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1 Introduction

In any space-time dimension, the scattering equations underpin the classical S-matrix of a

wide variety of massless field theories by constraining external kinematic data in terms of

marked points on an auxiliary Riemann sphere, Σ [1]. Geometrically, these constraints can

be compactly summarized as the requirement that a meromorphic quadratic differential

P 2(z) vanishes globally on Σ [2]. Recently, the scattering equations have received consid-

erable attention for their central role in the Cachazo-He-Yuan (CHY) expressions for the

tree-level S-matrices of various massless bosonic field theories [3, 4], although they were

first discovered in the context of high-energy string scattering [5–8].

Even before the advent of the CHY formulae, the importance of the scattering equa-

tions was realized for field theory in four space-time dimensions [9]. In four dimensions,

the spinor helicity formalism allows us to solve the on-shell condition for momentum by

writing it as the product of two Weyl spinors. In addition, the simplicity of on-shell super-

space makes it possible to account for arbitrary helicity external states in super-Yang-Mills

theory and supergravity. Given the existence of such expressions for the pure gravity and

gauge theory sectors [10, 11], it is natural to ask if there is a generalization to the tree-level

S-matrix of supergravity coupled to super-Yang-Mills theory (sEYM) in four dimensions

(we consider the case where the spin one particles of the gravity multiplet remain un-

gauged [12]). In this paper, we propose such a formula for the coupling of a single trace of

gluons to gravity. It is compact, written in terms of integrals over the moduli space of a

punctured Riemann sphere Σ, and supported on solutions to the scattering equations. Fur-

thermore, it easily incorporates supersymmetry thanks to the simplicity of four-dimensional

on-shell superspace, is manifestly parity invariant, produces the three-point amplitudes of

the EYM action, and factorizes appropriately.

The new formula suggests a remarkable structure in four-dimensions that would be

completely obscured by a näıve replacement ki · kj → [ij]〈ij〉 in the Pfaffians of the CHY

formula. Remarkably, as in [11] the [ , ] and 〈 , 〉 factors completely decouple, appearing
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in separate determinants. The previously known expressions for amplitudes in pure gauge

theory or supergravity can be derived from the sphere correlation functions of certain

worldsheet theories [13–16] (collectively referred to as ‘twistor string theories’), and our

formula also appears to have a worldsheet origin.

2 The formula

Before describing our formula, we first point out several ab initio constraints which any

purported formula for sEYM must obey. The first of these is rather obvious: in the pure

gauge theory or supergravity sectors, it must reduce to known expressions for these tree-

level S-matrices. Such expressions are provided by the Roiban-Spradlin-Volovich-Witten

(RSVW) formula for super-Yang-Mills theory [9, 10], and the Cachazo-Skinner (CS) for-

mula for supergravity [11].

A second constraint comes by considering the gravitational coupling constant κ ∼√
GN. A tree-level amplitude in EYM with n external gravitons and τ colour traces must

be proportional to κn+2τ−2. In particular, in the purely gravitational sector this is the

usual κn−2 factor associated with (the Euler character of) a gravitational tree graph, while

if there are no external gravitons and only a single colour trace, then we find κ0 as expected

for the conformally invariant Yang-Mills answer. In a connected tree, different colour traces

interact by exchanging gravitons, with a gravitational coupling at each end.

In [11] it was explained that, when written in terms of a worldsheet model, these powers

of κ must be balanced by the same number of powers of [ , ] or 〈 , 〉 brackets (interpreted as

infinity twistors, representing the breaking of conformal invariance). Parity transformations

exchange [ , ] and 〈 , 〉, and so we learn that in four-dimensional EYM with n± external

gravitons of helicity ±2 and τ colour traces, we should obtain

#〈 , 〉 = n− + τ − 1 , #[ , ] = n+ + τ − 1 . (2.1)

on the worldsheet.

A final constraint is given by a rather curious observation about the tree amplitudes

of sEYM theory in four dimensions: every colour trace of external gluons must contain at

least one gluon of each helicity.1 In particular, amplitudes with all negative helicity gluons

and arbitrarily many positive helicity gravitons must vanish, despite the fact that this is

far from obvious by standard MHV counting. To prove this, first note that each three-point

interaction of the sEYM Lagrangian must contain at least one gluon of each helicity, or

no gluons at all. This clear for the pure gauge theory interactions, and all three-point

interactions with two gluons and one graviton arise from the term

√
g gµν gρσ ∂[µAρ] ∂[νAσ] ,

in the Einstein-Yang-Mills action. Spinor helicity variables make it easy to see that any

three-point function coming from this term with two gluons of the same helicity vanishes.

1Properties of EYM closely related to this were observed in [17].
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Now, consider any tree diagram in sEYM, and select all of the gluons in the diagram

belonging to a particular colour trace. This identifies a unique tree sub-graph associated

with the chosen trace; we may assume that all its internal edges are gluon propagators, since

a graviton propagator would lead to a double trace or an external graviton contribution

which can be amputated. The total number of gluons (both internal and external) of each

helicity appearing in this sub-graph is equal to the number of internal edges (helicity-

labelled gluon propagators) plus the number of external gluons of that helicity. The Euler

characteristic of the tree sub-graph, combined with the fact that the number of gluons of

each helicity at every vertex is positive, then implies the claim: the number of external

gluons of each helicity in the trace must be strictly positive.

We now turn to the expression for the tree amplitudes, beginning with the non-

supersymmetric case. In this paper, we will only consider the case with τ ≤ 1. External

particles are specified by two spinors, λi α and λ̃i α̇ for particle i, as well as a helicity label.

We divide the external particles of each amplitude into sets of gluons and gravitons of

positive or negative helicity; positive (negative) helicity gravitons form the set h (h̃), and

positive (negative) helicity gluons form the set g (g̃).

Let us first present the formula, and then explain its various ingredients. The tree-level

amplitude with a single colour trace is given by an integral

Mg,g̃

h,h̃
=

∫

det′Φ det′Φ̃
vol GL(2,C)

PT
∏

i∈h∪g

dti

t
|2h|−1
i

δ2(λi − tiλ(zi))
∏

k∈h̃∪g̃

dt̃k

t̃
|2h|−1
k

δ2
(

λ̃k − t̃kλ̃(zk)
)

(2.2)

where h denotes the helicity of the given particle (i.e., h = ±1, 2). The {zi, zk} label

marked points on an abstract Riemann sphere Σ ∼= CP
1 in an inhomogeneous coordinate,

z, while the complex scaling parameters {ti, t̃k} carry conformal weight, taking values in

T
1/2
Σ i,k. The expressions λ(zi), λ̃(zk) appearing in (2.2) are given by

λ(zi) =
∑

k∈h̃∪g̃
t̃kλk S(i, k) , λ̃(zk) =

∑

j∈h∪g
tj λ̃j S(k, j) , (2.3)

where

S(z, y) :=

√
dz dy

z − y
, (2.4)

is the Szegő kernel at genus zero (free fermion propagator). Hence, the parameters ti, t̃k
carry opposite weight with respect to little group scalings.

The three main ingredients in (2.2) are the insertions det′Φ, det′Φ̃, and PT. Φ is a

(|h|+1)×(|h|+1) symmetric matrix with rows and columns corresponding to each positive

helicity graviton and colour trace in the amplitude. Its entries are given by:

Φij = titj [i j]S(i, j) for i 6= j , Φig =
∑

m∈g
titm [im]S(i,m) , (2.5)

Φii = −
∑

j∈h\{i}
Φij − Φig , Φgg = −

∑

i∈h
Φgi ,
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where i, j ∈ h, and g labels the row/column for the gluon trace. It is easy to see that Φ has

co-rank one, with kernel spanned by the vector (1, 1, . . . , 1), so its determinant vanishes.

The operation det′ corresponds to removing any choice of row and column from a matrix

and then taking its determinant. det′Φ is easily seen to be independent of the choice of

row and column removed, and is a canonically-defined non-vanishing object.

Φ̃ is the parity conjugate of Φ. It is a (|h̃|+ 1)× (|h̃|+ 1) matrix, with entries

Φ̃kl = t̃k t̃l 〈k l〉S(k, l) for k 6= l , Φ̃kg̃ =
∑

m∈g̃
t̃k t̃m 〈km〉S(k,m) , (2.6)

Φ̃kk = −
∑

l∈h̃\{k}
Φ̃kl − Φ̃kg̃ , Φ̃g̃g̃ = −

∑

k∈h̃
Φ̃g̃k , (2.7)

where k, l ∈ h̃. This matrix also has co-rank one with kernel spanned by (1, 1, . . . , 1).

Finally, PT denotes a ‘generalized’ Parke-Taylor factor corresponding to the colour

trace. If the gluon trace contains n total gluons (of all helicities), then this Parke-Taylor

factor is

PT :=
∑

σ∈Sn/Zn

tr (Taσ(1) · · ·Taσ(nα))
n
∏

i=1

S(zσ(i), zσ(i+1)) , (2.8)

where T
a are the generators of the gauge group.

Although Mg,g̃

h,h̃
takes the form of an integral expression, the delta functions in (2.2)

saturate all of these integrals in addition to providing overall momentum conservation. So

in reality, all integrals in (2.2) are performed algebraically against delta functions. These

delta functions are a refinement of the usual scattering equations; they imply ki ·P (zi) = 0

for Pαα̇(z) = λα(z)λ̃α̇(z) [9]. Note that in the special cases where h = h̃ = ∅ or g = g̃ = ∅ it

is equivalent to the RSVW or CS formulae respectively, presented in the guise of [16]. The

reduced determinants and definitions (2.5) and (2.6) ensure that Mg,g̃

h,h̃
is consistent with

the counting of (2.1) and that the colour trace contains at least one gluon of each helicity.

Supersymmetry can be incorporated straightforwardly, unlike in the CHY formulae,

due to the simplicity of on-shell superspace in four dimensions. Extending EYM to N ≤ 3

supersymmetry,2 on-shell scattering states are specified by the usual two Weyl spinors

λα, λ̃α̇ as well as Grassmann parameters for the supermomentum, ηA or η̃A, for A =

1, . . . ,N . Remarkably, our formula accommodates this supersymmetry with the inclusion

of a single exponential factor:

Mg,g̃

h,h̃
=

∫

det′Φ det′Φ̃
vol GL(2,C)

PT exp









∑

i∈h∪g
k∈h̃∪g̃

tit̃k η̃A i η
A
k S(k, i)









×
∏

i∈h∪g

dti

t
|2h|−1
i

δ2(λi − tiλ(zi))
∏

k∈h̃∪g̃

dt̃k

t̃
|2h|−1
k

δ2
(

λ̃k − t̃kλ̃(zk)
)

. (2.9)

2We believe that the formula is also correct for N = 4, provided one chooses an appropriate representa-

tion for the external gluons.
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As usual, amplitudes for individual helicity components of the supermultiplets are read

off by expanding the exponential and extracting those terms of appropriate degree in the

Grassmann variables. Note that both (2.2) and (2.9) are manifestly parity symmetric.

3 Justification

In this section, we show that (2.9) factorizes appropriately and produces the correct three-

point amplitudes.

3.1 Three-point amplitudes

In the helicity-based framework, all three-point amplitudes of the EYM Lagrangian are

classified as MHV or MHV, depending on whether they have one or two positive helicity

legs, respectively. Since the formula (2.2) is parity-symmetric, we only check the MHV

three-point amplitudes explicitly. For Yang-Mills gauge group SU(N) there are only three

such potential amplitudes:

h̃1 h̃2 h3 ∼
〈1 2〉6

〈2 3〉2 〈3 1〉2 , g̃1 g̃2 g3 ∼
〈1 2〉3

〈2 3〉 〈3 1〉 , g1 g̃2 h̃3 ∼
〈2 3〉4
〈1 2〉2 , (3.1)

with overall momentum conservation and any colour trace stripped off. Note that one can

also write down an expression with the homogeneity of a g̃1g̃2h3 amplitude:

g̃1 g̃2 h3 ∼
〈1 2〉4

〈2 3〉2 〈3 1〉2 ,

but this does not occur in EYM (as follows from dimensional analysis).

Since (2.2) reduces to known expressions in the all-gluon or all-graviton sectors, it

is obvious that it reproduces the first two amplitudes in (3.1). So the only non-trivial

calculation is to make sure that (2.2) produces the third amplitude in (3.1). In this helicity

configuration, our formula becomes

tr(Ta1T
a2)

∫

dt̃2 dt̃3

t̃23
〈2 3〉 δ2

(

λ1 − t̃2λ2 − t̃3λ3

)

δ2
(

λ̃2 + t̃2λ̃1

)

δ2
(

λ̃3 + t̃3λ̃1

)

,

where the positions of z1, z2, z3 have been fixed with the SL(2,C) freedom, the C∗ freedom

has been used to set t1 = 1, and t̃2,3 have been rescaled. The final two integrations can be

done against the delta functions in a straightforward manner, leaving

δ4

(

3
∑

i=1

λi λ̃i

)

tr(Ta1T
a2)

〈2 3〉4
〈1 2〉2 ,

as required.
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3.2 Factorization

For the (non-supersymmetric) expression (2.2) to factorize correctly, we must show that in

the limit where a subset L of the external momenta go on-shell

lim
(
∑

i∈L λiλ̃i)2→0
M({λkλ̃k, hk}) =

∑

h=±

∫

d2λ d2λ̃

vol C∗ ML({λiλ̃i, hi}i∈L;λλ̃, h)MR(−λλ̃,−h; {λj λ̃j , hj}j∈R) , (3.2)

where the sum is over possible helicities flowing through the factorization channel, the

integral is over the on-shell phase space of the intermediate state, and R is the compliment

of L. In many respects, this calculation follows similar lines to those for the RSVW and

CS formulae [18, 19].

In terms of the Riemann surface Σ underlying (2.2), the factorization limit should

correspond to a degeneration of Σ into two Riemann spheres ΣL and ΣR joined at a node.

Locally, we can model this degeneration in terms of inhomogeneous coordinates by

(z − za)(z − zb) = q , (3.3)

where in the q → 0 limit the node is located at za ∈ ΣL and zb ∈ ΣR.
3 One advantage of

this local model is that the behaviour of the propagator (2.4) is particularly simple near

the degenerate limit:

S(i, j) =







S(i, j) if zi, zj ∈ ΣL or zi, zj ∈ ΣR
√
q√

dza dzb
S(i, a)S(b, j) +O(q) if zi ∈ ΣL, zj ∈ ΣR

. (3.4)

This follows from the universal behaviour of Szegő kernels on degenerate Riemann sur-

faces [20].

Since the scaling parameters ti, t̃k carry conformal weight, their behaviour in the

degeneration limit is non-trivial. The local model (3.3) dictates that a section of T
1/2
Σ will

scale as q±1/4 in the q → 0 limit, depending on which side of the degeneration the section

is located.4 The choice of which of ΣL or ΣR is associated with the ‘+’ scaling must be

summed over; below we see that this choice is associated with the helicity (positive or

negative) of an intermediate particle flowing through the factorization channel.

Homogeneity of the measure on the moduli space combined with little group scaling

requires that the ti and t̃k parameters scale oppositely in the degeneration limit. The

behaviour of the scaling parameters is thus given by:

ti ∼
{

q±1/4 ti for zi ∈ ΣL

q∓1/4 ti for zi ∈ ΣR
and t̃k ∼

{

q∓1/4 t̃k for zk ∈ ΣL

q±1/4 t̃k for zk ∈ ΣR
, (3.5)

3To be precise, the local model should read (zL−za)(zR−zb) = q, where zL, zR are appropriately chosen

coordinates on ΣL,ΣR. We keep this choice of local coordinates implicit in what follows to streamline

notation.
4In actuality, (3.3) only restricts a section of T

1/2
Σ to scale as q±α/4 on ΣL and q∓(2−α)/4 on ΣR. We

consider the symmetric case α = 1 for simplicity only.
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with the choice of upper or lower sign to be summed over.

It is natural to work in a formalism where the only objects carrying conformal weight on

Σ are these parameters and the Szegő kernels. This is accomplished by defining parameters

t∗, t̃∗ (valued in T
1/2
ΣL a, T

1/2
ΣR b respectively) via a single insertion of

1 =

∫

dt∗dt̃∗
vol C∗ δ

(

t∗t̃∗ −
1√

dza dzb

)

(3.6)

in the amplitude (2.2). This allows us to re-write the behaviour of the propagator (2.4) in

the attractive form:

S(i, j) =

{

S(i, j) if zi, zj ∈ ΣL or zi, zj ∈ ΣR
√
q t∗t̃∗ S(i, a)S(b, j) +O(q) if zi ∈ ΣL, zj ∈ ΣR

. (3.7)

A priori, the t∗, t̃∗ are just convenient dummy variables, but they will eventually become

associated with an intermediate on-shell particle flowing through the degeneration.

It is also convenient to take a factor of t−2
i or t̃−2

k from each graviton wave function

and incorporate it into det′Φ or det′Φ̃, respectively. Additionally, we can choose a single

gluon of each helicity, say r ∈ g, s ∈ g̃, and divide the trace row and column in each of Φ,

Φ̃ by the associated scaling parameter, tr, t̃s.

The result of these (trivial) manipulations is a transformation

det′Φdet′Φ̃
∏

i∈h

dti
t3i

∏

k∈h̃

dt̃k

t̃3k
→ t2r t̃

2
s det′Φdet′Φ̃

∏

i∈h

dti
ti

∏

k∈h̃

dt̃k

t̃k
, (3.8)

inside (2.2). Here, we abuse notation by writing Φ and Φ̃ for the rescaled matrices with

entries

Φij = [i j]S(i, j) for i 6= j , Φig =
∑

m∈g

tm
tr

[im]S(i,m) , (3.9)

Φii = −
∑

j∈h\{i}

tj
ti
Φij −

tr
ti
Φig , Φgg = −

∑

i∈h

ti
tr

Φgi ,

and likewise for Φ̃. These rescaled matrices have the (important) virtue of behaving nicely

in the factorization limit. The definition of the reduced determinants is adapted appropri-

ately for this rescaling:

det′Φ =
|Φi

j |
ti tj

=
|Φi

g|
ti tr

=
|Φg

g|
t2r

,

det′Φ̃ =
|Φ̃k

l |
t̃k t̃l

=
|Φ̃k

g̃|
t̃k t̃r

=
|Φ̃g̃

g̃|
t̃2r

,

where |Φa
b | denotes the determinant of Φ with row a and column b removed, etc.

Note that the formula does not depend on which representative gluons we choose

for rescaling the matrices. We always have at least one gluon of each helicity and the
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fundamental properties of the reduced determinant make it obvious that the final answer

does not depend on the choice we make. Additionally, the rescaling of the matrix entries

is reflected in a rescaling of the null vector; for instance, the kernel of Φ is now spanned by

(t1, . . . , t|h|, tr), which scales according to (3.5) in the degeneration limit.5

Clearly, there are two different ways in which the formula (2.2) can factorize as q → 0:

the degeneration may or may not split the colour trace. We will show that in the former

case the intermediate state corresponds to a gluon, while in the latter it will be a graviton.

Let us begin by considering the case which does not disturb the colour structure. The

behaviour of (2.2) in the q → 0 limit can be easily expressed by arranging the matrices

Φ and Φ̃ in a judicious manner. Arrange the entries of both matrices into blocks, so that

the upper-left block corresponds to entries with both indices on ΣL and the bottom-right

block corresponds to entries with both indices on ΣR:

Φ =

(

ΦLL ΦLR

ΦRL ΦRR

)

, Φ̃ =

(

Φ̃LL Φ̃LR

Φ̃RL Φ̃RR

)

.

Without loss of generality, we assume all gluons to remain on ΣL. In the q → 0 limit, (3.7)

ensures that the off-diagonal blocks of the rescaled matrices vanish at O(
√
q), so we must

focus on what is happening in the diagonal blocks. Consider Φ; clearly the entries (ΦLL)ij
and (ΦRR)ij are unchanged on ΣL and ΣR, respectively, as q → 0. However, the diagonal

entries behave as

(ΦLL)ii = −
∑

j∈hL\{i}

tj
ti
(ΦLL)ij −

tr
ti
(ΦLL)ig − t∗t̃∗

∑

j∈hR

tj
ti
[i j]S(i, a)S(b, j) +O(q) ,

(ΦRR)ii = −
∑

j∈hR\{i}

tj
ti
(ΦRR)ij − q t∗t̃∗

∑

j∈hL∪g

tj
ti
[i j]S(i, b)S(a, j) +O(q3/2) ,

where we choose the upper sign in (3.5) for concreteness. As the worldsheet factorizes, the

particles hR on ΣR form an effective particle insertion on ΣL which appears on the diagonal

entries of ΦLL, while all entries of ΦRR only encode the particles of hR. The interpretation

is clearly that the node becomes the insertion point of a new particle with positive/negative

helicity on ΣL/R. (The opposite configuration follows by taking the lower sign in (3.5), and

the final result contains the sum over both choices.)

To make this manifest, introduce a new spinor-helicity variable λ̃∗ by inserting

1 =

∫

d2λ̃∗ δ2
(

λ̃∗ − t̃∗λ̃(zb)
)

(3.10)

into the amplitude (2.2) close to the degeneration, with

λ̃(zb) :=
∑

j∈hR
tj λ̃j S(b, j) . (3.11)

5After the various rescalings, the reduced determinants both scale like O(
√
q) in the q → 0 limit; to

make this manifest in subsequent computations, we always choose to remove a row/column corresponding

to an entry of the null vector which does not tend to zero under the degeneration.

– 8 –
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On the support of this delta function, the diagonal entries of Φ can be rewritten as

(ΦLL)ii = −
∑

j∈h∗L\{i}

tj
ti
(ΦLL)ij −

tr
ti
(ΦLL)ig +O(q) ,

(ΦRR)ii = −
∑

j∈hR\{i}

tj
ti
(ΦRR)ij +O(q) .

where h∗L = hL ∪ {∗}. This is precisely the form required for the expected channel.

With our choices corresponding to a positive helicity intermediate state on ΣL, it is

natural to remove a row and column corresponding to a graviton on ΣR when computing

the original det′Φ. As q → 0, one finds

det′Φ =
√
q t2∗ det

′ΦL det′ΦR +O(q) , (3.12)

where ΦL is the (|h∗L|+1)× (|h∗L|+1) matrix appropriate for ΣL with the positive helicity

intermediate state ∗ at za ∈ ΣL, and ΦR is the |hR| × |hR| matrix appropriate for ΣR.

The story for Φ̃ proceeds in a similar fashion. By introducing

1 =

∫

d2λ∗ δ2(λ∗ − t∗λ(za)) , (3.13)

in (2.2), with

λ(za) :=
∑

k∈h̃L∪g̃
t̃k λk S(a, k) , (3.14)

the diagonal entries of Φ̃LL and Φ̃RR become

(Φ̃LL)kk = −
∑

l∈h̃L\{k}

t̃l

t̃k
Φ̃kl −

t̃r

t̃k
Φ̃kg̃ +O(q) ,

(Φ̃RR)kk = −
∑

l∈h̃∗R\{k}

t̃l

t̃k
Φ̃kl +O(q) ,

where h̃∗R = h̃R ∪{∗}. With this corresponding to a negative helicity intermediate state on

ΣR, we take det′Φ̃ by eliminating a row and column for a graviton on ΣL, to obtain the

desired factorization:

det′Φ̃ =
√
q t̃2∗ det′Φ̃L det′Φ̃R +O(q) . (3.15)

This shows that the reduced determinants factorize correctly and yield a factor of q t2∗t̃
2
∗,

while also introducing the wave functions for an intermediate on-shell state.

Next we examine the behaviour of the external wave functions. On the support

of (3.10), (3.13), the arguments of the delta functions for the external states involve

ti λ(zi) =







∑

k∈h̃L∪g̃ tit̃k λk S(i, k) +O(q) for zi ∈ ΣL
∑

k∈h̃∗R tit̃k λk S(i, k) for zi ∈ ΣR

, (3.16)

t̃k λ̃(zk) =







∑

i∈h∗L∪g tit̃k λ̃i S(k, i) for zk ∈ ΣL
∑

i∈hR∪ tit̃k λ̃i S(k, i) +O(q) for zk ∈ ΣR

. (3.17)
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in the degenerate limit q → 0.

As q → 0 a scaling argument based on the local model (3.3) dictates how the measure

on the moduli space of Σ factorizes into measures on the moduli spaces of ΣL and ΣR

(cf. [21, 22]). Combining all of our observations up to this point, the formula (2.2) looks like

∫

dq

q2
d2λ∗ d2λ̃∗
(vol C∗)2

dza dzb
(vol SL(2,C))2

δ

(

1− 1

t∗t̃∗

1√
dza dzb

)

× q t2∗ t̃
2
∗ det′ΦL det′Φ̃L det′ΦR det′Φ̃R PT

dt∗
t3∗

δ2(λ∗ − t∗λ(za))
∏

i∈hL∪gL

dti

t
|2h|−1
i

δ2(λi − tiλ(zi))
∏

k∈h̃L∪g̃L

dt̃k

t̃
|2h|−1
k

δ2
(

λ̃k − t̃kλ̃(zk)
)

dt̃∗
t̃3∗

δ2
(

λ̃∗ − t̃∗λ̃(zb)
)

∏

j∈hR

dtj

t
|2h|−1
j

δ2(λj − tjλ(zj))
∏

l∈h̃R

dt̃l

t̃
|2h|−1
l

δ2
(

λ̃l − t̃lλ̃(zl)
)

,

(3.18)

up to O(q), where we have reverted to the original, unrescaled matrices Φ, Φ̃.

The delta functions for λ∗ and λ̃∗ are naturally incorporated into products over
∏

i∈h∗L∪g
and

∏

l∈h̃∗R as gravitons. Finally, trading the delta function of (3.6) for an additional

(volC∗)−1, we are left with

∫

dq

q

d2λ∗ d2λ̃∗
vol C∗

(

M+
L M−

R +O(q)
)

, (3.19)

where

M+
L =

∫

det′ΦLdet
′Φ̃L

vol GL(2,C)
PT

∏

i∈h∗L∪g

dti

t
|2h|−1
i

δ2(λi − tiλ(zi))
∏

k∈h̃L∪g̃

dt̃k

t̃
|2h|−1
k

δ2
(

λ̃k − t̃kλ̃(zk)
)

and similarly for M−
R.

All that remains to show is that extracting the residue at q = 0 corresponds to setting

the momentum flowing from ΣL to ΣR on-shell. To this end, notice that the various delta

functions in (3.19) imply that

∑

i∈hL∪g
λiλ̃i +

∑

k∈h̃L∪g̃
λkλ̃k = λ∗λ̃∗ +O(q) .

In addition to enforcing momentum conservation on each side of the cut, this reveals the

intermediate particle as manifestly on-shell. Thus, taking the residue at q = 0 results in

the h = + graviton exchange term in the factorization expression (3.2). The h = − term

is obtained in a similar fashion, by choosing the other sign in (3.5).

The second possible degeneration, which disturbs the colour structure of the ampli-

tude via a gluon exchange, follows in much the same way, so we will be more brief in its

description. In this case the external gluons are split between ΣL and ΣR in the q → 0

limit. The behaviour of the matrices Φ and Φ̃ under the degeneration is the same as before;

it is now convenient to eliminate the row and column corresponding to the trace in both

det′Φ and det′Φ̃.
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Once again, after inserting the delta functions (3.10), (3.13), the reduced determinants

factorize as (3.12), (3.15) with the intermediate particle being incorporated into g∗L =

gL∪{∗} on ΣL and g̃∗R = g̃R∪{∗} on ΣR. However, the factor of q t
2
∗t̃

2
∗ is entirely absorbed

by the scaling of the gluon representatives t2r , t̃
2
s appearing in (3.8).

From (3.7) it is easy to see that the Parke-Taylor factor behaves as

PT = q t2∗t̃
2
∗ PTLa PTRb +O(q3/2) , (3.20)

where PTγa
L
denotes the Parke-Taylor factor for those gluons located on ΣL with the point

za inserted in the cyclic ordering precisely where the original colour trace is broken by the

degeneration. The measures for t∗, t̃∗ appearing in (3.6) are automatically appropriate for

gluons, so we obtain the correct products over delta functions for factorization. Taking the

residue of the resulting dq/q measure corresponds to the h = + gluon exchange term in

the factorization expression (3.2).

Factorization for the supersymmetric amplitude (2.9) is established by looking at how

the exponential encoding supersymmetry behaves in the q → 0 limit. For concreteness we

pick the case of (3.5) where ti ∼ q1/4 on ΣL and the other case follows analogously, as

usual. To begin notice that the exponent splits as
∑

i∈hL∪gL
k∈h̃L∪g̃L

tit̃k η̃i ·ηk S(k, i) +
∑

i∈hR∪gR
k∈h̃R∪g̃R

tit̃k η̃i ·ηk S(k, i) +
∑

i∈hR∪gR
k∈h̃L∪g̃L

tit̃k t∗t̃∗ η̃i ·ηk S(k, a)S(b, i) +O(q) .

(3.21)

The first two terms are clearly appropriate for ΣL and ΣR, respectively, while the third

term accounts for the new intermediate particle. In fact, a simple calculation reveals that

the exponential of this third term can be written

exp









∑

i∈hR∪gR
k∈h̃L∪g̃L

tit̃k t∗t̃∗ η̃i ·ηk S(k, a)S(b, i)









=

∫

dN η∗dN η̃∗ eη∗·η̃∗ exp





∑

k∈h̃L∪g̃L

t∗t̃k η̃∗ ·ηk S(k, a) +
∑

i∈hR∪gR
tit̃∗ η̃i ·η∗ S(b, i)



 ,

on the support of the same delta functions used in the purely bosonic calculation.

In summary, the exponential encoding supersymmetry factorizes, with the arguments

on ΣL, ΣR becoming
∑

i∈h∗L∪gL
k∈h̃L∪g̃L

tit̃k η̃i · ηk S(k, i) and
∑

i∈hR∪gR
k∈h̃∗R∪g̃R

tit̃k η̃i · ηk S(k, i) ,

respectively (without altering the simple pole in q). Combined with our previous argu-

ments, this leads to the appropriate on-shell superspace measure
∫

dq

q

d2|Nλ∗ d2|N λ̃∗
vol C∗ eη∗·η̃∗

(

M+
L M−

R +O(q)
)

. (3.22)

So factorization of the super-amplitude follows straightforwardly from factorization of the

bosonic formula.
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4 Conclusions

We have presented a new formula for all single trace tree amplitudes in supersymmetric

Einstein Yang-Mills theory in four dimensions, written in terms of on-shell superspace.

The formula was shown to reproduce the correct three-point amplitudes and to factorize

appropriately in both gravitational and coloured channels. The considerations at the be-

ginning of section 2 also place strong constraints on the form of general multitrace EYM

amplitudes. It would be interesting to investigate these further.

In the purely gravitational sector, the formula reduces to the representation of am-

plitudes given in [11, 16]. These formulae are known to be the output of a twistor-string

theory for maximal supergravity in d = 4 [15] and it is natural to wonder whether there is

a modification of this theory that describes sEYM. In this regard, we note that the cou-

pling of the gluons to the gravitons in Φ, Φ̃, together with the Parke-Taylor factors, may

be generated by inserting operators

tr
(

D̄−1 δ2(γ)A D̄−1 δ2(γ̃) Ã
)

, and tr
(

D̄−1OA D̄−1 ÕÃ

)

.

Here D̄ = ∂̄ +A(Z) + Ã(W ) and

OA =

[

W,
∂A
∂Z

]

+

[

ρ̄, ρK
∂2A

∂Z∂ZK

]

, ÕÃ =

〈

Z,
∂Ã
∂W

〉

+

〈

ρ, ρ̄K
∂2Ã

∂W∂WK

〉

,

where A and Ã are gluon wavefunctions. It seems likely that the RSVW formula for tree

amplitudes in sYM are best interpreted as the single trace sector of a twistor string for

sEYM. Such a theory would also enable the use of worldsheet factorization arguments to

streamline the calculations above [23].
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