξn̄ couples to hadron P2;

• The “large” component of the quark field does not resolve the scales in the perpendic-

ular direction, therefore, it can be expanded in that direction, i.e. ξn(z) → ξn(0, z
−, b).

Using these assumptions one can compute the leading contribution to double-Drell-Yan

process. The factorized expression contains various terms with usual parton distributions,

double-parton-distribution and combination that mix with each other within the operator-

product expansion (see [23] for the leading order analysis). The separation of these terms

from each other is an involved procedure (for theoretical development see [7, 16, 23, 24]).

In this article we are interested in the study of soft factors responsible only for multi-

parton scattering. Therefore, we skip the discussion on the mixture between various matrix

elements and consider only the DPS contribution.

The DPS part of the cross-section corresponds to terms with simultaneous radiation

of two distinct partons from the hadron. Applying leading order factorization restrictions

to expression (2.5) and extracting the DPS contributions we obtain

dσ

dX

∣∣∣
DPS

= dσ̂{ij}

∫
d2b1,2,3e

−iq1·(b1−b4)e−iq2·(b2−b3)

[
(2.7)

F b1b2a3a4
qq,{ij} F̄ a1a2b3b4

q̄q̄,{ij} S
{ab}
↑↑↓↓ + F a1a2b3b4

q̄q̄,{ij} F̄ b1b2a3a4
qq,{ij} S

{ab}
↓↓↑↑

F b1a2b3a4
qq̄,{ij} F̄ a1b2a3b4

q̄q,{ij} S
{ab}
↑↓↑↓ + F a1b2a3b4

q̄q,{ij} F̄ b1a2b3a4
qq̄,{ij} S

{ab}
↓↑↓↑

Ib1a2a3b4
qq̄,{ij} Īa1b2b3a4

q̄q,{ij} S
{ab}
↑↓↓↑ + Ia1b2b3a4

q̄q,{ij} Īb1a2a3b4
qq̄,{ij} S

{ab}
↓↑↑↓

]
,

here we have suppressed arguments of functions for brevity. The functions S are soft factors

and given by expressions

S
{ab}
•1•2•3•4(b1, b2, b3, b4) = 〈0|T̄{Λa4b4

•4 (b4)Λ
a3b3
•3 (b3)}T{Λa2b2

•2 (b2)Λ
a1b1
•1 (b1)}|0〉, (2.8)

where • =↓= n̄n, and • =↑= nn̄ (note, that order of arguments and indices of the function

S is opposite to their order in the matrix element, i.e. graphical). The “arrow” notation

is the visual representation of color-flow between light-cone infinities, i.e. if one writes

all indices related to n∞ as down indices and all indices related n̄∞ as up indices, the

arrows indicate the order of connection, see figure 1. The functions F are double parton

– 6 –
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Figure 1. Graphical representation of contributions into the DPS factorization formula (2.7). The

first terms in lines of (2.7) are presented. The out-going (incoming) to blobs fermion line represents

quark (antiquark) field ξ (ξ̄). The double-lines represents the soft Wilson lines.

distributions (DPDs) and given by expressions

F b1b2a3a4
qq,{ij} (x1,2, b1,2,3,4) ≃

∫
dz−1,2,3e

x1P
+
1 (z−1 −z−4 )eix2P

+
1 (z−2 −z−3 ) (2.9)

×〈P1|T̄{ξ̄a4n,j4(z4)ξ̄
a3
n,j3

(z3)}T{ξb2n,i2(z2)ξ
b1
n,i1

(z1)}|P1〉
∣∣∣
z+i =0

,

F b1a2b3a4
qq̄,{ij} (x1,2, b1,2,3,4) ≃

∫
dz−1,2,3e

ix1P
+
1 (z−1 −z−3 )eix2P

+
1 (z−2 −z−4 ) (2.10)

×〈P1|T̄{ξ̄a4n,j4(z4)ξ
b3
n,i3

(z3)}T{ξ̄a2n,i2(z2)ξ
b1
n,j1

(z1)}|P1〉
∣∣∣
z+i =0

,

Ib1a2a3b4
qq̄,{ij} (x1,2, b1,2,3,4) ≃

∫
dz−1,2,3e

ix1P
+
1 (z−1 −z−4 )eix2P

+
1 (z−2 −z−3 ) (2.11)

×〈P1|T̄{ξb4n,j4(z4)ξ̄
a3
n,i3

(z3)}T{ξ̄a2n,j2(z2)ξ
b1
n,i1

(z1)}|P1〉
∣∣∣
z+i =0

.

The similarity sign implies possible normalization factor, which depends on the spinor

structure. The distributions F̄ are obtained by changing components ± → ∓, n → n̄, and

hadron states P1 → P2, e.g.

F̄ a1a2b3b4
qq,{ij} (x̄1,2, b1,2,3,4) ≃

∫
dz+1,2,3e

ix̄1P
−

2 (z+1 −z+4 )eix2P
−

2 (z+2 −z+3 ) (2.12)

×〈P2|T̄{ξ̄b4n̄,j4(z4)ξ̄
b3
n̄,j3

(z3)}T{ξa2n̄,i2(z2)ξ
a1
n̄,i1

(z1)}|P2〉
∣∣∣
z−i =0

.

The visual representation of the terms in cross-section (2.7) is given in figure 1, it also

illustrates the “arrow” notation for soft factors.

The following steps of classification consist in the Fiertz decomposition of spinor and

color structures. As a result of this procedure one gets a large set of various DPDs with

different polarization properties [7, 8, 25]. However, the details of Lorentz structure are

inessential for the study of soft factor, while the color structure should be considered in

details.

In fact, the factorization theorems (2.7), (5.1) are not complete, in the sense that

they consist of individually singular objects (DPDs and soft factors). They suffer from

rapidity divergences, and are not entirely defined. Moreover, the soft factors mix the

– 7 –
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rapidity divergences related to different sectors of integration. The standard procedure

implies that a soft factor can be presented as a product of factors with rapidity divergences

from different momentum sectors. Then combining these factors with appropriate parton

distributions one defines an “individual” parton distribution, which is finite and can be

used in the phenomenology. Generally, it is unclear (although always implied) whenever it

is possible or not to perform the rapidity-factorization procedure and define non-singular

DPDs. In the section 4 we demonstrate that such procedure can be done at least at NNLO.

2.2 Color decomposition

The color structure of factorized expressions (2.7), (5.1) is rather cumbersome. The no-

tation introduced in (2.7)–(2.11) specially visualizes the color flow. The indices a and b

denote the color adjusted to the antiquark and quark respectively. The subindex of color

index designates the position of field in transverse plane (see figure 1). In this way, the

SU(Nc) gauge transformation transforms DPD such that it is left with respect to indices

a and right with respect to indices b. For example,

F b1b2a3a4
qq,{ij} → Ub1b′1

(b1)Ub2b′2
(b2)F

b′1b
′

2a
′

3a
′

4

qq,{ij} U †
a′3a3

(b3)U
†
a′4a4

(b4), (2.13)

where all matrices U are located at light-cone infinities. Consequently, the soft factor

transforms in conjugated way by eight matrices U .

In a non-singular gauge the transformation at light-cone infinites can be reduced to

unity. In this way, DPDs and soft factors are gauge invariant objects independently. How-

ever, there is the global SU(Nc) rotation of quarks that still transform DPDs. Since global

SU(Nc) is a symmetry of QCD, the DPD matrix elements select only the singlet contribu-

tions. There are two singlets in 3̄⊗ 3̄⊗ 3⊗ 3 that can be extracted as following

F b1b2a3a4
qq =

δb1a4δb2a3
N2

c

F 1

qq +
2tAb1a4t

A
b2a3

Nc

√
N2

c − 1
F 8

qq, (2.14)

F b1a2b3a4
qq̄ =

δb1a4δb3a2
N2

c

F 1

qq̄ +
2tAb1a4t

A
b3a2

Nc

√
N2

c − 1
F 8

qq̄, (2.15)

Ib1a2a3b4
q̄q =

δb1a3δb4a2
N2

c

I1

q̄q +
2tAb1a3t

A
b4a2

Nc

√
N2

c − 1
I8

q̄q, (2.16)

here we use the normalization for singlet parts suggested in [7], which is different from

the normalization used in [8]. The singlet parts of conjugated distributions are defined in

similar manner. Substituting these expressions into (2.7), (5.1) we obtain

dσ

dX

∣∣∣
DPS

= dσ̂{ij}

∫
d2z1,2,3e

−iq1·(z1−z4)e−iq2·(z2−z3)
1

N2
c

[
(2.17)

Fqq,{ij}S↑↑↓↓F̄q̄q̄,{ij} + Fq̄q̄,{ij}S↓↓↑↑F̄qq,{ij}

Fqq̄,{ij}S↑↓↑↓F̄q̄q,{ij} + Fq̄q,{ij}S↓↑↓↑F̄qq̄,{ij}

Iq̄q,{ij}S↑↓↓↑Īqq̄,{ij} + Iqq̄,{ij}S↓↑↑↓Īq̄q,{ij}
]
,

– 8 –
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where the DPDs F and I are 2-component vectors F = {F 1, F 8}, and soft factors are 2×2-

matrices, which explicit form we present later. The notation (2.17) implies the presentation

of F̄ as a “column”, while F as a “row”. This defines the order of matrix multiplication

in the following sections.

Before we proceed to the definition of soft-factor matrices, let us discuss the symmetries

of components. The obvious symmetry of a soft factor is the exchange of Λ’s order under

the sign of T-ordering. It implies

Sa1b1,a2b2,a3b3,a4b4
•1,•2,•3,•4 (b1, b2, b3, b4) = Sa2b2,a1b1,a3b3,a4b4

•2,•1,•3,•4 (b2, b1, b3, b4)

= Sa1b1,a2b2,a4b4,a3b3
•1,•2,•4,•3 (b1, b2, b4, b3). (2.18)

As the consequence of the Lorentz invariance, the directions n and n̄ can be exchanged

within the soft factor independently of the rest expression. Therefore, a soft factor is equal

the soft factor with all arrows turned upside-down,

S
{ab}
•1,•2,•3,•4(b1, b2, b3, b4) = S

{ab}
•̄1,•̄2,•̄3,•̄4(b1, b2, b3, b4), (2.19)

where •̄ =↓ (↑) for • =↑ (↓). Due to these symmetries the soft factors are related to each

other. There are only two independent matrices S↑↓↑↓ and S↑↑↓↓ (as discussed later these

two soft factors are also related by (2.34)). The rest soft factors are expressed as

S↓↑↓↑(b1, b2, b3, b4) = S↑↓↑↓(b1, b2, b3, b4), (2.20)

S↓↓↑↑(b1, b2, b3, b4) = S↑↑↓↓(b1, b2, b3, b4), (2.21)

S↑↓↓↑(b1, b2, b3, b4) = S↑↓↑↓(b1, b2, b4, b3), (2.22)

S↓↑↑↓(b1, b2, b3, b4) = S↑↓↑↓(b2, b1, b3, b4). (2.23)

The soft factor matrix has four components, the Wilson lines of which are connected

either by δ’s, or by SU(Nc) generators. In turn, the product of generators tAtA can be

expressed as products of δ’s using Fiertz identities. For practical reasons, it is convenient

to consider the products of Wilson lines contracted by δ’s only. There are five independent

structures that can appear

S[1](b1, b2, b3, b4) =
1

N2
c

Sab,cd,ba,dc
↑↓↑↓ (b1, b2, b3, b4), (2.24)

S[2](b1, b2, b3, b4) =
1

N2
c

Sab,ba,cd,dc
↑↓↑↓ (b1, b2, b3, b4), (2.25)

S[3](b1, b2, b3, b4) =
1

N2
c

Sab,cd,dc,ba
↑↑↓↓ (b1, b2, b3, b4), (2.26)

S[4](b1, b2, b3, b4) =
1

Nc
Sab,ca,dc,bd
↑↓↑↓ (b1, b2, b3, b4), (2.27)

S[5](b1, b2, b3, b4) =
1

Nc
Sab,cd,da,bc
↑↓↓↑ (b1, b2, b3, b4). (2.28)

A visual representation of these soft-factors is given in figure 2. The normalization is chosen

such that at the leading perturbative order all soft factors are unity,

S[i](b1, b2, b3, b4) = 1 +O(as). (2.29)
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Figure 2. Graphical representation of independent components contributing to DPS soft fac-

tor (2.24)–(2.28). Lines with arrows represent Wilson lines. The dashed lines show the index

conraction.

The topology of the components is different, so the components S[1,2,3] form two Wilson

loops, while S[4,5] are single Wilson loops.

Further simplification of the structure can be made using features of the soft factor

geometry special for the Drell-Yan process. The Wilson lines in the matrix element (2.8)

are all positioned on the past light cone. Therefore, the distance between any two fields

within (2.8) is space-like (or light-like if fields belong to the same Wilson line). It allows

to rewrite the T-ordered product of Wilson lines as a usual product of Wilson lines, using

the micro-causality relation. However, it is more convenient to organize Wilson lines as a

single T-ordered product. We have

S
{ab}
•1•2•3•4(b1, b2, b3, b4) = 〈0|T{Λa4b4

•4 (b4)Λ
a3b3
•3 (b3)Λ

a2b2
•2 (b2)Λ

a1b1
•1 (b1)}|0〉. (2.30)

Such presentation is distinctive feature of Drell-Yan kinematic, and is not possible for, say,

double semi-inclusive deep-inelastic scattering (SIDIS).

The representation (2.30) suggests higher symmetry of soft factor. Namely, the argu-

ments can be freely exchanged preserving the topology of color-connection. Therefore, we

need to conciser only soft-factors of different topology: a single Wilson-loop (we choose

S[4]), and a double Wilson-loop (we choose S[1]). The rest are related to the chosen in the

following way

S[2](b1, b2, b3, b4) = S[1](b1, b4, b3, b2), (2.31)

S[3](b1, b2, b3, b4) = S[1](b1, b3, b2, b4), (2.32)

S[5](b1, b2, b3, b4) = S[4](b1, b3, b2, b4). (2.33)

We also find that the soft factor S↑↓↓↑ can be expressed via S↑↓↑↓ as

S↑↑↓↓(b1, b2, b3, b4) = S↑↓↑↓(b1, b3, b2, b4). (2.34)

Therefore, we can consider only the case of S↑↓↑↓, while the results for other channels can

be obtained by permuting vectors bi.
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Using the symmetries of soft factor (2.18)–(2.19) and the notation for independent

components (2.24), (2.27), we present the 2× 2-matrix S↑↓↑↓ in the form

S↑↓↑↓ =




S[1](b1,3,4,2)
S[4](b1,2,3,4)− S[1](b1,2,3,4)√

N2
c − 1

S[4](b1,2,3,4)− S[1](b1,2,3,4)√
N2

c − 1

N2
c S

[1](b1,4,3,2)+S[1](b1,2,3,4)−2S[4](b1,2,3,4)
N2

c−1


 . (2.35)

Here, for compactness we use the shorthand notation for the argument

S(bi,j,k,l) = S(bi, bj , bk, bl). The rest of the soft factor matrices can be obtained

via (2.20)–(2.23), (2.34). At the leading order of perturbation theory soft factor matrices

reduces to identity matrices

S•1•2•3•4(b1, b2, b3, b4) =

(
1 0

0 1

)
+O(as). (2.36)

3 Evaluation of soft factors

3.1 Generating function for web diagrams

The straightforward evaluation of functions S[i] requires a calculation of many diagrams,

most of which are equivalent under permutation of parameters and change of color factors.

Such a consideration would be very inefficient and contains many potential places for a

mistake. A more effective approach is to evaluate the generating function for web diagrams,

which is common for all soft factors, and project out the appropriate soft factor. The

theoretical description of the approach can be found in [13, 14]. In this section we describe

only the basics of generating function approach needed for this particular calculation.

The generating function approach is based on the well-known fact that the perturba-

tive series for vacuum average of some operator sources is an exponent of the connected

diagrams. This property immediately leads to exponentiation theorem for Wilson lines

for Abelian gauge theories [13]. For a non-Abelian gauge theories one has an additional

difficulty coming from the necessity to disentangle the color structure. The disentangling

can be done in the general form [14]. In this way, one sees that significant part of diagrams

that appear in the usual perturbation expansion (as well as, in the classical Wilson loop

exponentiation diagrammatic [26, 27]) are composed of the smaller-loop diagrams.

The power of the generating functions approach is that evaluated ones the generating

function can be easily used to obtain the perturbative expression for any color topology.

Therefore, the generating function that we present later can be used to obtain all DPS

soft factors (2.24)–(2.28), as well as, TMD soft factor and soft factors for multi parton

scattering with six, and more operators Λ. Moreover, the approach allows one to consider

the exponentiated expression directly in the matrix form.

The starting point of the construction is to carry out the color structure of the Wilson

line. The effective way to do so is to introduce the “scalar-reduction” of a Wilson line
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connecting points x and y [14]

Wn[x, y] = e
tA ∂

∂θA eθ
AV n

A [x,y]
∣∣∣
θ=0

, (3.1)

where tA is a gauge-group generators, θA are c-number variables, and V is functional of

gauge fields. The particular form of V needed for our calculation is given in (3.4), while the

general form can be found in [13, 14]. In this expression the matrix structure is carried by

the first exponent in the product. The first exponent does not contain any fields and thus,

does not participate in the function integration. The Wilson line flowing in the opposite

direction can be presented in the form

Wn[y, x] = (Wn[x, y])
† = e

−tA ∂

∂θA eθ
AV n

A [x,y]
∣∣∣
θ=0

, (3.2)

where we have used that operator V is anti-hermitian V † = −V .

Within the considered task, we have a simple geometry of Wilson lines. All of them

are straight (along n or n̄), and continue from bi to infinity (or in opposite direction). Let

us enumerate these segments by number j (for DPS soft factor j = 1, . . . , 8). The j’th

Wilson line can be presented in the form

W
rj
vj [bj , vj∞] = e

rjt
A ∂

∂θA
j eθ

A
j V j

A(vj ,bj)
∣∣∣
θ=0

, (3.3)

where vj =(n or n̄), the variable rj denoted the direction rj = 1(−1) if the color flow to

(from) light-cone infinity. The operator V , which discribes a half infinite Wilson-line is

given by [14]

V i
A(vi, bi) = −igvµi

∫ ∞

0
dσAA

µ (bi − viσ) (3.4)

+i
g2

2
fABCvµi v

ν
i

∫ ∞

0
dσ

∫ σ

0
dτAB

µ (bi − viσ)A
C
ν (bi − viτ) +O(g3).

In the following we omit the arguments of operator V for brevity. The functional V is

an infinite series of path-ordered gauge field commutators. Here we truncate the series

at g2 order which is enough for NNLO calculation. The functionals V have many nice

properties within the perturbation theory, especially, for light-like paths (see [14]). We use

these properties for extra check of loop-calculation.

Using the expression (3.3) we obtain the following expression for a generic soft factor

〈0|T{Λa1b1
• (b1) . . .Λ

anbn
• (bn)}|0〉 (3.5)

=

(
e
−tA ∂

∂θA1 e
tB ∂

∂θB2

)a1b1

. . .

(
e
−tA ∂

∂θA2n−1 e
tB ∂

∂θB2n

)anbn

〈0|e
∑

j θ
A
j V j

A |0〉
∣∣∣
θ=0

,

where we explicitly write all color indices. The right-hand-side of expression (3.5) is a

product of the color projector and the colorless matrix element.

In the case of a Wilson loop it is natural to rename the indices j such that they are

ordered along the Wilson loop. The color projection operator in this case has especially
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Figure 3. Diagram contributing to the leading order of generating function.

simple form of P-ordered exponent of derivative operators, a discrete analog of Wilson line,

e
r1tA

∂

∂θA1 . . . e
rntA

∂

∂θAn
Wilson loop−−−−−−−→ TrP exp


∑

j

rjt
A ∂

∂θAj


 , (3.6)

where P-ordering is made with respect to index j. In the case of double Wilson loop the

projector is product of two traces

e
r1tA

∂

∂θA1 . . . e
rntA

∂

∂θAn
double W.l.−−−−−−−→ TrP exp


∑

j∈L1

rjt
A ∂

∂θAj


TrP exp


∑

j∈L2

rjt
A ∂

∂θAj


 , (3.7)

where subsets L1 and L2 of indices j are separately ordered along the first and the sec-

ond loops.

The matrix element on the right-hand-side of (3.5) can be presented as

〈0|e
∑

j θ
A
j V j

A |0〉 = eW [θ], (3.8)

where W is the generating function for web diagrams. It is given by the sum of amplitudes

W [θ] =
1

2

∑

j1j2

θAj1θ
B
j2〈V

j1
A V j2

B 〉+ 1

3!

∑

j1j2j3

θAj1θ
B
j2θ

C
j3〈V

j1
A V j2

B V j3
C 〉+ . . . , (3.9)

where 〈O〉 is the connected part of the vacuum expectation value of the operator O. We

have dropped the term linear in θ since it does not contribute in light-like kinematics. The

dots denote the matrix elements with higher number of V . The first dropped contribution

is ∼ V 4, which is of order g6 and hence NNNLO.

To obtain the expression for a soft factor we need to evaluate the correlator of two

and three operators V at g4 order. The different soft factors are obtained by application

of different the color-projection operator.

3.2 Generating function at order g2

In this section we discuss the evaluation of generating function at order g2 in details. The

calculation is almost trivial but we use it for the clarification of notation. Since V ∼ g,

only the correlator of two operators V contributes at g2 order. It is given by a single shown

in figure 3.

The soft factor diagrams contain rapidity divergences. To regularize them we use the δ-

regularization scheme as it is defined in [12]. Roughly speaking, the δ-regularization consists

in the multiplication of every gluon field A(σn) within a Wilson line by the exponent factor
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e−δσ. So the gluon field is forced to zero at light-cone infinity. The positive infinitesimal

parameters δ are different for n- and n̄− infinities, δ+ and δ− respectively.

The Feynman rule for a single-gluon interaction with operator V A
i is given by

δ

δAA
µ (k)

V B
i θBi

∣∣∣
Aµ=0

=
gvµi θ

A
i e

ik·bi

ki + iδi
, (3.10)

where ki = (vi · k), δi = δ+(δ−) for vi = n(n̄) and the momentum is incoming to vertex.

The expression for diagram shown in figure 3 is

DiagA = θAi θ
A
j vijg

2

∫
ddk

(2π)d
−ieikbij

(ki + iδi)(−kj + iδj)(k2 + i0)
, (3.11)

where vij = (vi · vj), bij = bi − bj .

The following observations are useful also for many two-loop diagrams.

• The loop integrals are invariant under separate change of sign for transverse and

light-like components. Therefore, the (overall) sign in the exponent(s) is irrelevant.

• The diagram is proportional to vij , which is zero if both vi and vj along the same

direction. Therefore, under the sign of integral we can set i = n and j = n̄ without

loss of generality. In this way, the loop-integral is independent on the vectors vi and

vj , while this dependence is given solely by the prefactor vij .

Using these observations we combine terms of the generating function at g2 into very

simple form

W [θ] =
as
2

∑

ij

θAi θ
A
j vijK

(0)(bij), (3.12)

where as = g2/(4π)2 is QCD perturbative parameter. The explicit expression for K(0) is

presented in (C.1).

The transverse distances bij within the perturbative expansion of soft factors are for-

mally unrestricted. However, for the large values of bij the logarithm contributions in (3.12)

became large, and violate the convergence of the perturbative series. Therefore, practically

the values of bij should be restricted as as(µ) ln(b
2
ijµ

2) < 1.

3.3 Generating function at order g4

The diagrams contributing to the generating function at NNLO are presented in figure 4.

In many aspects the calculation repeats the one loop calculation and details are presented

in appendix B. To evaluate the diagrams one needs the Feynman rules for the radiation of

two gluon from the effective vertex. It is

δ2

δAB1
µ1 (k1)δA

B2
µ2 (k2)

V A
i θAi

∣∣∣
Aµ=0

= ifAB1B2θAi
g2

2

(
1

k2i + iδi
− 1

k1i + iδi

)
vµ1
i vµ2

i ei(k1+k2)bi

k1i + k2i + 2iδi
,

(3.13)

where all momenta are incoming to vertex.
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Figure 4. Diagrams contributing to the generating function at next-to-leading order.

Let us write the general form for the generating function at NNLO. It can be found

from the symmetries of matrix elements. First, due to the global SU(Nc) symmetry a

matrix element 〈V A
i . . . V B

j 〉 is proportional to the invariant SU(Nc) tensors only. Second,

a matrix element 〈V A
i . . . V B

j 〉 is invariant under permutation of operators V . And finally,

due to the Lorentz invariance and power counting the functions W can have the scalar

products vij only as a prefactor. Combining together these observations the generating

function at NNLO can be parametrized in the terms of two functions

W [θ] =
as
2

∑

j1,j2

θAj1θ
A
j2Wj1,j2 +

a2s
3!

∑

j1j2j3

ifABCθAj1θ
B
j2θ

C
j3Wj1j2j3 +O(a3s), (3.14)

where

Wij = vijW [bij ], (3.15)

Wijk = vijvikW [bij , bik, bjk]. (3.16)

We also confirm this form by direct calculation presented in appendix B. Note, that at

NNNLO the structure of the generating function is reacher. It contains a term proportional

to dABC and various terms of the form fABαfαCD and fABαdαCD.

The evaluation of diagrams contributing toW [b] is nearly in one-to-one correspondence

with the evaluation of similar diagrams in the case of TMD soft-factor made in [12]. The

explicit expression for functions W within the δ-regularization are

W [b] = K(0)(b) + as

[
CA

2

(
I ′′A(b)−

(K(0)(b))2

4
+ 2(2IC1(b) + IC2(b))−

4

ǫ
K(0)(b)

)

− (CA(5− 3ǫ)− 2Nf (1− ǫ))
2Γ(2− ǫ)Γ(−ǫ)Γ(1 + ǫ)

Γ(4− 2ǫ)
K(ǫ)(b) (3.17)

−1

ǫ

(
5

3
CA − 2

3
Nf

)
K(0)(b)

]
+O(a2s),

W [b1, b2, b3] = J(b1, b2) + 2R(b2, b3) +O(as), (3.18)

where base loop-integrals are given in appendix C. One can see that the complete NNLO

expression for generating function contains only five basis integrals K(a), I ′′A, IC1, IC2, J

and R, that are given in (C.1), (C.3), (C.4), (C.5), (C.6), (C.9). These loop integrals can

be compared and agree the loop integrals evaluated in [12].
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3.4 Action of projection operator

As it was shown any soft factor with topology of a single Wilson loop can be obtained by

the action of operator (3.6) on the generating function (3.14). The result of the action reads

SL =
1

Nc
TrPe

∑
j rjt

A ∂

∂θA
j eW [θ]

∣∣∣
θ=0

= exp

{
asCF

∑

j1<j2

rj1rj2Wj1j2 (3.19)

+a2s

(
−CFCA

2

)∑

j

[
1

4
W 2

j1j2 + rj1rj2rj3W{j1j2j3} +

+
1

2
(rj1rj3Wj1j2Wj2j3 + rj2rj3Wj1j2Wj1j3 + rj1rj2Wj1j3Wj2j3)

+rj1rj2rj3rj4Wj1j3Wj2j4

]
+O(a3s)

}
,

where sums over j are strictly ordered, i.e. j1 < j2 < . . . < jn. Here and later, we

use notation CF = (N2
c − 1)/2Nc and CA = Nc where it is convenient. To derive the

expression (3.19) we have used that Wij = Wji and that r2j = 1. The curly brackets on

the indices of the third term denote the anti-symmetrization over permutation of indices

(with 1/3! prefactor). One can see that the color factors which appear in the exponent

corresponds to the color-connected parts of diagrams, in accordance of the exponentiation

theorem for a Wilson loop [26, 27].

The topology of the double Wilson-loop (composed of loops L1 and L2) is described by

the projection operator (3.7). Applying (3.7) on the generating function (3.14) we obtain

1

Nc
TrPe

∑
i∈L1 rit

A ∂

∂θA
i

1

Nc
TrPe

∑
j∈L2 rjt

A ∂

∂θA
j eW [θ]

∣∣∣
θ=0

= SL1SL2 × (3.20)

exp

{
a2s

(
CFCA

2
− C2

F

)∑

i,j

[
1

2
W 2

i1j1 + ri1rj1rj2Wi1j1Wi1j2 + ri1ri2rj1Wi1j1Wi2j1

+ri1ri2rj1rj1(Wi1j1Wi2j2 +Wi1j2Wi2j1)

]
+O(a3s)

}
,

where SL1 and SL2 are soft factors evaluated on a single loop and defined in (3.19), and

indices i and j belong to loops L1 and L2, respectively, and are strictly ordered along

loops. The last two lines of (3.20) represent the interaction of Wilson loops. The leading

order of between-loops interaction is given by double-gluon exchange, and, thus, is NNLO

in coupling constant.

The expression for double Wilson loop topology (3.20) can be easily generalized for

the case of arbitrary number of Wilson loops, because at NNLO only two Wilson loops can

simultaneously interact with each other. Denoting the interaction between loops L1 and

L2 (given in the last two lines of (3.20)) as SL1L2 we obtain

1

Nc
TrPe

∑
i∈L1 rit

A ∂

∂θA
i . . .

1

Nc
TrPe

∑
j∈Ln rjt

A ∂

∂θA
j eW [θ]

∣∣∣
θ=0

=
∏

n

SLn

∏

n<k

SLnLk +O(a3s).

(3.21)
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3.5 TMD soft factor

Before we proceed further it is instructive to calculate the TMD soft factor. Within the

δ-regularization the TMD soft factor has been evaluated at NNLO in [12], and successfully

used for description of TMD parton distributions and TMD fragmentation functions at

NNLO in [29, 30]. Recently, TMD soft factor has been evaluated at NNLO in the rapidity

regularization [31].

The TMD soft factor (in Drell-Yan kinematics) is given by the following matrix element

STMD = 〈0|T{Λab
↑ (b)Λba

↓ (0)}|0〉. (3.22)

In this case the index j runs from 1 to 4 and the parameters of the TMD soft factor are

rj = (−1)j+1, bj = {b,0,0, b}. (3.23)

Evaluating the expression (3.19) with these parameters we obtain

lnSTMD = σ(b) = 2CFas (W (b)−W (0)) + CFCAa
2
s (W (b,0, b)−W (0, b, b)) (3.24)

−CFCA

4
a2s

(
3W 2(b)− 4W (b)W (0) +W 2(0)

)
+O(a3s).

To present (3.24) in such a form, we have used that

W (−b) = W (b), W (−b1, b2, b3) = W (b1,−b2,−b3) = W (b1, b2, b3). (3.25)

These relations follow from the expressions of loop integrals (B.11). Generally speaking,

these symmetries are presented only at NNLO, but they are not crucial for further de-

velopment and used only for visual simplification of the result. Substituting the explicit

expressions for loop integrals into (3.24) we have checked that result (3.24) coincides with

one presented in [12].

3.6 Soft factor S[4]

Let us consider the soft factor S[4]. We choose the enumeration of Wilson segments such

that it starts at the point indicated in figure 2 as b1, and follows the arrows of color flow.

Therefore, we have rj = (−1)j+1, and

bj = {b1, b2, b2, b3, b3, b4, b4, b1}. (3.26)

Evaluating the formula (3.19) with these parameters we obtain an expression in terms of

functions W (3.15), (3.16). Considering this expression one can recognize the entries in

the form of (3.24). It appears that the soft factor S[4] can be conveniently written via the

TMD soft factor only. In terms of the function σ introduced in (3.24) the soft factor S[4]

is remarkably simple

lnS[4] = σ(b12)− σ(b13) + σ(b14) + σ(b23)− σ(b24) + σ(b34) +
CA

4CF
(σ(b13) (3.27)

−σ(b14)− σ(b23) + σ(b24))(σ(b12)− σ(b13)− σ(b24) + σ(b34)) +O(a3s).

To derive it we have used relations (3.25).
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Figure 5. Top and bottom diagrams of type A and B have the same expression and color factor but

different signs due to the orientation of Wilson lines and, thus, cancel each other. Top and bottom

diagrams of type C have same expression, but different signs due to the orientation of Wilson lines,

different signs of color factors and, thus, sum together.

An additional check is granted by the fact that setting two subsequent Λ’s at the same

point we obtain the TMD soft-factors. Namely,

S[4](b1, b2, b2, b4) = STMD(b14), (3.28)

S[4](b1, b2, b3, b1) = STMD(b23), (3.29)

S[4](b1, b1, b3, b4) = STMD(b34), (3.30)

S[4](b1, b2, b3, b3) = STMD(b12). (3.31)

One can see that there are no direct three-lines correlations at this order. The multi-line

correlation appears only as a product of pairwise interactions (the second line in (3.27)).

In fact, this is a general feature of multi-particle soft factors and can be seen on the

diagram level. Let us describe this effect at NNLO, although some part of statements can

be generalized to arbitrary order.

At NNLO one has only two topologies of diagrams that connect three Wilson line.

They are shown in figure 5. Every such diagram has a partner that is “reflected” upside-

down (compare top and bottom diagrams in figure 5). The loop-integrals for pairs of

such diagrams are the same, due to Lorentz invariance. However, the difference between

diagrams can appear because of the different color connection and directions of Wilson

lines. It is clear that the “reflected” diagrams necessary have opposite general sign due to

the direction of Wilson lines, i.e. the combination rirjrk changes sing under the “reflection”.

If three Wilson lines belong to different Λ’s (see diagrams A and B in figure 5) then the

“reflected” diagrams have the same color factor. Therefore, the diagrams that connect

three different Λ’s cancel each other. For the diagrams that connect two Λ’s (see diagrams

C in figure 5) the color factor also (together with the general sign) changes the sign under

“reflection”, and thus, these diagrams doubled in the final result. Therefore, the diagrams

that connect three Λ’s drop from the soft factors. As consequence DPS soft factor can be

expressed in via TMD soft factors only.
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The discussed cancellations are not transparent within a usual diagrammatic. The

diagrams of type B in figure 5 are not presented in the usual diagrammatic. Instead there

is a set of diagrams with two gluons connected to the Wilson line in different orders. The

corresponding “reflected” diagrams have different loop-integrals, and cannot be directly

compared. To perform comparison one should split these diagrams to symmetric (that

part reduces to one-loop integrals) and anti-symmetric parts (that part is irreducible). The

effective vertex V2 represents the anti-symmetric contribution. This contribution cancels

in the sum of mirrored diagrams. The symmetric combination is reducible and reveals

after the action of projection operator. Therefore, the generating function approach is an

effective tool for consideration of many Wilson lines configurations.

3.7 Soft factor S[1]

Let us consider the soft factor S[1]. We start the enumeration for the first loop from the

point indicated in figure 2 as b1, and for the second loop from the point indicated as b3.

Therefore, we have rj = (−1)j+1, and ri = (−1)i+1, and

bi = {b1, b4, b4, b1}, bj = {b3, b2, b2, b3}. (3.32)

Evaluating expression (3.20) with these parameters, with accordance of discussion given in

the previous section, we obtain expression in the terms of the TMD soft factor only. Using

the function σ introduced in (3.24) we obtain

lnS[1] = σ(b14) + σ(b23) +
1

2

(
CA

2CF
− 1

)
(σ(b12)− σ(b13)− σ(b24) + σ(b34))

2 +O(a3s).

(3.33)

An additional check is granted by the fact that setting two subsequent Λ’s at the same

point we obtain the TMD soft-factor. Namely,

S[1](b1, b2, b2, b4) = STMD(b14), (3.34)

S[1](b1, b2, b3, b1) = STMD(b23). (3.35)

Substituting the expressions (3.27) and (3.33) for components S[1,4] in to the ma-

trix (2.35), we obtain the explicit expression for S↑↓↑↓. The rest soft factors are obtained

by the permutation of arguments as discussed in the section 2.2. We have checked that at

NLO these expressions coincides with ones calculated in [7].

4 DPS soft factors and separation of rapidity divergences

4.1 Recombination of rapidity divergences

As we have discussed in section 2, the factorization formula (2.17) is incomplete, in the

sense, that the collinear matrix elements F and soft-factor contain rapidity divergences.

To complete the factorization formula and to construct a well-defined DPDs one has to dis-

entangle rapidity divergences of n− and n̄-soft Wilson lines of the soft factor. These diver-

gences recombine with the divergences arising in corresponding collinear matrix elements.
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This procedure is very intuitive in the case of TMD factorization, let us briefly remind

it. Within δ-regularization, the TMD soft factor (3.24) is strictly linear in ln(δ+δ−)

σ(b) = A(b) ln

(
µ2

δ+δ−

)
+B(b). (4.1)

The variables δ+ and δ− regularize the rapidity divergences in n and n̄ direction, respec-

tively. The same regulator appears in n− and n̄− collinear matrix elements, such that the

cross-section is finite. Schematically, the TMD cross-section can be written as

dσ ∼ F sub

(
δ+

P+

)
× S

(
µ2

δ+δ−

)
× F̄ sub

(
δ−

P−

)
. (4.2)

Here the superscript sub denotes the collinear matrix element with subtracted overlap

modes (zero-bin subtraction). Due to the linearity of soft factor in ln(δ+δ−) one can easily

separate divergences in δ+ from divergences in δ−,

σ(b) = σ+(b) + σ−(b), σ±(b) =
A(b)

2
l± +

B(b)

2
, (4.3)

where

l± = ln

(
µ2

(δ±/P±)2ζ±

)
,

and ζ+ζ− = (P+
1 P−

2 )2 ∼ Q4. Combining the parts of the soft factor with collinear matrix

elements we obtain a well-defined “individual” TMD [28]

dσ ∼ F (ζ+)× F̄ (ζ−), (4.4)

where F (ζ±) = exp(σ±)F sub. The function F is rapidity divergences free. The procedure

schematically presented here can be formulated as a kind of “rapidity renormalization”,

for the detailed description see [29–32].

The DPS cross-section has a matrix structure (compare (4.2) and (2.17)). Therefore,

the rapidity factorization procedure has to be done in the matrix form. In other words

DPS soft factor should be factorized onto the product of matrices with the appropriate

rapidity divergences. It implies the following expression

S

(
ln

(
µ2

δ+δ−

))
= sT (l+) · s(l−), (4.5)

where s is 2× 2-matrix, and superscript T denotes matrix transposition. To complete the

DPS factorization formula the decomposition (4.5) should hold at all order of perturbation

theory. However, with our current calculation we can check it only at NNLO. Using explicit

expression for the matrix S at NNLO (2.35), (3.27), (3.33) we obtain

s↑↓↑↓(l
−) = exp

(
σ−
11

σ−
18

σ−
81

σ−
88

)
, (4.6)
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where

σ−
11

= σ−(b14) + σ−(b23),

σ−
18

=

(
X1 +

1√
N2

c − 1

)
(σ−(b12) + σ−(b34)) +

(
X2 −

1√
N2

c − 1

)
(σ−(b13) + σ−(b24))

−(X1 +X2)(σ
−(b14) + σ−(b23)),

σ−
81

=

(
−X1 +

1√
N2

c −1

)
(σ−(b12) + σ−(b34)) +

(
−X2 −

1√
N2

c −1

)
(σ−(b13) + σ−(b24))

+(X1 +X2)(σ
−(b14) + σ−(b23)),

σ−
88

=
N2

c − 2

N2
c − 1

(σ−(b12) + σ−(b34)) +
2(σ−(b13) + σ−(b24))

N2
c − 1

− σ−(b14) + σ−(b23)

N2
c − 1

.

Here we use a shorthand notation

X1 =
N2

c

4(N2
c − 1)3/2

(B(b13)−B(b14)−B(b23) +B(b24)) ,

X2 =
N2

c

4(N2
c − 1)3/2

(B(b14)−B(b12)−B(b34) +B(b23)) .

It is important to note, that there is a freedom in the decomposition (4.5) and in the

definition of matrix (4.6). We have used that freedom to make diagonal terms pure func-

tions of σ±.

4.2 Evolution with rapidity parameter

The decoupling of rapidity divergences gives rise to the dependence on rapidity parameter

ζ. The evolution equations with respect to the rapidity parameter are generally known

as CSS equations (Collins-Soper-Sterman) [33]. Having at hands the soft factor one can

extract the anomalous dimensions for the rapidity evolution (rAD). Let us remind this

procedure in the case of TMD factorization.

The complete definition of a TMD contains several factors. The composition of these

factors could be different within different formulations, compare e.g. [10, 18, 19, 32]. How-

ever, the final result for “observables” i.e. anomalous dimensions and coefficient functions, is

independent on a scheme. It has been recently confirmed at NNLO by direct calculations in

different schemes [30, 31, 34]. Here we use the formulation based on δ-regularization [12, 30].

Within δ-regularization a TMD reads

F (ζ−) = Z(ζ−)S
1/2(l−)

F unsub(δ−/p−)

S(l−)
, (4.7)

where we drop all arguments except the argument related to rapidity parameters. The

factor Z is the ultraviolet renormalization constant, which is dependent on ζ via cusp-

logarithms, but δ-independent. The factor S1/2 is the part of the soft factor that comes from

the cross section after the procedure of rapidity divergences separation (4.2), (4.3), (4.4).

The soft factor in the denominator is the zero-bin subtractions [22, 35], which are equal

to the soft factor in the δ-regularization. Finally, F unsub is the TMD matrix element, that
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depends on δ only. In the products of these factors the regularization parameter δ cancels,

and the TMD is rapidity-divergences-free. Then according to the definition of rAD

dF (x, b; ζ, µ)

d ln ζ
= −D(b, µ)F (x, b; ζ, µ), (4.8)

one has

D(b, µ) = −1

2

d lnS(l−)

dl−
− d lnZ(ζ)

d ln ζ
. (4.9)

The last term consists of terms that are divergent in ǫ. It is needed only for the cancellation

of ǫ-divergences in the first term. Therefore, one can consider only the first term with all

ǫ-divergences dropped, and thus, can obtain rAD solely from the soft factor. Substituting

the expression for the TMD soft factor (4.3) we obtain

D(b, µ) = −A(b)

2

∣∣∣∣∣
f.p.

, (4.10)

where the mark f.p. denotes the selection of finite part in ǫ. Substituting the explicit

expressions (3.17), (3.18) into (3.24), (4.3), (4.10) we obtain the well-known result

D(b, µ) = 2as(µ)CFΓ1L(bµ) (4.11)

+a2s(µ)CF

(
Γ1β0L

2(bµ) + 2Γ2L(bµ) + CA

(
404

27
− 14ζ3

)
− 56

27
Nf

)
+O(a3s),

where Γ1 = 1 and Γ2 = CA

(
67
9 − π2

3

)
− 10

9 Nf are coefficients of the cusp anomalous

dimension, β0 = 11
3 CA − 2

3Nf is LO QCD β-function, and L(bµ) = ln(b2µ2e2γE/4). This

coefficient can be found in many papers, see e.g. the collection of formulae in [30]. Recently,

rAD has been evaluated at NNNLO in [36].

In the case of DPS the TMD scheme can be used with minimal changes. We should

only take care of the matrix structure of DPD. The analog of expression (4.7) in DPD

case is

F̄ (ζ−) = Z(ζ−)s(l
−)S−1(l−)F̄ unsub(δ−/p−), (4.12)

where S−1 is the inverse matrix of soft factor responsible for zero-bin subtractions, s is

defined in (4.5), and Z is the ultraviolet renormalization matrix. The order of matrices is

essential and follows from the scheme of divergence recombination [30]: the rapidity diver-

gences are canceled prior to the ultraviolet renormalization and the zero bin subtraction

are the part of DPD matrix element.1 The order we set matrices in the expression (4.12)

corresponds to our definition of F̄ as a “column”. For the DPD F ,which is a “row”, the

whole composition should be transposed.

1The composition can be somewhat simplified within the “rapidity renormalization group” approach [32].

In this case, one does not need the zero-bin subtractions, and hence rAD can be directly related to matrix

s. The final result of both approaches is the same.
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Defining the rAD matrix in the similar way

dF̄ (x1,2, b1,2,3,4; ζ, µ)

d ln ζ
= −D(b1,2,3,4, µ)F̄ (x1,2, b1,2,3,4; ζ, µ), (4.13)

we obtain

D(b1,2,3,4, µ) = −dZ(ζ)

d ln ζ
Z−1 + Z(ζ)

d(sT (l−))−1

dl−
sT (l−)Z(ζ) =

d(sT (l−))−1

dl−
sT (l−)

∣∣∣∣∣
f.p.

.

(4.14)

To obtain the last equality we have commuted the matrix Z to the right and dropped

singular in ǫ terms.

It appears, that the expression for the rAD matrix can be found without referring to

explicit expressions for loop integrals. Substituting the matrix σ− in the form (4.6) into

the equation (4.14), we obtain the expression which consists entirely of function A in the

form (4.10). Therefore, the rADs for DPDs can be expresses via the TMD rAD (4.11)

Dqq̄(b1,2,3,4, µ) = Dq̄q(b1,2,3,4, µ) (4.15)

=




D(b14) +D(b23)
D(b12)−D(b13)−D(b24)+D(b34)√

N2
c−1

D(b12)−D(b13)−D(b24)+D(b34)√
N2

c−1

N2
c−2

N2
c−1

(D(b12) +D(b34)) +
2(D(b13)+D(b24))−D(b14)−D(b23)

N2
c−1


,

where we drop the argument µ from the function D for brevity. The rADs for Fqq,

Fq̄q̄, as well as, for Iqq̄ and Iq̄q can be obtained by permutation of vectors b according

to (2.20)–(2.23), (2.34)

Dqq(b1, b2, b3, b4) = Dq̄q̄(b1, b2, b3, b4) = Dqq̄(b1, b3, b2, b4), (4.16)

DI
qq̄(b1, b2, b3, b4) = DI

q̄q(b1, b2, b3, b4) = Dqq̄(b1, b2, b4, b3). (4.17)

There are some elementary checks of these expressions. First of all, these expressions do not

contain δ-dependence, it cancel in the product of matrices (4.14). Second, the matrices D

are symmetric matrices (although the matrix s is not), it implies that DPDs F and DPDs

F̄ evolve by the same equations, which in turn is the requirement of Lorentz invariance.

The final result for the rADs at NNLO is the same (in pattern) as at the NLO [7].

In this way, the only difference from the result for NLO rapidity evolution given in [7], is

that TMD rAD D should be taken at NNLO. This conclusion is very natural since any

three Wilson line correlations disappear. However, this pattern does not hold at NNNLO

where correlations of four Wilson lines appear. These correlators do not cancel in the sum

of diagrams and give rise to a new “quadrupole” contribution.2

2In the recent paper [37] the NNNLO expression for the rapidity anomalous dimension D has been

obtained, using the conformal correspondence between rAD and the soft anomalous dimension. The NNLO

expression for rAD indeed contains the quadrupole contributions, together with the TMD rAD.
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5 Expressions for integrated kinematics

In this section we collect the results for the integrated double-parton scattering. All pre-

sented results are obtained by from the expressions of the previous sections.

The integrated double-Drell-Yan cross-section is obtained from the integrated one (2.7)

by the integration over momenta q1,2. In the regime Λ2
QCD ≪ s the factorized expression is

dσ

dX

∣∣∣
DPS

= dσ̃{ij}

∫
d2y

[
f b1b2a3a4
qq,{ij} f̄a1a2b3b4

q̄q̄,{ij} S
{ab}
↑↑↓↓(y) + fa1a2b3b4

q̄q̄,{ij} f̄ b1b2a3a4
qq,{ij} S

{ab}
↓↓↑↑(y) (5.1)

f b1a2b3a4
qq̄,{ij} f̄a1b2a3b4

q̄q,{ij} S
{ab}
↑↓↑↓(y) + fa1b2a3b4

q̄q,{ij} f̄ b1a2b3a4
qq̄,{ij} S

{ab}
↓↑↓↑(y)

Ib1a2a3b4q̄q,{ij} Īa1b2b3a4qq̄,{ij} S
{ab}
↑↓↓↑(y) + Ia1b2b3a4qq̄,{ij} Īb1a2a3b4q̄q,{ij} S

{ab}
↓↑↑↓(y)

]
,

where phase-space element is dX = dx1dx̄1 dx2dx̄2 = s−2dq21dY1 dq22dY2. The integrated

DPDs are related to unintegrated as

f(x1,2,y) = F (x1,2,y,0,0,y), I(x1,2,y) = I(x1,2,y,0,0,y), (5.2)

where we drop all indices for brevity, and functions F (x1,2, b1, b2, b3, b4) are defined in

equations (2.9), (2.10), (2.11). Note, that integrated DPDs F and I have essentially dif-

ferent structure. The DPDs F have quark-antiquark pair created at the same traverse

coordinate, which effectively represents a gluon creation. The DPDs I have a quark-quark

pair created at the transverse distance. It is reflected in the very different structure of soft

factor (5.4)–(5.5).

The integrated soft factors are

S(y) = S(y,0,0,y), (5.3)

where we drop all indices for brevity, and functions S(b1, b2, b3, b4) are defined in equa-

tion (2.8). Important to note that the relations (5.2), (5.3) are formal relations. The

singularity structures on the left- and right-hand sides of equations (5.2), (5.3) are differ-

ent. To properly match the singularities the limit b → 0 should be performed before the

removal of regulator.

Contrary to the usual intuition for single Drell-Yan processes, the integrated soft factor

matrices are not unity matrices. Correspondingly the integrated DPS contains the rapidity

divergences, which are associated with vector y (5.1). The transverse vector y is not

observable, and intrinsic for the factorization formula (5.1).

The soft factors in the integrated case can be obtained from the unintegrated ones by

the relation (5.3). Using that σ±(0) = 0 we find

S↑↓↑↓(y) = S↓↑↓↑(y) = S↑↑↓↓(y) = S↓↓↑↑(y) = exp

(
0 0

0 CA

CF
σ(y)

)
, (5.4)

S↑↓↓↑(y) = S↓↑↑↓(y) = exp




2σ(y) 2σ(y)√
N2

c−1
2σ(y)√
N2

c−1
2N2

c−3
N2

c−1
σ(y)


 . (5.5)
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Naturally integrated soft factors are expressed via the TMD soft factor. The matrices s

are obtained by replacing σ(y) → σ−(y), i.e.

s(l−) = S[σ−]. (5.6)

The relations (5.4)–(5.5) must hold to high orders of perturbation theory and, in fact,

represents the so-called Casimir scaling for a Wilson loop (i.e. expressions for Wilson loop

of different representations differ only by the overall Casimir eigenvalue). Indeed, gluing

together Λ in 88 element we obtain a single Λ in the adjoint representation, or TMD soft

factor in the adjoint representation. However, it is possible that at four- or higher loop

order this relation would be violated by the cubic Casimirs terms.

The anomalous dimension matrices for the integrated case are obtained by the same

procedure as for integrated. Considering (4.14) with soft factors (5.4)–(5.5) we obtain

Dqq(y) = Dq̄q̄(y) = Dq̄q(y) = Dqq̄(y) =

(
0 0

0 CA

CF
D(y)

)
, (5.7)

DI
qq̄(y) = DI

q̄q(y) =




2D(y) 2D(y)√
N2

c−1
2D(y)√
N2

c−1
2N2

c−3
N2

c−1
D(y)


 . (5.8)

One can see that the same expression can be obtained from (4.15)–(4.16) if we assume

D(0) = 0.

6 Conclusion

We have considered the soft factor for the leading order factorization formula of the double

parton scattering (DPS) in the perturbative regime (such that ln(b2Q2) is not large, where

b is any transverse separation within the soft factor). We have shown that at NNLO the

soft factors are expressed entirely via the soft factor for transverse momentum dependent

(TMD) factorization. This simplification happens due to the exact cancellation of the non-

trivial part of three-Wilson lines interaction, while the trivial part of the three-Wilson line

interaction can be presented via the pairwise interaction. Therefore, the DPS soft factor,

that is generically a function of four transverse vectors, at NNLO reduces to products of

simple functions of a single variable.

Using the fact that the logarithm of TMD soft factor is a linear function of rapidity

divergence the DPS soft factor matrix can be split into a product of matrices that contain

only the rapidity divergences in appropriate sectors (4.5). Adjusting the matrices to the

unsubtracted double parton distributions (DPDs)(in other words, singular DPDs) we define

DPDs that are free of rapidity divergences. It validates the DPD factorization theorem

at NNLO. Using explicit expression for the soft factor matrices we extract the expressions

for the rapidity anomalous dimension (rAD) matrices. At NNLO, the rAD matrices are

expressed via rAD for TMD distributions (4.15), (5.8). It appears that the expression

for NNLO rAD follows the pattern of NLO expression with the only substitution of the

two-loop anomalous dimension. Such simple pattern of DPS soft factor does not hold at
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higher orders. Starting from the NNNLO new functions appear. These functions represent

the simultaneous interaction of four Wilson lines (quadrupole terms).

To express the DPS soft factor via TMD soft factors we used the generating function for

web diagrams [13, 14]. This is the first application of the method to a previously unknown

object. This calculation shows high efficiency of the generating function approach. In fact,

to obtain many results one does not need any explicit expression for diagrams but only the

symmetry properties of Wilson lines which became transparent in the generating function

approach. Using explicit expression for the generating function in the δ-regularization

(presented in appendix B) we confirm the results of [12]. As a side result, we present

the generating function for web diagrams at NNLO for Wilson lines with two light-like

directions, which can be used to obtain any matrix element of Wilson lines with similar

geometry, e.g. a soft factor for multi-parton scattering.

The presented calculation has been done in the Drell-Yan kinematics. In this case,

all Wilson lines of the soft factor can be collected in the single T-ordered product. This

trick reduces the number of diagrams and simplifies the calculation. In the case of Wil-

son lines pointing in different time directions (e.g. double semi-inclusive deep-inelastic

scattering (SIDIS) kinematics), one should additionally consider the diagrams with real-

gluon-exchange. However, we do not expect any special contribution from these diagrams

at NNLO. The point is that the TMD soft factor is the same in both kinematics. This

property is known as the universality of the TMD soft factor, see [12, 38]. Therefore, we

conclude that the DPD soft factor is also universal at least at NNLO.

We stress that relations between DPD soft factors and TMD soft factors are based

on the geometry of the construction and color algebra only. Therefore, the results of the

article are independent of the regularization scheme (although we imply some basic “good”

properties of a regularization, such as non-violation of the exponentiation theorem).
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A Relation between normalizations

There are several sets of notations used for DPDs. We write the explicit relation of DPDs

considered in this work to those introduced in [8] and in [7]. Since we did not consider

the Lorentz structure we leave it hidden and discuss only the color decomposition and the

order of transverse arguments.
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In ref. [8] only the integrated kinematics is considered. The color decomposition has

different normalization (see equation (56)). We found

F 1(z⊥) = F 1(z⊥,0,0, z⊥), F T (z⊥) =

√
N2

c − 1

2Nc
F 8(z⊥,0,0, z⊥), (A.1)

where F is DPD of any quark configuration, including I. Comparing equations (44-49) we

found the following relations

S11(z⊥) = S[2](z⊥, z⊥,0,0) = 1,

STT (z⊥) =
N2

c

N2
c − 1

(S[1](z⊥, z⊥,0,0)− S[2](z⊥, z⊥,0,0)),

S11
I (z⊥) = S[2](z⊥, z⊥,0,0), (A.2)

ST1
I (z⊥) =

−2S[2](z⊥, z⊥,0,0)

N2
c − 1

+
2NcS

[4](z⊥,0, z⊥,0)

N2
c − 1

,

STT
I (z⊥) =

N2
c + 1

N2
c − 1

S[2](z⊥, z⊥,0,0)−
2NcS

[4](z⊥,0, z⊥,0)

N2
c − 1

. (A.3)

The definitions of DPDs used in [7] coincide with our definition (see equation (2.103)

and (2.104)) with the following adjustment of transverse arguments

1,8Fqq(x1,2,y, z1,2) = F 1,8
qq

(
x1,2,y +

z2

2
,
z2

2
,−z2

2
,y − z1

2

)
,

1,8Fqq̄(x1,2,y, z1,2) = F 1,8
qq̄

(
x1,2,y +

z2

2
,
z2

2
,−z2

2
,y − z1

2

)
, (A.4)

1,8Iqq̄(x1,2,y, z1,2) = I1,8
qq̄

(
x1,2,y +

z2

2
,
z2

2
,−z2

2
,y − z1

2

)
.

Correspondence between soft factors is following

Sqq̄(y, z1,2) = S↑↓↑↓

(
y +

z2

2
,
z2

2
,−z2

2
,y − z1

2

)
, (A.5)

Sqq(y, z1,2) = S↑↑↓↓

(
y +

z2

2
,
z2

2
,−z2

2
,y − z1

2

)
, (A.6)

SI(y, z1,2) = S↑↓↓↑

(
y +

z2

2
,
z2

2
,−z2

2
,y − z1

2

)
. (A.7)

B Details of NNLO calculation

In this appendix we present the details of generating function evaluation. Also we demon-

strate explicitly some statements discussed in section 3.3. The numeration of diagrams

follows the figure 4.

B.1 Diagram 〈22〉
The diagram 〈22〉 has the symmetry factor 1/2. The Feynman rules for V2 vertex are given

in (3.13). The explicit expression for diagram is

〈V2V2〉 =
1

2
v2ijθ

A
i θ

A′

j

g4

4
ifABCifA′BC

∫
ddkddl

(2π)2d
−ei(k+l)bji

(k2 + i0)(l2 + i0)
(B.1)

1

(−ki − li + 2iδi)(kj + lj + 2iδj)

(
1

−ki + iδi
− 1

−li + iδi

)(
1

kj + iδj
− 1

lj + iδj

)
.
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Here and further we use the shorthand notation for scalar products ki = (k · vi). Rewriting
in the terms of base integrals we obtain

〈V2V2〉 =
vijCA

2
g4θAi θ

A
j

(
(K(0)(bij))

2

4
− I ′′A(bij)

)
, (B.2)

where integral I ′′A are given in (C.3). One can check that at bij = 0 the expression (B.2)

turns to zero. It is the consequence of the hidden symmetry of the generating function on

light-like Wilson lines [14].

B.2 Diagram 〈21〉

The diagram 〈21〉 has symmetry factor 1/2. The explicit expression for diagrams is

〈V2V1〉=
g4

4
vijθ

A
i θ

A′

j ifABCifCBA′

∫
ddkddl

(2π)2d

eikbij (2li + ki)

(kj+iδj)(−ki+2iδj)(k2 + i0)(l2 + i0)((k + l)2 + i0)

(
1

li + iδi
− 1

−ki − li + iδi

)
.

The second term in brackets is equal the first one under the change of variables l → −l−k.

The configuration of eikonal propagators can be rewritten as (we set i = + and j = − for

transparency)

2li + ki
(kj + iδj)(−ki + 2iδj)(li + iδi)

=
1

k− + iδ−

(
2

k+ − 2iδ+
+

1

l+ + iδ+

)
. (B.3)

In terms of base integrals we obtain

〈V2V1〉 = −vijCA

2
g4θAi θ

A
j (2IC1(bij) + IC2(bij)) . (B.4)

The diagram 〈21〉 has an ultravioletly divergent subgraph to be renormalized. The

renormalization of this subgraph corresponds to the expansion of the renormalization factor

ZgZ
1/2 of the one-loop diagram. The counter term is

〈21〉CT = −θAi θ
A
j vijasg

2 2CA

ǫ
K(0)(bij). (B.5)

B.3 Diagram 〈11〉

The evaluation of diagram 〈11〉 is straightforward, and in all aspects repeats the one done

in [12]. Therefore, we present only the final expression

〈V1V1〉 = −
a2sθ

A
i θ

A
j vij

2

4Γ(2− ǫ)Γ(−ǫ)Γ(1 + ǫ)

Γ(4− 2ǫ)
(CA(5− 3ǫ)− 2Nf (1− ǫ))K(ǫ)(bij) (B.6)

−θAi θ
A
j vijasg

2 1

ǫ

(
5

3
CA − 2

3
Nf

)
K(0)(bij),

where the last line is the counter term.
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B.4 Diagram 〈211〉

The expression for diagram is

〈V2V1V1〉 =
g4

2
θAi θ

B
j θ

C
k vijvikif

ABC

∫
ddkddl

(2π)2d
−eikbjieilbki

(k2 + i0)(l2 + i0)

1

(kj + iδj)(lk + iδk)(−ki − li + 2iδi)

(
1

−li + iδi
− 1

−ki + iδi

)
.

The second term in the brackets is related to the first one by the replacement k ↔ l.

Therefore, we need to consider only the following integral

J(b1, b2) =

∫
ddkddl

(2π)2d
−eikb1eilb2

k2l2(k+ + iδ+)(l+ + iδ+)(k− + l− − 2iδ−)(l− − iδ−)
,

here k2 = k2 + i0. In this notation the diagram reads

〈V2V1V1〉 =
g4

2
θAi θ

B
j θ

C
k vijvikif

ABC (J(bij , bik)− J(bik, bij)) , (B.7)

where expression for integral J is given in (C.6). Recalling that the generating function

contains the sum of the diagrams with operator V2 on different lines we obtain the contri-

bution to Wijk in the form

W
〈211〉
ijk =

a2s
2

[
vijvik(J(bij , bik)− J(bik, bij)) + vijvjk(J(bjk, bij)− J(bij , bjk)) (B.8)

+vjkvik(J(bik, bjk)− J(bjk, bik))
]
.

This representation is totally antisymmetric under the permutation of indices ijk. Taking

into account the antisymmetry of prefactor θAi θ
B
j θ

C
k if

ABC we write it in the simple form,

which is used in (3.16)

W
〈211〉
ijk = 3a2svijvikJ(bij , bik). (B.9)

At bij = bik = 0 the integral J turns to zero in accordance to symmetries of the generating

function.

B.5 Diagram 〈111〉

The expression for the diagram 〈111〉 is

〈V1V1V1〉 = g4θAi θ
B
j θ

C
k if

ABC

∫
ddkddl

(2π)2d
eikbijeilbik

(2kk + lk)vij + (li − ki)vjk − (2lj + kj)vik
(−ki − li + iδi)(kj + iδj)(lk + iδk)(k2 + i0)(l2 + i0)((k + l)2 + i0)

.

Contrary to the previous diagrams within diagram 〈111〉 there are multiple possibilities to

associate vectors vi, vj , and vk with n and n̄. For example, the term with vij requires only

vi 6= vj , while does not fix vk. The convenient way to consider this diagram is to write
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explicitly both possibilities for vector vk (i.e. vk = vi and vk = vj) as vij(vik + vjk). Then

the numerator can be simplified

(2kk+lk)vij+(li−ki)vjk − (2lj+kj)vik=(−2ki− li)vikvjk+(kj−lj)vijvik+(ki+2li)vijvjk.

Using this trick and change of variables (alike k → −k − l) in some terms we obtain the

following expressions

〈V1V1V1〉 = g4θAi θ
B
j θ

C
k if

ABC
[
R(bij , bik)(vijvjk − vikvjk) (B.10)

+R(bij , bkj)(vikvjk − vijvik) +R(bik, bjk)(vijvik − vijvjk)
]
,

where

R(b1, b2) =

∫
ddkddl

(2π)2d
−eikb1eilb2

(k+ + iδ+)(l− + iδ−)k2l2(k + l)2
.

To obtain expression (B.10) we have also used the symmetries of the integral

R(b1, b2) = R(b2, b1), R(−b1,−b2) = R(b1, b2), (B.11)

The expression (B.10) is totally anti-symmetric under the permutation of indices ijk. Using

it we rewrite the diagram 〈111〉 in the form

W
〈111〉
ijk = 6a2svijvikR(bik, bjk). (B.12)

The expression for integral R is given in (C.9).

C Expression for loop integrals

It appears that one needs less number of base loop-integrals in comparison to the calculation

presented in [12], but the integrals are of more general structure. In fact, the most part of

integrals evaluated in [12] are particular cases of a few general integrals.

The loop-integrals presented in the following paragraphs are all taken by the following

strategy:

• The integral over convenient light-cone components, say k+ and l+ are taken by

residues closing the integration contour in lower- or upper-half of the complex plane.

It also restricts the integrations over opposite light-cone components.

• The obtained propagators are expanded in Mellin-Barnes (MB) representation such

that transverse components are separated from the light-cone ones.

• The integration over the transverse components is reduced to the scalar massless

two-loop integrals in 2− 2ǫ dimensions. Except the integral R these scalar integrals

are products of Γ-functions only.
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• The integrals over the rest light-cone components are table integrals of hypergeo-

metric type. At this point of evaluation the expression for integral has the form of

single- or double-MB integral over a product of Γ-function and possibly additional hy-

pergeometric function. Note, that along all evaluation the regularization parameter

ǫ > 0.

• The MB integration is taken by closing the contour. This integration is significantly

simplified by the fact that we need only the leading small-δ asymptotic. It allows to

consider only the poles in the vicinity of zero for many series of poles. The dropped

terms correspond to the power suppressed terms in the small-δ expansion.

C.1 Two point integrals

The two-point integrals appear in the diagrams that connect only two Wilson lines and

contribute into Wij . All these integrals are calculated in [12], and can be presented in the

closed form in terms of hypergeometric function and its derivatives.

Generic one-loop integral is

K(a)[b] = (4π)d
∫

ddk

(2π)d
−ieikb

(k+ + iδ+)(k− − iδ−)(−k2 − i0)1+a
, (C.1)

=
2

(4π)d/2

(
δδδ−a−ǫΓ

2(a+ ǫ)Γ(1− a− ǫ)

Γ(1 + a)
−BBBa+ǫΓ(−a− ǫ)

Γ(1 + a)

(
Lδ − S

1
a+ǫ

))
,

where

S
1
x = S1(1− x) = ψ(−x) + γE , (C.2)

S
k
x = Sk(1− x) =

(−1)k−1

(k − 1)!
ψ(k−1)(−x) + ζk,

BBBij =
b2ij

4
> 0, δδδ = 2δ+δ−,

Lδ = ln
(
BBBδδδe2γE

)
= ln

(
b2

4

2δ+δ−

e−2γE

)
.

The two-loop integrals are

I ′′A(b) =

∫
ddkddl

(2π)2d
(2π)2δ+(k

2)δ+(l
2)ei(k+l)·b

(l+ + iδ+)(k+ + l+ + 2iδ+)(k− + iδ−)(k− + l− + 2iδ−)
(C.3)

=
δδδ−2ǫ

(4π)d
Γ4(ǫ)Γ2(1−ǫ)− 4

BBBǫδδδ−ǫ

(4π)d
Fǫ − 8

BBB2ǫ

(4π)d

(
Γ(−2ǫ)Γ(−ǫ)Γ(ǫ)ψ

(
1−ǫ

2

)
+Q(ǫ)

)

+
BBB2ǫ

(4π)d
Γ2(−ǫ)

[
2
(
Lδ + S

1
2ǫ−2S1ǫ

)2−8 (ln 2+γE)
(
S
1
ǫ−S

1
2ǫ

)
+ 6S22ǫ−4S2ǫ−4ζ2

]
,

IC1(b) =

∫
ddkddl

(2π)2d
eikb

k2l2(k + l)2(k− + iδ−)(k+ − 2iδ+)
=

Γ(ǫ)Γ2(1− ǫ)

Γ(2− 2ǫ)
K(ǫ)(b)

∣∣∣
δδδ→2δδδ

, (C.4)

IC2(b) =

∫
ddkddl

(2π)2d
eikb

k2l2(k + l)2(k− + iδ−)(l+ + iδ+)
=

2

(4π)d

[
BBBǫδδδ−ǫΓ2(ǫ)Γ2(−ǫ) (C.5)

+δδδ−2ǫΓ(ǫ)Γ(−ǫ)Γ2(2ǫ)Γ(1− 2ǫ) +BBB2ǫΓ
2(−ǫ)

2ǫ

(
Lδ − S

1
ǫ − S

1
2ǫ + S

1
2ǫ−1

) ]
.
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where we have introduced notations

Fǫ = 22−ǫΓ
2(−ǫ)Γ2(1 + ǫ)

ǫ2
2F1(1, 1, 1 + ǫ;−1),

Q(ǫ) =

∞∑

k=1

(−1)k

k!
Γ(k − ǫ)

(
Γ(k)Γ(−k − ǫ)ψ

(
1 + k

2

)
+ Γ(k − 2ǫ)Γ(ǫ− k)ψ

(
1+k−ǫ

2

))

=−23

16
ζ4 − ζ2 ln

2 2− 2γEζ3 +
ln4 2

6
+ 4Li4

(
1

2

)
− ln 2

2
ζ3 +O(ǫ)

The integral I ′′A has been evaluated in [12]. Integrals IC1,C2 related to those calculated

in [12] as IC1(0) = IC1, IC2(0) = IC2, IC1(b) = −I ′′C4 and IC2(b) = I ′′C3.

C.2 Three point integrals

Three point integrals appear in the diagrams that connect three Wilson lines and contribute

into Wijk. Generally, these integrals cannot be presented in the closed form.

The integral that appears in diagrams of group 〈211〉 is

J(b1, b2) =

∫
ddkddl

(2π)2d
−eikb1eilb2

k2l2(k+ + iδ+)(l+ + iδ+)(k− + l− − 2iδ−)(l− − iδ−)
(C.6)

=
2

(4π)d

[
δδδ−2ǫΓ4(ǫ)Γ2(1− ǫ) + (BBBǫ

1 −BBBǫ
2)δδδ

−ǫFǫ

+(BBB1BBB2)
ǫΓ2(−ǫ)

(
(Lδ1− S

1
ǫ )

2− S
2
ǫ+3ζ2

)
−2BBBǫ

1δδδ
−ǫΓ(−ǫ)Γ2(ǫ)Γ(1−ǫ)

(
Lδ1−S

1
ǫ

)

+2BBB2ǫ
1

Γ2(−ǫ)Γ(−2ǫ)Γ2(1 + ǫ)

ǫ
+ 2(BBB1BBB2)

ǫR

(
b21
b22

)]
,

where Lδ1 = ln(δδδBBB1e
2γE ), and

R(x) =

∫ i∞

−i∞

ds

2πi

Γ2(−s)Γ2(1 + s)

s
Γ(−s− ǫ)Γ(s− ǫ)xs,

where the integration contour passes between series of poles.

The integrals J with exchanged variables are related to each other

J(b1, b2) + J(b2, b1) = K(0)(b1)K
(0)(b2), (C.7)

which can be checked explicitly using expression (C.6). If one of the variables zero, the

expression can be simplified

J(0, b) =
2

(4π)d

[
δδδ−2ǫΓ4(ǫ)Γ2(1− ǫ)−BBBǫδδδ−ǫFǫ − 2BBB2ǫΓ2(−ǫ)Γ(−2ǫ)Γ(ǫ)Γ(1 + ǫ)

]
. (C.8)

In this limit the integral has been evaluated in [12] with the same result, which can be seen

by relation J(0, b) = −I ′A.

The integral that appears in diagram 〈111〉 is

R(b1, b2) =

∫
ddkddl

(2π)2d
−eikb1eilb2

(k+ + iδ+)(l− + iδ−)k2l2(k + l)2
= Rsing(b1, b2)+Rreg(b1, b2). (C.9)
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The Rsing is a subintegral that contains the soft singularities and double-rapidity singular-

ities and can be evaluated explicitly

Rsing(b1, b2) =
2

(4π)d

[
BBBǫ

1BBB
ǫ
2

Γ2(−ǫ)

2

(
(Lδ2 − S

1
ǫ + S

1
−ǫ−1)

2 − S
2
ǫ − S

2
−ǫ−1 + 6ζ2

)
(C.10)

−BBB2ǫ
2 Γ(−ǫ)Γ(−2ǫ)Γ(ǫ)

(
Lδ2 − S

1
ǫ − S

1
2ǫ + S

1
−ǫ−1

)

−δδδ−ǫ (BBBǫ
1 +BBBǫ

2) Γ
2(−ǫ)Γ2(ǫ) + δδδ−2ǫΓ(−ǫ)Γ(ǫ)Γ(2ǫ)Γ(−2ǫ)Γ(1 + 2ǫ)

]
.

The regular part contains only single rapidity divergence, and has the following integral

representation

Rreg(b1, b2) =
2

(4π)d

∫ 1

0

dy

y

[
−BBBǫ

1Γ
2(−ǫ)

(
BBBǫ

21,y − (ȳBBB2)
ǫ
) (

Lδ2 − S
1
ǫ − ln(y/ȳ)

)
(C.11)

−(yȳ)−ǫΓ(−2ǫ)

ǫ

(
BBB2ǫ

21,y 2F1

(
−ǫ,−2ǫ, 1− ǫ;

−yȳBBB1

BBB21,y

)
− (ȳBBB2)

2ǫ

)(
Lδ2 − S

1
2ǫ − ln(y/ȳ)

)

−BBBǫ
1BBB

ǫ
21,yΓ

2(−ǫ) ln

(
BBB21,y

ȳBBB2

)
− (yȳ)−ǫΓ(−2ǫ)

ǫ
BBB2ǫ

21,y 2F1

(
−ǫ,−2ǫ, 1− ǫ;

−yȳBBB1

BBB21,y

)
ln

(
BBB21,y

ȳBBB2

)

+(yȳ)−ǫΓ(−2ǫ)

ǫ
BBB2ǫ

21,y 2F
(0,1,0)
1

(
−ǫ,−2ǫ, 1− ǫ;

−yȳBBB1

BBB21,y

)]
,

where BBB21,y = (b2−yb1)
2/4, and 2F

(0,1,0)
1 is the derivative of hypergeometric function over

the second index (it can be expressed as 3F2-function). The integral over y is regular at

ǫ → 0, and can be integrated order-by-order of ǫ-expansion. One can check that R(b1, b2) =

R(b2, b1).

Within our calculation we do not need the complete expression for R but only its

limiting cases,

R(b, b) =
−2

(4π)d

[
− 2BBBǫδδδ−ǫΓ2(ǫ)Γ2(−ǫ)− δδδ−2ǫΓ2(2ǫ)Γ(ǫ)Γ(−ǫ)Γ(1− 2ǫ) (C.12)

+BBB2ǫΓ2(−ǫ)

(
1

2

(
Lδ + S

1
2ǫ + S

1
−ǫ−1 − 2S1ǫ

)2
+

3

2
S
2
2ǫ − S

2
ǫ −

1

2
S
2
−ǫ−1 + 2ζ2

)]
,

R(b,0) =
2

(4π)d

[
BBBǫδδδ−ǫΓ2(ǫ)Γ2(−ǫ) + δδδ−2ǫΓ(ǫ)Γ(−ǫ)Γ2(2ǫ)Γ(1− 2ǫ) (C.13)

+BBB2ǫΓ
2(−ǫ)

2ǫ
(Lδ − S

1
ǫ − S

1
2ǫ + S

1
2ǫ−1)

]
.

These cases can be related to the integrals evaluated in [12] as R(b, b) = I ′C3+I ′′C1, R(b,0) =

−I ′′C2 and R(0,0) = −IC2.
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