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1 Introduction

One interesting implication of string theory is the existence of interacting superconformal

field theories in 5d and 6d. This is quite surprising as most interaction terms in these

dimensions are non-renormalizable. Even more surprising, string theory suggests that these

SCFT’s are connected to gauge theories in these dimensions providing, in some sense, a

UV completion to 5d and 6d gauge theories that are non-renormalizable. In this article

we concentrate on theories with minimal supersymmetry, meaning 8 supercharges, which

is usually denoted as N = 1 in 5d and N = (1, 0) in 6d.

The study of N = 1 supersymmetric 5d gauge theories originated in [1–3]. These theo-

ries can also be realized in string theory using brane webs and geometric engineering [4–7].

The picture emerging from these methods is that 5d SCFT’s exist and that they some-

times posses mass deformations leading to 5d gauge theories, with the mass identified as

the inverse gauge coupling squared, g−2. These theories also posses some quite interesting

non-perturbative behavior. One such phenomenon is the occurrence of enhancement of

symmetry, in which the fixed point has a larger global symmetry than that perturbatively
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exhibited in the gauge theory. An important ingredient in this is the existence of a topo-

logical U(1) conserved current, jT = ∗Tr(F ∧ F ), associated with every non-abelian gauge

group. The particles charged under this current are instantons.

These instantonic particles sometimes provide additional conserved currents leading to

an enhancement of the perturbative global symmetry. A simple example is SU(2) gauge

theory with Nf hypermultiplets in the doublet of SU(2). For Nf ≤ 7, this theory is known

to flow to a 5d fixed point, where the global symmetry is enhanced from U(1) × SO(2Nf )

to ENf+1 by instantonic particles [1]. This can be argued from string theory constructions,

and is further supported by the superconformal index [8, 9].

In many cases, a single 5d SCFT may have many different gauge theory deformations.

This is a type of duality in which different IR gauge theories go to the same underlying

5d SCFT. An example of this is SU0(3) + 2F gauge theory and SUπ(2) × SUπ(2) quiver

theory [5, 10].1 By now a great many examples of this are known, see [10–15].

String theory methods, such as brane constructions, also suggest the existence of in-

teracting 6d N = (1, 0) SCFT’s [16–18]. These theories include massless tensor multiplets,

in addition to hyper and vector multiplets. The tensor multiplets contain a scalar leading

to a moduli space of vacua. In some cases, the low energy theory around a generic point in

this space is a 6d gauge theory, where g−2 is identified with the scalar vev [19]. By now, a

large number of such SCFT’s are known. In fact, there exists a classification of N = (1, 0)

SCFT’s using F-theory [20, 21]. See also [22] for a classification ofN = (1, 0) gauge theories.

There is an interesting relationship between 5d gauge theories and 6d N = (1, 0)

theories, where, in some cases, a 5d gauge theory has a 6d N = (1, 0) UV completion. The

best known example is 5d maximally supersymmetric Yang-Mills theory, which is believed

to lift to the 6d (2, 0) theory [23, 24]. Yet another notable example is the 5d gauge theory

with a USp(2N) gauge group, a hypermultiplet in the antisymmetric representation, and

8 hypermultiplets in the fundamental representation, which is believed to lift to the 6d

rank N E-string theory [25]. Recently, another example was given in [26]. There the 6d

theory in question is known as the (DN+4, DN+4) conformal matter [27], which has a 6d

gauge theory description as USp(2N) + (2N + 8)F . This theory is suspected to be the UV

completion of the 5d gauge theory SU0(N + 2) + (2N + 8)F .

The purpose of this paper is to extend these results to a large class of 5d gauge theories

with an expected 6d N = (1, 0) SCFT UV completion. We consider theories which can be

represented as ordinary 5-brane webs. The starting point is to generalize the discussion

of [26] to the class of 5d gauge theories of the form (N +2)F +SU0(N)k+(N +2)F . These

were recently conjectured to lift to 6d SCFT [28]. Furthermore, in [29] a conjecture for

this 6d SCFT appeared. We start by generalizing the method of [26] to give evidence for

this conjecture.

1In 5d one can add a Chern-Simons (CS) term to any SU(N) gauge theory, for N > 2, and we use a

subscript under the gauge group to denote the CS level. For USp(2N) groups, a CS term is not possible,

but there is a discrete Z2 parameter, called the θ angle, which can be either 0 or π [2]. We again use a

subscript under the gauge group to denote it. Also, when denoting gauge theories we use F for matter

in the fundamental representation and AS for matter in the antisymmetric representation. When writing

quiver theories, we use the notation G1×G2× . . . where it is understood that there is a single bifundamental

hyper associated with every ×.
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Using this result we then go on to propose a technique to determine the answer for

other 5d gauge theories, by thinking of them as a limit on the Higgs branch of a 5d gauge

theory (N + 2)F + SU0(N)k + (N + 2)F for some N and k. Then we can determine the 6d

SCFT by mapping the appropriate limit of the 5d Higgs branch to the corresponding one

of the 6d theory. We consider a variety of examples, exhibiting both the advantages and

limitations of this technique.

As an application of these results, we also consider the compactification on a torus

of the 6d SCFT’s appearing as the lift of 5d gauge theories. For example, consider the

compactification of the rank 1 E string theory on a torus, where we take the limit of zero

area, keeping the 6d global symmetry unbroken. First compactifying to 5d, we get the 5d

theory SU(2) + 8F . We now want to compactify to 4d taking the limit of zero torus area,

but without breaking the E8 global symmetry. It turns out that the way to do this is by first

integrating out a flavor, flowing to SU(2) + 7F .2 This leads to a 5d SCFT with E8 global

symmetry [1]. Compactifying this to 4d then leads to the rank 1 Minahan-Nemashansky E8

theory [30, 31]. For additional examples of the compactification of 6d N = (1, 0) SCFT’s

on a torus, see [32–34].

We can now adopt a similar strategy to understand the result of compactification on

a torus of the 6d SCFT’s we encounter. That is we first compactify to 5d leading to the

5d gauge theory. Taking the R6 → 0 limit, while keeping the 6d global symmetry, is

then implemented by integrating out a flavor. This leads to a 5d SCFT with a brane web

description of the form of [35]. It is now straightforward to take the R5 → 0 limit, leading

to a class S isolated SCFT, as shown in [35]. Thus, we conjecture that reducing the class

of 6d theories we consider on a torus leads to an isolated 4d SCFT. The main idea is

summarized graphically in figure 1.

We next seek to provide evidence for this relation. To this end we use the results

of [32], who found a way to calculate the central charges of a 4d theory resulting from

compactification of a 6d theory on a torus in terms of the anomaly polynomial of the 6d

theory. We can now compute the 4d central charges first using class S technology (see [36]),

and second from the anomaly polynomial (using [37]), and compare the two. We indeed

find that these match. This then provides evidence also for the original 5d− 6d relation.

The structure of this article is as follows. Section 2 presents some preliminary dis-

cussions about the computation of the anomaly polynomial for the 6d SCFT’s considered

in this article, as well as the class S technology we use. In section 3 we consider the 5d

theory (N + 2)F + SU0(N)k + (N + 2)F . We first generalize the methods of [26] to test the

conjecture of [29], and then go on to consider related theories. Section 4 deals with other

5d theories expected to lift to 6d, that are not of the form presented in section 3. We end

with some conclusions. The appendix discusses symmetry enhancement for a class of 5d

theories that play an important role in section 4, and which, to our knowledge, were not

previously studied.

2Note that this is a R6 → 0 limit. This follows as one must keep the effective coupling, which behaves

like: 1
g20
− constant |m|, well defined. Therefore, when taking the m → ∞ limit, one must also take the

R6 ∼ g2 → 0 limit.
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Figure 1. A graphical summary of the main idea of this paper. The major relation we explore

is between a 6d (1, 0) SCFT and a 5d gauge theory generated by compactifying the former on a

circle of radius R6. This is represented in the figure by the wide blue arrow. We can employ this

relationship to study the compactification of the 6d (1, 0) SCFT to 4d on a torus. We first mass

deform the 5d gauge theory, corresponding to taking the R6 → 0 limit while keeping the 6d global

symmetry intact. This leads to a 5d SCFT. We then compactify this SCFT on a circle of radius

R5, and take R5 → 0. This leads to a 4d class S SCFT, which can in turn be thought of as a result

of compactifying a 6d (2, 0) SCFT on a Riemann sphere with three punctures. We can use this

description as a consistency check by calculating the properties of this 4d SCFT when thought of as

a compactification of a 6d (2, 0) SCFT, known as class S technology, and comparing against what

is expected from the compactification of the 6d (1, 0) SCFT.

A word on notation. Brane webs comprise an important part of our analysis and so

they appear abundantly in this article. In many cases only the external legs are needed and

not how they connect to one another. In these cases, for ease of presentation, we have only

depicted the external legs, using a large black oval for the internal part of the diagram.

Many of the diagrams also contain repeated parts shown by a sequence of black dots. This

should not be confused with 7-branes.

In brane webs one can also add 7-branes on which the 5-branes can end. We have

in general suppressed the 7-branes, with the exception of two cases. One, when several

5-branes end on the same 7-brane. In this case we depicted the 7-brane as a black oval, the

type of which is understood by the type of 5-branes ending on it. We in general also write

the number of 5-branes ending on this 7-brane. If no number is given then it is the number

visible in the picture. Any other numbers that appear stand for the number of 5-branes.

The second case where we explicitly include 7-branes is if no 5-branes end on them. In

this case we denote a (1, 0) 7-brane by an X and a (0, 1) 7-brane by a square. Any other

7-brane is denoted by a circle with the type written next to it.

We generically suppress the monodromy line of the 7-branes. In the special cases when

we do draw it, we use a dashed line.
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Figure 2. The 6d quiver theories we consider.

2 Preliminaries

This section discusses the type of 6d theories we encounter, the computation of the anomaly

polynomials for these theories, and the class S technology used in this article.

2.1 Properties of the 6d theories

We start by presenting the 6d gauge theories that we consider in this article. We first

present them in their gauge theory description, namely at a generic point on the tensor

branch of the underlying 6d SCFT. In this description the gauge theory is made from a

quiver of SU(Ni) groups with one end being just fundamental hypers while the other end

being either a USp gauge group or an SU group with a hyper in the antisymmetric. The

freedom in the choice of the theory is given by the ranks of the groups Ni. The number of

flavors for each group is uniquely determined by anomaly cancellation for each group. The

quiver diagrams for the theories we consider are shown in figure 2.

Next we wish to evaluate the anomaly polynomial that we use later. We concentrate

only on the terms in the anomaly polynomial that we need. By using the results of [37, 38],

we find that the anomaly polynomial contains:

I8 ⊃ −
1

32
Aijtr(F

2
i )tr(F 2

j ) +
p1(T )

16
Pitr(F

2
i )− C2(R)hGitr(F

2
i )

4
+
C2(R)p1(T )

48
(nt − nv)

+
(nh − nv)(7p21(T )− 4p2(T )) + nt(23p21(T )− 116p2(T ))

5760
(2.1)

where Fi is the field strength of the i’th group (we always denote the USp or SU with the

antisymmetric as i = 1), and a summation over repeated indices is implied. Also C2(R)
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stands for the second Chern class of the R-symmetry bundle, and p1(T ), p2(T ) are the first

and second Pontryagin classes of the tangent bundle, respectively. We use nh, nv and nt
for the number of hyper, vector and tensor multiplets respectively, and hGi for the dual

Coexter number of the i’th group. Finally:

Aij =



1 −1 0

−1 2 −1

0 −1 2
. . .

2 −1

−1 2


, Pi = (1, 0, 0, . . . , 0) (2.2)

We can cancel the gauge and mixed anomalies by changing the Bianchi identity of the

tensor multiplet (see [19] for the details). For the case at hand this adds the following to

the anomaly polynomial:

∑
i

1

2

 tr(F 2
i )− tr(F 2

i+1)

4
+ C2(R)

i∑
j=1

hGj −
p1(T )

4

2

(2.3)

collecting all the terms we find:

I8 ⊃ −
C2(R)p1(T )

48
n4dv + dH

7p21(T )− 4p2(T )

5760
(2.4)

where

n4dv = nv + 12
∑
i

i∑
j=1

hGj − nt, dH = nh − nv + 29nt (2.5)

where the sum i is over all the gauge groups.

The labels we used were chosen with the compactification to 4d in mind. When com-

pactifying to 4d on a torus we get some 4d SCFT in the IR. We can calculate the central

charges, particularly the a and c conformal anomalies, of this SCFT using the results

of [32].3 We find that dH = 24(c−a) and n4dv = 4(2a−c). Thus, dH is the dimension of the

Higgs branch, and n4dv the effective number of vector multiplets of the 4d SCFT resulting

from the compactification of the 6d SCFT on a torus. In that light the equation for dH
has a rather nice interpretation as the classical dimension of the Higgs branch of the gauge

theory, nh − nv, plus the contribution of the tensor multiplets, each giving 29 dimensions,

like the rank 1 E-string theory.

Besides the a and c conformal anomalies, we also want to determine the central charges

for flavor symmetries, kFi , associated to the flavors under the i’th gauge group. From the

result of [32], this can be determined from the term
kFi
192 tr(F

2
globali

)p1(T ). Say we have a

flavor symmetry, the fields charged under it being flavor of dimension ρ under the group

Gi. Then we find that:

kFi = 12gi + 2dρ (2.6)

3For these results to hold, the 6d SCFT must be very-Higgsable, as described in [32]. All the 6d SCFT’s

we’re considering are of this type.
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where gi = nG − i + 1, nG being the number of groups, and dρ is the dimension of the

representation ρ.

Before continuing we note that some of the theories we consider also include gauging

the rank 1 E-string theory at one end of the quiver. This is a straightforward extension of

the quiver theories with a USp(2N1) end to the N1 = 0 case. This follows from the fact

that USp(2N1) + (2N1 + 8)F goes to a 6d SCFT known as the (DN1+4, DN1+4) conformal

matter [27], so this class of theories can be regarded as gauging a part of the SO(4N1 + 16)

global symmetry of (DN1+4, DN1+4) conformal matter. In this description we can also

consider the case of N1 = 0 relying on the fact that (D4, D4) conformal matter is the

rank 1 E-string theory. Going over the computation of the anomaly polynomial, we find

that (2.5) is still valid, where we include the rank 1 E-string theory in the sum and take

hE−string = 1.

Generically when gauging a part of a rank Q E-string theory, some of the E8 global

symmetry remains unbroken and serves as a global symmetry. For these cases we find

kF1 = 12Q(nG + 1).

Finally, while we generally employ the gauge theory description of these (1, 0) SCFT’s,

it is worthwhile to also specify their description as an F-theory compactification. In this

language the theory is described as a long −1 − 2 − 2 . . . − 2 quiver with SU type groups

on the −2 curves and a USp or SU type group on the −1 curve.

For the details on the meaning of this notation we refer the reader to [21]. In a

nutshell, specifying a 6d SCFT requires enumerating its hyper, vector and tensor content.

The numbers represent the type of tensor multiplet, where a −2 curve represents a single

free N = (2, 0), tensor and a −1 curve the rank 1 E-string theory. The sequence of numbers

represents several tensor multiplets. For example, −2 − 2 − 2 . . . − 2 gives the N = (2, 0)

An−1 theory where n is the number of −2 curves, and −1 − 2 − 2 . . . − 2 gives the rank

n+ 1 E-string theory.

One can add vector multiplets on these curves. When these are added, the theory on

the tensor branch acquires a gauge theory description. For a −2 curve, adding an SU(N)

type group, leads to an SU(N) + 2NF gauge theory on the tensor branch. For a −1 curve,

adding a USp(2N) type group leads to a USp(2N)+(2N +8)F gauge theory, while adding

an SU(N) type group, leads to an SU(N) + 1AS + (N + 8)F gauge theory at a generic

point on the tensor branch.4 It is now apparent that going to a generic point on the tensor

branch indeed gives the gauge theories we consider.

We can also consider the reverse process of removing vector multiplets from a curve.

This describes a Higgs branch limit of the 6d SCFT in which some of the vector multiplets

become massive and the theory flows to a different IR SCFT. Note in particular, that

completely breaking a group, corresponding to removing all the vector multiplets from

that curve, still leaves the associated tensor multiplet. The resulting IR SCFT generically

has no complete Lagrangian description, but can still be described by a gauge theory

gauging part of the flavor symmetry of a non-Lagrangian part. We shall encounter several

examples of this later.

4For SU(6) there is an additional option giving an SU(6) + 1
2
20 + 15F gauge theory at a generic point

on the tensor branch. We briefly encounter this option later in this paper.
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Sometimes gauge theory physics is insufficient to fully determine the properties of the

SCFT. For example, in some cases the global symmetry naively exhibited by the gauge

theory, is larger than the one of the SCFT. We encounter some cases where this occurs,

and then it is useful to have an F-theory description.

2.2 Class S technology

The results obtained from the 6d anomaly polynomial can be compared to the ones obtained

using class S technology. Specifically, the theories we consider are all isolated SCFT’s, that

can be represented as the compactification of an A type (2, 0) theory on a Riemann sphere

with 3 punctures. We also have a 5d brane web representation using [35]. It is known

how to calculate the central charges of such SCFT’s from the form of the punctures. The

explicit formula used to calculate dH , n
4d
v and kF can be found in [36, 39]. In practice, it

is usually simpler to calculate dH directly from the web.

We also want to determine the global symmetry of the SCFT. In general this can

be read of from the punctures, but in some cases the global symmetry can be larger than

is visible from the punctures [40]. One way to determine this is using the 5d description

either directly from the web, or using the gauge theory description.

A more intricate method is to use the 4d superconformal index. Since conserved

currents are BPS operators they contribute to the index, and so knowledge of the index

allows us to determine the global symmetry of the theory. In practice we do not need the

full superconformal index, just the first few terms in a reduced form of the index called

the Hall-Littlewood index [41]. An expression for the 4d superconformal index for class S

theories was conjectured in [41–43], and one can use their results to determine the global

symmetry. For more on this application see [44].

In cases where the global symmetry is bigger than what is visible from the punctures,

we use the 4d superconformal index to show this. In cases where it is not difficult to argue

this also from the 5d description, we also use this as a consistency check.

3 The 5d (N + 2)F + SU0(N)k + (N + 2)F quiver and related theories

In this section we start analyzing the 6d lift of 5d theories. We start with the 5d quiver

theory (N + 2)F + SU0(N)k + (N + 2)F . Since a conjecture for this theory was already

given in [29], it is more convenient to start with the 6d theory. There are two slightly

different cases to consider. First, we have the 6d SCFT whose quiver description is shown

in figure 3. This theory can be realized in string theory by a system of D6-branes crossing

an O8− plane and several NS5-branes, shown in figure 4. Note, that this is a generalization

of the system in [26], by the addition of NS5-branes. We can now repeat the analysis of [26].

Since this is a simple generalization of their work we will be somewhat brief. We compactify

a direction shared by all the branes and preform T-duality. The O8− plane becomes two

O7− planes. Under strong coupling effect, the O7− plane decomposes to a (1, 1) 7-brane

and a (1,−1) 7-brane [45]. We then end up with the web of figure 5. This web describes

the 5d gauge theory (N + 2)F + SU0(N)2l−1 + (N + 2)F , as shown in figure 6. Note that

the number of groups in 5d must be odd, owing to the even number of NS5-branes.

– 8 –
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Figure 3. The 6d quiver theory we consider. The arrow in the second quiver stands for gauging a

part of the global symmetry of the shown 6d SCFT, in this case an SU(8) subgroup of E8.

Figure 4. The brane description of the 6d theory in figure 3. The horizontal lines represent

D6-branes, and the number above the lines stand for the number of 6-branes. The black circles

represent NS5-branes, and their number is given below. Finally, the vertical line stands for the O8−

plane. The configuration also include 2N + 4l D8-branes, parallel to the O8− plane, on which the

asymptotic D6-branes end. For clarity we have suppressed them in the figure.

This suggests that to get an even number of 5d SU(N) groups, we need to take an odd

number of NS5-branes, which we do by adding a stuck NS5-brane on the O8− plane. The

brane and quiver description of the resulting 6d theory is shown in figure 7. We can now

repeat the analysis. After T-duality we get again two O7− planes with the stuck NS5-brane

stretching between the two. Decomposing the O7− planes with the stuck NS5-brane, as

shown in [14], we arrive at the web of figure 8. As shown in figure 9, this is the web of

(N + 2)F + SU0(N)2l + (N + 2)F . This agrees with the conjecture of [29], that this 6d

theory is the UV completion of the 5d gauge theory (N + 2)F + SU0(N)2l + (N + 2)F .

Note that in the 6d theories covered so far we have assumed that N > 2l− 1. Naively,

this implies the same limitations on the 5d theories. However, it is not difficult to see that

performing S-duality on the web for (N+2)F+SU0(N)k−1+(N+2)F results in the one for

(k+ 2)F + SU0(k)N−1 + (k+ 2)F . Thus, by doing an S-duality, one can map any 5d linear

– 9 –
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Figure 5. The web we end up with after performing T-duality on the brane configuration of figure 4

and resolving the O7− planes.

SU(N) quiver to the required form. Also note that when k = N − 1, both descriptions are

of this form, and indeed the two 6d SCFT’s are the same.

We now wish to employ this relation to the compactification of the 6d SCFT on a torus,

preserving the global symmetry. Inspired by the E-string theory example, we are lead to

consider an infinite mass deformation limit of the related 5d theory. The natural candidate

is integrating out a fundamental flavor. We have only one possibility, corresponding to the

5d theory (N + 2)F + SU0(N)k−2×SU± 1
2
(N) + (N + 1)F whose web is shown in figure 10.

This theory does give a 5d fixed point shown in figure 10. We note that this web is of the

form of [35]. We can now employ class S technology to determine the global symmetry

of this theory, finding that its global symmetry is U(1) × SU(2N + 2k) when N 6= k and

SU(2)× SU(2N + 2k) when N = k.

Note that this is exactly the same as the global symmetry of the 6d theory. The

flavors at the end give the SU(2N + 2k) part. The remaining U(1) is the anomaly-free

combination of the various baryonic and bifundamental U(1)’s. The case of N = k indeed

has an enhancement of symmetry to SU(2). For k = 2l + 1, this comes about because the

antisymmetric representation of SU(4) is real while for k = 2l, this comes about as the

gauging of SU(8) ⊂ E8 preserves an SU(2), since SU(8) ⊂ E7 ⊂ E7 × SU(2) ⊂ E8.

We now conjecture that compactifying this 5d theory to 4d should give the compacti-

fication of the starting 6d theory on a torus. We know from the work of [35] that for the

theory of figure 10, this leads to a 4d isolated SCFT that can be described by a compact-

ification of the 6d (2, 0) theory of type A2N+2k−3 on the punctured sphere of figure 11.
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Figure 6. (a) The web for (N + 2)F + SU0(N)2l−1 + (N + 2)F . We can first pull the two 7-branes

on the left through the leftmost NS5-brane leading to the web in (b). We can now push the (1, 1)

7-brane and (1,−1) 7-brane through the neighboring NS5-brane. This changes the asymptotic NS5-

brane to a D5-branes, and is accompanied by a Hanany-Witten transition generating an additional

5-brane ending on the 7-brane. This gives the web in (c). Repeating this on the neighboring l − 2

NS5-branes, and also doing the same on the right hand side, we end up with the web in (d). This

is the web of figure 5 after pulling out the internal 7-branes.

We next wish to test this conjecture by comparing the central charges of this 4d SCFT

with the ones expected from the compactified 6d (1, 0) SCFT which can be determined

through (2.5), (2.6).

From the 5d theory, using class S technology, we find:

dH = (N + k − 1)(2N + 2k + 1) + k,

n4dv =
(k − 1)(6N2 − 3N + k(9N − 7)− k2 − 3)

3
,

kSU(2N+2k) = 4(N + k − 1),

kSU(2) = 6N (3.1)

where we assume N ≥ k, kSU(2) being relevant only for the N = k case. The results for

N < k can be generated from (3.1) by taking N ↔ k.
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Figure 7. Sticking an NS5-brane on the O8 plane leads to this 6d quiver theory.

Figure 8. The web we end up with after performing T-duality on the configuration of figure 7 and

resolving the O7− planes.

Figure 9. The web for (N + 2)F + SU0(N)2l + (N + 2)F .
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2
(N) + (N + 1)F . The upper left shows

the web in its gauge theory description. Moving first the two shown (0, 1) 7-branes down to the

other side and then pulling out the two upper (1, 0) 7-branes, doing Hanany-Witten transitions

when necessary, leads to the web on the upper right. Further pulling the remaining (1, 0) 7-brane

to the right, doing all the Hanany-Witten transitions, leads to the web on the lower right. Finally,

exchanging the upper (0, 1) 7-brane with N − 1 NS5-branes ending on it with the lower one with

2N + k− 3 NS5-branes ending on it, and also moving the left (1, 0) 7-brane to the right leads us to

the web in the lower left of the figure.

From the 6d theory we see that:

nv =
8k(k − 1)(k − 2)

3
− k − 2

2
+ (N − k)(2Nk + 2k2 − 2N − 6k + 1),

nh =
8k(k − 1)(k − 2)

3
+ 2k(N2 − k2 + 4k − 8),

nt = l (3.2)

for the case of k = 2l, and:

nv =
8(k − 1)(k − 2)(k − 3)

3
− k − 1

2
+ 2(k − 1)(N − k + 2)(N + k − 4),
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Figure 11. Starting from the family of 6d theories in the upper part, we claim that compactifying

them to 4d on a torus leads to the isolated SCFT represented in the lower part.

nh =
8(k − 1)(k − 2)(k − 3)

3
+ 2kN2 + 3N − 2k3 + 16k2 − 43k + 30,

nt = l (3.3)

for the case of k = 2l + 1. Using these in (2.5) and (2.6) we indeed recover (3.1).

An interesting thing happens for k = 2. In that case the 6d theory becomes USp(2N −
4)+(2N+4)F , which is also known as (DN+2, DN+2) conforml matter [27]. The reduction

of this theory to 4d on a torus was recently studied in [32]. They found that it leads to

an isolated SCFT corresponding to compactifying the 6d (2, 0) theory of type DN+2 on

a Riemann sphere with three punctures shown in figure 12 (b). If we are correct in our

description then these two SCFT’s must be identical. Indeed, using the results of [39] we

can calculate the dimension of Coulomb branch operators and compare between the two

theories. We find a perfect match.
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Figure 12. (a) Our analysis suggests that compacitifying the 6d USp(2N − 4) + (2N + 4)F theory

on a torus should give the isolated 4d SCFT that is described by compactifying the 6d (2, 0) theory

of type A2N+1 on this punctured Riemann sphere. (b) A different analysis, done in [32], suggests

that the same theory compactified on a torus should give the isolated 4d SCFT that is described by

compactifying the 6d (2, 0) theory of type DN+2 on this punctured Riemann sphere. Our analysis

does imply that these two theories are in fact identical.

Figure 13. The 6d quiver theory we are considering.

Before moving on to discuss other 5d theories, there is one more 6d SCFT, closely

related to the ones considered, that we would like to discuss. The quiver theory description

is given in figure 13. We can repeat the previous analysis, now the difference manifesting

in the 6d brane construction by adding a stuck 6-brane. Upon performing T-duality this

becomes a stuck D5-brane on one of the O7− planes. We can decompose the O7− planes

as done in [14], to get the final web picture. The entire process is shown in figure 14. This

describes the 5d gauge theory of figure 15.

One can see that the Coulomb branch dimensions agree, and using the results of [29],

also the global symmetries agree, in particularly, we get an affine A
(1)
2n+8l. As a further test

we consider the compactification to 4d, where we expect to get the theory of figure 16.

Using class S technology we can indeed show that the 4d isolated theory in figure 16 (b)

has the same global symmetry as the 6d quiver of figure 13. We can also calculate the

central charges finding:

dH = 2(n+ 4l)2 + n+ 6l,

n4dv =
l(12n2 + 84ln+ 112l2 − 54l − 25)

3
,

kSU(2n+8l+1) = 2(2n+ 8l − 1)

(3.4)

Using (2.5), (2.6), this indeed matches what we expect from the theory of figure 13.

3.1 Generalizations

The next step is to consider generalizations to other 5d gauge theories with an expected

6d lift. Consider the 5d gauge theory given by a linear SU0(Ni) quiver with fundamental

– 15 –



J
H
E
P
1
2
(
2
0
1
5
)
1
5
7

Figure 14. Starting from the brane description of the 6d quiver theory in figure 13, we can

T-dualize to the web system in the bottom of the figure.

matter, where each non edge group sees an effective number of 2Ni flavors. If in addition

the two edge groups see an effective number of 2Ni + 2 flavors, then it was argued in [29]

that this 5d theory should have an enhanced affine A(1) symmetry. This strongly suggests

that these also lift to a 6d SCFT. Note that the previously considered theories are also of

this form.

Naturally, we would like to know to which 6d SCFT these theories lift. As there is an

infinite number of possibilities, a case by case study seems ineffective. Thus, we wish to

determine a procedure by which, given such a 5d quiver, the 6d SCFT can be determined.

To do this we can utilize the fact that any such quiver can be reached starting with the linear
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the brane web, and doing several manipulations, we arrive at the web of figure 14.

SU(N) quiver considered before, for some N and k, and going on the Higgs branch. Also,

for theories with 8 supercharges, the Higgs branch does not receive quantum corrections,

and so the 5d and 6d Higgs branches must agree. Therefore, one possible strategy is to

start from one of the previous cases, where we know the 6d SCFT, and determine the Higgs

branch limit needed to get the required 5d quiver. Then, by mapping this to the 6d SCFT,

we can determine the 6d lift of the 5d quiver.

To understand the mapping, we can again rely on the brane description. Starting with

the 5d case, the Higgs branch limits we are interested in are represented, in the brane web,

by forcing a group of 5-branes to end on the same 7-brane. For example consider a group

of N parallel 5-branes, crossing some NS5-branes, each ending on a different 7-brane, see

figure 17 (a). This describes a quiver tail of the form NF + SU0(N) × SU0(N) . . .. If we

force two 5-brane to end on the same 7-brane then, because of the S-rule, one Coulomb

modulus of the edge SU(N) group is lost. Thus, this describes the Higgs branch breaking

NF + SU0(N)× SU0(N) to (N − 2)F + SU0(N − 1)× SU0(N) + 1F (see figure 17 (b)).
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Figure 16. (a) The brane web for the 5d theory of figure 15 (a), where one of the SU(2) flavors

is integrated out. Opening out the web we get to the presentation of (b). We could have also

integrated out any other flavor, and obtained the same theory.

We can of course repeat this and force two other 5-branes to end on the same 7-brane.

This leads to a similar breaking on the new quiver (see figure 17 (c)). However, we can

also consider forcing an additional 5-brane to end on the same 7-brane, so as to have three

5-branes ending on it (see figure 17 (d)). Now the S-rule not only eliminates a Coulomb

moduli of the edge SU(N) group, but also one from the adjacent group. This describes the

Higgs branch breaking associated with giving a vev to the gauge invariant made from a

flavor of the edge group, the bifundamental, and the flavor from the adjacent group. The

quiver left after this breaking is shown in (see figure 17 (d)).

It is now straightforward to generalize to an arbitrary configuration. Before moving

to the corresponding limits in the 6d theory, we note that this correspondence may not

hold when completely breaking a gauge group. In general, the topological symmetry of

the broken group survives the breaking and remains in the resulting theory, sometimes
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manifesting as extra flavors. In these cases, perturbative reasoning alone may be inadequate

to determine the answer. For our purposes, this can always be avoided. Also note, that

this can be related to the classification of 4d quiver tails of [40] by using the results of [35].

This is an alternative way to argue this mapping.

Next, we consider the implications of this on the 6d theory. Under T-duality, the

D5-branes are mapped to D6-branes and the D7-branes to D8-branes, so the analogous

breaking on the 6d side is represented in the brane configuration by forcing a group of

D6-branes to end on the same D8-brane. If the breaking is not too extreme, this translates

to a limit on the perturbative Higgs branch of the 6d SCFT. In fact, as the S-rule is the

same as in the 5d case, we find that this induces exactly the same effect on the quiver tail.

The only difference is that now there is only one quiver tail. Each action performed on any

of the two tails of the 5d quiver is mapped to the corresponding action done on the single

6d tail.

Nevertheless, complications can arise in some instances, for example, when the 6d

SCFT has a tensor multiplet without an associated gauge theory. For example, consider

the 6d quiver of figure 3, for N = 2l. In that case the 6d SCFT has a non-Lagrangian

part, the rank 1 E-string theory, possessing a 29 dimensional Higgs branch. Some of the

breaking we consider may be mapped to the Higgs branch of the E-string theory, where we

have no perturbative description. This can happen even in cases where the initial theory

has a complete Lagrangian description, but on the Higgs branch limit the gauge group

is completely broken leaving its associated tensor multiplet.5 Note that this method can

still be used to determine the 6d SCFT, but is somewhat complicated as the Higgs branch

limits may not be perturbatively realized. Thus, determining the resulting 6d SCFT will

probably require string theoretic methods like the ones in [46].

3.1.1 A simple example

We next wish to illustrate this with a simple example. First, consider the 5d theories shown

in figure 18. We can get these theories from the one in figure 6 (a) by going on the Higgs

branch. On the web system this is manifested by breaking two pairs of 5-branes so that

each of them end on the same 7-brane, the difference between them being whether the pair

are on the same side or opposite sides. In the 6d theory these are mapped to the same

breaking, indicating that these two quivers are dual, in the sense of both lifting to the same

6d SCFT.

Taking the corresponding limit in 6d, we get to the quiver of figure 19, which is the

desired 6d SCFT. By construction, we are now assured that doing the T-duality on the

brane system of this 6d quiver leads to the webs in figure 18. We can also consider com-

pactifcation of the 6d theory to 4d. As the Higgs branch limit and dimensional reduction

should commute, we again expect the resulting 4d theory to be given by the class S theory

whose 5d analogue is given by integrating out a flavor from the theories of 18. Naively, we

have several different choices of which flavor to integrate out, but we find these all lead to

the same class S theory, shown in figure 20 (c).

5This is manifested in the web when one is forced to coalesce 2 NS5-branes or an NS5-brane and the O8

plane due to the constraints of the S-rule.
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Figure 17. The mapping between the Higgs branch, as manifested in the web, to the resulting low

energy quiver. (a) We start with a long SU(N) quiver where for simplicity we have taken N = 4.

We can go on the Higgs branch by breaking the 5-branes on the 7-branes. This leads to several

5-branes ending on the same 7-branes. The resulting gauge theory can now be determined by doing

Hanany-Witten transitions, until all 7-branes have no 5-branes ending on them. This leads to the

quivers shown in (b)-(d). The generalization to more complicated cases is now apparent.

As a consistency check we can repeat the analysis of the central charges also in this

case. It is apparent that ∆nv = −8N − 8k + 36,∆nh = −12N − 12k + 40 and ∆nt = 0 so

using (2.5) we get that ∆dH = −4N − 4k + 4 and ∆n4dv = −8N − 8k + 12. This indeed

matches the results we get using class S technology. A straightforward calculation on both

sides gives kSU(2N+2k−4) = kSU(2) = 4(N + k− 2), so the matching is also true in this case.

3.1.2 Another example: the 5d TN theory with extra flavors

For our next example we consider a case where the Higgs branch limit involves a non-

perturbative limit for the 6d SCFT. We consider the gauge theory we get by adding

flavors to the 5d TN theory. Specifically, we add three flavors as shown in figure 21 (a),

corresponding to the gauge theory description in figure 21 (b). This is expected to lift

to 6d, as first pointed out in [28]. As a cross check, one can use the methods of [29] to

show that this theory has an enhancement to an affine A
(1)
3N−1 symmetry suggesting the 6d

theory should have an SU(3N) global symmetry.
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Figure 18. The 5d quiver theories we are considering. On the left is the quiver diagram and on

the right, the corresponding brane web. All groups are of type SU with CS level 0.

Figure 19. The 6d quiver theory found after implementing the Higgs branch flow of figure 18 on

the theory of figure 3.

We can get to the quiver of figure 21 (b) by starting from the F (N+2)+SU0(N)N−2+

(N + 2)F quiver and going on the Higgs branch. In the brane picture this corresponds

to forcing N − 1 5-branes to end on the same 7-brane. Thus, in principal, we could de-

termine the 6d theory by starting with the 6d theory of figures 3 or 7 and doing the

breaking. However, this breaking cannot be done while staying in the realm of perturba-

tive gauge theory. This can be seen by following this breaking, repeatedly forcing more

and more D5-branes to end on the same D7-brane, which eventually lead to the rank 1

E string theory.

Instead we present our conjecture for the 6d theory in this case. The gauge theory

description is slightly different depending on whether N = 3l, 3l+ 1 or 3l+ 2 where l is an

integer. The explicit description is given in figure 22. We now wish to test this conjecture.

First, we note that reducing this theory on a circle should indeed give the expected global

symmetry and Coulomb branch dimension. In the simpler cases of N = 3, 4 we can also

explicitly follow the Higgs breaking pattern and see that we indeed end up with the quivers

of figure 22.

A more stringent test of this conjecture is in considering the compactification to 4d on

T 2. As previously argued this should result in a class S theory with a 5d description given

by integrating out one flavor, the brane web of which is shown in figure 23 (a). From the

web we can read the resulting 4d class S theory, see figure 23 (b), as instructed in [35].

We can now also test this part of the conjecture. First, using class S technology, one can

– 21 –



J
H
E
P
1
2
(
2
0
1
5
)
1
5
7Figure 20. (a) The 5d quiver we are considering. (b) The brane web description of this 5d theory.

(c) By pulling out the 7-branes and doing HW transitions as needed, we can cast this web in the

form of [35] where we assumed l ≥ 2.

show that the global symmetry of this theory is indeed SU(3N). We can also compare the

central charges. For the class S theory we find:

dH =
(N − 1)(9N + 2)

2
,

n4dv =
(N − 1)(N − 2)(10N + 3)

6
,

kSU(3N) = 6(N − 1)

(3.5)

for the theory in figure 23 (b).

On the 6d side, we first note that all 3 cases have anomaly polynomials of the form (2.1)

so we can use (2.5).6 We find that:

nt = l, nv =
27l(l − 1)(2l − 1)

2
− l + 1, nh = 27l(l2 − 1) (3.6)

6The only different case here is the one with the SU(6) where a direct calculation reveals that it is indeed

of this form. Note that the tensor multiplet associated with this group is still of type −1 [21].
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Figure 21. (a) The web for the 5d TN theory with 3 D7-branes added at the marked location.

(b) Using the gauge theory description of the 5d TN theory given in [13], one can see that this web

describes the given quiver.

Figure 22. The conjectured 6d lift of the 5d theory shown in figure 21. In the N = 3l case the

leftmost group is the rank 1 E string theory and the gauging is in the SU(9) maximal subgroup of

E8. In the N = 3l + 2 case the leftmost SU(6) group has an half-hyper in the 20.
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Figure 23. (a) Starting with the TN we add two flavors and do the required HW transitions

finally arriving at the web on the bottom left. This web is of the form of [35]. Thus, we expect

that compactifying the 6d theory of figure 22 on a torus leads to an isolated 4d SCFT given by

compactifying the 6d (2, 0) theory of type A3N−4 on the punctured sphere shown in (b).

for N = 3l.

nt = l, nv =
27l(l + 1)(2l + 1)

2
− 54l2 − 19l, nh = 9l(3l2 + 3l − 2) (3.7)

for N = 3l + 1. And

nt = l, nv =
27l(l + 1)(2l − 1)

2
+ 8l, nh = 27l(l + 1)2 − 18l + 10 (3.8)

for N = 3l + 2. Using (2.5) and (2.6) we indeed recover (3.5).
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Figure 24. The quiver diagram for the 5d gauge theory. All groups are of SU type with CS level 0.

4 Additional 5d theories

We next want to consider additional 5d gauge theories lifting to 6d that are not covered,

at least naively, by the theories considered so far, namely by limits on the Higgs branch

of (N + 2)F + SU(N)k + (N + 2)F . The reason why we say naively is that a given 5d

fixed point may have many different IR gauge theory limits. Likewise there can be many

5d gauge theories all lifting to the same 6d SCFT, so even if a given 5d gauge theory is not

of the form considered so far, it may be dual to one. Indeed we will see that all examples

considered in this section are actually of this form, and the 6d lift can be determined by

the previously explained procedure.

We concentrate only on 5d theories with an ordinary brane web description, that

is without orientifold planes. One possibility is 5d linear SU quivers not of the form

considered. Another possibility is to look at linear SU quivers with a USp or SU with

an antisymmetric hyper multiplet, at one or both edges of the quiver. The latter can be

constructed using an O7− plane, which, when resolved, leads to an ordinary brane web.

These are the cases we consider.

4.1 Quivers of SU groups

We start by considering SU quivers not of the form discussed so far. Nevertheless, if we

want to get at most an affine Lie group as a global symmetry, then the analysis of [29]

suggests that the possibilities are limited to short quivers. Consider a quiver of 3 SU(N)

groups with N fundamentals for the edge groups and two fundamentals for the middle one,

the quiver diagram of which is shown in figure 24. The analysis of [29] suggests it should

have a D
(1)
6 global symmetry and so is expected to lift to 6d. Indeed, as figure 25 (a) shows,

it has a spiraling tau diagram which are characteristic of theories lifting to 6d [28].

We next inquire to what 6d theory does it go to. As figure 25 (b) shows, this theory

can be reached by going on the Higgs branch of the theory in figure 6 (a). Using the 6d

lift of the latter theory, of the form of figure 3, and taking the appropriate Higgs branch

limit, we end up with the 6d SCFT given by the quiver of figure 26. Note that we indeed

have the 6d SO(12) expected from the affine symmetry. We can go on to further test this.

By construction we are guaranteed that taking the T-dual of the brane configuration for

the 6d theory of figure 26 leads to the web of figure 25 (b).

One test we can carry is to consider the compactification to 4d on a torus. Again,

we expect to get a class S theory given by integrating out a flavor so that the 6d global

symmetry is preserved. Consider integrating out one of the N flavors at one of the ends.

This leads to the class S theory shown in figure 27 (b). The punctures show an SU(2N)×
SU(4) × SU(2)2 × U(1)2 global symmetry, but the 4d superconformal index revels that
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Figure 25. (a) The brane web for the 5d gauge theory of figure 24. After manipulating some of

the 7-branes, we arrive at the configuration at the bottom. It is now apparent that the two groups

of (1,−1) 7 branes spiral indefinitely. (b) Starting with the same configuration, we can by moving

the (0, 1) 7-branes through the monodromy of the other 7-branes, get to the web in the middle.

Pulling the resulting (1, 0) 7-branes trough the NS5 branes lead to the web on the right, which is

a Higgs branch limit of a theory of the form of figure 6 (a).
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Figure 26. The quiver diagram for the 6d gauge theory we get after implementing the Higgs

branch flow of figure 25 (b) on the theory of figure 3.

Figure 27. (a) Starting from the configuration of figure 25 without one of the flavors, we get to

this brane web. One can see that it is in the form of [35] so compactification to 4d will yield the

isolated SCFT of (b).

the SU(4) × SU(2)2 × U(1) part is enhanced to SO(12) as expected from the 6d theory

(note, however, that integrating one of the two mid group flavor leads to a different class S

theory with different global symmetry). The N = 2 case is special, where there is a further

enhancement of symmetry. We shall discuss this case latter, from a dual view point.

We can further test this by comparing the central charges of said class S theory with

the ones expected for the 6d theory compactified on a torus. Using class S technology

we find:

dH = 2N2 + 11N + 33,

n4dv = 6N2 + 33N − 41,

kSU(2N) = 2(2N + 4),

kSO(12) = 4(N + 4)

(4.1)

This indeed matches the results we get from (2.5) and (2.6).

A related case is given by letting each group see 2N + 1 flavors, the quiver diagram

of which is shown in figure 28. We claim that with the CS levels chosen as they are, this

theory also lifts to 6d, particularly, the theory shown in figure 29. We can present evidence

for this conjecture. First, note that the brane web for this theory has a spiraling tau form,

see figure 30 (a), supporting the claim that it lifts to 6d.
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Figure 28. The quiver diagram for the 5d gauge theory. All groups are of type SU with the CS

level for each given above it.

Figure 29. The quiver diagram for the 6d gauge theory, which is the expected lift of the 5d gauge

theory of figure 28.

Also as shown in figure 30 (b), we can map this web to a form as a Higgs branch limit

of the theories in figure 6 (a). It is now not difficult to see that implementing this breaking

on the 6d lift, of the form presented in figure 3, leads to the quiver of figure 29. Finally, we

can also consider the reduction to 4d on a torus. We expect the 4d theory to be described

by the case with one less flavor shown in figure 31. We can calculate the central charges of

this theory finding:

dH = 2N2 + 13N + 27,

n4dv = 6N2 + 33N − 47,

kSU(2N+4) = 4N + 10,

kSU(4) = 4N + 12

(4.2)

This indeed matches the results we get from (2.5) and (2.6).

4.2 SU quivers with antisymmetric hypers

In this subsection we look at SU(N) quivers with an antisymmetric hyper at one or both

ends. These also can be described by an ordinary brane web which we can get either by

constructing these theories with an O7− plane and resolving it, or by directly building the

quiver using the brane web for SU(N) with an antisymmetric given in [13, 14]. There is

another class of theories, SU quivers with USp ends, that can also be constructed using

these methods. But these can be generated by a Higgs branch limit of the theories we

consider in this section, and so it should be straightforward to generalize these results also

for this class.

4.2.1 SU quivers with an antisymmetric hyper at one end

We start with the 5d theory of figure 32. We claim that this theory lifts to the 6d theory of

figure 33. Our evidence for this is similar to the previous cases. First, by manipulating the

brane web for the theory, we can bring it to a form as a Higgs branch limit of the theories
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some of the 7 branes, we arrive at the spiraling configuration shown on the bottom left. (b) Starting

with the same configuration, doing some 7-brane gymnastics, we get to the web on the right. One

can note that this is a Higgs branch limit of a theory of the form of figure 6 (a).

presented in section 3. Besides supporting the claim that this theory lifts to 6d, we can,

by taking the required Higgs branch limit on the 6d lifts given in section 3, also argue that

the quivers given in figure 33 are indeed the required 6d lifts. This is shown for the k > N

case in figure 34, and for the k < N case in figures 35.

We can again consider the reduction to 4d on a torus. We expect the 4d theory to be

described by the case with one less flavor shown in figure 36. The punctures suggests a

global symmetry of SU(2N + 2k + 1) × SU(2)2 × U(1)3 except in some special cases, for

example, when k = N or k = N − 1 where the symmetry enhances to SU(2N + 2k + 1)×
SU(3) × SU(2) × U(1)2. From the 4d superconformal index we see that there is a further

enhancement of U(1) × SU(2)2 → SU(4), which becomes U(1) × SU(2) × SU(3) → SU(5)

when k = N or k = N − 1. This enhancements, including the special cases with enhanced

symmetry, exactly matches the ones expected from the 6d SCFT of figure 33. We can also
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Figure 31. (a) Starting from the configuration of figure 30 without one of the flavors, we get to

this brane web. One can see that it is in the form of [35] so compactification to 4d will yield the

isolated SCFT of (b).

Figure 32. The quiver diagram for the 5d gauge theory.

Figure 33. The quiver diagram for the 6d gauge theory, which is the expected lift of the 5d gauge

theory of figure 32.
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Figure 34. The web for the theory of 32. After some manipulations we can get to the form as a

Higgs branch limit of the theories in figure 6 (a) given by the S-dual of the web on the right.

Figure 35. The web for the theory of 32. After some manipulations we can get to the form as a

Higgs branch limit of the theories in figure 8.

calculate the central charges of this theory finding:

dH = 2N2 + 2k2 + 4kN + 17N + 9k,

n4dv =
(2N − 1)(6k2 + 4N − 4N2 + 9k + 18kN)

3
,

kSU(2N+2k+1) = 2(2N + 2k + 3),

kSU(4) = 4k + 8N (4.3)

for k ≥ N where for k = N SU(4)→ SU(5), and

dH = 2N2 + 2k2 + 4kN + 17k + 9N + 4,

n4dv =
k(12N2 + 24N − 8k2 − 13− 18k + 36kN)

3
,

kSU(2N+2k+1) = 2(2N + 2k + 3),

kSU(4) = 4N + 8k + 2 (4.4)

for N > k. This indeed matches the results we get from (2.5) and (2.6).

4.2.2 SU quivers with an antisymmetric hyper at both ends

We can next consider the case where both ends are SU groups with an antisymmetric so

we have the quiver theory of figure 37. We conjecture the 6d lift to be the one shown

in figure 38. We can repeat the same steps as before, first deform the web to give a

Higgs branch limit of a theory of figure 6 (a). This gives the web shown in figure 39. By
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series of HW transitions, we get to the brane web in the bottom left. One can see that it is in the

form of [35] so compactification to 4d will yield the appropriate isolated SCFT. This is the form

most suited to the k ≥ N case. For the N > k case, the one in (b), gotten from (a) by shuffling

some of the 7-branes, is more adequate.

Figure 37. The quiver diagram for the 5d gauge theory.

implementing the required breaking on the 6d SCFT of figure 3 we indeed get the quiver

of figure 38.

As an additional test, we can again consider the reduction to 4d on a torus. We

expect the 4d theory to be described by the case with one less flavor shown in figure 40.
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Figure 38. The quiver diagram for the 6d gauge theory, which is the expected lift of the 5d gauge

theory of figure 37.

Figure 39. Starting from the web for the gauge theory of figure 37, we can get to a form as a

Higgs branch limit of the web in figure 6 (a).

The global symmetry visible from the punctures is SU(2k + 2)× SU(4)× SU(2)3 ×U(1)3,

which is further enhanced when k = 0 or N = 2. When k 6= 0, we can show from the

superconformal index that there is an enhancement of SU(4) × SU(2)2 × U(1) → SO(12).

This, including the enhancement when N = 2, exactly matches what is expected from the

6d global symmetry.

However, the k = 0 case, the 5d SCFT of which corresponds to the 5d gauge theory

SU 1
2
(2N)+2AS+7F , has some puzzling features. First, let’s start with the global symmetry

for the SCFT of figure 40. As argued in the appendix, instanton counting methods suggests

this theory has an E7 × SU(2)3 global symmetry which is further enhanced to E7 × SO(7)

for N = 2. This is further supported by the 4d superconformal index. Note that the N = 2

case discussed here is identical to the N = 2 case for the theory in figure 27 (b), which

provides a dual gauge theory description for the same fixed point.

Comparing with the 6d side, we naively encounter a contradiction. When k = 0 we have

a long quiver of SU(2) groups leading to an enhancement of the U(1) bifundamental global

symmetries to SU(2)’s. More importantly the mixed anomalies leading to the breaking of

most of these U(1)’s now vanish so we naively expect to have an SU(2)N+1 global symmetry

contradicting the global symmetry suggested by the 5d description. The issue appears to

be the discrepancies between the global symmetry suggested from the gauge theory and

the one that actually exists in the SCFT mentioned in section 2. To truly understand the

6d SCFT we should consider a string theory realization of it.

Fortunately, the 6d SCFT at hand was considered in [21]. They considered a class of

theories engineered in string theory by a group of M5-branes probing a C2/Z2k+2 orbifold

and an M9-plane. One of the theories in this class is the theory with gauge theory descrip-

tion given in figure 38. This is no coincidence as the original 5d gauge theory, shown in
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figure 37, can be engineered by a group of D4-branes probing a C2/Z2k+2 orbifold and an

O8− plane [47] so it is natural to expect the 6d lift to be of this form.

According to the analysis of [21], the non-abelian global symmetry of this 6d SCFT

is indeed SO(12) × SU(2k + 2) × SU(2). The case k = 0 is special: the non-abelian

global symmetry is actually E7 × SU(2)3. The extra SU(2) is there since the orbifold

C2/Z2 preserves the full SO(4) symmetry, while C2/Z2k+2 breaks one of the SU(2)’s.7

So this appears to agree with what we see from the instanton counting analysis done in

the appendix.

The case k = 0, N = 2 is more special. Then the 6d theory is known as the (E7, SO(7))

conformal matter [27]. Again the gauge theory shows an SO(8) global symmetry, while it

is known the SCFT only has SO(7). This indeed agrees with the results from instanton

counting done in the appendix.

We can also to calculate the central charges of this theory finding:

dH = 2k2 + 30N + 19k + 3,

n4dv = 12N2(k + 1) + 8Nk − 7k + 2k2(2N − 1) + 2N − 3,

kSU(2k+2) = 4k + 16,

kSU(2) = 4k + 12N − 8,

kE7 = 4k + 12N (4.5)

This indeed matches the results we get from (2.5) and (2.6), supporting the claim

that compactifying the 6d SCFT of figure 38 on a torus leads to the isolated 4d SCFT of

figure 40. Incidentally, the compactification of the (E7, SO(7)) conformal matter on a torus

was already considered in [32]. They conjectured that the resulting theory is given in terms

of a compactification of the E6 (2, 0) theory on a Riemann sphere with three punctures

labeled: 0, 2A1, E6(a1) (see [44], for a discussion on the meaning of the notation and for

properties of this SCFT). They further compared the central charges of this theory to the

ones expected from the compactification, finding an exact match.

Consistency of these two approaches then suggests that these two theories are in fact

the same theory. Indeed, we calculated the central charges and spectrum of Coulomb

branch operators of the theory in figure 41, finding exact matching to the previously men-

tioned SCFT from compactifying the E6 (2, 0) theory.

We can also consider the even rank case shown in figure 42. While this can be figured

out from the previous case by going on the Higgs branch, we will mention this case. We

expect the 6d theory to be the one shown in figure 43. This can be argued by manipulating

the brane web into a form, shown in figure 44, as a Higgs branch limit of the theory of

figure 8.

We can again consider the reduction to 4d on a torus. We expect the 4d theory

to be described by the case with one less flavor shown in figure 45. The discussion is

quite similar to the odd rank case. The global symmetry visible from the punctures is

SU(2)× SU(6)× SU(2k+ 2)×U(1)2 which gets further enhanced when N = 1 or k = 1, 0.

7I am grateful for J. J. Heckman for making his work known to me and for discussing this point.
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Figure 40. Starting from the configuration of figure 39 without one of the flavors, we get to

this brane web. One can see that it is in the form of [35] so compactification to 4d will yield the

appropriate isolated SCFT.

Figure 41. The brane web for SU± 1
2
(4) + 2AS + 7F . From this one can arrive at the repre-

sentation of its associated 4d SCFT as a compactification of an A type (2, 0) theory on a three

punctured sphere.

Figure 42. The quiver diagram for the 5d gauge theory.

Figure 43. The quiver diagram for the 6d gauge theory, which is the expected lift of the 5d gauge

theory of figure 42.
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Figure 44. Starting from the web for the theory of 42, we can cast it in a form as a Higgs branch

limit of the web in figure 8. This is given by the S-dual of the rightmost web.

From the 4d superconformal index we find an enhancement of SU(2)×SU(6)×U(1)→ SU(8)

which is further enhanced to SU(2k + 10) for N = 1. This agrees with what is seen from

the gauge theory description of figure 43 except for the case of k = 0. In this case the

gauge theory is SU 1
2
(5)+2AS+7F and as discussed in the appendix, we expect to have an

SO(16)×SU(2)2 global symmetry. This is also confirmed from the 4d superconformal index.

In the 6d theory we again encounter a series of SU(2) groups and we naively have a

problem with matching the global symmetry. However, this theory was also considered

in [21], as expected since the 5d theory is related to the previous one by adding D4-branes

stuck on the orbifold and so should lift to a 6d SCFT of this type. The analysis of [21]

suggests the non-abelian global symmetry of this theory is indeed SU(8)×SU(2k+2). The

k = 0 case is again special, and then the non-abelian global symmetry should indeed be

SO(16)× SU(2)2.

We can also calculate the central charges of this theory finding:

dH = 2k2 + 30N + 19k + 3,

n4dv = 12N2(k + 1) + 8Nk − 7k + 2k2(2N − 1) + 2N − 3,

kSU(2k+2) = 4k + 16,

kSU(8) = 12N + 4k + 4 (4.6)

This indeed matches the results we get from (2.5) and (2.6).

4.3 Cases with completely broken groups

Finally, we wish to consider several additional cases. The common thread in all of them

is that they involve completely breaking a 6d gauge group leaving a tensor multiplet. As

our first example we consider the case of USp(2N) + AS + 8F . As mentioned in the

introduction, this theory is known to lift to the rank N E-string theory. It also has a brane

web description given in figure 46 (a) [14]. We can now recast this web as a Higgs branch

limit of the theory in figure 6 (a). Carrying out this breaking on the 6d SCFT, one finds

that this completely breaks the gauge symmetry leaving only the tensor multiplets. Indeed,

as mentioned in section 2, the theory described by such a structure of tensor multiplets is

the rank N E-string theory.

Next we consider a case in which only part of the gauge theory is broken. Take the 5d

gauge theory NfF + USp(2N + 4)×USp0(2N) whose web is shown in figure 47 (a). First,
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Figure 45. Starting from the configuration of figure 44 without one of the flavors, we get to

this brane web. One can see that it is in the form of [35] so compactification to 4d will yield the

appropriate isolated SCFT.

Figure 46. (a) The brane web for USp(2N) +AS + 8F . (b) The web in a form as a Higgs branch

limit of the theory in figure 6 (a).

let us analyze the global symmetry of this theory. Instanton counting methods suggest that

the (0, 1) instantons should lead to an enhancement of the USp0(2N) topological U(1) to

SU(2) [14]. In addition we expect an enhancement of U(1) × SO(2Nf ) to ENf+1. This is

most notable from the gauge symmetry on the 7-branes using the results of [48, 49]. Thus,

we conclude that this theory has an ENf+1 × SU(2)2 global symmetry. The case of N = 1

is exceptional as then there is an additional enhancement of SU(2)2 → G2 [12] so in that

case the global symmetry is ENf+1 ×G2.
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Figure 47. (a) On the left is the web for USp(6)×USp0(2). The generalization to USp(2N + 4)×
USp0(2N) is apparent and we only show the shape of the external legs, shown on the right. The

generalization to NfF + USp(2N + 4) × USp0(2N) is also straightforward and is done by adding

7-branes. For example consider the web of (b) describing 8F + USp(2N + 4) × USp0(2N). By

manipulating the 7-branes we can get to the web on the right which is in the form as a Higgs

branch limit of the web in figure 6 (a).

In the case of Nf = 8 we get an E
(1)
8 global symmetry and the theory is expected to

lift to 6d. Indeed, as shown in figure 47 (b), the web for this theory can be cast into a form

as a Higgs branch limit of the web in figure 6 (a). We can now implement this breaking on

the 6d theory. Doing this one can see that we are left with the two free tensor multiplets

of type −1 − 2. This gives the rank 2 E-string theory. The remaining quiver connects to

this theory by gauging the SU(2) subgroup of the SU(2) × E8 global symmetry of this 6d

SCFT. This leaves an E8 global symmetry, as expected from the 5d theory.

The explicit 6d theory we get is shown in figure 48. Like in previous cases, we expect

most of the SU(2) global symmetries to be anomalous even though this is not visible in

the gauge theory. The case of N = 1 is known as the (E8, G2) conformal matter [27] and

there it is known that the global symmetry of the SCFT is actually E8 ×G2 and not the

E8 × SO(7) visible from the gauge theory. This indeed matches what is expected from the

gauge theory.
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Figure 48. The quiver description for the 6d lift of the 5d theory of figure 47 (b). The fractional

number stands for an odd number of half-hypers, possible since the group is SU(2).

We can also consider compactification to 4d on a torus. For simplicity, we only consider

the N = 1 case. We expect the resulting 4d theory to be the one described by reducing the

5d fixed point 7F + USp(6)×SU0(2), shown in figure 49, on a circle. This indeed preserves

the 6d global symmetry. We can further test this by matching the central charges of the

4d SCFT with the one expected from the 6d theory. Using class S technology, we find that

this theory has Coulomb branch operators of dimensions: 6, 8, 12, 18. We further find:

dH = 92, n4dv = 84, kE8 = 36, kG2 = 16 (4.7)

Using the methods of [37], we find that this indeed matches the result we expect from

(E8, G2) conformal matter.

Like the previous case, the compactification of the (E8, G2) conformal matter on a

torus was already considered in [33]. They conjectured that the resulting theory is given in

terms of a compactification of a specific E8 (2, 0) theory on a Riemann sphere with three

punctures. Consistency of these two approaches then suggests that these two theories are

in fact the same theory. Since the class S analysis for compactification of E8 (2, 0) theory

is not yet available we cannot compare the two theories. It will be interesting to check this

if the classification becomes available.

The last case we wish to consider involves a −2 type tensor multiplet. Consider the

5d theories SU 3
2
(2N) + 2AS + 7F and SU 3

2
(2N + 1) + 2AS + 7F . The instanton analysis

calculation, done in the appendix, suggests these have an enhanced affine global symmetry

and so may lift to 6d. For simplicity, we concentrate on the N = 2 case, the generalization

to other N being straightforward.

Figure 50 shows the brane webs for these theories, and how they can be cast as a Higgs

branch limit of the theories of figure 14. Implementing this breaking on the appropriate

6d SCFT yields the theories described in figure 51 which are the appropriate 6d lifts. One

can see that indeed the theory of figure 51 (a) has the SO(19) symmetry expected from the

5d description. However, the one of figure 51 (b) shows an E7 × SO(7), the E7 agreeing

with the gauge theory expectations. We expect the SCFT to not posses the SO(7) global

symmetry, but only have the G2 subgroup, like the (E8, G2) conformal matter case. It

would be interesting to test this using the F-theory description.
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Figure 49. The brane web for 7F + USp(6) × SU0(2). From this one can arrive at the repre-

sentation of its associated 4d SCFT as a compactification of an A type (2, 0) theory on a three

punctured sphere.

5 Conclusions

In this article we studied 5d gauge theories that are expected to lift to 6d SCFT’s. Given

such a 5d gauge theory, we are interested in determining its 6d lift. We have proposed a

method to do this for 5d gauge theories with an ordinary brane web description. We have

provided several examples of these, showcasing its usefulness as well as its limitations.

One such limitation is that to properly utilize it, one must be able to cast the web as a

Higgs branch limit of a known theory. It is not immediately clear if this can be done for an

arbitrary theory. However, we have checked a number of examples in which this appears

to be true. This leads us to conjecture that all 5d gauge theories with an ordinary brane

web description that lift to 6d, lift to the family of theories discussed in section 2. It will

be interesting to further explore this.

Another direction is to find further evidence for the relations proposed in this article.

One possible direction is to compute a quantity in the 5d theory and compare it against the

expected result from the 6d SCFT. Such a thing was done, for example, in the case of the

rank 1 E-string case in [28, 50], the quantity in question being the 5d superconformal index.

It is interesting if this can also be carried out for some of the examples presented here.
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2
(4) + 2AS+ 7F converted to a form as a Higgs branch limit

of the web in 14. (b) The brane web for SU 3
2
(5) + 2AS+ 7F converted to a form as a Higgs branch

limit of the web in 14.

It is also interesting to consider other 5d gauge theories. While it is not yet completely

clear what gauge and matter content are allowed for the theory to posses 5d or 6d fixed

points, there are several cases that can be engineered in string theory and thus are known

to exist. In particular one can generalize brane webs by adding O7 planes [14] or O5

planes [51] leading to additional possibilities. Some theories in these classes are known to

have an enhancement to an affine symmetry and so are expected to lift to 6d [29, 52]. It

will be interesting to also determine the 6d SCFT’s in these cases.
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Figure 51. (a) The expected 6d lift of the 5d gauge theory SU 3
2
(4) + 2AS + 7F . The expected 6d

lift of the 5d gauge theory SU 3
2
(5) + 2AS + 7F . The rightmost circle in both quivers, corresponds

to a single N = (2, 0) tensor multiplet where an SU(2) subgroup of the USp(4) (2, 0) R-symmetry

is gauged.

A Instanton counting for SU(N) + 2AS + NfF

In this appendix we consider symmetry enhancement in theories of the form SU(N) +

2AS +NfF . The method we employ borrows significantly from [53]. The essential idea is

to identify the states, coming from 1 instanton configurations, that are conserved currents.

This sometimes allows one to determine what the enhanced symmetry is. The methods

relies on the following observations of [53]:

1. The 1 instanton of SU(2), when properly quantizing the zero modes coming from the

gaugino, forms a multiplet which is exactly the one associated to a broken current

supermultiplet.

2. Any 1 instanton of some Lie group G can be embedded in an SU(2) subgroup of G.

Therefore, to determine the spectrum of 1 instanton configurations of arbitrary G it

is sufficient to decompose it to SU(2) representations.

Particularly, for our case we consider gauge group SU(N) with matter in the funda-

mental or antisymmetric. The case of SU(N) with matter in the fundamental was studied

already in [53] and later in [29], which also discussed antisymmetric matter. Yet, to our

knowledge, a complete analysis of the case of SU(N) + 2AS + NfF was not done, even

though the building blocks are in essence already known.

Consider a 1 instanton of SU(N) + 2AS+NfF . It breaks the SU(N) gauge symmetry

to U(1) × SU(N − 2). We can decompose all fermionic matter under the reduced gauge

symmetry and determine the zero modes provided by them. Particularly, there is only one

state in the adjoint of SU(2) whose quantization provides the broken current supermultiplet.

The remaining fields are all in the fundamental of SU(2) and so provide one raising operator
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UG(1) SU(N − 2) SUR(2) SUAS(2) UAS(1) UB(1) SU(Nf )

B N N− 2 2 − − − −
C N − 2 − − − − 1 Nf

A −(N − 4) N− 2 − 2 −1 − −

Table 1. The spectrum of fermionic raising operators provided by the fermionic zero modes for

SU(N) + 2AS +NfF . The B operators come from the gaugino, the C from the fundamentals and

A from the antisymmetrics.

per fermion. By either doing the decomposition, or simply burrowing the results of [53],

we find the zero modes spectrum given in table 1.

The full spectrum is now given by acting with these operators on the ground state, |0〉,
whose charges are: QUG(1) = (N − 2)(κ − Nf

2 − 4), QUB(1) = −Nf

2 and QUAS(1) = N − 2,

where κ is the CS level. Furthermore, recall that the ground state is a broken current

supermultiplet. Thus, to get a conserved current we need to enforce two conditions:

1. The state must be gauge invariant under the unbroken UG(1) × SU(N − 2) gauge

symmetry.

2. The state must remain a broken current supermultiplet, particularly, it must have as

the lowest component, a triplet of scalar operators under SUR(2).

The implications of these two conditions is that we must look at all operators made

from the fields in table 1 that are SU(N − 2) and SUR(2) singlets. The application of

any combination of these on the ground state gives an SU(N − 2) invariant broken current

supermultiplet. Next, one must enforce UG(1) invariance.

Going over table 1 we see that the only SU(N−2) and SUR(2) singlets are: εεB2(N−2),

εAN−2, C and (εAlBN−2−l)2 for l = 1, 2 . . . , N − 1, where the SU(N − 2) indices are

contracted with the epsilon symbol.

Before looking at all these operators, we should discuss under what conditions we

expect a fixed point. We answer this question by analyzing brane webs. We find two

cases with a spiral tau type diagram, or alternatively, a web description as a Higgs branch

limit of a 6d lifting theory. These suggest that these theories lift to 6d. The cases are

SU0(N) + 2AS + 8F (see figure 39 for the web in the N even case and figure 44 in the

N odd case) and SU± 3
2
(N) + 2AS + 7F (see figure 50 for the web in the N = 4, 5 cases).

Integrating out flavors from these theories gives well defined webs leading us to believe that

this class of theories indeed go to a 5d fixed point.

Next, we want to determine what conserved currents are provided by the 1 instanton

configuration in these cases. First, let’s look at all gauge invariant states made by applying

A and B on the ground state. These are:

|0〉 , εεB2(N−2) |0〉 , εAN−2 |0〉 , (εAN−2)2 |0〉 , εAN−2εεB2(N−2) |0〉 , (εAN−2)2εεB2(N−2) |0〉 ,
(εAlBN−2−l)2 |0〉 (A.1)

where in the last term l = 1, 2 . . . , N − 1. We can also act on each of these states with

k C operators for k = 0, 1 . . . , Nf . Next, we need to determine when each of these states
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is UG(1) invariant and thus give a conserved current. We only consider theories in the

previously discussed class. We also assume N > 3 as the other choices reduce to known

cases.8 We find that εB2(N−2) |0〉 and (εAN−2)2 |0〉 can only contribute if 2|κ|+Nf ≥ 8 and

N = 4, εAN−2 |0〉 and εAN−2εεB2(N−2) |0〉 can contribute if 2|κ|+Nf ≥ 8 and N = 4, 5 and

|0〉 , (εAN−2)2εεB2(N−2) |0〉 can contribute if 2|κ|+Nf ≥ 8. Thus, as long as 2|κ|+Nf < 8

the only contribution can come from (εAlBN−2−l)2 |0〉.
The behavior of these changes depending on whether N is even or odd. If N is even

then we can find a conserved current from the l = N−2
2 case, (εA

N−2
2 B

N−2
2 )2 |0〉. This

contribute conserved currents when κ = 0, Nf = 0. When flavors are added then we can

still get conserved currents by acting with C operators. If 2|κ| + Nf ≥ 8 then there can

also conserved currents from the l = N−2
2 ± 1 case.

If N is odd then we can find a conserved current from the l = N−1
2 and l = N−3

2 cases.

The first contribute when κ = 2, Nf = 0 while the second when κ = −2, Nf = 0. Again,

when flavors are added then we can still get conserved currents by acting with C operators.

We next need to go over all cases, and see what conserved currents we get. This tells

us whether symmetry enhancement occurs in the theory, and if so, helps us determine

the enhanced symmetry. Since we only see contributions from the 1 instanton, there can

sometimes be further enhancements coming from higher instantons. In fact, the need to

complete a Lie group sometimes necessitates the existence of conserved currents from higher

order instantons. In the following, when writing the global symmetry of a theory, we write

the minimal one consistent with the conserved currents we observe.

We write our results for N > 5 odd in table 2, and for N > 4 even in table 3. As is clear

already from the analysis of the currents the N = 4, 5 cases are special. In the N = 4 case

this is manifested already at the perturbative level as the antisymmetric representation

is real and the SUAS(2) × UAS(1) symmetry is enhanced to USp(4). Then there are also

further conserved currents completing the SUAS(2) × UAS(1) representations to USp(4)

ones. We write our findings for this case in table 4.

In the N = 5 case, the difference only arises when Nf + 2|κ| = 10. In this case

we find that there is a further enhancement of SU(2) × SU(2) → G2. This is related to

the enhancement to G2 in the USp(6) × SU(2) theories mentioned in section 4.3 as, by

manipulating brane webs, we find that the theories SU 9−Nf
2

(2n+1)+2AS+(Nf +1)F and

NfF + USpπ(2n+ 2)×USp(2n− 2) + 1F are dual (the θ angle for USp(2n+ 2) is relevant

only in the Nf = 0 case). One implication of this is that, besides the enhancement revealed

from the 1 instanton analysis, there should be an additional enhancement of U(1) → SU(2)

coming from higher instantons. This is also apparent in the N = 2 case as this is necessary

to complete the Lie group G2.

For general N , this can be argued from the NfF + USpπ(2n+ 2)×USp(2n− 2) + 1F

description. According to the results of [14], as the USp(2n−2) group effectively sees 2n+3

8For N = 2 the antisymmetric completely decouples and we just get the rank 1 ENf+1 theories. For

N = 3 the antisymmetric is just the anti-fundamental so the problem reduces to analyzing SU(3) with

fundamentals where this analysis was done in [15, 26, 29] expect the case of Nf + 2|κ| = 12. However,

the brane webs describing these theories are identical to the rank 2 ẼNf theory so these are just dual

descriptions of known fixed points.
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Nf = 0 Nf = 2 Nf = 4 Nf = 6

κ = 0 U(1)2 × SU(2) U(1)3 × SU(2)2 U(1)× SU(2)3 × SU(4) U(1)× SU(2)× SU(8)a

κ = 1 U(1)2 × SU(2) U(1)2 × SU(2)3 U(1)2 × SU(2)× SU(5) SU(2)3 × SO(12)

κ = 2 U(1)× SU(2)2 U(1)2 × SU(2)× SU(3) U(1)× SU(2)2 × SO(8) SU(2)2 × Ee7
κ = 3 U(1)2 × SU(2) U(1)× SU(2)4 SU(2)2 × SU(6)c

κ = 4 U(1)× SU(2)2 U(1)× SU(2)2 × SU(3)

κ = 5 U(1)× SU(2)2

Nf = 1 Nf = 3 Nf = 5 Nf = 7

κ = 1
2 U(1)3 × SU(2) U(1)2 × SU(2)2 × SU(3) U(1)× SU(2)2 × SU(6) SU(2)2 × SO(16)b

κ = 3
2 U(1)2 × SU(2)2 U(1)2 × SU(2)× SU(4) U(1)× SU(2)2 × SO(10)

κ = 5
2 U(1)2 × SU(2)2 U(1)× SU(2)2 × SU(4) SU(2)2 × SO(12)d

κ = 7
2 U(1)2 × SU(2)2 SU(2)3 × SU(4)

κ = 9
2 U(1)× SU(2)3

Table 2. The enhancement of symmetry for the 5d theory SUκ(2n+ 1) + 2AS+NfF where n > 2.

The case of n = 2 differs only in the Nf + 2|κ| = 10 case where there is an additional enhancement

of SU(2)2 → G2. Also note that for Nf + 2|κ| = 10 one of the SU(2) results from contributions of

higher instantons and is inferred from a dual description of the fixed point. (a) To get this global

symmetry requires also two conserved currents that are flavor singlet with instanton number ±2.

(b) To get this global symmetry requires also two conserved currents with instanton number ±2

that are in the 7 of SU(7). (c) To get this global symmetry requires also two conserved currents

with instanton number ±2 that are SU(4) singlets. (d) To get this global symmetry requires also

two conserved currents with instanton number ±2 that are in the 5 of SU(5). (e) To get this global

symmetry requires also several conserved currents with instanton number ±2 that are in the 1 and

15 of SU(6), and another two with instanton number ±3 that are in the 6 of SU(6).

flavors, the (0, 2) instanton should provide two conserved currents with charges ±1 under

SOF (2). These lead to an enhancement of at least U(1)2 → SU(2)2. Furthermore, as argued

in section 4, when Nf > 0 we expect a further enhancement of at least SO(2Nf )×U(1)→
ENf+1, where the U(1) containing the USp(2n + 2) topological symmetry. The minimal

implication of these on the SU description is that a further enhancement of U(1) → SU(2)

should occur in this theory. Note that this argument does not hold for the pure case,

SU5(2n + 1) + 2AS. Nevertheless, since this enhancement appears to be unaffected by

integrating out flavors, as long as Nf + 2|κ| = 10, we conjecture that it should occur also

for this case, and have included it in table 2.

Finally, we want to discuss the cases where we expect a 6d fixed point. First

we have SU0(2n + 1) + 2AS + 8F , where we find several conserved currents with

the charges: (1,28, 1,−2), (1, 2̄8,−1, 2), (1,1, N − 2, 4) and (1,1,−(N − 2),−4), under

SUAS(2)×SU(8)×UAS(1)×UB(1). All these currents cannot form a finite Lie group. The

first two seem to suggest that U(1)2 × SU(8) is enhanced to the affine D
(1)
8 . The last two

then imply that the remaining U(1) should also form an affine group. SUAS(2) does not

appear to be affinized at least at this level.

For SU0(2n) + 2AS + 8F , the conserved currents are a bit different. First there is one

current in the 70 of SU(8). This cannot lead to any finite Lie group, but can form an affine
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Nf = 0 Nf = 2 Nf = 4 Nf = 6

κ = 0 U(1)× SU(2)2 U(1)2 × SU(2)× SU(3) U(1)2 × SU(2)× SO(8) U(1)2 × SU(2)× Ea6
κ = 1 U(1)2 × SU(2) U(1)2 × SU(2)3 U(1)2 × SU(2)× SU(5) SU(2)3 × SO(12)

κ = 2 U(1)2 × SU(2) U(1)3 × SU(2)2 SU(2)4 × SU(4) SU(2)× SO(16)g

κ = 3 U(1)2 × SU(2) U(1)× SU(2)4 U(1)× SU(2)× SO(10)e

κ = 4 SU(2)3 U(1)× SU(2)× SU(4)c

κ = 5 U(1)2 × SU(2)

Nf = 1 Nf = 3 Nf = 5 Nf = 7

κ = 1
2 U(1)2 × SU(2)2 U(1)2 × SU(2)× SU(4) U(1)2 × SU(2)× SO(10) SU(2)3 × Eb7

κ = 3
2 U(1)3 × SU(2) U(1)2 × SU(2)2 × SU(3) SU(2)3 × SU(6)

κ = 5
2 U(1)3 × SU(2) U(1)× SU(2)3 × SU(3) SU(2)2 × SO(12)f

κ = 7
2 U(1)× SU(2)3 U(1)× SU(2)× SO(8)d

κ = 9
2 U(1)× SU(2)3

Table 3. The enhancement of symmetry for the 5d theory SUκ(2n) + 2AS + NfF where n > 2.

(a) To get this global symmetry requires also two conserved currents that are flavor singlets with

instanton number ±2. (b) To get this global symmetry requires also two conserved currents with

instanton number ±2 that are in the 7 of SU(7). (c) To get this global symmetry requires also

two conserved currents with instanton number ±2 that are SUF (2) singlets. (d) To get this global

symmetry requires also two conserved currents with instanton number ±2 that are in the 3 of SU(3).

(e) To get this global symmetry requires also two conserved currents with instanton number ±2

that are in the 6 of SU(4). (f) To get this global symmetry requires also two conserved currents

with instanton number ±2 that are in the 10 of SU(5). (g) To get this global symmetry requires

also several conserved currents with instanton number ±2 that are in the 1,1 and 15 of SU(6), and

another two with instanton number ±3 that are in the 6 of SU(6).

one E
(1)
7 . If n 6= 2 then we also have 4 additional currents, which are singlets of SU(2) ×

SU(8), with charges (4, N − 2), (−4,−(N − 2)), (4,−2) and (−4, 2) under UB(1)×UAS(1).

In light of the enhancement of SU(8) to an affine group, we also expect these currents to

enhance U(1)2 to an affine group. If n = 2 then we get two conserved currents in the

(5,1,±4) of USpAS(4)× SU(8)×UB(1). These indeed cannot fit in a finite Lie group, but

can form an affine one, B
(1)
3 .

Next, we consider the case of SU± 3
2
(2n)+2AS+7F . First, we find a conserved current

in the (1,21, 0,−3
2), under SUAS(2)×SU(7)×UAS(1)×UB(1). If n 6= 2 then we also have

2 additional currents in the (1, 7̄, 2n−2, 52) and (1, 7̄, 2, 52). These suggest an enhancement

to the affine group D
(1)
8 . SUAS(2) does not appear to be affinized at least at this level. If

n = 2 then these two currents merge with additional currents to form one current in the

(5, 7̄, 52) of USpAS(4)× SU(7)× UB(1). These indeed cannot fit in a finite Lie group, but

can form an affine one, B
(1)
9 .

The last case we consider is SU± 3
2
(2n+1)+2AS+7F . We find conserved currents in the

(1, 3̄5,−1, 12), (1, 7̄,−(N−2), 52), and (1,1, 1,−7
2) under SUAS(2)×SU(7)×UAS(1)×UB(1).

The first two cannot fit in a finite group, rather forming the affine E
(1)
7 . Like in the other

case, we expect the last current to affinize the remaining U(1). In the N = 5 case, there is
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Nf = 0 Nf = 2 Nf = 4 Nf = 6

κ = 0 SU(2)×USp(4) U(1)×USp(4)× SU(3) U(1)×USp(4)× SO(8) U(1)×USp(4)× Ea6
κ = 1 U(1)×USp(4) U(1)× SU(2)2 ×USp(4) U(1)×USp(4)× SU(5) SO(7)× SO(12)

κ = 2 U(1)×USp(4) U(1)2 × SU(2)×USp(4) SU(2)× SU(4)× SO(7) SO(19)f

κ = 3 U(1)×USp(4) U(1)× SU(2)× SO(7) U(1)× SO(13)d

κ = 4 SO(7) U(1)× SO(9)(a)

κ = 5 U(1)×USp(4)

Nf = 1 Nf = 3 Nf = 5 Nf = 7

κ = 1
2 U(2)×USp(4) U(1)×USp(4)× SU(4) U(1)×USp(4)× SO(10) SO(7)× Eb7

κ = 3
2 U(1)2 ×USp(4) SU(2)×USp(4)×U(3) SO(7)× SU(6)

κ = 5
2 U(1)2 ×USp(4) U(1)× SU(3)× SO(7) SU(2)× SO(15)e

κ = 7
2 U(1)× SO(7) U(1)× SO(11)c

κ = 9
2 U(1)× SO(7)

Table 4. The enhancement of symmetry for the 5d theory SUκ(4) + 2AS +NfF . (a) To get this

global symmetry requires also two conserved currents that are flavor singlets with instanton number

±2. (b) To get this global symmetry requires also two conserved currents with instanton number

±2 that are in the 7 of SU(7). (c) To get this global symmetry requires also two conserved currents

with instanton number ±2 that are in the 3 of SU(3). (d) To get this global symmetry requires

also two conserved currents with instanton number ±2 that are in the 6 of SU(4). (e) To get this

global symmetry requires also two conserved currents with instanton number ±2 that are in the 10

of SU(5). (f) To get this global symmetry requires also several conserved currents with instanton

number ±2 that are in the (1,5) and (15,1) of SU(6) × USp(4), and another two with instanton

number ±3 that are in the 6 of SU(6).

an additional current in the (4,1, 0, 72) which lead to the enhancement to G2. In light of

the enhancement to E
(1)
7 , we also expect the G2 to be affinized though whether this indeed

happens is not visible from this method.
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