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1 Introduction

The cosmological relaxation of the electroweak scale [1] (see ref. [2, 3] for earlier attempts

and refs. [4–10] for related work) offers an interesting mechanism to deal with the problem

of Higgs naturalness. Instead of introducing new dynamics at the weak scale, as convention-

ally done in other solutions, it gives an explicit realisation of self-organised criticality [11],

in which the system is dynamically attracted towards the near-critical condition for elec-

troweak breaking. This situation is achieved with an axion-like [12–14] particle (called

relaxion) which, during the cosmological evolution at the inflationary epoch, scans the or-

der parameter of the electroweak phase transition. Once electroweak symmetry is broken,

non-perturbative QCD effects give a back-reaction that prevents the relaxion from rolling

much further.

By construction, the setup of ref. [1] requires an energy cutoff, which is found to be

considerably smaller than many of the new-physics mass scales that are believed to exist

in theories more fundamental than the Standard Model (SM). However, the naturalness

problem is rather special because it involves physics from all distance scales, no matter how

small. If naturalness is solved in an effective theory with cutoff Λ, hypothetical new parti-

cles that live beyond the regime of the effective theory can easily reintroduce an even bigger

problem if they couple (directly or indirectly) to the Higgs. In other words, solving the

Higgs naturalness up to a cutoff scale Λ is a very important result from the phenomenologi-

cal point of view but, in a broader perspective, is just a way to postpone the real problem to

higher scales. Moreover, the relaxion mechanism is a solution tailored to cure the quantum

properties of the Higgs. However, in the broader perspective we want to adopt, one can

expect that more fundamental theories will require the presence of other scalar particles

than the Higgs, such as the inflaton, GUT-like states, or fields related to dark energy. Any

of these scalar particles will introduce their own naturalness problem, and each one will

require a solution unrelated to the Higgs relaxation. For these reasons, we claim that the

Higgs relaxation mechanism is satisfying in the IR, but cries out for a UV picture.

Supersymmetry offers an elegant solution to the Higgs naturalness problem. From the

UV point of view, the solution given by supersymmetry is very ambitious. The naturalness

problem is solved not only for the Higgs, but for any scalar particle in the theory and with no

cutoff limitation. This makes the supersymmetric framework very attractive for a variety

of problems in high-energy physics and cosmology, well beyond the issue of electroweak

breaking. Moreover, supersymmetry appears as a necessary field-theoretical link with string

theory and, therefore, possibly with quantum gravity. Unfortunately, this magnificent

UV picture is not corroborated by IR information. Experiments have not detected the

presence of supersymmetry up to about the TeV scale, while a resolution of the Higgs

naturalness would require supersymmetric particles with masses around MZ . In summary,

supersymmetry gives a splendid UV picture, but suffers in the IR.

These considerations lead us to believe that relaxation and supersymmetry could be

a perfect match. Supersymmetry will deal with the grand picture of particle physics,

while the relaxation mechanism will explain the so-called “little hierarchy problem”, i.e.

the separation between the scales of supersymmetry and electroweak breaking. This is the

theoretical framework that we want to explore in this paper.
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To achieve this goal, we treat the relaxion as a QCD-like axion, except for the un-

familiar property that the field spans a non-compact space. This hypothesis is a strong

departure from the common interpretation of the Goldstone modes as excitations around

a compact field space and its realisation requires going beyond the ordinary rules of quan-

tum field theory.1 However, fields with such unusual properties have been conjectured to

exist in the context of string theory and the underlying mechanism is monodromy [15–23].

As the field winds around its periodic potential, its energy increases at each cycle due to

its couplings to fluxes. This effectively allows for large super-Planckian excursions of the

field. In our context, we assume that the shift symmetry of the relaxion is broken by a

small parameter that generates a sliding potential. From a field-theory point of view, the

smallness of this parameter is natural according to ’t Hooft criterion [24], although a final

assessment requires knowledge of its non-field-theoretical origin.

At the beginning of inflation, the relaxion is found very far from its true vacuum,

and thus the field starts slow-rolling towards the minimum of the potential. During this

evolution, the vacuum energy associated with the relaxion changes. This vacuum energy

breaks supersymmetry and is the leading source of soft terms for the partners of the SM

particles. This means that the soft terms effectively scan during the history of the universe.

When the soft terms become of the order of the supersymmetric mass parameter µ0, the

symmetric vacuum of the Higgs potential is suddenly destabilised and electroweak symme-

try is spontaneously broken. This triggers a back-reaction on the relaxion potential from

non-perturbative QCD effects, which stops the field from further evolution. As a result,

the Higgs vacuum expectation value is found near the critical condition for electroweak

breaking, while the soft masses are O(µ0). Note that the value of µ0 is not correlated with

the weak scale in the fundamental theory. Nonetheless, the hierarchy between µ0 and the

weak scale is not the result of a tuning, but of a dynamical relaxation mechanism.

In combining relaxation and supersymmetry, we find that the total is much greater than

the sum of the two parts. New interesting elements emerge, which were not evident in the

individual theories. From the point of view of the relaxion, we have gained a controllable

UV completion, which tames any possible contribution from physics above the cutoff that

could spoil Higgs naturalness. Indeed, the parameter µ0 (which is the typical size of the

soft terms) plays the role of the cutoff in the setup of ref. [1]. Moreover, the scanning

of the supersymmetry breaking scale is an automatic feature of any theory in which the

field varies. This is because the breaking of global supersymmetry is associated with the

vacuum energy of the theory. Whenever the relaxion slow-rolls, the scale of supersymmetry

breaking (and, consequently, the order parameter for electroweak breaking) scans. The

mechanism does not require any special interactions between the relaxion and other fields

that violate the shift symmetry and are not accounted for by monodromy. On the contrary,

such interactions are needed in the case of ref. [1] where it is necessary to introduce a PQ-

violating coupling between the Higgs and the relaxion.

1As this paper was being completed, ref. [10] appeared in which it was claimed that, within quantum

field theory, the cutoff of any UV completion realising the relaxion as an axion must be around the weak

scale and the small parameter in the relaxion potential is not natural. These conclusions put on firmer

grounds the widespread belief that the non-compact properties of the relaxion must originate from physics

beyond quantum field theory. See section 5 for more comments on this point.
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From the point of view of supersymmetry, we have gained a natural explanation of the

little hierarchy problem, which was the original target of this work. But on the way, we have

also discovered an economical and elegant way of breaking supersymmetry. The theory is

extremely economical in terms of field content. Besides the usual SM superfields, we have

added only one chiral superfield. The pseudoscalar component of this supermultiplet is

the relaxion, whose scanning value breaks supersymmetry; the fermionic component is the

Goldstino. Supersymmetry is broken in a metastable vacuum generated by the interplay

between the minute PQ-breaking effect and QCD instantons. The essential simplicity of the

supersymmetry-breaking structure makes the framework interesting, quite independently

of the relaxation mechanism. The basic reason for this simplicity can be traced back to

the general idea of breaking supersymmetry in metastable vacua [25–27], as a way to avoid

the theorems that dictate very constraining conditions [28–33] on supersymmetry-violating

absolute minima. In our theory, supersymmetry is recovered at the bottom of the relaxion

potential, but non-perturbative QCD effects trap the field very far from its true vacuum.

The main obstacle for the viability of the theory is the strong CP problem. Its resolution

requires some modifications of the minimal model and we present some possible ways out.

By construction our relaxation mechanism predicts that the supersymmetric particles

are heavy, with masses parametrically unrelated to the weak scale. Nonetheless, constraints

from inflationary dynamics imply that their masses must be smaller than some hundreds

of TeV. An interesting feature of our setup is that gaugino masses are smaller than squark

mass by a one-loop gauge factor. This makes the spectrum very similar to Mini-Split

models [34–39] emerging from anomaly mediation, and gives some hope of detection at the

LHC and, especially, at future colliders operating in the 100 TeV domain. An important

difference of our scenario is that, unlike the case of anomaly mediation, the gravitino is

fairly light. As a result, we find some very characteristic signatures at hadron colliders.

2 The framework

Our theoretical setup is simple and minimal. We consider an effective theory valid below

the PQ symmetry breaking scale f , in which the only degrees of freedom are the usual

fields of the supersymmetric extension of the SM together with a new chiral superfield S.

The superfield S describes the relaxion (a), its scalar counterpart (the srelaxion s), and its

supersymmetric partner (the relaxino ã),

S =
s+ i a√

2
+
√

2 θ ã+ θ2 F + derivative terms. (2.1)

For convenience, we choose S to be dimensionless. The transformations under PQ symme-

try of S and of the quark, lepton and Higgs chiral superfields (collectively denoted as Φi) are

S → S + i α (2.2)

Φi → eiqiα Φi, (2.3)

where qi are the PQ charges and α is the global transformation parameter. From eq. (2.2)

we see that, under PQ transformations, the relaxion changes by a shift (a → a +
√

2α),
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while s and ã remain invariant. We assign the PQ charges such that the Yukawa interac-

tions are invariant, but we allow for the possibility that the gauge-invariant Higgs bilinear

carries a PQ charge

HuHd → eiqαHuHd , q ≡ qHu + qHd . (2.4)

The case q = 0 belongs to the class of KSVZ [40, 41] axion models, in which the PQ sector

is made of heavy matter, while the case q 6= 0 describes DFSZ [42, 43] models, in which

the ordinary Higgs fields are charged under PQ.

The most general Lagrangian, up to dimension-4 interactions invariant under super-

symmetry and PQ, is given by2

L =

∫
d4θ

[
f2K(S + S†) + Zi(S + S†) Φ†ie

V Φi

]
+

[∫
d4θ U(S + S†) e−qSHuHd

+

∫
d2θ
(
Ca(S) TrWaWa + µ0 e

−qSHuHd + Yukawa int.
)

+ h.c.

]
, (2.5)

Ca(S) =
1

2g2
a

− iΘa

16π2
− ca S

16π2
. (2.6)

Here the index a runs over the 3 factors of the SM gauge group and K, Zi, U are generic

functions of the combination S + S† (which contains a only through derivative terms).3

At this stage, the potential for a exactly vanishes because of the shift symmetry,

while supersymmetry insures that s and ã remain massless too. To obtain a non-trivial

dynamical evolution of the relaxion we introduce an explicit breaking of the shift symmetry

that mimics the effect of monodromy. We choose to break softly the shift symmetry through

a small mass parameter m (with m� f) in the superpotential W

W/f2 =
m

2
S2 . (2.7)

For simplicity, we take m real. At the field-theory level, the hypothesis m� f is technically

natural because the theory acquires a larger symmetry in the limit m→ 0. We have chosen

a superpotential quadratic in S but, as we will show in section 5, any other form of W

would lead to the same conclusions. Of course, a superpotential linear in S is not useful

because no potential for a is generated.

With the inclusion of the term in eq. (2.7), the Lagrangian for the relaxion multiplet

at zero derivatives is

L /f2 = κ−1(s)F ∗F +m

[(
s+ i a√

2

)
F + h.c.

]
(2.8)

where κ(s) = 1/K ′′(
√

2s) and K ′′ is the second derivative of the Kähler function in eq. (2.5).

For instance, if K were approximately canonical at small field value, i.e. K = (S+S†)2/2+

O[(S + S†)3], then κ(s) = 1 +O(s). Solving the equation of motion for the auxiliary field

F , we find

F = −m
(
s− i a√

2

)
κ(s) . (2.9)

2For the effective theory of the supersymmetric axion, see [44, 45] and references therein.
3The factor e−qS in eq. (2.5) can be eliminated by a superfield redefinition, as discussed in appendix A.
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From this we obtain the scalar potential for a and s

V/f2 =
m2

2
(s2 + a2)κ(s) . (2.10)

The potential in eq. (2.10) has a supersymmetry-preserving minimum at a = 0, s = 0.

However, we assume that at the beginning of inflation a is displaced far from its minimum

and starts at a value a� 1.

On a fixed a background, the potential in eq. (2.10) is minimised at s = s̄, with s̄ given

by the solution of the equation κ′(s̄) ≈ 0 (valid in the limit a � 1). Here we are making

the assumption that the function κ is positive and generic; hence s̄ = O(1). We will not

need to know the exact location of s̄, but the important point is that s̄ does not depend

on a in the limit a � 1. As a result, s̄ will not change during the cosmological evolution

of the relaxion, as long as a scans very large field values.

Our assumption that in the early universe a starts at a large field value, while s and all

scalar fields of the supersymmetric SM lie at the minimum of the potential, can be viewed

as self-consistent. As we will show in the following, on the relaxion background, all scalar

fields other than a acquire masses larger than the Hubble rate, and therefore it is natural

to expect that, at the beginning of inflation, they are found at their minimum. This is not

necessarily true for the relaxion field.

On the relaxion background, the relaxion, srelaxion, and relaxino masses and the

auxiliary field are proportional to

ma ∝ m, ms ∝ ma , mã ∝ m, F ∝ ma . (2.11)

Here we have omitted factors of order unity coming from wave-function renormalisa-

tion. The important point is that, during the cosmological evolution in the range a � 1,

the mass of the srelaxion and the supersymmetry-breaking scale scan linearly with a and

are much larger than the curvature of the quadratic potential on which a rolls.

Since the relaxion background breaks supersymmetry, effective soft terms are gener-

ated, as in axion-mediation [46]. The complete calculation of the soft terms is presented

in appendix A. Here we give only approximate expressions that exhibit the parametric

dependence. Gauginos acquire their masses from the coupling between S and the gauge

field strength W in the superpotential of eq. (2.5),

Mg̃a =
g2
acaF

16π2
≈ αa

4π
ma . (2.12)

Gaugino masses are expected to be a one-loop factor smaller than the parametric scale of

supersymmetry breaking F ≈ ma.4

Soft scalar masses are induced by the functions Zi in the Kähler potential of eq. (2.5).

However, while the coupling between S and gauge superfields is determined by the anomaly

condition, the coupling between S and matter is more model-dependent. For this reason,

4Here we have derived F ≈ ma as an approximate relation, but we suspect that this equation must

have a more universal validity. However, we expect that effects suppressed by powers of the Planck mass

(neglected here) will modify our equation.
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we introduce a new mass scale M∗ (with M∗ ≥ f) that parametrizes the mediation of direct

couplings between matter and the relaxion superfield through the Kähler interaction

L =
f2

M2
∗

∫
d4θ (S + S†)2Φ†iΦi . (2.13)

This gives scalar soft masses parametrically equal to

m̃i ≈
f

M∗
ma . (2.14)

If M∗ ≈ f , as expected in the most general effective theory, then scalar masses dominate

the supersymmetric spectrum, with gauginos lighter by a one-loop factor. However, making

use of the non-renormalisation theorem of supersymmetry, it is possible to imagine setups

where M∗ is much larger than f . If M∗ � 4πf/α, gaugino masses are the dominant source

of supersymmetry breaking in the visible sector. The latter case occurs, for instance, for

gravity mediation (M∗ ≈MP ) and f . 1016 GeV.

Soft-breaking trilinear couplings of order Aijk ≈ ma are generated for general functions

Zi, but could be suppressed by powers of f/M∗ if the mediation between the matter and

relaxion sector occurs only through heavy states. However, whatever value of M∗ is chosen,

trilinear couplings, scalar and gaugino masses scale linearly with a.

Since supersymmetry allows for a µ term in the Lagrangian, the scaling of µ with a

is different than in the case of scalar and gaugino masses and this will be crucial for our

relaxation mechanism. For phenomenological reasons, we are interested in taking the mass

parameter µ0 in eq. (2.5) much smaller than the PQ scale f . The non-renormalisation

property of the superpotential insures that the condition µ0 � f is technically natural.

The hierarchy between these two masses is just a reincarnation of the usual µ-problem in

our context.

Besides the explicit µ0 in eq. (2.5), there are supersymmetry-breaking sources for µ

and Bµ (which is the coefficient of the scalar HuHd bilinear in the potential). The complete

calculation of these terms is presented in appendix A. Here we only show the parametric

dependence:

µ = µ0 − cµma , Bµ = c0 µma+ cBm
2a2 . (2.15)

We find that µ is given by the sum of two contributions. The first one is µ0, which is

independent of the background value of a.5 The second one, parametrized by the coefficient

cµ, originates from the function U in eq. (2.5) and scales linearly with a. Also Bµ is given

by the sum of two contributions: one is proportional to µ, with a coefficient that scales

linearly with a; the other one scales quadratically with a and comes from the function U .

Note that the simultaneous presence of U and µ0 in the Lagrangian in eq. (2.5) breaks

a continuous R-symmetry. By imposing such a symmetry, one could forbid U , forcing the

coefficients cµ and cB to vanish. However, the R-symmetry is explicitly broken by the

parameter m in eq. (2.7) and, as a consequence, by the background value of F .

5Here we have included into µ0 the wave-function renormalisation computed in appendix A. Thus, µ0

should be regarded here as a running parameter.
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3 Relaxation of supersymmetry breaking

During its dynamical evolution, the relaxion scans the supersymmetry breaking scale F ≈
ma. We are interested in the situation in which this evolution triggers a non-vanishing

Higgs vacuum expectation value. The order parameter for electroweak symmetry breaking

is the determinant of the Higgs mass matrix, defined as

D(a) ≡
(
m2
Hu + |µ|2

) (
m2
Hd

+ |µ|2
)
− |Bµ|2 . (3.1)

The dependence on a is contained in the soft terms, as described in eq. (2.15) for µ, Bµ,

while we take m2
Hu,d

= cu,dm
2a2. The coefficients ci are model-dependent, but are expected

to be of order unity (unless scalar masses come from a mediation scale M∗ larger than f).

As soft terms are running parameters, the coefficients ci have a logarithmic dependence

on a. The expressions derived in appendix A for the soft terms should be viewed as the

matching condition at f , the energy scale at which heavy modes are integrated out. Below

f , the soft terms run according to the usual renormalisation-group equations and receive

corrections of order (α/4π) ln f/(ma), where α refers to a generic coupling constant. In

our calculation, presented in appendix B, we have neglected this logarithmic dependence.

In practice, this is a conservative assumption, since the logarithmic running makes it only

easier to achieve symmetry breaking by dynamical evolution. We will also assume that the

coefficients ci of the operators responsible for squark and slepton masses remain positive

throughout the evolution, such that colour or electric charge breaking vacua are avoided.

We consider an initial condition for the relaxion such that a� µ0/m. In this situation,

µ0 can be neglected in eq. (3.1) and we find the simple scaling D(a) ∝ a4. We require the

proportionality factor to be positive, since we want that electroweak symmetry is initially

unbroken. The value of a will progressively decrease, as the relaxion evolves. Once a

approaches µ0/m, the a4-scaling is violated and, under certain conditions on the coefficients

ci, the order parameter D(a) can flip sign and trigger electroweak breaking. We call a∗ the

value of the relaxion field for which D(a∗) = 0. Parametrically, it is given by

a∗ =
µ0

m
c∗ , (3.2)

where c∗ is a coefficient of order unity. In appendix B we show the expression of c∗ in terms

of the soft-terms coefficients ci, together with the conditions necessary to have solutions for

a∗. The calculation demonstrates that electroweak breaking can be consistently achieved

in a fairly broad range of parameters.

In the proximity of a∗, the Higgs potential for the real scalar components of the two

Higgs doublets can be written as

V =
m2
h

2
h2 +

λ

4
h4 +

m2
H

2
H2 +H-interactions , (3.3)

m2
h =

D(a)

m2
H

, λ =
g2 + g′2

8
cos2 2β , m2

H = m2
Hu +m2

Hd
+ 2|µ|2 , (3.4)

where we have kept only the leading-order terms in D . Here h and H are the two mass

eigenstates obtained from the current eigenstates by rotation of an angle β, with tan2 β =

– 8 –
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m2
Hd
/m2

Hu
+O(D/m4

H). For a separation of scales |D | � m4
H , the heavy Higgs H decouples

and h behaves like the SM Higgs. For negative D , the SM Higgs gets a vacuum expectation

value 〈h2〉 = −D/(λm2
H).

After electroweak breaking, QCD instanton effects generate a potential for the relaxion

that respects only a discrete shift symmetry for a. Adding this interaction term to the PQ

breaking potential in eq. (2.10), we obtain

V (a) =
m2f2

2
a2 + Λ4 cos a , (3.5)

where Λ is the typical scale emerging from non-perturbative effects. An important observa-

tion of ref. [1] is that Λ4 scales roughly linearly with the Higgs vacuum expectation value.

Therefore, as a evolves below a∗, the first term in eq. (3.5) decreases, while the second

one quickly increases because |D | is growing. A local minimum of the relaxion potential

is generated when the barrier heights (measured by Λ4) have grown enough to make sure

that the two terms in V ′(a) can cancel each other. This happens when Λ4 has reached the

size f2m2a∗ so that V ′(a) = 0:

m ≈ Λ4

f2 µ0
(local minimum) . (3.6)

So far, our discussion has been purely classical. However, at the first local minimum,

the barrier height is sufficiently small to make quantum fluctuations important. Once the

relaxion has established itself in its final minimum, quantum tunnelling is not a problem.

We estimate that the probability of vacuum decay during the past light-cone of the observ-

able universe is P ∼ τ4
Uf

4 exp(−f4/Λ4), where τU is the present lifetime of the universe.

This is completely negligible, as a result of the considerable field distance between two

consecutive vacua (of size 2πf) with respect to the typical available energy (Λ4). More

problematic are the quantum fluctuations at the time the relaxion is settling into its vac-

uum. Quantum evolution appears to populate different minima. Although all of them have

roughly the same value of the weak scale, this could result in a universe made of patches

with different Higgs values. This potential cosmological problem is generic of the relaxation

mechanism and is present also in the original model of ref. [1].

There is an important difference in our setup with respect to the non-supersymmetric

case. In the model of ref. [1], the barrier heights grow as we probe smaller field values and

never cease to exist. As shown in appendix B, this is not the case for the relaxation of

the supersymmetry scale. Quite generically, D(a) flips sign again at a value a = a∗∗ (with

a∗∗ < a∗) and turns back positive, restoring electroweak symmetry. This is consistent with

the notion that a supersymmetric vacuum exists at a = 0. As a result, for the relaxation

mechanism to work, the barriers have to grow sufficiently high during the evolution between

a∗ and a∗∗ and stop the relaxion before it could slide into the region with 〈h〉 = 0 and

a < a∗∗. Let us investigate the issue.

Between two adjacent troughs of the periodic potential, the relaxion changes by an

amount ∆a = 2π and the soft mass scale by ∆F ≈ m∆a, a very small variation. In the

vicinity of a∗, the Higgs mass m2
h ∼ D/µ2

0 changes more rapidly, ∆m2
h ∼ mµ0 ∆a because,

– 9 –
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while D happens to be near a zero, its derivative is generic. As the relaxion scans the range

between a∗ and a∗∗, it crosses a huge number of oscillations N = (a∗ − a∗∗)/2π ∼ µ0/m.

In doing so, the first term in the potential in eq. (3.5) has only a modest relative variation,

while the second one grows fast, since the Higgs vacuum expectation value changes from

0 to about µ0. So there is enough freedom to choose a suitable value of m such that the

barrier heights Λ4 have the chance to grow up to values of order f2mµ0 before the relaxion

completes µ0/m periods of oscillation.

4 Inflationary dynamics

The dynamics of inflation is an essential element of the relaxation mechanism because

it provides the friction term that stops the relaxion at a local minimum. However, the

inflationary sector is not included in the Lagrangian in eq. (2.5) and here is only treated as

a spectator that provides a nearly constant Hubble rate H. Nonetheless, the value of H is

subjected to several strong constraints, which limit the allowed range of the parameters in

the theory. We list here these constraints, which must be satisfied for values of the relaxion

field in the range a ≈ a∗, with a∗ ≈ µ0/m.

The first requirement is that the relaxion satisfies the slow-roll condition during evo-

lution. Since the slow-roll parameters are ε = η = 2M2
P /(a

2f2), we find

m <
µ0 f

MP
(relaxion slow roll) . (4.1)

The requirement that the relaxion potential energy (m2f2a2/2) is subdominant with

respect to the inflaton energy (3H2M2
P ) implies

H >
µ0 f

MP
(inflaton dominates the vacuum energy) . (4.2)

The vacuum energy that drives inflation breaks supersymmetry and can be described

by the auxiliary component FI = HMP of a chiral superfield I containing the inflaton as

scalar component. This source of supersymmetry breaking will feed into the soft terms of

the SM fields through interactions that cannot be weaker than gravity, thus giving

1

M2
P

∫
d4θ I†I Φ†iΦi = H2φ∗iφi . (4.3)

In order not to spoil the relaxation of the supersymmetry scale, the soft masses in eq. (4.3)

must be subleading with respect to the contribution from the relaxion superfield. This

implies

H < µ0 (soft terms from inflaton are subleading) . (4.4)

We require that the Hubble rate be smaller than the QCD scale Λ to insure the

formation of the potential barriers from instanton effects

H < Λ (potential barriers from QCD) . (4.5)

This condition implies that eq. (4.4) is automatically satisfied, as µ0 > Λ.
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Finally we impose that the evolution of the relaxion is governed by the classical poten-

tial, rather than following a random walk driven by quantum fluctuations. This requires

that the classical force (V ′(a)/f = m2fa) dominates over the stochastic term (3H3/2π) in

the relaxion equation of motion. This implies

H3 < mf µ0 (classical evolution) . (4.6)

We can now put together eqs. (3.6)–(4.6) and identify the acceptable range of the

theory parameters. The PQ scale can vary in the range f ∼ 109–1012 GeV, the so-called

axion window, satisfying present experimental and cosmological bounds (for reviews see

ref. [47, 48]). The value of the PQ-breaking mass m is derived from eq. (3.6)

m ≈
(

Λ

300 MeV

)4(109 GeV

f

)2(
105 GeV

µ0

)
10−25 GeV . (4.7)

Taking together eqs. (4.2) and (4.5), we find

H < 300 MeV and µ0 <

(
109 GeV

f

)
109 GeV . (4.8)

A stronger constraint is obtained from eq. (4.6)

H <

(
Λ

300 MeV

)4/3(109 GeV

f

)1/3

0.2 MeV and

µ0 <

(
Λ

300 MeV

)4/3(109 GeV

f

)4/3

5× 105 GeV . (4.9)

The stronger constraint in eq. (4.9) comes from the requirement of a classical relaxion

evolution. Although justified, this condition may be too restrictive and the relaxation

mechanism may operate also in presence of sizeable quantum fluctuations. For this reason,

we have quoted separately the two bounds in eqs. (4.8) and (4.9). Finally, note that

eqs. (4.1) and (4.4) do not add any information, since they are automatically satisfied

when the other conditions are met.

A successful relaxation mechanism requires that the relaxion scans a range ∆a larger

than a∗. This implies

∆a > a∗ =

(
300 MeV

Λ

)4( f

109 GeV

)2 ( µ0

105 GeV

)2
1030 , (4.10)

which corresponds to an excursion ∆a f of 1039 GeV, for the same reference values of

eq. (4.10). The number of e-folds required for this field excursion, in the slow-roll regime,

is given byN = 3H2f2∆a/V ′(a). Using the lower bound on H from eq. (4.2) and expressing

m through eq. (3.6), we find

N >

(
300 MeV

Λ

)8( f

109 GeV

)6 ( µ0

105 GeV

)4
1042 . (4.11)

This enormous number of e-folds is a consequence of the shallowness of the relaxion po-

tential caused by the tiny value of its mass m, see eq. (4.7).
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5 Remarks on the UV completion

5.1 Planckian effects

The vastly super-Planckian field excursion required by the relaxation mechanism, see

eq. (4.10), casts doubts on the use of the effective field theory, since the Lagrangian in

eq. (2.5) is valid only up to energies of order f . More generally, as the relaxion explores

the super-Planckian regime, the quantum field theory approach may seem questionable.

However, if we require that the potential energy does not exceed the cutoff scale (V < f4),

we obtain that field excursions up to a < f/m are allowed. The relaxation mechanism re-

quires a ≈ µ0/m, and so the condition is satisfied. For the same reason, we can argue that a

description of the relaxion evolution in the context of quantum field theory suffices and no

knowledge of quantum gravity is needed, as the typical potential energy (V 1/4 ∼ (µ0f)1/2)

is much smaller than the Planck mass.

Nevertheless, these considerations are not sufficient to believe that super-Planckian

physics is not going to modify the relaxion potential. A first concern is that gravity is

expected to violate global symmetries [49–58] and can lead to Planck-suppressed operators

that do not respect the shift symmetry, giving enhanced contributions to the potential

in the super-Planckian domain. From a low-energy point of view, this problem may be

circumvented. To see this, let us assume that a small parameter ε controls the breaking

of the shift symmetry and, because of a selection rule, the relaxion field a always appears

multiplied by ε in the potential. Using dimensional analysis, our assumption states that

V (a)/f4 = hV (εa), where hV a generic function. In the specific case of eq. (2.7), the

small parameter is ε = m/f . If gravity respects the selection rule, Planckian operators are

expected to modify the potential in the form V (a)/f4 = hV (εa)[1 + (εaf/MP )n], for any

power n. In the case we have considered in our paper, the typical value of the expansion

parameter is εaf/MP ∼ µ0/MP , which is much smaller than one. Thus, a selection rule

could keep Planckian corrections under control. Nevertheless, we will show later that the

selection rule may be violated in realistic examples.

Another concern is related to the conjecture of gravity as the weakest force [59]. This

conjecture can be stated as follows. If a gauge force with coupling g is present at low

energy, then the effective field theory ceases to be valid at energies around E ∼ gMP .

This occurs because the effective theory becomes inconsistent with gravity unless new

states are added at the cutoff scale. The conjecture may be extended to non-gauge forces,

in particular prohibiting super-Planckian displacements of axion-like particles, since their

decay constants f are ruled to be smaller than MP [60–66]. In our case, the super-Planckian

excursion is not due to f > MP , but to the relaxion monodromy. The violation of gravity

as the weakest force comes from the very small parameter ε = m/f characterising the

strength (or, more precisely, the weakness) of the force breaking the shift symmetry. The

smallness of ε is ultimately related to the super-Planckian displacement of the relaxion. In

summary, the conjecture of gravity as the weakest force indicates a premature violation of

the effective theory at a scale εMP . Therefore, the mechanism of relaxation is incompatible

with the conjecture of gravity as the weakest force.
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5.2 Generalising the relaxion potential

On the positive side, the relaxation mechanism is rather robust in the sense that it does

not require a very special structure for the relaxion potential. Even if above MP the form

of the potential is not the same as the one we assumed at lower energy, the mechanism can

operate nonetheless. To explain the point, let us reconsider our analysis in terms of ε and

assume that the expression of the soft masses satisfies the same selection rule. Dimensional

analysis in the effective theory then gives

V = f4 hV (εa) , m̃ = f hm̃(εa) , (5.1)

where hV and hm̃ are generic functions. For concreteness, we take hV (x) = xn and hm̃(x) =

xp. We can now repeat the analysis of section 3 and 4 for the more general case defined in

eq. (5.1). We will recover our previous results for n = 2, p = 1, and ε = m/f .

The critical value for a at which electroweak symmetry is first broken is determined

by the condition m̃(a∗) ≈ µ0, which gives

a∗ ≈
1

ε

(
µ0

f

) 1
p

(critical condition for EW breaking) . (5.2)

The local minimum of the relaxion potential is reached for

ε ≈
(

Λ

f

)4( f

µ0

)n−1
p

(local minimum) . (5.3)

The constraint that the relaxion potential is smaller than the inflaton energy gives

H >
f2

MP

(
µ0

f

) n
2p

(inflaton dominates the vacuum energy) . (5.4)

Classical evolution of the relaxion at early times requires

H <
Λ4/3

f1/3
(classical evolution) . (5.5)

Combining eqs. (5.4) and (5.5), we find the upper limit on µ0

µ0 <
Λ

8p
3n M

2p
n
P

f
14p
3n
−1

. (5.6)

Supersymmetry implies n = 2p. In this case, the bound on µ0 is independent of the special

value of n and the result in eq. (5.6) coincides with eq. (4.9). This means that the relaxation

of supersymmetry breaking works independently of the form of the superpotential that

breaks the shift symmetry.
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5.3 Supergravity effects

Our conclusions about the robustness of the mechanism come from estimates based on the

effective theory. However, a UV completion that introduces new dimensionful couplings

(like gravity) and violates the selection rule can modify our conclusions. To illustrate the

point, take the example of supergravity, in which the scalar potential is given by

V =
e
f2

M2
P

K

f2

(
K ′′
−1

∣∣∣∣W ′ + f2

M2
P

K ′W

∣∣∣∣2 − 3f2

M2
P

|W |2
)
, (5.7)

where K is the (dimensionless) Kähler potential defined in eq. (2.5) and W is the super-

potential. Since we have assumed that the breaking of the shift symmetry resides only in

the superpotential, K is a function of s alone, while W depends also on a.

Suppose, as done previously, that W is a function of εa, where ε measures the breaking

of the shift symmetry. In this case W ′ is typically suppressed by a factor of ε with respect

to W and we obtain

V (a) ≈ −

(
3− f2K ′2

M2
P K

′′

)
|W |2

M2
P

. (5.8)

If 〈s〉 = O(1), then K ′2/K ′′ = O(1) and the potential develops an unstable direction as

a grows. This feature is well known in supergravity inflationary models and it usually

requires the addition of new stabiliser fields [67]. In our case, this runaway direction is a

virtue because it could naturally explain the initial condition of the relaxion in the early

universe. Assuming that the relaxion starts at Planckian values, the potential in eq. (5.8)

would make it slide along the runaway direction deep into the super-Planckian region until

it is stopped by QCD effects. The huge value of a needed by the relaxation mechanism

would not be the result of an artificial choice of initial conditions, but would be derived

from the dynamical evolution.

Unfortunately, supergravity brings in a problem that was not manifest in the effective

theory analysis. Since the soft masses are m̃ ∼ |W |/M2
P and the potential is V ∼ |W |2/M2

P ,

we obtain V ∼ m̃2M2
P , independently of the specific form of the superpotential W . The

constraint that the energy density is inflaton-dominated then requires H > m̃, preventing

the relaxation mechanism. Of course, in order to understand if this is a serious impediment

to relaxation in supergravity, one should have control over the mechanism that cancels the

cosmological constant. Nevertheless, we believe that this example illustrates the difficulties

that one could encounter when violations of the selection rule modify the expectations based

on the effective theory. In the case of supergravity, this comes about because W and W ′

(where W ′ = dW/da) cannot both depend on the single variable εa.

5.4 Effects beyond quantum field theory

There is another important issue about the UV completion of the theory we want to remark

upon. The effective theory defined by the Lagrangian in eq. (2.5) has a validity cutoff at the

relatively low scale f , where the relaxion interactions lead to a violation of perturbative uni-

tarity and require a UV completion. However, we are assuming monodromy for the relaxion
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and it is not clear if a consistent UV completion within quantum field theory exists. One

could then believe that our theory requires a drastic departure from quantum field theory,

maybe involving string theory, at the scale f . We want to claim that this is not the case.

Let us first consider the theory in the limit ε→ 0, shutting off the effects of monodromy.

In this case we simply recover the usual axion interactions. This theory must be UV-

completed at the scale f , otherwise the derivative couplings of the relaxion would lead to

parametric growth of scattering amplitudes at energies above f . We know how to UV-

complete the axion-like interactions by promoting the theory to a renormalisable model

which spontaneously breaks a global PQ-symmetry. In this case the relaxion will typically

be identified as the argument of a complex scalar field and the additional heavy radial mode

will enter scattering amplitudes, curing any pathological behaviour in physical processes.

With this in mind, although in this work we always consider only the light degrees of

freedom remaining in the low-energy effective theory, we envisage such a UV-completion for

the axion-like couplings to enter at the scale f . In our case, this would be a supersymmetric

axion model.

We now introduce the shift-symmetry breaking terms controlled by the small parame-

ter ε. Let us consider a theory where the interactions leading to non-compact behaviour are

present, while the ordinary axion-like interactions are UV-completed at the scale f as de-

scribed above. As the only two parameters in this simplified picture are f and ε, we expect

any pathological behaviour of scattering amplitudes to become apparent only at a scale

ΛPQ ∼ (f/ε)kf , where k is some power characteristic of a given process. In the limit ε→ 0,

we recover the result that, leaving gravity aside, the theory is UV complete up to arbitrarily

high energies. Since ε is very small, ΛPQ is so large that, although the relaxion potential is

exotic from a field theory perspective, we do not expect it to exhibit pathological behaviour

until well above the Planck scale, at which point field theory may break down in any case.

In conclusion, although a UV-completion of the relaxion monodromy would provide

valuable insight and understanding of the possible UV physics behind the mechanism, such

a UV-completion is not urgently required for the application of the relaxion mechanism at

energies below the Planck scale.

6 The structure of supersymmetry breaking

To understand the supersymmetry breaking mechanism it is necessary to study the vacuum

structure of the theory. The process is complicated in comparison to more familiar tree-level

supersymmetry breaking scenarios by the fact that the dynamics stabilising the relaxion

in a metastable minimum arises at the QCD scale, whereas the soft masses are induced at

much higher energy. Very different energy scales must be considered simultaneously, since

all of them play a role in the mechanism. Furthermore, the stabilisation of the relaxion in

a supersymmetry-breaking minimum depends on non-perturbative instanton effects which

may only be estimated from the chiral Lagrangian.

As all of the relevant relaxation dynamics occurs at energy below the QCD scale, we

wish to determine the potential for the lightest degrees of freedom: the relaxion and the

relaxino. To begin with we will construct a supersymmetric effective theory below the weak
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scale, including light quarks and the relaxion multiplet. At this stage, supersymmetry is

essential to retain the correct properties of the relaxion and relaxino couplings. Then we

will integrate out the heavy squarks to determine the effective theory at the QCD scale.

Finally, to go below the QCD scale we will include the chiral condensate and study its

effects on the relaxion and relaxino.

Our starting effective theory below the weak scale includes the relaxion multiplet and

light quarks (together with gluons and photons, although we do not write them explicitly).

The Higgs multiplets have been integrated out and the effect of chiral symmetry breaking

from the Higgs vacuum expectation value is captured through the quark mass mq. In order

to keep track of the relations between the couplings of the relaxion and the relaxino, we will

make supersymmetry manifest and describe the theory in terms of the chiral superfields S

(relaxion), Q (quark) and Qc (anti-quark). To illustrate the mechanism more clearly, we

will not use the most general Kähler potential, as done in eq. (2.5), but retain only the

essential terms, which are

K =
f2

2
(S + S†)2 +Q†Q+Qc†Qc − f2(S + S†)2

M∗
2 (Q†Q+Qc†Qc)− f2(S + S†)4

4!
. (6.1)

In a basis in which the relaxion couplings have been rotated into the quark mass terms, the

superpotential is given by the sum of a PQ-invariant quark mass term and the PQ-breaking

relaxion term in eq. (2.7)

W = mqe
SQcQ+

m

2
f2S2 . (6.2)

The background value of the relaxion gives a non-vanishing value to the auxiliary field

F = ima/
√

2. As a result, supersymmetry-breaking terms are induced. Squarks and the

scalar srelaxion s acquire the soft masses6

L ⊃ −a
2f2m2

M2
∗

(
|q̃|2 + |q̃c|2

)
− a2f2m2

2
s2 , (6.3)

together with a chirality-flipping squark mass term

L ⊃ imq√
2
ameia/

√
2 q̃cq̃ + h.c. (6.4)

Although the srelaxion s is a singlet scalar, no tadpole term is induced. The relevant

chirality-preserving (but supersymmetry breaking) and chirality-flipping (but supersym-

metry preserving) Yukawa interactions between relaxino, quarks, and squarks are

L ⊃ − i
√

2

M2
∗
amf2 (q̃∗ ãq + q̃c∗ ãqc)−mqe

ia/
√

2 (q̃c ãq + q̃ ãqc) + h.c. , (6.5)

and the Yukawa couplings of the srelaxion to quarks and the relaxino are

L ⊃ −mq√
2
eia/
√

2s qcq − i

2
amf2s ãã+ h.c. (6.6)

6We recall that we are taking S to be dimensionless. This choice makes the dimensions of the interactions

look unusual. Ordinary dimensions are recovered by recalling that the physical fields are fa, fs, and fã.

Moreover, we use two-component Weyl spinors for fermions.
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Figure 1. The Feynman diagrams that generate the four-fermion operator (qcq) (ãã), after inte-

grating out the squarks and the srelaxion s.

By construction the soft masses are well above the weak scale, thus to understand the

theory at the QCD scale the squarks and the srelaxion must be integrated out. Due to

the interactions of eqs. (6.5)–(6.6), squark and srelaxion exchange generates four-fermion

interactions involving the relaxino and quarks, as described by the Feynman diagrams in

figure 1. Working at the leading order in mq, we can treat the mixing term in eq. (6.4)

as a mass insertion. The dependence on the messenger mass M∗ drops out from the

coefficients of the four-fermion interactions. In the two diagrams with chirality-preserving

squark propagators, the 1/M2
∗ factor appearing in the chirality-preserving Yukawa coupling

is cancelled by the squark mass. In the diagram with mass insertion, the factor 1/M4
∗ from

the two Yukawa vertices is cancelled by the double squark propagator. The dependence on

the srelaxion soft mass also cancels in the same way.

After summing the contributions from squark and srelaxion exchange and accounting

for the Fierz identity (ãã) (qcq) = −2(ãq) (ãqc), the induced four-fermion operator is

L4f = − 1

2
√

2am

(
imqe

ia/
√

2 qcq + h.c.
)

(ãã+ h.c.) (6.7)

Combining this with the PQ-breaking mass terms and the interactions of the relaxion,

the low-energy theory with supersymmetric states integrated out is described by

L = −m
2

2
f2a2 − m

2
f2 (ãã+ h.c.)−

(
mq e

ia/
√

2 qcq + h.c.
)

+ L4f . (6.8)

To study the theory below the QCD scale, we capture the non-perturbative QCD effects

that generate the quark chiral condensate through the replacement mq〈qcq〉 → Λ4/2. This

– 17 –



J
H
E
P
1
2
(
2
0
1
5
)
1
6
2

leads to the following effective Lagrangian for the relaxion and relaxino7

L = −V (a)− mã(a)

2
f2 (ãã+ h.c.) (6.9)

V (a) =
m2

2
f2a2 + Λ4 cos

a√
2
, mã(a) = m−

Λ4 sin a√
2√

2 amf2
. (6.10)

Equation (6.10) exhibits how the periodic term in the relaxion potential is generated from

QCD instantons. Minimising the potential V (a), we obtain the vacuum expectation value

of the relaxion

V ′(a)
∣∣
a=〈a〉 = 0 ⇒ m2f2〈a〉 =

Λ4

√
2

sin
〈a〉√

2
. (6.11)

On the vacuum, the effective mass of the relaxino, defined in eq. (6.10), exactly vanishes

since mã(〈a〉) = 0.

This completes our consistency check, as in global supersymmetry we know that spon-

taneous supersymmetry breaking must be accompanied by a massless Goldstino. We con-

clude that supersymmetry is spontaneously broken at the metastable vacuum generated

by non-perturbative QCD effects and the Goldstino can be identified with the relaxino.

7 The relaxino (alias gravitino)

During the cosmological evolution of the relaxion, its supersymmetric partner (the relaxino)

remains light, with mass of order m. In this phase, the Goldstino resides primarily in the

inflationary sector, as dictated by the condition of eq. (4.2) that the inflaton dominates

the vacuum energy. As shown in section 6, once the relaxion is stabilised, it plays the

role of Goldstino. However, gravity insures that its degrees of freedom are absorbed in the

spin-1/2 components of the gravitino, which acquires a mass

m3/2 =
F f√
6MP

. (7.1)

Here F ≈ ma is the typical mass scale of supersymmetric partners. To keep track of the

model-dependence of the supersymmetric mass spectrum, we define

m̃ = k F , (7.2)

where m̃ is the physical mass of the sparticle and k can be different for each individual

sparticle. For instance, we have found in section 2 that k ≈ α/4π for gauginos, while for

squarks and sleptons k is of order unity if the mediation occurs at the scale f , or k ≈ f2/M2
∗

otherwise. Thus, we can write

m3/2 =
1

k

(
m̃

105 GeV

)(
f

109 GeV

)
17 keV . (7.3)

7For simplicity we have not included the SM pion fields which have a small mixing with the axion. This

simplification does not modify our result, which is not affected by the inclusion of the pions.
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This means that, depending on the parameter choice, the gravitino (or relaxino) mass

varies in the keV to GeV range.

As the gravitino is a factor f/MP lighter than the other supersymmetric particles, it

is the LSP. Any other sparticle (P̃ ) decays into the relaxino with a width

Γ(P̃ → P ã) =
m̃5
P

48πm2
3/2M

2
P

. (7.4)

The decay rate is too fast to be of much consequence for cosmological or astrophysical

considerations, but can play a role at high-energy colliders, as discussed in section 8.

More interesting for cosmological applications is the relic abundance of relaxinos. Since

Goldstinos have derivative couplings, in the early universe they will be more easily pro-

duced at high temperatures. Their relic abundance will then depend on the reheating

temperature TRH of the thermal bath produced by inflaton decays. This brings up the

concern about possible upper bounds on TRH from the relaxation mechanism. Thus, we

turn to discuss this issue.

If TRH is larger than the typical QCD scale, at the end of inflation the barriers in

the relaxion potential disappear and the field a keeps on sliding down its potential. This

continues for a time H−1
QCD, the Hubble rate at the QCD phase transition, when barriers

are restored. During this time, the slow-rolling relaxion has travelled a distance ∆a =

ȧH−1
QCD = V ′/(3f2H2

QCD), with V ′ ∼ mm̃f2. As shown at the end of section 3, the change

in the Higgs mass parameter for a variation ∆a is ∆m2
h/∆a ∼ mm̃. Using HQCD ∼

T 2
QCD/MP with TQCD ∼ 1 GeV, we find that the relative change in the Higgs mass is

∆m2
h/m

2
h ∼ Λ8M2

P /(f
4T 4

QCDm
2
h) ∼ (109 GeV/f)4×10−8. Since this change is insignificant,

we conclude that the relaxation mechanism gives no bound on TRH.

For TRH > m̃, the thermal relic abundance of gravitinos gives a contribution to the

energy density of the universe today [70] (for a recent reanalysis, see ref. [71])

Ω3/2h
2 =

(
TRH

108 GeV

)(
MeV

m3/2

)(
m̃

105 GeV

)2

2× 107 (for TRH > m̃) . (7.5)

Using eq. (7.3), we find that Ω3/2 always exceeds the measured dark matter density for f

in the axion window. Thus we conclude that TRH must be smaller than m̃.

If TRH < m̃, gravitinos can still be created in the early universe by pair-production from

scattering of SM particles and virtual sparticle exchange. The thermal-averaged scattering

rate times velocity is [72]

〈σ(PP → ãã)v〉 ≈ T 6

16πm4
3/2M

4
P

. (7.6)

From this, we obtain the gravitino contribution to the universe energy density [73]

Ω3/2h
2 ≈

(
TRH

104 GeV

)7(MeV

m3/2

)3

× 10−15 (for TRH < m̃) . (7.7)

From eq. (7.7) we infer that as soon as TRH is sufficiently smaller than m̃, relic gravitinos

are never overabundant, thanks to the steep sensitivity of Ω3/2 on TRH. In the case of a
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split spectrum (e.g. when gauginos are lighter than scalars by a loop factor), m̃ should be

interpreted as the mass of the lightest supersymmetric partner of SM particles (e.g. the

lightest gaugino). This is because relic gravitinos can still be produced by scattering of the

light gauginos, even in the limit of heavy scalars.

In conclusion, we find that the reheating temperature must be smaller than the mass

of the lightest SM supersymmetric partner (e.g. TRH < Mg̃), or else the gravitino energy

density is too large. On the other hand, the gravitino (i.e. relaxino) can explain the dark

matter density if TRH ≈Mg̃.

8 Phenomenology

The phenomenology of the relaxion and supersymmetric particles is concerned with physics

at very different energy scales and, in our setup, one may observe experimental signatures

in both of these two seemingly disparate experimental frontiers.

8.1 Relaxion detection

The relaxion can be detected in usual axion searches (for reviews see ref. [47, 48]). The

two couplings most relevant for relaxion phenomenology are the coupling to the photon,

aF F̃ , and the coupling to the gluon aGG̃. If the relaxion comprises some fraction of the

dark matter the relaxion-photon coupling can be probed with microwave cavity experi-

ments (also referred to as haloscopes). In the case that the relic abundance of relaxions

is negligible then relaxion helioscopes, light-through-wall experiments, and observations of

astrophysical objects such as stars, compact stars, and supernovae, may be used to search

for the production of relaxions via the axion-photon coupling.

The relaxion-gluon coupling is directly related to the neutron electric dipole moment.

If the relaxion comprises some of the dark matter this coupling may be probed through

searches for NMR effects generated by an oscillating nEDM [74] or oscillating atomic and

molecular EDMs [75, 76]. Thus it may be possible in the future to probe both the relaxion-

photon and relaxion-gluon couplings.

The relaxion couplings to gauge fields come from the super potential term

Ca(S) TrWaWa in eq. (2.5). The same coupling also gives rise to gaugino masses. This

means that there is a relation between the relaxion coupling to photons and gluons (a low-

energy physics observable) and gaugino masses (a high-energy physics observables). From

the results presented in appendix A, we derive that such relation is

caF F̃
caGG̃

=
cos2 θWMB̃ + sin2 θWMW̃

Mg̃
− αEM

π

Bµ
µMg̃

f

(
µ2

m2
H

)
. (8.1)

Unfortunately the link between relaxion couplings and gaugino masses is polluted by the

gauge-mediation-like contributions to MB̃,W̃ from Higgs-Higgsino loops. This contribution

is of the same order of magnitude of the first term in eq. (8.1) because Bµ/µ is expected to be

one-loop larger thanMB̃,W̃ . Loop effects are also going to modify eq. (8.1). These extra con-

taminations make eq. (8.1) not very useful for phenomenological applications, although the

relation is representative of possible links between low-energy and high-energy observables.
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Nonetheless, due to the connections between relaxion and gaugino physics it may be

possible to extract some aspects of the soft mass structure in the event of axion discovery.

For example, in this setup if a relaxion coupling to photons were observed, it would imply

that at least some contribution to the bino and wino soft masses came from the S TrWaWa

coupling. On the other hand, if a relaxion coupling to gluons (through an oscillating EDM)

were observed and no coupling to photons were measured, then this would imply that the

dominant source of the bino and wino masses was likely due to gauge-mediated effects from

the Higgs sector.

8.2 LHC phenomenology

Our relaxation mechanism parametrically decouples the supersymmetry-breaking scale

from the weak scale, thus naturally predicting that supersymmetric particles have large

masses. Nevertheless, the cosmological constraints discussed in section 4 imply that

supersymmetric masses cannot be arbitrarily large, but must lie below some hundreds

of TeV, see eq. (4.9). This region of masses is favourable for the prediction of the Higgs

mass, since its measured value gives an upper bound on the supersymmetry scale of about

1010 GeV (for a degenerate spectrum) or 108 GeV (for a split spectrum) [77–79]. The

heavy sparticles also eliminate problems with flavour-violating processes and dimension-5

proton decay operators.

In spite of having supersymmetry broken at such a high scale, all hopes for discovery

at the LHC are not lost. The key point for collider phenomenology is that gauginos are

expected to be lighter than squarks and sleptons by a gauge loop factor. This result is

deeply rooted in the structure of the theory, since the gauge sector communicates with

the relaxion sector through the quantum anomaly, which originates at one loop. Taking

eq. (2.12) for the gaugino masses and expressing the scalar masses as m̃ = kF (where k

parametrizes the model dependence), we obtain

Mg̃ ≈ c3

(
m̃/k

105 GeV

)
700 GeV , (8.2)

MW̃ ≈ c2

(
m̃/k

105 GeV

)
250 GeV , (8.3)

MB̃ ≈ c1

(
m̃/k

105 GeV

)
120 GeV , (8.4)

where we have chosen a GUT normalisation of the U(1) gauge coupling constant. Here ci are

the anomaly coefficients defined in eq. (2.6). Their values depend on the PQ completion

at the scale f . While c3 must be non-zero because the QCD anomaly is an essential

element of the story, c2 and c1 could vanish. Nevertheless, this would not change our

estimate in eqs. (8.3)–(8.4) because the contribution to electroweak gaugino masses from

µ is parametrically of the same order.

Notwithstanding the model dependence inherent in eqs. (8.2)–(8.4), it is clear than

gauginos could be within the reach of the LHC or, at least, of future colliders. The mass

spectrum that we obtained is very similar to anomaly-mediated Mini-Split [34–39]. So our

claim is that relaxation provides a framework for a natural realisation of Mini-Split.
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There are two differences with respect to the case of anomaly-mediated Mini-Split.

First, the ratios of gaugino masses are not rigidly determined by the β functions (as in

anomaly mediation) but are essentially free parameters, unless one specifies the theory at

the scale f . Second, unlike anomaly mediation where the gravitino is heavier than gauginos,

here the gravitino (i.e. relaxino) is the LSP. These two features change completely the

collider phenomenology.

At hadron colliders, gluino production is the leading discovery process. As R-parity

is assumed to be conserved, all gluino decays will eventually terminate with the relaxino.

However, we can envisage different situations, depending on the nature of the next-to-

lightest supersymmetric particle (NLSP). A common feature is that the NLSP decays into

the relaxino with a lifetime that can be derived from eq. (7.4) and is given by

τNLSP =
( m3/2

1 MeV

)2
(

1 TeV

MNLSP

)5

1.7× 102 meters/c , (8.5)

where c is the speed of light. For an NLSP with energy E, the displacement in the decay

is `NLSP = τNLSP

√
(E/MNLSP)2 − 1. Since, as discussed in section 7, the relaxino mass

m3/2 could in principle vary between the keV and GeV range, eq. (8.5) predicts that a

collider-produced NLSP could travel for distances `NLSP that vary between 100 microns

and a journey to the moon. To describe the collider signatures we will now individually

consider the three possible cases of NLSP.

8.2.1 Gluino NLSP

If the gluino is the NLSP, it decays into a gluon and a relaxino. Gluino pair production

at the LHC would lead to two hard gluon jets and missing energy, pp→ g̃g̃ → ggãã. This

signature would be striking as the lack of a cascade decay chain implies a much lower jet

multiplicity than in the typical Mini-Split case where each gluino decays to a neutralino

through an off-shell squark.

The gluino lifetime is given by eq. (8.5). As displacements `NSLP greater than 100 µm

can be experimentally resolved, gluino decays are likely to be displaced by an observable

distance. If the decay occurs within the detector, the signature would thus be jj + MET,

where the jet vertices are displaced. If the decay occurs outside the detector, the gluino

would appear as a long-lived coloured particle and would show up in dedicated R-hadron

searches (for a review, see ref. [80]).

8.2.2 Bino NLSP

If the bino is the NLSP, the gluino decays predominantly through an off-shell squark

g̃ → qqB̃ with a lifetime [81]

τg̃→qq̄B̃ ≈
(

m̃

105 GeV

)4(1 TeV

Mg̃

)5

10−1 µm/c . (8.6)

For gluinos in the TeV mass range and squarks a loop factor or less above the gluino mass,

it is unlikely that these decays would be observably displaced, unless c3 in eq. (8.2) is suffi-

ciently small. The bino decays via B̃ → γã or B̃ → Zã and the displacement for this decay
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is also determined by eq. (8.5), thus it is observable. The decay B̃ → hã is highly sup-

pressed by the negligible bino-Higgsino mixing. Because Higgsinos are heavy and gauginos

are almost pure states, there is a prediction for the branching ratio of the bino decays

Γ(B̃ → Zã)

Γ(B̃ → γã)
= tan2 θW

(
1−

m2
Z

m2
B̃

)4

, (8.7)

which, if measured, could confirm the bino nature of the NLSP.

In summary, for a bino NLSP the collider signature would be striking: jjjj+γγ+MET

where the photons would emerge from a displaced vertex. This signal can also occur in

models with gauge mediation. If kinematically available, one or both of the photons may

be replaced by a Z-boson. In addition, if the squarks were heavy enough the jet pairs may

also be displaced, leading to a final state with four displaced vertices.

8.2.3 Wino NLSP

If the wino is the NLSP, the gluino decays into a pair of quarks and a charged or neutral

wino with a lifetime given by eq. (8.6). Due to the absence of mixing with the Higgsinos, the

charged and neutral mass splitting is M
W̃±
−M

W̃ 0 ≈ 165 MeV at two loops [82]. The conse-

quence is that, if the charged wino is produced in a cascade, it will decay via W̃± → π±+W̃ 0

where the pions are too soft to be reconstructed at the LHC. This decay would occur with a

lifetime τW̃±→π±+W̃ 0 = 6 cm/c [82]. This leads to a very interesting scenario as the typical

displacement for charged (W̃± →W± + ã) or neutral (W̃ 0 → γ/Z + ã) wino decay to the

relaxino is given by eq. (8.5) and for the charged wino the branching ratio for this decay

may exceed or fall short of the decay to pions, leading to a number of distinct signatures.

• Both gluinos decay to neutral winos. This would look similar to the bino NLSP

and the collider signature would again be: jjjj + γ/Z γ/Z + MET where the γ/Z

could be displaced. Again, if the squarks were heavy enough the jet pairs may also

be displaced, leading to a final state with four displaced vertices. Although the

collider topologies are similar, the W̃ 0 NLSP could be distinguished from the B̃

NLSP scenario through the branching ratio prediction

Γ(W̃ 0 → Zã)

Γ(W̃ 0 → γã)
= cot2 θW

(
1−

m2
Z

m2
W̃

)4

. (8.8)

• One or both gluinos decay to charged winos and `W̃±→π±+W̃ 0 � `W̃±→W±+ã. In

this regime the majority of charged winos produced from gluino decays will decay

through the channel W̃± → π± + W̃ 0. This will give rise to signals analogous to the

previous case, with the additional feature of charged disappearing tracks from the

long-lived W̃± [83–87].

• One or both gluinos decay to charged winos and `W̃±→π±+W̃ 0 � `W̃±→W±+ã. In

this regime the majority of charged winos produced from gluino decays will decay as

W̃± → W± + ã, with a displacement 100 µm < `W̃±→W±+ã � 6 cm. If the gluinos
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both decayed to charged winos the collider signature is jjjj+W±W±+MET, with a

modest displacement of both W vertices, and potentially also displacement of the jet

pair vertices. If the gluino decayed to one charged and one neutral wino the signature

would be jjjj + W± + γ/Z + MET and again a modest displacement of the gauge

boson vertices.

9 Strong CP problem

The theory we presented predicts that the CP-violating θ parameter of QCD is a number

of order unity. This happens because the relaxion is stabilised at one of the local minima

of the potential in eq. (3.5), and thus it is necessarily displaced by an amount of order

one from the minima of the periodic potential. This result is in blatant contradiction with

experiments, since the limit on the neutron electric dipole moment implies |θ| < 10−10.

The problem is severe because any hypothetical solution setting θ = 0 at high energy

would be undone by the relaxation mechanism operating at low energies. This difficulty

is endemic in all relaxation mechanisms that employ the QCD axion as driving agent [1].

Of course, any model that claims to be realistic must solve this problem. Here we will

only sketch some ideas on how to address the issue, but we will not attempt to construct

a complete model, leaving this task to future work. We will present three possible ways

to tackle the problem (two of them are adaptations to the supersymmetric case of the

solutions suggested in ref. [1]). Each solution has some drawbacks.

9.1 Inflaton-dependent relaxion potential

The first class of solutions employs the idea that the PQ-breaking potential that drives the

evolution of the relaxion towards electroweak breaking can be present during inflation, but

disappear after reheating. In this way, after the end of inflation, the relaxion will be able

to rearrange itself very close to a minimum of the periodic potential, driving θ towards

zero with an unsubstantial change of the Higgs mass.

In our context, the idea can be realised by adding to the superpotential a small coupling

λ between the inflaton (I) and relaxion (S) chiral superfields

W = (m− λI)
f2 S2

2
+
mI I

2

2
. (9.1)

Here, just for illustration, we have taken a simple mass term for the inflaton while we

choose a canonical Kähler potential. Our dynamical assumption is that, during inflation,

the scalar component of I (called ϕI) and the relaxion (a) are displaced from their minima,

while the srelaxion sits at the vacuum s = 0. We find that, on the inflaton background,

the effective relaxion mass (defined as V (a) = m2
efff

2a2/2) and auxiliary field are given by

m2
eff(ϕI) = (m− λϕI)2 + λmIϕI , (9.2)

Feff(ϕI) = i(m+ λϕI)
a√
2
. (9.3)

Let us suppose that, during inflation, the inflaton lies somewhere in the range

m2/mI � λϕI � m. Then, the supersymmetry-breaking scale during and after infla-

tion is always about the same, Feff(ϕI) ≈ Feff(0). On the other hand, the relaxion mass

– 24 –



J
H
E
P
1
2
(
2
0
1
5
)
1
6
2

during inflation, m2
eff(ϕI) ≈ λmIϕI is much larger than its value today m2

eff(0) ≈ m2. The

ratio of these two masses squared corresponds to the reduction factor in the value of θ.

Thus, we obtain

θ ≈
m2

eff(0)

m2
eff(ϕI)

� 1 . (9.4)

We must also require the condition λ < m2/(µ0f) to ensure that a quartic term in the

potential V (a) gives a negligible contribution with respect to the mass term. In con-

clusion, this mechanism can efficiently reduce θ without affecting the scanning of the

supersymmetry-breaking scale, nor reducing its value after inflation.

However, the inflationary conditions discussed in section 4 become now very constrain-

ing. The requirement that the inflaton dominates the vacuum energy, i.e. the analogue of

eq. (4.2), gives

H >

(
f

109 GeV

)( µ0

105 GeV

)(10−10

θ

)1/2

GeV . (9.5)

For sparticle masses in the tens of TeV range, one can barely satisfy the requirement

H < Λ, see eq. (4.5). On the other hand, the condition for classical evolution is not

satisfied and it remains dubious if the relaxion can have a significant probability of

reaching the correct vacuum.

9.2 Inflaton-dependent instanton barriers

An alternative strategy to deal with the strong-CP problem is to have the field evolution

to occur during a period of inflation in which the Hubble constant exceeds the QCD strong

coupling scale, H > Λ. Previously this regime has been avoided as the instanton effects,

and hence the axion potential, are exponentially suppressed. However, we will see that this

may be advantageous.

Let us first consider the behaviour of a thermal system, as this will lead us to an inter-

esting analogy. At temperatures well below Λ the instanton effects are unsuppressed and

the effective axion potential may be calculated from the chiral Lagrangian. The resulting

potential is given by

Va ∼ Λ4 cos a . (9.6)

At temperatures far above Λ the potential may be calculated in perturbation theory and,

to lowest order is given by Va ∼ T 4 exp[−2π/αs(T )] [88]. As it is not possible to estimate

the potential in the cross-over regime where T ∼ Λ, we make a simple parametrisation

Va(T ) ∼ Λ4 Θ(T ) cos a , (9.7)

where the function Θ(T ) encodes the finite temperature suppression. This suppression has

been estimated in a number of different temperature regimes (see e.g. [88, 89]). In figure 2

we plot the finite temperature suppression factor as calculated more recently, by using the

approximate expressions in [90].8

8We flip the sign of the d
(4)
0 coefficient given in [90], otherwise the complete function is not continuous.
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Figure 2. The suppression of the axion potential at finite temperature, calculated using the

approximate expression from ref. [90].

Rather than considering bone-fide finite temperature effects, let us instead consider

inflationary Hubble scales which exceed Λ. There are two different perspectives for under-

standing how, for H > Λ, the axion potential is suppressed. The first is that instanton

effects will only be physical for instanton sizes which are contained within the horizon, i.e.

only instantons of radius ρ < 1/H will contribute to the path integral. The path integral

is IR divergent and a cutoff is needed, with the integration over the radius extending up to

distances ρ < 1/Λ. However, if 1/H < 1/Λ then a new cosmological IR cutoff is imposed

and the integration is limited to distances ρ < 1/H. Since for modes of small size (ρ < 1/H)

the gauge coupling is perturbative, the instanton effect is exponentially suppressed.

The second perspective is that de-Sitter space may be thought of as exhibiting a

finite-horizon Gibbons-Hawking temperature TH ∼ H/2π [91]. While it should be kept

in mind that this temperature is physically different from the usual interpretation in

statistical mechanics, an estimate of the axion potential may be determined by substituting

TH into eq. (9.7).

Let us now consider the relaxation during an epoch with TH > Λ. We will assume that

the full evolution of the relaxion occurs during an inflationary period with constant H.

The effective potential for the relaxion during inflation is given by eq. (3.5), which now

becomes

V (a) =
m2f2

2
a2 + Λ4 Θ(TH) cos a . (9.8)

The relaxion evolution of this model is identical to our original model, with the exception

that the heights of the barriers in the instanton-induced potential are now suppressed. For

the relaxion to stop after electroweak breaking we need to satisfy

Λ4Θ(TH) ≈ f2mµ0 . (9.9)
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Figure 3. A schematic illustration of the resolution of the relaxion strong-CP problem with

inflaton-dependent instanton barriers. During inflation the axion-like potential is suppressed (blue

dashed line). At late times the axion-like potential is unsuppressed and has grown relative to its

value during inflation (solid black line). This change shifts the final relaxion minimum closer to a

value in which the effective θ is much smaller, as shown by the example red minima.

As before, the effective strong-CP angle θ at the end of relaxion stabilisation will be

of order unity. However, after inflation has ended the Hubble parameter will have dropped

below the QCD scale and in this post-inflationary epoch the amplitude of the periodic

potential will have grown, while the value of m will remain the same as before. This means

that at late times the relaxion potential is dominated by the usual axion potential and the

relaxion will evolve towards the new minimum of the potential, appearing almost identical

to the QCD axion. This would then solve the strong-CP problem.

Quantitatively, the relaxion at the minimum is such that sin a ≈ m2f2a∗/(Λ
4Θ). This

means that the effective value of θ changes from the inflationary epoch (when Θ must be

evaluated at TH) to late times (when Θ = 1) by a factor of Θ(TH). Thus the strong CP

angle today is θ ≈ Θ(TH).

We see from figure 2 that for TH & 2.8 GeV (H & 18 GeV) we have |Θ(TH)| . 10−10

and the strong-CP problem is resolved. This mechanism is sketched in figure 3.

Unfortunately the condition for classical evolution is not satisfied once again. We

speculate that an alternative strategy would be to take H < Λ as usual and suppress the

axion potential during inflation by genuine finite temperature effects in the visible sector

T > Λ. This may be achievable by allowing the inflaton field to decay to visible sector

fields throughout the inflationary period, in a setup similar in spirit to warm inflation [92].

The details of such a scenario remain to be investigated.

9.3 Non-QCD relaxion

Another solution to the strong-CP problem may be found by realising the relaxion as the

axion-like field of a new gauge group beyond the SM. This follows the original proposal of

ref. [1] and our task here is to describe the supersymmetric counterpart. For our scenario

this requires supersymmetrizing the non-QCD model of [1]. A new SU(3)′c gauge group

is introduced and vector-like matter in the fundamental and anti-fundamental of SU(3)′c
is added. Some of the matter fields carry the electroweak quantum numbers of the left-

– 27 –



J
H
E
P
1
2
(
2
0
1
5
)
1
6
2

handed lepton superfield, thus they are labelled L and Lc, while the others are electroweak

neutral superfields N,N c. The theory is described by the usual Kähler potential and a

superpotential given by

W = Ca(S) TrW ′aW ′a +MLLL
c +MNNN

c + yuHuLN
c + ydHdL

cN . (9.10)

The electroweak charged fields L,Lc must have masses at or above the weak scale to

have evaded collider detection. SU(3)′c strong coupling leads to confinement of the matter

fermions. We must require the condensation of these fields to be suppressed by taking

Λ′ < ML, otherwise 〈LLc〉 ∼ Λ′3 and electroweak symmetry breaking would be dominated

by a technicolour phase. There are additional restrictions on the mass spectrum related to

technical naturalness, which may be found in ref. [1].

In order for the relaxation mechanism to work the mass of the lightest Dirac fermion

charged under SU(3)′c must be dominated by the Higgs vev. This mass contribution is

found after we integrate out L,Lc,

W ∼ yuyd
HuHd

ML
NN c , (9.11)

from a supersymmetric seesaw. In order for this mass term to dominate there is a form

of µ-problem associated with taking a small value for the superpotential parameter MN .

However this is technically natural so long as it is not more than a loop factor below ML.

Unfortunately supersymmetry, which is broken at a high scale, cannot protect MN further

than that.

The dynamical evolution of this setup proceeds as before. The pseudoscalar field a

contained in S will roll down a shallow potential, scanning the supersymmetry breaking

scale as it does so. At some point, when 〈hu,d〉 6= 0, a dominant mass contribution for the

N,N c fields is induced by the interaction in eq. (9.11). Confinement due to the SU(3)′c
strong coupling generates an axion-like potential for a which stops the field from rolling.

This creates a metastable minimum in which the supersymmetry breaking F -term has been

stabilised at a large value and the Higgs vev at a small value.

A difference between this setup and the non-QCD model of [1] lies in the couplings

of the relaxion. In our realisation S is the source of supersymmetry breaking. Thus to

generate visible sector soft masses, including gaugino masses, S must couple to the visible

sector superfields, hence the non-QCD relaxion must have couplings to the visible sector

gauge fields via the usual axion-like interactions aGG̃, aF F̃ . For this reason the non-QCD

relaxion may be detectable through the usual axion experimental strategies. As it obtains

its dominant mass from an additional gauge group it would appear much like a QCD

axion, albeit with mass that is anomalously large. To resolve the strong-CP problem there

must also exist the usual QCD axion and it must not couple to SU(3)′c to enforce that its

dominant mass contribution will come from QCD and not QCD′. Hence both the QCD

axion and the QCD′ relaxion may be detectable in this setup.
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10 Summary

For the ease of the reader we summarise here our results.

Section 2 describes our theoretical framework, which is based on a supersymmetric

effective theory valid below the PQ scale f , with SM superfields and a chiral superfield for

the relaxion. To mimic the effect of monodromy we introduce an explicit breaking of the

shift symmetry through a small mass term, which generates the relaxion potential. We

show how the background value of the relaxion breaks supersymmetry and we compute the

induced soft terms.

In section 3 we explain how the evolution of the relaxion leads to electroweak breaking

when the scanning soft terms become of the order of the supersymmetric higgsino mass

parameter µ0. The back-reaction from QCD instantons stops the evolution of the relaxion

and stabilises the scale of supersymmetry breaking at a value of order µ0.

Section 4 describes the conditions under which the inflationary dynamics is compatible

with the relaxation mechanism. The most stringent constraints come from the conditions

that (i) the relaxion does not dominate the vacuum energy, so that it does not affect the

dynamics of inflation, and (ii) the relaxion evolution is determined by the classical force

and not by the quantum random walk, so that the slow-rolling field tracks the classical

potential. The combination of these two conditions imply a strong upper bound on the

Hubble rate during inflation and an upper bound on the scale of supersymmetry breaking

of some hundreds of TeV. Once these two conditions are satisfied, it is guaranteed that

(i) gravity-mediated effects on the soft terms from the inflaton sector are negligible and

(ii) the relaxion is in the slow-roll regime. A further requirement is that inflation lasts for

an astronomically large number of e-folds in order to give enough time to the relaxion to

probe a sufficiently large portion of its shallow potential.

In section 5 we explore the limitations and the uncertainties associated with the super-

Planckian excursion of the relaxion. The non-compact properties of the axion most prob-

ably require UV completions beyond the rules of quantum field theory and this prevents

us from making definitive statements. However, we argue that such completion needs only

to emerge in the Planckian domain and not necessarily at the lower scale f . Using an

effective field-theory approach, we observe that selection rules could keep Planckian effects

under control in the region of interest of the relaxion potential. Moreover, the robustness

of the mechanism under modifications of the relaxion potential makes us more confident

that relaxation may survive Planckian effects. On the other hand, we show that relax-

ation is inconsistent with the conjecture of gravity as the weakest force. We also remark

that supergravity could lead to the interesting situation of an unstable nearly-flat direction

along which the relaxion could slide. This would give a natural explanation of the initial

conditions at early times. The relaxion would start at typical Planckian values, then grow

enormously driven by the dynamics of the runaway direction to be stopped only by QCD

instantons. The vastly super-Planckian values of the relaxion would not result from an

assumption on initial conditions, but rather from the dynamical evolution. It is not clear

to us if this scenario can be made compatible with realistic mechanisms for the cancellation

of the cosmological constant.
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In section 6 we elucidate the mechanism of supersymmetry breaking, which is par-

ticularly simple in terms of field content — a single chiral superfield — but complicated

in terms of dynamics because of the simultaneous participation of vastly different energy

scales, varying from hundreds of TeV to hundreds of MeV. Since all these scales play an

active role in the process, we devise a simple but effective way to capture the relevant

physics and obtain an effective theory of the interactions between the relaxion and the

relaxino below the QCD scale. The supersymmetric relations among couplings and the

non-perturbative QCD chiral condensate conspire to make the relaxino exactly massless

at the metastable vacuum. This indicates that the relaxino must be identified with the

Goldstino and supersymmetry is indeed spontaneously broken.

Once gravity is turned on, the relaxino plays the role of the spin-1/2 components of

the gravitino. In our scenario, the relaxino is the LSP, since its mass is a factor f/MP

smaller than the typical soft mass. The cosmology of the relaxino is discussed in section 7.

Thermal abundance considerations require that the reheating temperature after inflation

should not be larger than the typical soft mass. When this bound is saturated, the relaxino

could be the dark matter. More generally, dark matter could be made of two species, being

a combination of relaxinos and relaxions.

In section 8 we considered the low-energy relaxion phenomenology and high-energy

gaugino phenomenology at colliders. Although the scalar superpartners are likely to be out

of reach at the LHC, the gaugino masses are suppressed by an additional loop factor and

may be within LHC and possible future collider reach. So relaxation gives a realisation of

Split Supersymmetry [95–97] free from the naturalness problem. As the LSP is the relaxino

(i.e. gravitino), the model predicts gaugino NLSP decays that may be prompt, displaced,

or even outside the detector, giving a variety of characteristic signals. The specific collider

signatures depend on the nature of the NSLP, and they typically involve jets, missing

energy, possibly two or more displaced vertices, and additional electroweak gauge bosons.

If the NLSP decays outside the detector then a gluino NLSP would generate R-hadron

signatures and a bino or wino NLSP would lead to a jets and missing energy signature,

possibly accompanied by disappearing charged tracks.

In section 9 we investigate three scenarios to address the problematic strong-CP pre-

diction of the relaxion model. In the first scenario we sketch a supersymmetric inflaton-

relaxion coupling in which the slope of the potential breaking the shift symmetry is gener-

ated during inflation but drops significantly afterwards. This is an adaptation of a similar

setup described in ref. [1]. Unfortunately in the supersymmetric model it is challenging to

satisfy the constraint that classical dynamics dominates the evolution of the relaxion field.

In the second scenario we considered a new possibility that the axion-like potential induced

by QCD instantons may be suppressed during relaxation and grow afterwards to force the

strong CP angle θ to small values. For this scenario it also appears difficult to enforce

classical evolution of the relaxion, although we speculate that modified scenarios involving

a type of warm inflation may be a promising avenue for future investigation. Finally, in

the third scenario we adapt a model of ref. [1] where additional matter is added such that

relaxation is a result of chiral symmetry breaking due to a non-QCD gauge group. This

scenario satisfies the classical evolution constraint.
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A Computation of the soft terms

In this appendix we outline the computation, based on the method of ref. [93, 94], of the

soft terms coming from the Langrangian in eq. (2.5), in presence of the supersymmetry-

breaking background of the relaxion superfield S = S̃ + θ2F . Here S̃ = (s + ia)/
√

2

denotes the complex scalar component and F is the auxiliary field. On this background,

the functions appearing in the Lagrangian can be expressed as

Zi(S + S†) = Z + Z ′(Fθ2 + F ∗θ̄2) + Z ′′|F |2θ4 , (A.1)

U(S + S†) = U ′F ∗θ̄2 + U ′′|F |2θ4 , (A.2)

e−qS = e−qS̃(1− qFθ2) . (A.3)

On the right-hand side of eqs. (A.1)–(A.3), Z and U are functions of the variable S̃+ S̃† =√
2s and primes denote derivatives with respect to this variable.

To obtain physical masses, we need to work in a basis in which the kinetic terms for

the SM-sector fields are canonically normalised. This is achieved by defining the rescaled

chiral superfields

Φ̂i = Z
1/2
i

[
1 + (lnZi)

′Fθ2
]

Φi . (A.4)

In terms of the rescaled superfields, the Lagrangian in eq. (2.5) becomes

L =

∫
d4θ

[
1 + (lnZi)

′′|F |2θ4
]

Φ̂†i Φ̂i

+

(∫
d4θ

e−qS̃

(ZHuZHd)
1/2

[
U ′F ∗θ̄2 +

(
U ′′ −QU ′

)
|F |2θ4

]
ĤuĤd

+

∫
d2θ

µ0 e
−qS̃

(ZHuZHd)
1/2

(
1−QFθ2

)
ĤuĤd

+

∫
d2θ Yijk

(
1− PijkFθ2

)
Φ̂iΦ̂jΦ̂k

+

∫
d2θ

{
Ca(S) +

∑
i

T ia
16π2

[
lnZi + (lnZi)

′Fθ2
]}

trWaWa + h.c.

)
(A.5)

Q ≡ q + (lnZHu)′ + (lnZHd)
′ , (A.6)

Pijk ≡ (lnZi)
′ + (lnZj)

′ + (lnZk)
′ . (A.7)

Here Yijk are the running Yukawa couplings, which include the wave-function renormalisa-

tion. We define T ia as the Dynkin index of the Φi representation under the gauge group a

(T i = 1/2 or T i = N for a fundamental or an adjoint of SU(N), respectively).
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From eq. (A.5) we can immediately read off the soft terms

m̃2
i = −(lnZi)

′′|F |2 , (A.8)

Aijk = Yijk
[
(lnZi)

′ + (lnZj)
′ + (lnZk)

′]F , (A.9)

µ =
e−qS̃

(ZHuZHd)
1/2

(
µ0 + U ′F ∗

)
, (A.10)

Bµ =
[
q + (lnZHu)′ + (lnZHd)

′]Fµ− e−qS̃U ′′|F |2

(ZHuZHd)
1/2

, (A.11)

Mg̃a =
αa
4π

[
ca −

∑
i

T ia(lnZi)
′
]
F +

αaBµ
2π µ

f

(
µ2

m2
H

)
(δa1 + δa2) , (A.12)

with f(x) = (x lnx)/(x− 1).

Note that the second term in eq. (A.12) is a gauge-mediation effect from the Higgs

superfields Hu,d. It cannot be neglected here because it is parametrically comparable with

the first term. In eq. (A.12), mH is the heavy Higgs mass defined in eq. (3.4).

It is useful to remark that the value of q in the Lagrangian in eq. (2.5) depends on the

field basis. Let us consider the S-dependent superfield redefinition

Φi → eqiS Φi , (A.13)

where qi are the corresponding PQ charges. After this transformation, the Lagrangian is

obtained from eq. (2.5) with the replacements

q → q − qHu − qHd , Zi → eqi(S+S†) Zi , ca → ca +
∑
i

T iaqi , (A.14)

The variation of ca in eq. (A.14) is induced by the quantum anomaly of the PQ symmetry.

The Yukawa interactions remain invariant because we are assuming that they respect PQ.

With the transformation in eq. (A.13) one can eliminate the e−qS factor from the

superpotential, thus exhibiting the basis dependence of the value of q. Note that the soft

terms in eqs. (A.8)–(A.12) are manifestly invariant9 under the transformation in eq. (A.14)

and therefore are independent of the field basis, as physical quantities should.

B Conditions for electroweak breaking

In this appendix we derive the conditions under which the electroweak symmetry is broken

by the dynamical evolution of the relaxion, as it rolls down its potential. We parametrize

the soft-breaking parameters as

m2
Hu = cum

2a2 , m2
Hd

= cdm
2a2 , µ = µ0 − cµma , Bµ = c0 µma+ cBm

2a2 , (B.1)

where ci are model-dependent coefficients that we take to be independent of a and of order

unity. For simplicity, we take all ci real and we can choose cd, cB, and µ0 positive. The

9Under the transformation in eq. (A.14), both µ and Bµ change by an overall phase exp[i(qHu +

qHd)a/
√

2]. However, this phase is irrelevant since physical quantities can depend only on the basis-

independent combination arg(mλµB
∗
µ).
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corresponding coefficients ci for squarks and leptons are taken such that the vacuum does

not spontaneously break colour or electric charge.

The order parameter of electroweak breaking is the determinant of the Higgs mass

matrix, given by eq. (3.1). Using eq. (B.1), we find

D(a)=m4a4

[( µ0

ma
−cµ

)4
+
(
cu+cd−c2

0

) ( µ0

ma
−cµ

)2
−2c0cB

( µ0

ma
−cµ

)
+cucd−c2

B

]
.

(B.2)

We require that, during the initial stage of the relaxion evolution, electroweak symmetry

is preserved (D(a) > 0 for a� µ0/m). This implies(
cu + c2

µ

) (
cd + c2

µ

)
> (cB − c0cµ)2 (no EW breaking at large a) . (B.3)

As long as D(a) > 0, the condition for stability of the Higgs potential along the D-flat

direction (m2
Hu

+m2
Hd

+ 2µ2 > 2|Bµ|) is automatically satisfied.

As the relaxion rolls down its potential, D(a) decreases. However, an overall rescaling

of D(a) does not trigger electroweak breaking. Instead, we want D(a) to change sign

during the evolution of a, and thus the condition for approaching electroweak breaking is

d(D(a)/a4)/da > 0. Imposing this condition at a� µ0/m implies

cµ
(
2c2
µ + cu + cd − c2

0

)
+ c0cB > 0 (approach towards EW breaking) . (B.4)

If d(D(a)/a4)/da remains positive as the relaxion rolls down its potential, eventually at a

value a = a∗ the critical condition D(a∗) = 0 is achieved. The value of a∗ can be written

as in eq. (3.2), where c∗ is a function of the coefficients ci in eq. (B.1), which is expected

to be of order unity.

Although we cannot give a general analytic expression of c∗, we can easily compute

it in two simple, but representative, cases. The first case is c0 = 0, in which electroweak

breaking is achieved when c2
B > cucd, together with the conditions in eqs. (B.3)–(B.4), and

c∗ is given by

c∗ =
√

2

[
√

2cµ −
(√

(cu − cd)2 + 4c2
B − cu − cd

)1/2
]−1

. (B.5)

The condition for the stability of the potential along the D-flat direction for any value of

a is cu + cd > 2|cB|.
The second case is cB = 0. Electroweak breaking is achieved when eqs. (B.3)–(B.4)

are supplemented by the condition c2
0 > cu + cd + 2

√
cucd, and c∗ is given by

c∗ =
√

2

[
√

2cµ −
(√

(cu − cd)2 + c4
0 − 2c2

0(cu + cd) + c2
0 − cu − cd

)1/2
]−1

. (B.6)

The condition for the stability of the potential along the D-flat direction for any value of

a is cu + cd > 2|c0|cµ + c2
0/2. These two examples illustrate how it is always possible to

find a range of parameters in which the relaxion evolution is driven towards the critical

condition for electroweak breaking.
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As discussed in section 3, once electroweak symmetry is broken, the relaxion is trapped

by QCD instanton effects and its evolution stops. Nevertheless, it is interesting to study the

relaxion potential for a < a∗, even if this range is not explored by the dynamical evolution.

In the case c0 = 0, as we decrease a below a∗, we find that D(a), after exploring

negative values, flips sign again and turns back positive at a = a∗∗ with

a∗∗ =

√
2µ0

m

[
√

2cµ +

(√
(cu − cd)2 + 4c2

B − cu − cd
)1/2

]−1

. (B.7)

This means that, as we decrease a, the potential barriers, besides being modulated by the

decreasing value of the supersymmetry-breaking scale, completely disappear for a < a∗∗.

An even more complicated pattern is found in the case cB = 0. After becoming

negative at a = a∗, D(a) flips sign first at a = a∗∗, then at a = a−, and eventually turns

back positive for a < a+, where

a∗∗ =

√
2µ0

m

[
√

2cµ −
(
−
√

(cu − cd)2 + c4
0 − 2c2

0(cu + cd) + c2
0 − cu − cd

)1/2
]−1

, (B.8)

a± =

√
2µ0

m

[
√

2cµ +

(
±
√

(cu − cd)2 + c4
0 − 2c2

0(cu + cd) + c2
0 − cu − cd

)1/2
]−1

. (B.9)
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Proc. of 1979 Cargèse Institute on Recent Developments in Gauge Theories, Plenum Press,

New York U.S.A. (1980), pg. 135.

[25] S. Dimopoulos, G.R. Dvali, R. Rattazzi and G.F. Giudice, Dynamical soft terms with

unbroken supersymmetry, Nucl. Phys. B 510 (1998) 12 [hep-ph/9705307] [INSPIRE].

[26] K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua,

JHEP 04 (2006) 021 [hep-th/0602239] [INSPIRE].

[27] K.A. Intriligator, N. Seiberg and D. Shih, Supersymmetry breaking, R-symmetry breaking

and metastable vacua, JHEP 07 (2007) 017 [hep-th/0703281] [INSPIRE].

[28] E. Witten, Constraints on supersymmetry breaking, Nucl. Phys. B 202 (1982) 253 [INSPIRE].

– 35 –

http://arxiv.org/abs/1508.03321
http://inspirehep.net/search?p=find+EPRINT+arXiv:1508.03321
http://arxiv.org/abs/1509.00047
http://inspirehep.net/search?p=find+EPRINT+arXiv:1509.00047
http://dx.doi.org/10.1103/PhysRevLett.59.381
http://inspirehep.net/search?p=find+J+"Phys.Rev.Lett.,59,381"
http://dx.doi.org/10.1103/PhysRevLett.38.1440
http://dx.doi.org/10.1103/PhysRevLett.38.1440
http://inspirehep.net/search?p=find+J+"Phys.Rev.Lett.,38,1440"
http://dx.doi.org/10.1103/PhysRevLett.40.223
http://inspirehep.net/search?p=find+J+"Phys.Rev.Lett.,40,223"
http://dx.doi.org/10.1103/PhysRevLett.40.279
http://dx.doi.org/10.1103/PhysRevLett.40.279
http://inspirehep.net/search?p=find+J+"Phys.Rev.Lett.,40,279"
http://dx.doi.org/10.1103/PhysRevD.78.106003
http://arxiv.org/abs/0803.3085
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.3085
http://dx.doi.org/10.1103/PhysRevD.82.046003
http://arxiv.org/abs/0808.0706
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.0706
http://dx.doi.org/10.1103/PhysRevLett.102.121301
http://dx.doi.org/10.1103/PhysRevLett.102.121301
http://arxiv.org/abs/0811.1989
http://inspirehep.net/search?p=find+EPRINT+arXiv:0811.1989
http://dx.doi.org/10.1088/1475-7516/2010/06/009
http://arxiv.org/abs/0907.2916
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.2916
http://dx.doi.org/10.1088/1475-7516/2011/03/023
http://dx.doi.org/10.1088/1475-7516/2011/03/023
http://arxiv.org/abs/1101.0026
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.0026
http://dx.doi.org/10.1007/JHEP09(2014)123
http://dx.doi.org/10.1007/JHEP09(2014)123
http://arxiv.org/abs/1405.3652
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.3652
http://dx.doi.org/10.1007/JHEP01(2015)007
http://arxiv.org/abs/1409.7075
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.7075
http://dx.doi.org/10.1007/JHEP02(2015)086
http://arxiv.org/abs/1405.7044
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.7044
http://dx.doi.org/10.1016/j.nuclphysb.2015.03.015
http://arxiv.org/abs/1411.2032
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.2032
http://dx.doi.org/10.1007/978-1-4684-7571-5_9
http://dx.doi.org/10.1016/S0550-3213(97)00603-2
http://arxiv.org/abs/hep-ph/9705307
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9705307
http://dx.doi.org/10.1088/1126-6708/2006/04/021
http://arxiv.org/abs/hep-th/0602239
http://inspirehep.net/search?p=find+EPRINT+hep-th/0602239
http://dx.doi.org/10.1088/1126-6708/2007/07/017
http://arxiv.org/abs/hep-th/0703281
http://inspirehep.net/search?p=find+EPRINT+hep-th/0703281
http://dx.doi.org/10.1016/0550-3213(82)90071-2
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B202,253"


J
H
E
P
1
2
(
2
0
1
5
)
1
6
2

[29] I. Affleck, M. Dine and N. Seiberg, Dynamical supersymmetry breaking in chiral theories,

Phys. Lett. B 137 (1984) 187 [INSPIRE].

[30] I. Affleck, M. Dine and N. Seiberg, Exponential hierarchy from dynamical supersymmetry

breaking, Phys. Lett. B 140 (1984) 59 [INSPIRE].

[31] I. Affleck, M. Dine and N. Seiberg, Dynamical supersymmetry breaking in four-dimensions

and its phenomenological implications, Nucl. Phys. B 256 (1985) 557 [INSPIRE].

[32] A.E. Nelson and N. Seiberg, R symmetry breaking versus supersymmetry breaking, Nucl.

Phys. B 416 (1994) 46 [hep-ph/9309299] [INSPIRE].

[33] N. Seiberg, Naturalness versus supersymmetric nonrenormalization theorems, Phys. Lett. B

318 (1993) 469 [hep-ph/9309335] [INSPIRE].

[34] G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets,

JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].

[35] N. Arkani-Hamed, A. Delgado and G.F. Giudice, The well-tempered neutralino, Nucl. Phys.

B 741 (2006) 108 [hep-ph/0601041] [INSPIRE].

[36] L.J. Hall and Y. Nomura, Spread supersymmetry, JHEP 01 (2012) 082 [arXiv:1111.4519]

[INSPIRE].

[37] A. Arvanitaki, N. Craig, S. Dimopoulos and G. Villadoro, Mini-split, JHEP 02 (2013) 126

[arXiv:1210.0555] [INSPIRE].

[38] N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner and T. Zorawski, Simply unnatural

supersymmetry, arXiv:1212.6971 [INSPIRE].

[39] Y. Kahn, M. McCullough and J. Thaler, Auxiliary gauge mediation: a new route to

mini-split supersymmetry, JHEP 11 (2013) 161 [arXiv:1308.3490] [INSPIRE].

[40] J.E. Kim, Weak interaction singlet and strong CP invariance, Phys. Rev. Lett. 43 (1979) 103

[INSPIRE].

[41] M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can confinement ensure natural CP

invariance of strong interactions?, Nucl. Phys. B 166 (1980) 493 [INSPIRE].

[42] A.R. Zhitnitsky, On possible suppression of the axion hadron interactions (in Russian), Sov.

J. Nucl. Phys. 31 (1980) 260 [Yad. Fiz. 31 (1980) 497] [INSPIRE].

[43] M. Dine, W. Fischler and M. Srednicki, A simple solution to the strong CP problem with a

harmless axion, Phys. Lett. B 104 (1981) 199 [INSPIRE].

[44] T. Higaki and R. Kitano, On supersymmetric effective theories of axion, Phys. Rev. D 86

(2012) 075027 [arXiv:1104.0170] [INSPIRE].

[45] M. Kawasaki and K. Nakayama, Axions: theory and cosmological role, Ann. Rev. Nucl. Part.

Sci. 63 (2013) 69 [arXiv:1301.1123] [INSPIRE].

[46] M. Baryakhtar, E. Hardy and J. March-Russell, Axion mediation, JHEP 07 (2013) 096

[arXiv:1301.0829] [INSPIRE].

[47] J. Jaeckel and A. Ringwald, The low-energy frontier of particle physics, Ann. Rev. Nucl.

Part. Sci. 60 (2010) 405 [arXiv:1002.0329] [INSPIRE].

[48] A. Ringwald, Exploring the role of axions and other WISPs in the dark universe, Phys. Dark

Univ. 1 (2012) 116 [arXiv:1210.5081] [INSPIRE].

– 36 –

http://dx.doi.org/10.1016/0370-2693(84)90227-2
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B137,187"
http://dx.doi.org/10.1016/0370-2693(84)91047-5
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B140,59"
http://dx.doi.org/10.1016/0550-3213(85)90408-0
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B256,557"
http://dx.doi.org/10.1016/0550-3213(94)90577-0
http://dx.doi.org/10.1016/0550-3213(94)90577-0
http://arxiv.org/abs/hep-ph/9309299
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9309299
http://dx.doi.org/10.1016/0370-2693(93)91541-T
http://dx.doi.org/10.1016/0370-2693(93)91541-T
http://arxiv.org/abs/hep-ph/9309335
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9309335
http://dx.doi.org/10.1088/1126-6708/1998/12/027
http://arxiv.org/abs/hep-ph/9810442
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9810442
http://dx.doi.org/10.1016/j.nuclphysb.2006.02.010
http://dx.doi.org/10.1016/j.nuclphysb.2006.02.010
http://arxiv.org/abs/hep-ph/0601041
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0601041
http://dx.doi.org/10.1007/JHEP01(2012)082
http://arxiv.org/abs/1111.4519
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.4519
http://dx.doi.org/10.1007/JHEP02(2013)126
http://arxiv.org/abs/1210.0555
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.0555
http://arxiv.org/abs/1212.6971
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.6971
http://dx.doi.org/10.1007/JHEP11(2013)161
http://arxiv.org/abs/1308.3490
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.3490
http://dx.doi.org/10.1103/PhysRevLett.43.103
http://inspirehep.net/search?p=find+J+"Phys.Rev.Lett.,43,103"
http://dx.doi.org/10.1016/0550-3213(80)90209-6
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B166,493"
http://inspirehep.net/search?p=find+J+"Sov.J.Nucl.Phys.,31,260"
http://dx.doi.org/10.1016/0370-2693(81)90590-6
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B104,199"
http://dx.doi.org/10.1103/PhysRevD.86.075027
http://dx.doi.org/10.1103/PhysRevD.86.075027
http://arxiv.org/abs/1104.0170
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.0170
http://dx.doi.org/10.1146/annurev-nucl-102212-170536
http://dx.doi.org/10.1146/annurev-nucl-102212-170536
http://arxiv.org/abs/1301.1123
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.1123
http://dx.doi.org/10.1007/JHEP07(2013)096
http://arxiv.org/abs/1301.0829
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.0829
http://dx.doi.org/10.1146/annurev.nucl.012809.104433
http://dx.doi.org/10.1146/annurev.nucl.012809.104433
http://arxiv.org/abs/1002.0329
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.0329
http://dx.doi.org/10.1016/j.dark.2012.10.008
http://dx.doi.org/10.1016/j.dark.2012.10.008
http://arxiv.org/abs/1210.5081
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.5081


J
H
E
P
1
2
(
2
0
1
5
)
1
6
2

[49] S.B. Giddings and A. Strominger, Axion induced topology change in quantum gravity and

string theory, Nucl. Phys. B 306 (1988) 890 [INSPIRE].

[50] S.B. Giddings and A. Strominger, String wormholes, Phys. Lett. B 230 (1989) 46 [INSPIRE].

[51] L.F. Abbott and M.B. Wise, Wormholes and global symmetries, Nucl. Phys. B 325 (1989)

687 [INSPIRE].

[52] S.R. Coleman and K.-M. Lee, Wormholes made without massless matter fields, Nucl. Phys.

B 329 (1990) 387 [INSPIRE].

[53] T. Banks, Report on progress in wormhole physics, Physicalia Mag. 12 (1990) 19 [INSPIRE].

[54] M. Kamionkowski and J. March-Russell, Planck scale physics and the Peccei-Quinn

mechanism, Phys. Lett. B 282 (1992) 137 [hep-th/9202003] [INSPIRE].

[55] R. Holman, S.D.H. Hsu, T.W. Kephart, E.W. Kolb, R. Watkins and L.M. Widrow, Solutions

to the strong CP problem in a world with gravity, Phys. Lett. B 282 (1992) 132

[hep-ph/9203206] [INSPIRE].

[56] S.M. Barr and D. Seckel, Planck scale corrections to axion models, Phys. Rev. D 46 (1992)

539 [INSPIRE].

[57] R. Kallosh, A.D. Linde, D.A. Linde and L. Susskind, Gravity and global symmetries, Phys.

Rev. D 52 (1995) 912 [hep-th/9502069] [INSPIRE].

[58] T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys. Rev. D

83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].

[59] N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and

gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [INSPIRE].

[60] J. Brown, W. Cottrell, G. Shiu and P. Soler, On axionic field ranges, loopholes and the weak

gravity conjecture, arXiv:1504.00659 [INSPIRE].

[61] B. Heidenreich, M. Reece and T. Rudelius, Weak gravity strongly constrains large-field axion

inflation, arXiv:1506.03447 [INSPIRE].

[62] A. Hebecker, P. Mangat, F. Rompineve and L.T. Witkowski, Winding out of the swamp:

evading the weak gravity conjecture with F-term winding inflation?, Phys. Lett. B 748 (2015)

455 [arXiv:1503.07912] [INSPIRE].

[63] T.C. Bachlechner, C. Long and L. McAllister, Planckian axions and the weak gravity

conjecture, arXiv:1503.07853 [INSPIRE].

[64] M. Montero, A.M. Uranga and I. Valenzuela, Transplanckian axions!?, JHEP 08 (2015) 032

[arXiv:1503.03886] [INSPIRE].

[65] A. de la Fuente, P. Saraswat and R. Sundrum, Natural inflation and quantum gravity, Phys.

Rev. Lett. 114 (2015) 151303 [arXiv:1412.3457] [INSPIRE].

[66] C. Cheung and G.N. Remmen, Infrared consistency and the weak gravity conjecture, JHEP

12 (2014) 087 [arXiv:1407.7865] [INSPIRE].

[67] M. Kawasaki, M. Yamaguchi and T. Yanagida, Natural chaotic inflation in supergravity,

Phys. Rev. Lett. 85 (2000) 3572 [hep-ph/0004243] [INSPIRE].

[68] R. Kallosh and A. Linde, New models of chaotic inflation in supergravity, JCAP 11 (2010)

011 [arXiv:1008.3375] [INSPIRE].

– 37 –

http://dx.doi.org/10.1016/0550-3213(88)90446-4
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B306,890"
http://dx.doi.org/10.1016/0370-2693(89)91651-1
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B230,46"
http://dx.doi.org/10.1016/0550-3213(89)90503-8
http://dx.doi.org/10.1016/0550-3213(89)90503-8
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B325,687"
http://dx.doi.org/10.1016/0550-3213(90)90149-8
http://dx.doi.org/10.1016/0550-3213(90)90149-8
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B329,387"
http://inspirehep.net/search?p=find+J+PHMAD,12,19
http://dx.doi.org/10.1016/0370-2693(92)90492-M
http://arxiv.org/abs/hep-th/9202003
http://inspirehep.net/search?p=find+EPRINT+hep-th/9202003
http://dx.doi.org/10.1016/0370-2693(92)90491-L
http://arxiv.org/abs/hep-ph/9203206
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9203206
http://dx.doi.org/10.1103/PhysRevD.46.539
http://dx.doi.org/10.1103/PhysRevD.46.539
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D46,539"
http://dx.doi.org/10.1103/PhysRevD.52.912
http://dx.doi.org/10.1103/PhysRevD.52.912
http://arxiv.org/abs/hep-th/9502069
http://inspirehep.net/search?p=find+EPRINT+hep-th/9502069
http://dx.doi.org/10.1103/PhysRevD.83.084019
http://dx.doi.org/10.1103/PhysRevD.83.084019
http://arxiv.org/abs/1011.5120
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.5120
http://dx.doi.org/10.1088/1126-6708/2007/06/060
http://arxiv.org/abs/hep-th/0601001
http://inspirehep.net/search?p=find+EPRINT+hep-th/0601001
http://arxiv.org/abs/1504.00659
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.00659
http://arxiv.org/abs/1506.03447
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.03447
http://dx.doi.org/10.1016/j.physletb.2015.07.026
http://dx.doi.org/10.1016/j.physletb.2015.07.026
http://arxiv.org/abs/1503.07912
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.07912
http://arxiv.org/abs/1503.07853
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.07853
http://dx.doi.org/10.1007/JHEP08(2015)032
http://arxiv.org/abs/1503.03886
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.03886
http://dx.doi.org/10.1103/PhysRevLett.114.151303
http://dx.doi.org/10.1103/PhysRevLett.114.151303
http://arxiv.org/abs/1412.3457
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.3457
http://dx.doi.org/10.1007/JHEP12(2014)087
http://dx.doi.org/10.1007/JHEP12(2014)087
http://arxiv.org/abs/1407.7865
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.7865
http://dx.doi.org/10.1103/PhysRevLett.85.3572
http://arxiv.org/abs/hep-ph/0004243
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0004243
http://dx.doi.org/10.1088/1475-7516/2010/11/011
http://dx.doi.org/10.1088/1475-7516/2010/11/011
http://arxiv.org/abs/1008.3375
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.3375


J
H
E
P
1
2
(
2
0
1
5
)
1
6
2

[69] R. Kallosh, A. Linde and T. Rube, General inflaton potentials in supergravity, Phys. Rev. D

83 (2011) 043507 [arXiv:1011.5945] [INSPIRE].

[70] T. Moroi, H. Murayama and M. Yamaguchi, Cosmological constraints on the light stable

gravitino, Phys. Lett. B 303 (1993) 289 [INSPIRE].

[71] H. Fukushima and R. Kitano, Gravitino thermal production revisited and a new cosmological

scenario of gauge mediation, JHEP 01 (2014) 081 [arXiv:1311.6228] [INSPIRE].

[72] A. Brignole, F. Feruglio and F. Zwirner, Aspects of spontaneously broken N = 1 global

supersymmetry in the presence of gauge interactions, Nucl. Phys. B 501 (1997) 332

[hep-ph/9703286] [INSPIRE].

[73] G.F. Giudice, E.W. Kolb and A. Riotto, Largest temperature of the radiation era and its

cosmological implications, Phys. Rev. D 64 (2001) 023508 [hep-ph/0005123] [INSPIRE].

[74] P.W. Graham and S. Rajendran, New observables for direct detection of axion dark matter,

Phys. Rev. D 88 (2013) 035023 [arXiv:1306.6088] [INSPIRE].

[75] Y.V. Stadnik and V.V. Flambaum, Axion-induced effects in atoms, molecules and nuclei:

parity nonconservation, anapole moments, electric dipole moments and spin-gravity and

spin-axion momentum couplings, Phys. Rev. D 89 (2014) 043522 [arXiv:1312.6667]

[INSPIRE].

[76] Y.V. Stadnik and V.V. Flambaum, Nuclear spin-dependent interactions: searches for WIMP,

axion and topological defect dark matter and tests of fundamental symmetries, Eur. Phys. J.

C 75 (2015) 110 [arXiv:1408.2184] [INSPIRE].

[77] G.F. Giudice and A. Strumia, Probing high-scale and split supersymmetry with Higgs mass

measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE].

[78] E. Bagnaschi, G.F. Giudice, P. Slavich and A. Strumia, Higgs mass and unnatural

supersymmetry, JHEP 09 (2014) 092 [arXiv:1407.4081] [INSPIRE].

[79] J.P. Vega and G. Villadoro, SusyHD: Higgs mass determination in supersymmetry, JHEP 07

(2015) 159 [arXiv:1504.05200] [INSPIRE].

[80] M. Fairbairn, A.C. Kraan, D.A. Milstead, T. Sjöstrand, P.Z. Skands and T. Sloan, Stable
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