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1 Introduction

Since the seminal work of Strominger [1, 2], there has been a resurgence of interest in

analyzing the role played by BMS group [3] and its various extensions [4] as symmetry group

of (perturbative) Quantum Gravity S-matrix [5, 6]. However work done so far is restricted

to pure gravity or pure gravity coupled to massless matter. In this paper, we extend the

relationships between a group of asymptotic symmetries G defined in [7, 8] (referred to as

generalized BMS group) with leading and sub-leading soft graviton theorems [9, 10].
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Our work is based on the ideas presented in [11], where the Weinberg soft photon

theorem for scalar QED with massive charged particles was shown to be equivalent to Ward

identities associated to large U(1) gauge transformations which acted on the asymptotic

phase space of massive scalar field defined at time-like infinity. In this paper we show

that there exists an action of G on the asymptotic phase space of massive scalars such

that charges associated to G are sum of charges associated to time-like infinity and null

infinity.1 We then show that the statement of Ward identities corresponding to such charges

is equivalent to leading as well as sub-leading soft graviton theorems.

A key player in obtaining this equivalence are certain ‘boundary to bulk’ Green’s func-

tions that map generators of G (which are vector fields at null infinity) to the asymptotic (at

time-like infinity) bulk vector fields. We show that these Green’s functions are intricately

tied to the soft factors which arise in the soft theorems and this fact plays the central role

in obtaining the equivalence between soft theorems and Ward identities. Further details of

these Green’s functions appear in the companion note [14].

Whereas our considerations are based on the approach proposed in [11] in the context

of scalar QED, there exists a different approach for identifying asymptotic symmetries for

massive charged particles due to Kapec, Pate and Strominger [15]. In their approach, a

key role is played by the Lienard-Wiechert fields of the scattering charged particles and

the use of ‘dressed’ states. It would be interesting to understand the present results from

their perspective.2

The outline of this paper is as follows. After giving a brief conceptual sketch of the key

ideas which underlie the proof (establishing equivalence between Ward identities and soft

theorems), in section 2 we establish the asymptotic phase space Γ of the scalar field-gravity

system. This phase space is a direct product of radiative phase space of gravity defined at

null infinity and the asymptotic phase space of the massive scalar field defined at time-like

infinity. In section 3 we show that there is a group of large diffeomorphisms which are

non-trivial at time-like infinity and are (i) obtained from the generalized BMS vector fields

localized at null-infinity with help of certain Green’s function with well-defined boundary

conditions and (ii) preserve the de Donder gauge-fixing condition of perturbative gravity.

This gives us a unified picture of the asymptotic symmetry group of gravity associated to

null and time-like infinity. In section 4 it is shown that the action of this symmetry group on

the total phase space Γ is symplectic and we derive the charges associated to the symmetry

generators. In sections 5 and 6 we establish the equivalence between soft theorems and

Ward identities associated to such charges. We end with some remarks and conclusions.

1.1 Basic sketch of the proof underlying the equivalence

We now illustrate the sequence of steps which leads to the equivalence in the context of the

supertranslation subgroup ST ⊂ G and Weinberg’s soft graviton theorem. It is important

1For the supertranslation subgroup ST ⊂ G, the action on the massive scalar seems to agree with the

one proposed by Longhi and Materassi [12] (see also [13]).
2There is in fact an apparent tension between both approaches: in our approach it is crucial that the

asymptotic states are the ‘undressed’ states of the free theory (see comments in the last paragraph of

section 8) whereas for Kapec et al. it is crucial that states are dressed.
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to recall that the underlying theory is perturbative quantum gravity coupled to a massive

scalar field where we use de Donder gauge to describe the linearized metric.

Let us for concreteness focus on future asymptotics. We use two different systems

of coordinates: (u, r, x̂) adapted to future null infinity I+ and (τ, ρ, x̂) adapted to future

time-like infinity H+. Null infinity is reached by taking r → ∞ in the first coordinates and

time-like infinity is reached by taking τ → ∞ in the second coordinate system.

Given a supertranslation vector field f∂u at I+, we can consider an associated space-

time ‘bulk’ vector field ξf that is a residual ‘gauge’ symmetry in de Donder gauge, i.e.

satisfies �ξaf = 0 and its boundary value at I+ is f∂u. At time-like infinity such vec-

tor field has the asymptotic form ξτf = ξ̊τf∂τ + O(τ−1) and its leading component can be

determined via a Green’s function G(ρ, x̂; ŷ) that maps f(ŷ) to ξ̊τf (ρ, x̂) by:

ξ̊τf (ρ, x̂) =

∫

S2

d2ŷ G(ρ, x̂; ŷ)f(ŷ). (1.1)

If we now consider a scattering amplitude involving n massive particles then the cor-

responding Ward identity for supertranslation [2],

〈out|[Qsoft,S]|in〉 = −〈out|[Qhard,S]|in〉 (1.2)

takes the form (for details see the main text of the paper):

lim
Es→0+

Es

2π

∫

d2wf(w, w̄)D2
w̄〈out|a+(Es, w, w̄)S|in〉 =

−
n
∑

i=1

mi

∫

d2ŷ G(|~pi/mi|, p̂i; ŷ) f(ŷ)〈out|S|in〉. (1.3)

HereDw̄ is the covariant derivative on the 2-sphere and the left hand side of (1.3) represents

the soft charge contribution to the Ward identity (1.2). It is important to notice that in

the τ → ∞ limit the momentum of a free massive particle ~p determines the point on H+

the particle reaches via ρ = |~p/m|, x̂ = p̂.

Formula (1.3) looks structurally similar to Weinberg’s soft graviton theorem which is

given by

lim
Es→0+

Es〈out|a+(Es, w, w̄)S|in〉 =
n
∑

i=1

(ε+ · pi)2
(q/Es) · pi

〈out|S|in〉. (1.4)

We show below that after expressing boundary coordinate ŷ into sphere coordinates (w, w̄),

one has the following remarkable relation between Green’s function associated to super-

translation generators and soft factor

−miG(|~pi/mi|, p̂i;w, w̄) =
1

2π
D2

w̄

(ε+ · pi)2
(q/Es) · pi

. (1.5)

This relation is the key in establishing the equivalence between ST Ward identities and

Weinberg’s theorem. Similar sequence of logic interspersed with Green’s function associated

to sphere vector fields on the boundary and certain derivatives of sub-leading soft factor

– 3 –
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leads to the equivalence between Ward identities associated to Diff(S2) ⊂ G and Cachazo-

Strominger (CS) subleading soft theorem.

We conclude by commenting on the relationship with the case of massless particles.

The equivalence in such case can be cast in the above language by expressing the super-

translation action on massless particles in terms of a ‘Green’s function’ that is just an

identity kernel. The analogue of relation (1.5) is then:

− Ei δ
(2)(zi, w) =

1

2π
D2

w̄

(ε+ · pi)2
(q/Es) · pi

(massless particles), (1.6)

where (zi, z̄i) are sphere coordinates for p̂i. The ρ → ∞ boundary behavior obeyed by the

Green’s function G(ρ, x̂; ŷ) ensures that eq. (1.5) reduces to eq. (1.6) in the m → 0, ~p =

constant limit.

2 Asymptotic phase space

We consider perturbative gravity coupled to a massive scalar field in de Donder gauge. We

assume a total phase space of the form Γ = Γgrav × Γm with Γgrav and Γm the free-field

asymptotic phase spaces of gravity and massive field respectively.

2.1 Gravity phase space Γgrav

The gravity phase space is described by the ‘radiative data’ CAB(u, x̂) at null infinity with

symplectic structure3

Ωgrav(δ, δ
′) =

1

4

∫

I

du
√
γ
(

δCABδ′ĊAB − δ ↔ δ′
)

. (2.1)

In quantum theory this data is related to the asymptotic Fock functions as follows. Consider

the Fourier transform of CAB,

CAB(E, x̂) :=

∫

∞

−∞

CAB(u, x̂)e
iEudu. (2.2)

and go to (z, z̄) coordinates on the sphere where γzz̄ = 2(1 + zz̄)−2. Then for E > 0 the

positive and negative helicity graviton anihilation functions of momentum ~p = Ex̂ are:

a+(E, x̂) =
2πi√
γ
Czz(E, x̂), a−(E, x̂) =

2πi√
γ
Cz̄z̄(E, x̂), (2.3)

The symplectic structure (2.1) implies the standard linearized gravity Poisson brackets:

{ah(~p), a∗h′(~p′)} = −i2E~p δhh′(2π)3δ(3)(~p− ~p′). (2.4)

3Throughout the paper A,B, . . . denote indices on the conformal 2-sphere and γAB ≡ q̊AB is the unit

round sphere metric. CAB(u, x̂) is assumed to satisfy CAB(u, x̂) = C±

AB(x̂) +O(|u|−ǫ) as u → ±∞.

– 4 –



J
H
E
P
1
2
(
2
0
1
5
)
0
9
4

2.2 Massive scalar field phase space Γm

The massive scalar field phase space is described in terms of data on a unit hyperboloid H
describing time-like infinity. The coordinates adapted to such description are

τ :=
√

t2 − r2, ρ :=
r√

t2 − r2
, (2.5)

in terms of which the Minkowski metric reads:

ds2 = −dτ2 + τ2dσ2, (2.6)

with

dσ2 =
dρ2

1 + ρ2
+ ρ2γABdx

AdxB =: hαβdx
αdxβ (2.7)

the unit hyperboloid metric (with scalar curvature -6). At large τ the free massive field

behaves as:

ϕ(τ, ρ, x̂) =

√
m

2(2πτ)3/2
(

b(ρ, x̂)e−iτm + b∗(ρ, x̂)eiτm
)

+O(τ−5/2), (2.8)

with b(ρ, x̂) representing free data. To ensure well-definedness of upcoming expressions

involving integrals inH, we will assume the free data satisfies ‘finite energy’ ρ → ∞ fall-offs:

b(ρ, x̂) = O(ρ−3/2−ǫ). (2.9)

The symplectic structure is

Ωm(δ, δ′) =
im2

2(2π)3

∫

H

d3V
(

δb δ′b∗ − δ ↔ δ′
)

. (2.10)

In quantum theory b(ρ, x̂) become the anihilator operator of a scalar particle with momen-

tum ~p = ρx̂. The symplectic structure (2.10) implies the standard Poisson brackets:

{b(~p), b∗(~p′)} = −i(2π)3(2Ep)δ
3(~p− ~p′). (2.11)

3 Extension of G to time-like infinity

The residual gauge transformations in de Donder gauge are generated by vector fields

satisfying the wave equation (with respect to the fixed reference Minkowski metric):

�ξa = 0. (3.1)

We are interested in ‘large’ gauge transformation that are non-trivial at infinity. At null

infinity we would like to have generalized BMS vector fields. These vector fields are defined

by the condition of being asymptotically divergence-free at null infinity [7]:

∇aξ
a = O(r−1). (3.2)

– 5 –
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These vector fields are parametrized by sphere functions f (supertranslations) and sphere

vector fields V A(generalized rotations) according to,

ξa(r, u, x̂) = f∂u + V A∂A + uα∂u − rα∂r + . . . , (3.3)

where 2α is the 2-d divergence of V A and the dots indicate subleading terms in the 1/r ex-

pansion. In the usual treatment these terms are determined by the Bondi gauge condition:

grr = grA = 0, det gAB = r4 det q̊AB, (3.4)

where q̊AB is the unit round sphere metric (in spherical coordinates, det q̊AB = sin2 θ).

However in the present case one should instead use condition (3.1) to fix such subleading

term (see [16] for such determination in the case of supertranslations). For the purposes

of the present paper we will not need the specific form of such subleading terms.

We start with the following ansatz for the asymptotic expansion of the vector fields off

time-like infinity

ξτ (τ, ρ, x̂) = ξ̊τ (ρ, x̂) +O(τ−1) (3.5)

ξα(τ, ρ, x̂) = ξ̊α(ρ, x̂) +O(τ−1) (3.6)

where α, β, . . . denote indices on the hyperboloid. As we will see shortly, this ansatz is

consistent with eqs. (3.1), (3.2), (3.3). Note also that a vector field satisfying (3.5), (3.6)

has a well-defined action on the massive field free data b(ρ, x̂) (obtained by evaluating the

derivative ξa∂aϕ in the expansion (2.8)) given by:

δξb = −imξ̊τ b+ ξ̊α∂αb. (3.7)

The idea is to use (3.1), (3.2), (3.3) to determine ξ̊τ and ξ̊α in terms of f and V A. In

appendix A it is shown that conditions (3.1), (3.2), (3.3) imply:

∆ξ̊τ = 3ξ̊τ , lim
ρ→∞

ρ−1ξ̊τ (ρ, x̂) = f(x̂), (3.8)

∆ξ̊α = 2ξ̊α, Dαξ̊
α = 0, lim

ρ→∞
ξ̊A(ρ, x̂) = V A(x̂), (3.9)

where ∆ and Dα are the Laplacian and covariant derivative on H. If G(ρ, x̂; q̂) and

Gα
A(ρ, x̂; q̂) are Green’s functions for equations (3.8) and (3.9) respectively, the solutions

can be written as:

ξ̊τ (ρ, x̂) =

∫

S2

d2q̂ G(ρ, x̂; q̂)f(q̂) =: fH(ρ, x̂), (3.10)

ξ̊α(ρ, x̂) =

∫

S2

d2q̂ Gα
A(ρ, x̂; q̂)V

A(q̂) =: V α
H(ρ, x̂). (3.11)

The explicit form of G(ρ, x̂; q̂) and Gα
A(ρ, x̂; q̂) is given below in eqs. (5.16) and (6.28)

respectively. Further details of these Green’s functions are given in [14].

The above extension of generalized BMS vector fields to time-like infinity provides an

action of generalized BMS on the phase space of massive particles and hence on the total

phase space Γ = Γgrav × Γm. We now describe the associated charges.

– 6 –
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4 Action of G on Γ

In this section, we derive the complete expression for charges associated to all the genera-

tors of G. As Γ is the Cartesian product of radiative phase space of gravity defined at I and

asymptotic phase space of scalar field defined at H, charges associated to any (generalized)

BMS vector field are a sum of gravitational charges defined at I [2, 7], and scalar charges

defined at H. Exactly as in the case of pure gravity [5, 8], charges associated to super-

translation and sphere vector fields split into contributions which can be classified as hard

and soft charges. The soft charge is linear in an infinite wavelength mode of CAB. As the

gravitational charges associated to the radiative phase space Γgrav were derived in earlier

papers, we do not reproduce the derivation here and only derive the charges associated to

scalar field which are functions on Γm.

4.1 Supertranslation charges

From the previous consideration, we have an action of supertranslations on the total phase

space Γ = Γgrav × Γm:

δfCAB = f∂uCAB − 2(DADBf)
TF (4.1)

δfb = −imfHb, (4.2)

where TF stands for ‘trace-free part’ (with respect to the sphere metric qAB) and fH is

defined in (3.10). The generator Qf satisfying δQf = Ω(δ, δf ) can be written as

Qf = Qhard
f +Qsoft

f . (4.3)

The hard part is a sum of gravitational and matter contributions

Qhard
f = (Qhard

f )grav + (Qhard
f )matter. (4.4)

The gravitational contribution was derived in [18] and is given by

(Qhard
f )grav =

1

2
Ωgrav(f∂uC,C) (4.5)

=
1

4

∫

I

du
√
γf∂uC

AB∂uCAB. (4.6)

The matter contribution is given by:

(Qhard
f )matter =

1

2
Ωm(δfb, b) (4.7)

=
m3

2(2π)3

∫

H

d3V fHb
∗b. (4.8)

One can verify that (4.8) coincides with the expected expression in terms of the energy-

momentum tensor:

(Qhard
f )matter = − lim

τ→∞

∫

Hτ

dSa
√
g T a

b ξ
b
f , (4.9)

– 7 –
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where Hτ is the τ =constant hypersurface and ξaf∂a = fH∂τ +O(τ−1). For the translation

subgroup of supertranslations, eq. (4.9) gives the total linear momentum of the field (in

the asymptotic future).

We now describe the soft part in (4.3). This was derived in [18], and can be written as:

Qsoft
f = Ωgrav(−2D2f, C) = −1

2

∫

S2

d2V fDADB[CAB]. (4.10)

Where the square bracket denotes difference of boundary values at u = ±∞:

[CAB](x̂) := CAB(∞, x̂)− CAB(−∞, x̂). (4.11)

In order to establish the equivalence between ST Ward identities and Weinberg’s soft the-

orem we need to impose the additional condition:4

DzDz[Czz] = Dz̄Dz̄[Cz̄z̄]. (4.12)

This condition is satisfied by the so-called Christodolou-Klainermann space-times consid-

ered by Strominger in [1].

We conclude the section by writing the soft charge in terms of the mode functions.

First, we express [CAB] as a zero energy limit of the Fourier transform CAB(E, x̂):

[CAB(x̂)] = −i lim
E→0+

E CAB(E, x̂). (4.13)

Using (2.3) and (4.12) the soft charge (4.10) can be written as:

Qsoft
f =

1

2π
lim

E→0+
E

∫

d2zfD2
z̄a+(E, z, z̄) (4.14)

(or alternative expression in terms of D2
za−). A technical but important point is that when

performing covariant derivatives as in (4.14) one needs to remember the two-dimensional

tensor structure (including density weight) of the quantity being derived. For the case

of a+ this tensor structure can be read off from eq. (2.3). Doing so one finds that the

differential operator in (4.14) acts as:

D2
z̄a+(E, z, z̄) = ∂z̄

(

γzz̄∂z̄(γzz̄a+(E, z, z̄))
)

. (4.15)

4.2 Sphere vector field charges

In this section we derive the charges associated to the generators of Diff(S2) ⊂ G. The cor-
responding generators of G are vector fields at null infinity which are in turn parametrized

by vector fields V A∂A on the conformal S2

ξa(u, x̂)∂a = V A∂A + uα∂u, (4.16)

where α = 1
2(DAV

A).

4Conversely, Weinberg’s soft theorem can be seen to imply condition (4.12).

– 8 –
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For these vector fields their action on Γ is given by,

δV CAB = δhardV CAB + δsoftV CAB (4.17)

δV b = LVH
b, (4.18)

where

δhardV CAB := LV CAB − αCAB + αu∂uCAB (4.19)

δsoftV CAB := −2u(DADBα)
TF (4.20)

and VH defined in (3.11). There is a subtlety in the present case in that strictly speaking

the action (4.17) is between radiative phase spaces associated with different 2-dimensional

metrics qAB. As shown in [8], one can nevertheless compute the associated charge by

embedding Γgrav into a larger space that allows for variation of qAB. Doing so one finds

the charge is a sum of ‘hard’ and ‘soft’ pieces. The ‘hard’ piece turns out to coincide with

the naive expression,

(Qhard
V )grav =

1

2
Ωgrav(δ

hard
V C,C) (4.21)

=
1

4

∫

I

du
√
γ ∂uC

AB(LV CAB − αCAB + αu∂uCAB). (4.22)

On the other hand, the soft charge receives contributions from the variation of the 2-metric

δV qAB resulting in,5

Qsoft
V =

1

2

∫

I

du
√
γ (CzzD3

zV
z + C z̄z̄D3

z̄V
z̄), (4.23)

which differs from the naive expression Ωgrav(δ
soft
V C,C).

For the matter contribution, we note that the fact that V α
H

is divergence-free as shown

in eq. (3.9) implies the action (4.18) is symplectic on Γm.6 The associated charge is then

given by

(Qhard
V )m :=

1

2
Ωm(δV b, b) (4.24)

=
im2

2(2π)3

∫

H

d3V b∗LVH
b. (4.25)

One can verify (4.25) coincides with the expected expression from the energy-momentum

tensor perspective. In the notation of eq. (4.9):

(Qhard
V )m = − lim

τ→∞

∫

Hτ

dSaT
a
b ξ

b
V , (4.26)

5This charge is only defined on the subspace of Γgrav satisfying the stronger fall-offs C(u, x̂) = O(|u|−1−ǫ)

at u → ±∞. The charge (4.23) was first given in [6] for the case where V A is local conformally Killing. In

such case δV qAB = 0 and the charge can be derived within Γgrav.
6Here we are crucially using the fact that the field is a scalar. For fields with nonzero spin the symplectic

form will depend on the full hyperboloid metric hαβ (not just its volume element
√
h) and further subtleties

will arise.
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where ξbV ∂b = V α
H
∂α + O(τ−1). For the vector fields associated to rotations and boosts,

eq. (4.9) gives the total angular momentum of the field (in the asymptotic future).

The total sphere vector field charge is then given by

QV = Qhard
V +Qsoft

V (4.27)

with the hard piece Qhard
V ≡ (Qhard

V )grav + (Qhard
V )m given by eqs. (4.22), (4.25) and the

soft piece given by eq. (4.23). We conclude the section by writing the soft charge in terms

of the mode functions. Using (2.3) and the prescription given in [6] that projects out the

Weinberg pole,
∫

duC(u, x̂) = limE→0(1+E∂E)C(E, x̂), the soft charge can be written as:

Qsoft
V = − 1

4πi
lim

E→0+
(1 + E∂E)

∫

d2z
(

V z̄D3
z̄a+(E, z, z̄) + V zD3

za−(E, z, z̄)
)

. (4.28)

Taking into account the tensorial structure of the mode functions, the explicit action of

the differential operators in (4.28) is found to be given by:

D3
z̄a+ = ∂3

z̄a+, D3
za− = ∂3

za−. (4.29)

5 Supertranslation Ward identity ≡ Weinberg soft theorem

Having derived the action of generalized BMS group on the gravity-massive scalar field

asymptotic phase space, we now turn to the quantum theory and analyze the constraints

such a symmetry imposes on the perturbative S-matrix of the theory. That is, we ask that

if indeed the generalized BMS group was a symmetry group of the perturbative S-matrix,

what would be its implications.

As in the case of gravity coupled to massless particles [5], in this section we show that

the infinity of Ward identities associated to supertranslation subgroup are equivalent to the

Weinberg’s soft graviton theorem. We first review the equivalence of supertranslation Ward

identities with the Weinberg soft theorem in the case of pure gravity and then generalize

it to our case.

5.1 Review for the case of external massless particles

To setup notation for the later section we review the equivalence for the case of external

massless particles. For given ‘in’ and ‘out’ states composed of massless particles of momenta

{~pi}, the Ward identity associated to a supertranslation f ,

〈out|QfS − SQf |in〉 = 0 (5.1)

can be written as

lim
Es→0+

Es

2π

∫

d2wf(w, w̄)D2
w̄〈out|a+(Es, w, w̄)S|in〉 = −

∑

i

Eif(p̂i)〈out|S|in〉. (5.2)

In (5.2) the sum is over all external particles, with Ei = ±|~pi| for outgoing/incoming

particles and p̂i = ~pi/|~pi|.
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On the other hand, Weinberg’s soft graviton theorem can be written as:7

lim
Es→0+

Es〈out|a+(Es, w, w̄)S|in〉 =
∑

i

(ε+(w, w̄) · pi)2
(q/Es) · pi

〈out|S|in〉, (5.3)

where q/Es ≡ (1, q̂) with q̂ parametrized by (w, w̄) and ε+(w, w̄) the polarization vector [5]:

ε+µ(w, w̄) = 1/
√
2(w̄, 1,−i,−w̄). (5.4)

If we parametrize an external momentum ~p by (E, z, z̄), the soft factor in (5.3) take the

form:
(ε+(w, w̄) · p)2

(q/Es) · p
= −E s(z, z̄;w, w̄), (5.5)

with

s(z, z̄;w, w̄) :=
1 + ww̄

1 + zz̄

w̄ − z̄

w − z
. (5.6)

To go from (5.3) (soft theorem) to (5.2) (Ward identity for supertranslation f) one per-

forms the operation operation (2π)−1
∫

d2wf(w, w̄)D2
w̄ on both sides of (5.3). The l.h.s.

becomes the left term in (5.2). That the r.h.s. also coincides follows from the identity (see

appendix B):

D2
w̄ s(z, z̄;w, w̄) = 2πδ(2)(w − z). (5.7)

To go from (5.2) to (5.3) we look at the Ward identity for the particular function

f(z, z̄) = s(z, z̄;w, w̄). (5.8)

The r.h.s. becomes the right term in (5.3). That the l.h.s. also coincides follows from an

integration by parts and the identity (see appendix B):

D2
z̄ s(z, z̄;w, w̄) = 2πδ(2)(w − z). (5.9)

5.2 External massive particles

By using normal ordered prescription to define the quantum charge Q̂hard
f one has,

[b̂(~p), Q̂hard
f ] = mfH(~p/m)b̂(~p) (5.10)

(see eq. (4.2)). Using (5.10), the proposed Ward identity (5.1) for external massive scalars

takes the form:

lim
Es→0+

Es

2π

∫

d2wf(w, w̄)D2
w̄〈out|a+(Es, w, w̄)S|in〉 = −

∑

i

mifH(~pi/m)〈out|S|in〉, (5.11)

where mi = ±m for outgoing/incoming particles. On the other hand, Weinberg’s soft

graviton theorem takes the same form as in eq. (5.3):

lim
Es→0+

Es〈out|a+(Es, w, w̄)S|in〉 =
∑

i

(ε+(w, w̄) · pi)2
(q/Es) · pi

〈out|S|in〉. (5.12)

7Here and below, the soft theorems are written with sign convention such that all particles are outgoing.
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We now repeat the steps that led to the equivalence in the massless case. If we perfom the

operation (2π)−1
∫

d2wf(w, w̄)D2
w̄ on both sides of (5.12) we obtain:

lim
Es→0+

Es

2π

∫

d2wf(w, w̄)D2
w̄〈out|a+(Es, w, w̄)S|in〉 = −

∑

i

mif̃(~pi/m)〈out|S|in〉, (5.13)

with

f̃(~p/m) =

∫

d2wG(~p/m;w, w̄) f(w, w̄), (5.14)

G(~p/m;w, w̄) := − 1

2π
D2

w̄

(

ε+(w, w̄) · (p/m)
)2

(q/Es) · (p/m)
. (5.15)

Parametrizing the 3-momentum particle as ~p = mρx̂ one can verify that (5.15) takes the

following simple form:

G(~p/m; q̂) = − 1

4π

√

γ(q̂)

((q/Es) · (p/m))3
. (5.16)

Now, by direct computation it can be verified (5.16) satisfies (see also [14]):

(∆(ρ,x̂) − 3)G(ρ, x̂; q̂) = 0. (5.17)

Furthermore, using the fact that the ρ → ∞,m = constant limit can be written as am → 0,

~p =constant limit, together with eq. (5.7) one finds:

lim
ρ→∞

ρ−1G(ρ, x̂; q̂) = δ(2)(x̂, q̂). (5.18)

It then follows that G is the Green’s function for eq. (3.8), and so f̃ = fH. Thus the

identity (5.13) coincides with the Ward identity (5.11).

To go from (5.11) to (5.12) we repeat the steps as in the massless case: consider the

Ward identity for the particular function

f(w, w̄) = s(w, w̄; zs, z̄s). (5.19)

where s(w, w̄; zs, z̄s) is defined in eq. (5.6). By the same argument as in the pure gravity

case, the l.h.s. then becomes the left term in (5.12). The multiplicative term on the r.h.s.

is given by

−mfH(~p/m) = −m

∫

d2wG(~p/m;w, w̄) s(w, w̄; zs, z̄s), (5.20)

= m

(

ε+(w, w̄) · (p/m)
)2

(q/Es) · (p/m)
, (5.21)

where we used the definition (5.15) of G, integrated by parts and used eq. (5.9). Thus one

recovers the right term in (5.12).
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6 Sphere vector field Ward identity ≡ CS soft theorem

We now turn our attention to the relationship between Ward identities arising from the

Diff(S2) vector fields and the generalization of Cachazo Strominger soft theorem to the

case where the external particles are massive scalars. Such a theorem is a factorization

formula which relates the scattering amplitude involving scattering states that include

massive scalars as well as one sub-leading soft graviton in terms of certain soft factors and

amplitudes involving only the external massive scalar particles. This formula has only been

derived in the limit that masses of scattering particles is zero. However following [17] we

will give a persuasive argument to the effect that such sub-leading theorem continues to

hold in the present case as well.

After presenting such argument we will review the Ward identity-soft theorem equiv-

alence for massless particles and finally establish the equivalence for massive particles.

6.1 Subleading soft theorem for external massive scalars

The set up is as follows. We consider scattering amplitudes containing external scalar

particles and one graviton and are interested in the limit of such scattering amplitudes

given by limEs→ 0

[

Mn+1(p1, . . . , pn, qs) − 1
Es

S(0)Mn

]

. Here S(0) is the Weinberg soft

factor whose structural form
∑n

i=1 ǫµν
pµi p

ν
i

pi·q
remains the same irrespective of whether pi’s

are time-like or null. Subleading soft theorems like CS theorem are statements which

express the above quantity in terms of Mn in the sense that

lim
Es→ 0

[

Mn+1(p1, . . . , pn, qs) − 1

Es
S(0)Mn

]

= S(1)Mn. (6.1)

In the case that the scattering particles are massless, in a beautiful paper Broedel et al. [17]

prove that by postulating the form of S(1) as a differential operator on the momentum space

of scattering particles,8 one could constraint their form severely by demanding that scatter-

ing amplitude to be Poincare invariant, gauge invariant and that these differential operators

associated to S(1) split as a sum over external particles as S(1) =
∑

i S
(1)
i (ǫ(q), q, pi, ∂pi).

The last condition is what is referred to as the locality constraint and is a reasonable con-

dition to require when we are working with tree level amplitudes. As noticed in [17] there

is yet another non-trivial constraint the soft factors have to satisfy which is related to the

fact that scattering amplitudes are distributions in the momentum space as there is always

an overall momentum conserving δ-distribution multiplicative factor in their definition. If

we refer to the scattering amplitudes without the momentum conserving δ-function factor

as reduced scattering amplitude, then by assuming that the soft factors are the same for

the reduced as well as un-reduced scattering amplitudes9 it was shown that S(1) has to

8Their arguments in fact are more general and apply to scattering particles with spin as well (in which

case the postulated form of S(1) involves differential operators in momentum space as well as differential

operators on the space of polarization tensors).
9This assumption was not needed for Broedel et al. and this fact is actually a consequence of all the

constraints we have listed above. However this fact is not relevant for the issues being addressed here and

hence we ignore it for simplicity.
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satisfy,

[S(1), δ(4)(P )] = S(0)
(

q · ∂P δ(4)(P )
)

. (6.2)

The most general form for S(1) =
∑

i S
(1)
i (ǫ(q), q, pi, ∂pi) can be postulated based on the

following conditions:

(i) Poincare invariance implies that S(1) has to be linear in polarization tensor tensor,

(ii) Dimensional analysis shows that S(1) must have mass dimension zero and

(iii) As it is sub-leading it must be invariant under q → λ q for scaling parameter λ.

Condition (i) in conjunction with locality requirement implies that

S(1) =
∑

i

ǫµνω
µνρσpiρ

∂

∂pσi
+ O

((

∂

∂p

)2)

+ S
(1)
function (6.3)

where S
(1)
function is a multiplicative factor which doesnot involve differential operators on

momentum space.

If the scattering particles are massless, then the most general form for ωµνρσ which is

consistent with conditions (ii), (iii) above is [17]

ωµνρσ =
∑

i

[

ci1
pµi p

ν
i q

ρqσ

(q · pi)2 + ci2
ηρ(µp

ν)
i qσ

q · pi
+ ci3

ησ(µp
ν)
i qσ

q · pi
+ ci4η

ρ(µην)σ

]

. (6.4)

As shown in [17], gauge invariance and distributional constraints imply that in the

massless case (that is when pi · pi = 0), S
(1)
function is zero, the higher derivative operators

are absent as distributional constraint implies that we require each of them to annihilate

the delta-function and the remaining first order differential term precisely reduces to the

Cachazo-Strominger soft factor. We will now show that this result remains unaffected even

when we drop the pi · pi = 0 condition.

As in massless case we postulate that the factorized sub-leading soft factor S(1) takes

the form

S(1) =
∑

i

S
(1)
i (ǫµν , q, pi, ∂i) + S

(1)
function (6.5)

where S
(1)
function is multiplicative and does not involve differential operators. The first term

involves linear derivative operators as well as operators that will be O(∂2
i ). However exactly

as in the massless case, the distributional constraint will imply that these higher order

operators have to annihilate δ4(
∑

i pi) and hence will be zero. Thus just as in the massless

case, the functional form of S
(1)
i (ǫµν , q, pi, ∂i) is given by the same expression that appear

in eq. (6.3).

As the vectors pi are not null and if we assume that all the scattered particles have

same mass m then the most general form of ωµνρσ consistent with conditions (ii), (iii)

stated above, and such that on contraction with ǫµν and pρi
∂

∂pσi
no two terms get repeated

is given by

ωµνρσ =
∑

i

[

. . . + ci5m
2 η

µνqρqσ

(pi · q)2
+ ci6

pµi p
ν
i q

ρpσi
(pi · q)m2

+ 2ci7
p
(µ
i ην)σpρi
m2

]

(6.6)

where . . . indicate the terms inside the parenthesis in eq. (6.4).
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We now impose conditions of gauge invariance S(1) and show that all the terms in

eq. (6.6) which were not present in eq. (6.4) necessarily vanish. We immediately see that

owing to tracelessness of ǫµν the term associated to ci5 is absent.

Gauge invariance of scattering amplitude implies that we need to impose

S(1)(ǫµν = λ(µqν)) = 0 (6.7)

for any gauge parameter λµ. This condition gives us

∑

i

[

(2ci1 + ci2 + ci3)q
ρqσ

λ · pi
q · pi

+ (ci3 + ci4)q
ρλσ + (ci2 + ci4)q

σλρ+

ci6
(pi · λ)
m2

qρpσi + ci7
(λ · pi)pρi qσ + (pi · q)pρi λσ

m2

]

pρi
∂

∂pσi
Mn = 0 (6.8)

We thus have following set of equations which includes the set that was obtained in [17]

2ci1 + ci2 + ci3 = 0

ci3 + ci4 = −(ci2 + ci4) = c

ci6 = 0

ci7 = 0

(6.9)

The second equation allows that some of the terms in eq. (6.8) vanish due to conservation

of total angular momentum.

Gauge-invariance also shows that S
(1)
function part vanishes. As we require S

(1)
function to

satisfy conditions (i),(ii),(iii) listed above, its most general form is

S
(1)
function =

∑

i

ci8ǫµν
pµi p

ν
i

m2
(6.10)

Clearly gauge invariance would imply that

∑

i

ci8(λ · pi)(q · pi) = 0 (6.11)

which for arbitrary λ, qµ imply that ci8 = 0.

Thus, the extra possible terms with coefficients c5, c6, c7, c8 all vanish and the soft

factor takes the same form as in the massless case. That is, due to Poincare invariance,

locality, gauge invariance as well as distributional constraint, assuming that there is a

factorization in the sub-leading soft limit, the corresponding sub-leading soft factor takes

the same functional form irrespective of the masses of the hard particles.

6.2 Review for the case of external gravitons

We first sketch the equivalence between sphere vector field Ward identities and CS soft

theorem for the case of external gravitons. We refer to [7] for details. The Ward identity

that follows from the condition

〈out|QV S − SQV |in〉 = 0 (6.12)
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for and ‘in’ and ‘out’ states composed of gravitons of momenta {~pi} can be written as:

− 1

4π
lim

Es→0+
(1 + Es∂Es)

∫

d2w(V w̄∂3
w̄〈out|a+(Es, w, w̄)S|in〉+ V w∂3

w〈out|a−(Es, w, w̄)S|in〉) =
∑

i

Ji
V 〈out|S|in〉. (6.13)

Here Ji
V is a differential operator associated to V A that acts on the momentum variables of

the i-th graviton. Its form is obtained from the action (4.19) on the mode functions (2.3)

(see eq. (57) of [7] for the explicit expression).

On the other hand, Cachazo-Strominger subleading soft theorem can be written as:

lim
Es→0+

(1 + Es∂Es)〈out|aout+ (Es, w, w̄)S|in〉 =
∑

i

ε+(w, w̄) · pi
q · pi

ε+µ (w, w̄)qνJ
µν
i 〈out|S|in〉,

(6.14)

with ε+ and q as in eq. (5.3) and with Jµν
i the total angular momentum operator on the

i-th graviton.10 In [7] we noticed that the soft factor in (6.14) can be written as:

ε+(w, w̄) · pi
q · pi

ε+µ (w, w̄)qνJ
µν
i = Ji

K+
(w,w̄)

, (6.15)

where Ji
K+

(w,w̄)

is the differential operator associated to the sphere vector field

K+
(w,w̄) :=

(z̄ − w̄)2

(z − w)
∂z̄. (6.16)

Similarly the factor associated to a negative helicity subleading soft graviton can be writ-

ten as the differential operator associated to the vector field K−

(w,w̄) that is the complex

conjugated of (6.16).

In order to go from (6.13) to (6.14) we look at the Ward identity (6.13) for the particular

vector field

V A = K+
(w,w̄). (6.17)

By the identity (6.15) the r.h.s. becomes the right term in (6.14). That the l.h.s. also

coincides follows from an integration by parts together with

∂3
z̄

(z̄ − w̄)2

(z − w)
= 4πδ(2)(w − z). (6.18)

Similarly one can obtain the negative helicity soft theorem by looking at the Ward identity

associated to the vector field K−

(w,w̄).

10We follow the conventions used in [17] where Jµν = pµ∂ν − pµ∂ν+ helicity terms. There are sign errors

in eqs. (63) and (68) of [7] that cancelled each other. With the aforementioned conventions the correct

identity is the one given by (6.15), (6.16), and JV = V A∂A + . . . (see eq. (57) of [7] for the complete

expression of JV ).
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To go from (6.14) to (6.13) one performs the operation −(4π)−1
∫

d2wV w̄∂3
w̄ on both

sides of (6.14). The l.h.s. becomes the left term in (6.13) (for a vector field with vanishing

∂w component). The factors on the r.h.s. are given by:

− (4π)−1

∫

d2wV w̄∂3
w̄J

i
K+

(w,w̄)

= −(4π)−1Ji
W (6.19)

with

W =

∫

d2wV w̄∂3
w̄K

+
(w,w̄) (6.20)

(here we used the fact that JV depends linearly on the argument V , so that the operation
∫

d2wV w̄∂3
w̄ can be pushed inside the argument). Finally, using

∂3
w̄

(z̄ − w̄)2

(z − w)
= −4πδ(2)(w − z) (6.21)

one finds that W = V w̄∂w̄. Thus one recovers the Ward identity for a vector field of the

form V w̄∂w̄. From the negative helicity CS theorem one can similarly obtain the Ward

identity associated to a vector field of the form V w∂w. By adding the resulting positive

and negative helicity identities one obtains the general form (6.13).

6.3 External massive scalars

Using the quantum version of (4.18)

[b,Qhard
V ] = iLVH

b (6.22)

the proposed Ward identity for external massive scalars takes the form:

− 1

4π
lim

Es→0+
(1 + Es∂Es)

∫

d2w(V w̄∂3
w̄〈out|aout+ (Es, w, w̄)S|in〉+ V w∂3

w〈out|aout− (Es, w, w̄)S|in〉) =
∑

i

LV i
H
〈out|S|in〉. (6.23)

Here LV i
H

is the derivative V α
H
∂α on the i-th particle momentum variables (assumed to be

outgoing; for incoming particles the factor is -LV i
H
).

On the other hand the subleading soft theorem reads:

lim
Es→0+

(1 + Es∂Es)〈out|aout+ (Es, w, w̄)S|in〉 =
∑

i

ε+(w, w̄) · pi
q · pi

ε+µ (w, w̄)qνJ
µν
i 〈out|S|in〉.

(6.24)

with Jµν
i the total angular momentum on the i-th massive particle. We now repeat the

steps that led to the equivalence in the massless case, starting in the direction soft theorem

→ Ward identity. Accordingly, let us act with −(4π)−1
∫

d2wV w̄∂3
w̄ on both sides of (6.24)

and with −(4π)−1
∫

d2wV w∂3
w on the negative helicity soft theorem. Adding both terms

we obtain an identity:
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− 1

4π
lim

Es→0+
(1 + Es∂Es)

∫

d2w(V w̄∂3
w̄〈out|aout+ (Es, w, w̄)S|in〉+ V w∂3

w〈out|aout− (Es, w, w̄)S|in〉) =
∑

i

LṼ i〈out|S|in〉, (6.25)

where

Ṽ α(~p/m) =

∫

d2wGα
B(~p/m;w, w̄)V B(w, w̄), (6.26)

with

Gα
w̄(~p/m;w, w̄)∂α := − 1

4π
∂3
w̄

ε+(w, w̄) · p
q · p ε+µ (w, w̄)qνJ

µν , (6.27)

and similar expression for the Gα
w component. It can be verified this function takes the

following simple form [14]:

Gα
B(~p/m;w, w̄)∂α = − 3

8π

√

γ(q̂)

((q/Es) · (p/m))4
(qµ/Es)∂B(q

ν/Es)Jµν . (6.28)

Finally, parametrizing the 3-momentum particle as ~p = mρx̂ it can be shown Gα
B(ρ, x̂; q̂) ≡

Gα
B(~p/m; q̂) satisfies:

(∆− 2)Gα
B(ρ, x̂; q̂) = 0, DαG

α
B(ρ, x̂; q̂) = 0, lim

ρ→∞
GA

B(ρ, x̂; q̂) = δABδ
(2)(x̂, q̂), (6.29)

where ∆ and Dα act on the (ρ, x̂) coordinates.11 It then follows that Gα
B is the Green’s

function for eq. (3.9), and so Ṽ = VH. Thus the identity (6.25) coincides with the Ward

identity (6.23).

To go from (6.23) to (6.24) we repeat the steps as in the massless case: consider the

Ward identity for the particular vector field

V A = K+
(zs,z̄s)

. (6.30)

By the same argument as in the pure gravity case, the l.h.s. becomes the left term in (6.24).

The differential operator on the r.h.s. is given by

V α
H =

∫

d2wGα
w̄(~p/m;w, w̄)

(w̄ − z̄s)
2

(w − zs)
, (6.31)

=
ε+(w, w̄) · p

q · p ε+µ (w, w̄)qνJ
µν , (6.32)

where we used the definition (6.27) of Gα
A, integrated by parts and used eq. (6.18). One

thus recovers the right term in (6.24).

11The boundary condition in (6.29) can be obtained by casting the ρ → ∞ limit as a m → 0 limit and

using eq. (6.21).
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7 Remarks

From the results of the present paper together with those of the Maxwell case [11] we

arrive at the general picture that the ‘soft factors’ that multiply the hard particles in the

soft theorems have the role of ‘potentials’ for the Green’s functions that implement the

large gauge transformation on such hard particles (either massless and massive; in the

massless case the “Green’s function” is just an identity kernel). We are referring here to

identities (5.7) and (5.15) for the case of supertranslations and identities (6.21) and (6.27)

for the sphere diffeomorphisms (and similar identities for the Maxwell case [11]). In each

case, the 2-dimensional differential operator one is ‘inverting’ are the ones arising in the

soft part of the charge associated to the large gauge transformation under consideration.

It is so far unclear to us what is the underlaying physical or geometrical mechanism behind

such identities. We hope to clarify it in future investigations.

Another generic feature of the Green’s functions and their potentials regards the re-

lationship between the massive and massless cases: the identity kernel “Green’s function”

for the massless case can be obtained as a m → 0, ~p = constant limit of the massive

Green’s function. Mathematically this massless limit is equivalent to taking ρ → ∞ keep-

ing m =constant. From this perspective, the fact that the Green’s function becomes an

identity kernel ensures the correct boundary value of the gauge parameter that is being

extended from null to time-like infinity.

Finally, we point out a subtlety regarding these potentials: whereas the Green’s func-

tions are globally defined on the q̂ sphere, the potentials have a singularity at a point. The

‘potentials’ we used have the singularity at the south pole w, w̄ = ∞, which in turn is

related to the fact that the expression for the polarization tensor used is only valid for soft

graviton directions away from this point. When showing a soft theorem from a Ward iden-

tity (both massless and massive case), an integration by parts is performed. The smearing

function being in integrated are such that the would be ‘boundary’ contribution from the

south pole vanishes.

8 Conclusions and outlook

For the case of pure gravity, due to the seminal work of Strominger and his collaborators

and many works which have followed, a clear picture is emerging as regards to the symmetry

of quantum gravity S matrix in perturbative regime and its remarkable connections with

some well known factorization theorems in the quantum gravity literature. However all

the work done so far was in the context of pure gravity or at most in the context of

pure gravity coupled to massless matter fields. This was due to the fact that the classical

symmetry group of asymptotically flat geometries is most clearly understood at null infinity

and is characterized in terms of so-called supertranslations and the Lorentz group (or its

extensions like the local conformal symmetry or smooth diffeomorphisms of S2) acting on

the conformal sphere.

A candidate symmetry group of semi-classical quantum gravity S matrix when the scat-

tering states are massless is G and the associated Ward identities are equivalent to certain
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soft theorems. A natural question then emerges: can we extend the above ideas to situations

where perturbative gravity couples to massive particles? In this paper we argued that this

generalized BMS group G can be made to act not just on null infinity but also on time-like

infinity. A key ingredient for such extension is a description of time-like infinity as a con-

stant curvature spacelike hyperboloid that parametrizes all unit time-like vectors at infinity.

We showed that there is a way to map generalized BMS vector fields and obtain a

group of large diffeomorphisms which acts at the aforementioned notion of time-like infinity

and proposed this group G as a candidate symmetry group of the S-matrix. We showed

that this group has a well defined action on the free states of the theory and in fact the

corresponding Ward identities are equivalent to Weinberg as well as Cachazo-Strominger

soft theorems. As emphasized in the previous section, these equivalences rely upon intricate

relationships between leading and sub-leading soft factors and Green functions which map

supertranslation generators and sphere vector fields to functions and vector fields at the

asymptotic hyperboloid respectively.

A number of important issues remain to be understood. Here as in all previous papers

we have worked with a formal S-matrix defined by assuming that asymptotic states are free

states of the theory. However as has been well known for a long time, in the presence of long-

range interactions asymptotic states of the theory are not free but are obtained by dressing

free state with a coherent cloud of soft particles. This tension is already visible at the classi-

cal level. If we analyze the equation of motion of a massive scalar field coupled to linearized

gravity, its solutions in the asymptotic τ → ∞ limit differ from the asymptotic limits of the

free field by a phase factor exp(im2 h
(1)
ττ lnτ) where h

(1)
ττ is the coefficient of 1

τ in a τ−1 expan-

sion of the linearized metric. The action of G vector fields will in general be ill-defined on

such states. This is most clearly seen for the sphere vector fields which take the form ξα =

ξ̊α +O(τ−1). Their action on dressed fields contains a multiplicative term proportional to

ln(τ) ξα∂αh
(1)
ττ . This implies that the action on the symplectic modes of massive fields, if we

consider the fields to be dressed in contrast to free, is divergent. We believe that such diver-

gences are intricately tied to the IR divergences that have been analyzed in [19] and these

relations and their treatment remains an important question that remains unexplored.
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A Equations (3.8) and (3.9)

In this appendix we derive equations (3.8) and (3.9), which are the equations satisfied by the

generators of G at time-like infinity. We first derive the differential equations in (3.8), (3.9)

and then derive the boundary conditions.
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A.1 Differential equations

We start with the assumed expansion of the vector field at time-like infinity:

ξτ (τ, ρ, x̂) = ξ̊τ (ρ, x̂) +O(τ−1) (A.1)

ξα(τ, ρ, x̂) = ξ̊α(ρ, x̂) + τ−1ξ(1)α(ρ, x̂) +O(τ−2). (A.2)

and compute (3.1). In hyperbolic coordinates, the wave operator takes the form:

� = −∇2
τ + τ−2hαβ∇α∇β (A.3)

where hαβ is the inverse of the metric in H. The nonzero Christoffel symbols are:

Γτ
αβ = τhαβ , Γα

βτ = τ−1δαβ , Γα
βγ , (A.4)

with Γα
βγ the Christoffel symbols of the covariant derivative Dα on H. Applying (A.3)

to (A.1), (A.2) one gets

�ξτ = τ−12Dαξ̊
α + τ−2

(

∆ξ̊τ + 2Dαξ
(1)α + 3ξ̊τ

)

+O(τ−3) (A.5)

�ξα = τ−2
(

∆ξ̊α − 2ξ̊α
)

+O(τ−2). (A.6)

The vanishing of the leading terms corresponds to the first two equations in (3.9). To obtain

the equation for ξ̊τ we need further information. For this we now look at the divergence of

the vector field:

ψ := ∇aξ
a = Dαξ̊

α + τ−1
(

3ξ̊τ +Dαξ
(1)α

)

+O(τ−2). (A.7)

Now, from equations (3.1) and (3.2), it follows that ψ satisfies �ψ = 0 with fall-off ψ =

O(r−1) at null infinity. This is precisely the fall-off behavior of regular massless scalar fields.

Such fields are known to decay at time-like infinity as ψ = O(τ−2), see for instance [20].12

The O(τ0) term in (A.7) is already known to vanish from eq. (A.5). The vanishing of the

O(τ−1) term gives us the missing information:

Dαξ
(1)α = −3ξ̊τ , (A.8)

which combined with the vanishing of the O(τ−2) term in (A.5) gives the first equation

in (3.8).

A.2 Boundary conditions

We now write the vector field (3.5), (3.6) in (u, r) coordinates to impose the boundary

condition (3.3) at null infinity. The change of coordinates is given by:

u = τ
(

√

1 + ρ2 − ρ
)

, r = ρ τ. (A.9)

We want to look at the r → ∞, u = const limit. In this limit, we have

ρ → ∞, τ → ∞, τ/(2ρ) = const., (A.10)

12We thank M. Reisenberger for help on this point.

– 21 –



J
H
E
P
1
2
(
2
0
1
5
)
0
9
4

with

τ/(2ρ) = u+O(r−1). (A.11)

Condition (3.3) on the sphere components tell us:

ξ̊A = V A +O(r−1). (A.12)

Writing the condition Dαξ̊
α = 0 together with (A.12) fixes the asymptotic form of ξ̊ρ to:

ξ̊ρ = −ρα+O(1), (A.13)

where 2α is the 2-d divergence of V A. The r component of the vector field has the asymp-

totic form:

ξr = (∂ρr)ξ
ρ + (∂τr)ξ

τ = τ ξ̊ρ + (ξ(1)ρ + ρξ̊τ ) +O(τ−1), (A.14)

and has to satisfy the condition (3.3):

ξr = −αr +O(1). (A.15)

From (A.13) the leading −αr term is recovered and we are left with the condition:

ρξ̊τ + ξ(1)ρ = O(1). (A.16)

We finally discuss the condition on the u component. Using

∂u

∂τ
=

√

1 + ρ2 − ρ = (2ρ)−1 +O(ρ−3), (A.17)

∂u

∂ρ
= τ

(

ρ
√

1 + ρ2
− 1

)

= −τ
(

(2ρ2)−1 +O(ρ−4)
)

, (A.18)

one finds:

ξu = −τ/(2ρ2)ξ̊ρ + ξ̊τ/(2ρ)− ξ(1)ρ/(2ρ2) + . . . , (A.19)

where the dots indicate subleading terms. This needs to asymptote to:

lim
r→∞

ξu = f + uα. (A.20)

From (A.13) we see that the first term in (A.19) reproduces the uα term in (A.20). We

are then left with the condition:

lim
ρ→∞

ξ̊τ/(2ρ)− ξ(1)ρ/(2ρ2) = f. (A.21)

In order for (A.16) and (A.21) to be simultaneously satisfied, we must have:

ξ̊τ = ρf +O(1) (A.22)

ξ(1)ρ = −ρ2f +O(ρ). (A.23)

To summarize, the asymptotic condition (3.3) translate into condi-

tions (A.12), (A.13), (A.22) and (A.23) for the vector field in (ρ, τ) coordinates.
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B Equations (5.7) and (5.9)

The tensorial structure in (w, w̄) implies D2
w̄ acts as in eq. (4.15). Performing this operation

one finds:

∂w̄
(

γww̄∂w̄(γww̄ s(z, z̄;w, w̄))
)

=
1 + ww̄

1 + zz̄

(

4πδ(2)(w − z) + 2π(w̄ − z̄)∂w̄δ
(2)(w − z)

)

, (B.1)

where we used ∂w̄(w − z)−1 = 2πδ2(w − z). Seen as a distribution we have that (w̄ −
z̄)∂w̄δ

(2)(w − z) = −δ(2)(w − z). Furthermore by the Dirac deltas we can set w = z in the

prefactors of (B.1). It then follows that as a distribution:

∂w̄
(

γww̄∂w̄(γww̄ s(z, z̄;w, w̄))
)

= 2πδ(2)(w − z) (B.2)

which corresponds to eq. (5.7).

We now show eq. (5.9). In the (z, z̄) variables s(z, z̄;w, w̄) is a scalar. Hence the second

derivative acts as: D2
z̄ = ∂2

z̄ − Γz̄
z̄z̄∂z̄ = γzz̄∂z̄γzz̄∂z̄. Performing this operation one finds:

γzz̄∂z̄(γzz̄∂z̄ s(z, z̄;w, w̄)) =
1 + ww̄

1 + zz̄

(

4πδ(2)(w − z)− 2π(w̄ − z̄)∂z̄δ
(2)(w − z)

)

. (B.3)

Identifying (w̄ − z̄)∂z̄δ
(2)(w − z) = δ(2)(w − z) one finds

γzz̄∂z̄(γzz̄∂z̄ s(z, z̄;w, w̄)) = 2πδ(2)(w − z). (B.4)

which corresponds to eq. (5.9).
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