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1 Introduction

The perturbative expansion in QCD is known to lead to a divergent series which is at best

asymptotic. The asymptotic behaviour of the perturbative series manifests itself in the

appearance of singularities for its Borel transform which lie on the negative or positive

real axis in the Borel variable. Those singularities, connected with renormalisation of the

theory, are termed renormalons [1, 2]. More specifically, singularities related to the short-

distance behaviour of the theory lie on the negative real axis and are called ultraviolet (UV)

renormalons. Those related to long-distance physics appear on the positive real Borel axis

and are termed infrared (IR) renormalons.

The presence of IR renormalon poles leads to ambiguities in the definition of the

full function which is related to the perturbative series, because the Borel resummation

(inverse Borel transform) entails to perform an integral over the positive real Borel axis

which naively is not well defined. The ambiguities in the definition of the Borel integral are

exponentially small terms in the QCD coupling, αs. Associated with them is the appearance

of higher-dimensional operator corrections, the so-called QCD condensates, such that the

full function is unambiguous. The operators that display renormalon ambiguities are a

subset of those that arise in the framework of the operator product expansion (OPE).

The renormalisation group (RG) allows one to relate the exponent of a given renor-

malon pole to the leading-order anomalous dimension of the associated operator. Therefore,

knowledge about the anomalous dimensions of operators entering the OPE expansion of

a correlator can be translated into knowledge of the Borel transform of its purely pertur-

bative contribution. The position and strength of poles can, in principle, be predicted in

this way while the residua, which are non-perturbative, cannot. This partial knowledge of

the Borel transformed perturbative series can be exploited as a way to gain understanding
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about higher orders, yet unknown from loop computations. In particular, in the case of the

QCD description of hadronic τ decays [3], models of the Borel transform have been used

in order to assess — among other things — the virtues of different RG improvement pre-

scriptions [4, 5]. It is with this type of application in mind that we revisit the computation

of anomalous dimensions of four-quark operators.

Limiting ourselves to correlation functions of vector or axial-vector currents with re-

spect to the QCD vacuum, the IR renormalon pole on the positive real axis closest to the

origin of the Borel plane is associated to the vacuum matrix element of one dimension-four

operator, the gluon condensate. The next-to-closest singularity then is found to corre-

spond to the dimension-6 triple gluon condensate and a set of dimension-6 four-quark

condensates. It is these latter four-quark condensates that we investigate in more detail in

the present work.

The central aim of the present study is to provide the leading-order anomalous di-

mension matrices corresponding to the dimension-6 four-quark operators that emerge in

the OPE of two-point correlation functions of flavour non-diagonal, as well as flavour di-

agonal, mesonic vector and axial-vector currents. Those anomalous dimensions contain

information about the structure of the related IR renormalon poles. The computation of

leading-order anomalous dimensions of four-fermion operators is fairly standard [6], and in

ref. [7], results were presented for a complete set of spin-0 four-quark operators without

derivatives in the case of three active light quark flavours, Nf = 3.

As a matter of principle, all findings presented in this work are derivable from the

results of ref. [7] through operator relations, valid in four space-time dimensions. However,

the results in [7] (and also [6]), were only given for a number of quark colours Nc = 3,

and here we intend to provide results at arbitrary Nc. Furthermore, in order to be able to

connect to the large-Nf , or the related large-β0 limit, of QCD [2], in contrast to ref. [7],

explicit Nf dependencies will be kept. To this end, we therefore followed two alternative

routes: first, to recalculate ref. [7] at arbitrary Nc, which is discussed in appendix A,

and then derive the results below from the mentioned operator relations. And second, to

compute the anomalous dimensions directly for the operators appearing in the correlation

functions. Both approaches lead to agreeing results and also at Nc = Nf = 3, the anoma-

lous dimension matrices of appendix A coincide with [7]. Furthermore, in some test cases

that we checked, also full agreement with the results of ref. [6] was found.

In summary, the material presented in this work is organised as follows: first, in

section 2, we review the next-to-leading order results on the dimension-6 four-quark oper-

ator contributions to the flavour non-diagonal vector and axial-vector correlation functions

available in the literature [8, 9]. For the set of appearing operators, we calculate the

leading-order anomalous dimension matrices. In order to obtain a set which closes un-

der renormalisation, three dimension-6 four-quark operators of penguin type have to be

included. Analogous results are provided in section 3 for the flavour diagonal vector and

axial-vector correlators.

Next, we construct the operator combinations for which the leading-order anoma-

lous dimension matrices are diagonal and compute the corresponding eigenvalues. These

eigenvalues are ingredients for the renormalon structure of the perturbative series which is
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related to the four-quark operators and discussed in section 4. Along these lines, we deter-

mine the singular behaviour of the relevant IR renormalon poles. Finally, in section 5, we

end with a summary and conclusions, and appendix A provides the extension of the work

of ref. [7] to an arbitrary number of colours Nc.

2 Flavour non-diagonal vector and axial-vector correlators

We begin by investigating the dimension-6 OPE contributions to the two-point correlation

functions of flavour non-diagonal vector and axial-vector currents jVµ (x) = (ūγµd)(x) and

jAµ (x) = (ūγµγ5d)(x) which are relevant for QCD analyses of hadronic τ decays [3] and

correspond to the charged ρ and A1 mesons. For simplicity, massless light quarks will be

assumed in which case the correlators take the form

ΠV/A
µν (q) ≡ i

∫
dx eiqx 〈Ω|T{jV/Aµ (x)jV/Aν (0)†}|Ω〉 =

(
qµqν − gµνq2

)
ΠV/A(q2) . (2.1)

Here, |Ω〉 denotes the full QCD vacuum and the second identity follows because in the

massless limit vector and axial-vector currents are conserved.

In the framework of the OPE, the scalar functions ΠV/A permit an expansion in powers

of 1/Q2 with Q2 ≡ −q2 > 0 being in the Euclidean region,

ΠV/A(Q2) = C0(Q
2) + C4(Q

2)
〈O4〉
Q4

+ C
V/A
6 (Q2)

〈O6〉
Q6

+ . . . . (2.2)

In writing eq. (2.2), for simplicity, we have suppressed the vacuum state. In the OPE, only

the coefficient functions C
V/A
i depend on the momentum, while the operators Oi are local.

Both, coefficient functions and operators depend, however, on the renormalisation scale µ

which is not shown explicitly. Furthermore, for flavour non-diagonal currents the purely

perturbative contribution C0(Q
2) is the same for vector and axial vector.1 In the massless

case, this also remains true for the dimension-4 contribution, which then only consists of

the gluon condensate 〈GaµνGaµν〉.
Our main concern in this work will be the dimension-6 term which receives contribu-

tions from the three-gluon condensate 〈g3fabcGaµνGb νλGc λµ〉 and four-quark condensates.

As the three-gluon condensate does not arise at leading order, below we concentrate only

on the four-quark condensates. Their contribution to ΠV/A(Q2) has been computed at the

next-to-leading order in refs. [8, 9]. For our following discussion, it will be convenient to

present the corresponding results for V −A and V +A correlation functions, because in the

former case the so-called penguin operator contributions cancel. For Nf = 3 light quark

flavours and at Nc = 3, one then finds

CV−A6 (Q2) 〈O6〉 = 4π2as

{[
2 +

(
25

6
− L

)
as

]
〈Q o
−〉 −

(
11

18
− 2

3
L

)
as〈Q s

−〉
}
, (2.3)

1For correlators of flavour-diagonal currents, which will be discussed below, this is not the case.
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and

CV+A
6 (Q2) 〈O6〉 = − 4π2as

{[
2 +

(
155

24
− 7

2
L

)
as

]
〈Q o

+〉+

(
11

18
− 2

3
L

)
as〈Q s

+〉

+

[
4

9
+

(
37

36
− 95

162
L

)
as

]
〈Q3〉

(
35

108
− 5

18
L

)
as〈Q4〉+

+

(
14

81
− 4

27
L

)
as〈Q6〉 −

(
2

81
+

4

27
L

)
as〈Q7〉 . (2.4)

Here, as ≡ αs/π, L ≡ lnQ2/µ2 and the constant terms of order a2s correspond to the choice

of an anti-commuting γ5 in D space-time dimensions which can be made consistent as long

as no traces with an odd number of γ5’s arise in the calculation [8].

The appearing four-quark operators are a subset which belong to the complete basis

that below will be required for their one-loop renormalisation:

Q o
V = (ūγµt

add̄γµtau) , Q o
A = (ūγµγ5t

add̄γµγ5t
au) , (2.5)

Q s
V = (ūγµdd̄γ

µu) , Q s
A = (ūγµγ5dd̄γ

µγ5u) , (2.6)

Q3 ≡ (ūγµt
au+ d̄γµt

ad)
∑

q=u,d,s

(q̄γµtaq) , (2.7)

Q4 ≡ (ūγµγ5t
au+ d̄γµγ5t

ad)
∑

q=u,d,s

(q̄γµγ5t
aq) , (2.8)

Q5 ≡ (ūγµu+ d̄γµd)
∑

q=u,d,s

(q̄γµq) , (2.9)

Q6 ≡ (ūγµγ5u+ d̄γµγ5d)
∑

q=u,d,s

(q̄γµγ5q) , (2.10)

Q7 ≡
∑

q=u,d,s

(q̄γµt
aq)

∑
q′=u,d,s

(q̄′γµtaq′) , (2.11)

Q8 ≡
∑

q=u,d,s

(q̄γµγ5t
aq)

∑
q′=u,d,s

(q̄′γµγ5t
aq′) , (2.12)

Q9 ≡
∑

q=u,d,s

(q̄γµq)
∑

q′=u,d,s

(q̄′γµq′) , (2.13)

Q10 ≡
∑

q=u,d,s

(q̄γµγ5q)
∑

q′=u,d,s

(q̄′γµγ5q
′) . (2.14)

The operators Q o
V/A and Q s

V/A are usually termed current-current operators and Q3 to Q10

penguin operators. In addition, we define the four current-current operators which appear

in eqs. (2.3) and (2.4).

Q o
± ≡ Q o

V ±Q o
A , Q s

± ≡ Q s
V ±Q s

A . (2.15)

Next, we investigate the scale dependence of a general term RO in the OPE, corre-

sponding to a set of operators ~O with equal dimension,

RO = ~C T(µ) 〈 ~O(µ)〉 , (2.16)
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where now the renormalisation scale µ is displayed explicitly and the potential dependence

on other dimensionful parameters is implicit. For vector and axial-vector currents, the

renormalisation scale dependence of the correlator only arises from the purely perturbative

contribution. Hence, RO should not depend on µ, and it immediately follows that[
µ

d

dµ
~C T(µ)

]
〈 ~O(µ)〉 = − ~C T(µ)

[
µ

d

dµ
〈 ~O(µ)〉

]
. (2.17)

The anomalous dimension matrix γ̂O of the operator matrix elements can be defined by

− µ
d

dµ
〈 ~O(µ)〉 ≡ γ̂O(aµ) 〈 ~O(µ)〉 , (2.18)

with aµ ≡ as(µ). If the bare and renormalised operator matrix elements are related by

〈 ~OB〉 ≡ ẐO(µ) 〈 ~O(µ)〉 , (2.19)

it follows that the anomalous dimension matrix can be computed from the renormalisation

matrix ẐO(µ) via

γ̂O(aµ) = Ẑ−1O (µ)µ
d

dµ
ẐO(µ) . (2.20)

Plugging eq. (2.18) into the RGE for R, eq. (2.17), one obtains an RGE that has to be

satisfied by the coefficient functions ~C(µ),

µ
d

dµ
~C(µ) = γ̂TO(aµ) ~C(µ) . (2.21)

This equation shall be checked for the coefficient functions of the dimension-6 operators in

eqs. (2.3) and (2.4). Furthermore, below it will be convenient to consider the anomalous

dimension matrix in a linearly transformed basis. If the transformed basis 〈 ~O′(µ)〉 of

operator matrix elements is defined by

〈 ~O′(µ)〉 ≡ T̂ 〈 ~O(µ)〉 , (2.22)

the corresponding transformed anomalous dimension matrix takes the form

γ̂O′ = T̂ γ̂O T̂
−1 . (2.23)

The calculation of one-loop anomalous dimension matrices for dimension-6 four-quark

operators is fairly standard and details can for example be found in ref. [6]. We have

performed the actual computation in two ways: firstly, by explicit calculation of the dia-

grams of figure 1, and secondly, by relating the appearing operators to the complete basis

of dimension-6 four-quark operators without derivatives in the case of three quark flavours

that had been employed in ref. [7]. Further details on the second approach can be found

in appendix A. The computation has been performed in a general covariant gauge in order

to explicitly verify gauge invariance.

Expanding the anomalous dimension matrix in a power series in as,

γ̂O(as) = as γ̂
(1)
O + a2s γ̂

(2)
O + . . . , (2.24)

the leading-order anomalous dimension matrix corresponding to the operators Q− ≡
(Qo−, Q

s
−) appearing in eq. (2.3) is found to be

γ̂
(1)
Q−

=

(
− 3Nc

2 + 3
Nc
− 3CF

2Nc

− 3 0

)
. (2.25)
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+ +

Figure 1. Exemplary one-loop current-current and penguin diagrams that have to be calculated

in the process of obtaining the leading-order anomalous dimension matrix of four-quark operators.

Quark self-energy diagrams are not displayed.

At this order, the set of two operators is closed under renormalisation, meaning that

no additional operators are generated through the diagrams that have to be computed.2

Employing γ̂
(1)
Q−

and the coefficient function CV−A6 (Q2) of eq. (2.3), it is a simple matter

to confirm that the RGE (2.21) is indeed satisfied.
Likewise, the anomalous dimension matrix for the operators appearing in the V + A

case of eq. (2.4) can be calculated. Here, three additional operators have to be added
in the course of renormalisation, and at the leading order a closed set can be chosen as
Q+ ≡ (Qo+, Q

s
+, Q3, Q4, Q6, Q7, Q8, Q9, Q10). In general, also the operator Q5 of the

basis presented above arises. However, in four dimensions, one operator in the full set is
redundant and can be expressed through the others by means of Fierz transformations.
Since Q5 does not appear in the OPE expression (2.4), we have rewritten it through the
remaining operators (see eq. (A.9)). The anomalous dimension matrix then takes the form

γ̂
(1)
Q+

=



− 3
Nc

3CF
2Nc

− 1
3Nc

0

3 0 2
3

0

0 0
Nf

3
− 3Nc

4
− 1

3Nc

3Nc
4

− 3
Nc

3
2

+ 3
2Nc

− 3CF
2Nc

3Nc
4

+ 3
2
− 11

6Nc
− 3Nc

4
+ 3

2
+ 3

2Nc

0 0 11
3

0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0
3CF
2Nc

2
3

0 0 0

− 3CF
2Nc

− 3
4
− 3

4Nc
− 3

4
− 3

4Nc

3CF
4Nc

3CF
4Nc

0 0 0 0 0

0
2Nf

3
− 3Nc

4
− 1

3Nc

3Nc
4

− 3
Nc

0 3CF
2Nc

0 3Nc
4

− 10
3Nc

− 3Nc
4

3CF
2Nc

0

0 2
3

3 0 0

0 11
3

0 0 0


. (2.26)

In ref. [10], and section 3.2.3 of ref. [2], the SU(3) flavour-singlet operators Q7 to Q10 arose

in an investigation of the structure of the leading UV renormalon at u = −1 for the vector

correlator. Though not directly related to our study, the relevant leading-order anomalous

2This is only true when working with a strictly anti-commuting γ5, and projecting out evanescent

operators, which, however, is admissible at the leading order. Further discussion can be found in ref. [8].
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dimensions correspond to the 4×4 sub-matrix for Q7 to Q10, and comparing to the results of

refs. [2, 10], we find complete agreement.3 Regarding the RGE, again, it is straightforward

to verify that by using γ̂
(1)
Q+

and the coefficient function of eq. (2.4), the RGE (2.21) is

satisfied to leading order.

For the subsequent discussion, it will be convenient to consider a basis of four-quark

operators in which the leading-order anomalous dimension matrix is diagonal. From linear

algebra it is well known that the anomalous dimension matrix γ̂
(1)
O can be diagonalised by

a matrix V̂ , which as columns contains the eigenvectors of γ̂
(1)
O , in the following fashion:

γ̂
(1)
D = V̂ −1 γ̂

(1)
O V̂ . (2.27)

The diagonal entries of γ̂
(1)
D then correspond to the eigenvalues of γ̂

(1)
O . Furthermore, the

operator basis with γ̂
(1)
D as the leading-order anomalous dimension matrix is given by V̂ −1 ~O.

Rewriting the term RO of (2.16) in the OPE,

RO = ~C T(µ) V̂ V̂ −1〈 ~O(µ)〉 , (2.28)

the logarithms in ~C(µ) can be resummed to leading order by solving the RGE (2.21),

leading to

RO = ~C T(Q) V̂

[(
aQ
aµ

)~γ(1)D /β1]
D

V̂ −1〈 ~O(µ)〉 . (2.29)

The somewhat condensed notation in (2.29) should be read as follows: ~γ
(1)
D is a vector

containing the eigenvalues of γ̂
(1)
O ordered according to the eigenvectors in V̂ . Then [..]D

is the diagonal matrix which contains as diagonal entries the ratios of as to the power of

elements in ~γ
(1)
D /β1. Finally, β1 = 11Nc/6−Nf/3 is the leading coefficient in the expansion

of the QCD β-function

− µ daµ
dµ
≡ β(aµ) = β1a

2
µ + β2 a

3
µ + . . . . (2.30)

The generalisation of (2.29) to next-to-leading order is slightly non-trivial because anoma-

lous dimension matrices at different couplings do not commute, but it can for example be

found in refs. [12, 13].

Numerically, at Nc = Nf = 3 the eigenvalues of the anomalous dimension matrices

γ̂
(1)
Q−

and γ̂
(1)
Q+

, ordered in increasing value, are found to be

~γ
(1)
D,Q−

= (−4, 0.5) , (2.31)

~γ
(1)
D,Q+

= (−3.611, −3.387, −1.878, −1.494, 0.538, 0.567, 1, 1.340, 1.703) . (2.32)

Besides the eigenvalue 1, the entries in ~γ
(1)
D,Q+

are found as the roots of the two quartic

polynomials 176− 316z − 101z2 + 130z3 + 36z4 and 88− 122z − 91z2 + 47z3 + 18z4. The

corresponding eigenvectors have been collected in appendix B. Regarding the operator

3The same subset of anomalous dimensions was already considered in a previous attempt to investigate

the u = 3 renormalon structure [11].
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combinations V̂ −1Q+
~Q+, it is found that four of them just include the operators Q7 to Q10,

and a further combination misses the operator Q6, while the remaining ones contain all

contributing operators. The eigenvalues corresponding to the combinations only containing

Q7 to Q10 (entries 2, 4, 6 and 9) agree with the result of table 1 in references [2, 10] where

the same operators were considered to study the structure of the leading UV renormalon.

To conclude this section, we investigate the case of flavour SU(2). Then, the closed

(V + A) operator basis is given by Q+ ≡ (Qo+, Q
s
+, Q3, Q4, Q6), where in the penguin

operators the strange quark is removed and hence the operators Q3 to Q6 are analogous

to Q7 to Q10 with the sums just running over up and down quarks. The corresponding

anomalous dimension matrix is found to be

γ̂
(1)

Q+
=



− 3
Nc

3CF
2Nc

− 1
3Nc

0 0

3 0 2
3 0 0

0 0
2Nf
3 −

3Nc
4 −

1
3Nc

3Nc
4 −

3
Nc

3CF
2Nc

3 + 3
Nc
− 3CF

Nc
3Nc
4 + 3

2 −
11
6Nc

− 3Nc
4 + 3

2 + 3
2Nc −

3CF
2Nc

0 0 11
3 0 0

 , (2.33)

with the eigenvalues

~γ
(1)

D,Q+
= (−3.521, −1.751, 0.549, 1, 1.445) (2.34)

at Nc = 3 and Nf = 2. It is observed that the eigenvalues are slightly shifted with respect

to the SU(3) case (2.32), but span approximately the same range.

3 Flavour diagonal vector and axial-vector correlators

In this section, we now move to a discussion of dimension-6 OPE contributions to the

flavour-diagonal vector and axial-vector currents. For definiteness, we consider the up-

quark case for which the corresponding currents are given by jVµ (x) = (ūγµu)(x) and

jAµ (x) = (ūγµγ5u)(x). The vector current for example is relevant in e+e− scattering to

hadrons and carries the quantum numbers of the neutral ρ meson.

To leading order, the contribution CV±A6 (Q2)〈O6〉 to the correlation function are the

same as eqs. (2.3) and (2.4) with the current-current operators now being given by

Q o
V = (ūγµt

auūγµtau) , Q o
A = (ūγµγ5t

auūγµγ5t
au) , (3.1)

Q s
V = (ūγµuūγ

µu) , Q s
A = (ūγµγ5uūγ

µγ5u) . (3.2)

Unfortunately, to our knowledge, for the flavour-diagonal correlators, the next-to-leading
order corrections to the dimension-6 four-quark operators are not available. The next
important difference to the non-diagonal case is the fact that the two current-current op-
erators Qo,s− are not anymore closed under renormalisation, but all ten operators including
the eight penguin operators are required. Also, now all operators are linearly independent.

Hence, the complete set reads Qdiag
− ≡ (Qo−, Q

s
−, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10). For

– 8 –
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this set of operators, the leading-order anomalous dimension matrix is found to be

γ̂
(1)

Q
diag
−

=



− 3Nc
2

+ 3
Nc

− 3CF
2Nc

2
3

0 0

− 3 0 0 0 0

0 0
Nf

3
− 3Nc

4
− 1

3Nc

3Nc
4

− 3
Nc

0

0 0 3Nc
4

− 10
3Nc

− 3Nc
4

3CF
2Nc

0 0 2
3

3 0

0 0 11
3

0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
3CF
2Nc

1
3

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0
2Nf

3
− 3Nc

4
− 1

3Nc

3Nc
4

− 3
Nc

0 3CF
2Nc

0 3Nc
4

− 10
3Nc

− 3Nc
4

3CF
2Nc

0

0 2
3

3 0 0

0 11
3

0 0 0



. (3.3)

For the flavour-diagonal V + A correlator, the two current-current operators Qo+ and

Qs+ are directly linearly related via Fierz transformations, with the relation being given by

Qo+ =
1

2

(
1− 1

Nc

)
Qs+ . (3.4)

Choosing to remove the Qs+ operator, like in the non-diagonal case, we are again left we a

set of nine operators, consisting of Qdiag
+ ≡ (Qo+, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10). The

corresponding leading-order anomalous dimension matrix is then found to be

γ̂
(1)

Q
diag
+

=



3
2
− 3

2Nc

2
3
− 2

3Nc
0 0

0
Nf

3
− 3Nc

4
− 1

3Nc

3Nc
4

− 3
Nc

0

0 3Nc
4

− 10
3Nc

− 3Nc
4

3CF
2Nc

0 2
3

3 0

0 11
3

0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0
3CF
2Nc

1
3

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0
2Nf

3
− 3Nc

4
− 1

3Nc

3Nc
4

− 3
Nc

0 3CF
2Nc

0 3Nc
4

− 10
3Nc

− 3Nc
4

3CF
2Nc

0

0 2
3

3 0 0

0 11
3

0 0 0


. (3.5)

– 9 –



J
H
E
P
1
2
(
2
0
1
5
)
0
9
0

Let us again investigate the eigenvalues for the anomalous dimension matrices γ̂
(1)

Qdiag
−

and γ̂
(1)

Qdiag
+

. Numerically, at Nc = Nf = 3 and ordered in increasing value, they are found

to be

~γ
(1)

D,Qdiag
−

= (−4, −3.611, −3.387, −1.878, −1.494, 0.5, 0.538, 0.567, 1.340, 1.703), (3.6)

~γ
(1)

D,Qdiag
+

= (−3.611, −3.387, −1.878, −1.494, 0.538, 0.567, 1, 1.340, 1.703) . (3.7)

We first note, that the eigenvalues corresponding to γ̂
(1)

Qdiag
+

are identical to the ones for

γ̂
(1)
Q+

of eq. (2.32). This will have implications for the renormalon structure to be discussed

in the next section. Furthermore, as can be inferred from the eigenvectors of eq. (B.2),

the eigenvalue “1” corresponds to the current-current operators while the remaining ones

involve penguin operators. The eigenvalues for γ̂
(1)

Qdiag
−

, on the other hand, include the ones

from the non-diagonal current-current operators given in eq. (2.31) as well as again the

ones involving the penguins.

4 Renormalon structure of dimension-6 four-quark operators

In this section, the perturbative ambiguities that are connected to the dimension-6 four-

quark OPE contributions, shall be investigated. The discussion closely follows section 3.3

of ref. [2] and section 5 of ref. [4].

Before investigating the renormalon structure, however, we have to briefly review the

corresponding nomenclature. To begin, we introduce the Adler functions for non-diagonal

vector and axial-vector correlators that are physical quantities in the sense that they are

independent of renormalisation scale and scheme:

DV/A(Q2) ≡ −Q2 d

dQ2
ΠV/A(Q2) . (4.1)

Next, we define the purely perturbative function D̂0(Q
2) through the relation

D
V/A
0 (Q2) ≡ D0(Q

2) ≡ N
[

1 + D̂0(Q
2)
]
, (4.2)

such that D̂0(Q
2) starts at order αs, and N = Nc/(12π2) is the common global normali-

sation. Because the perturbative part is identical for non-diagonal vector and axial-vector

correlators, D̂0(Q
2) is the same in both cases.

Assuming a positive coupling aQ, the Borel transform B[D̂0](u) of D̂0(aQ) is defined by

D̂0(aQ) ≡ 2π

β1

∞∫
0

du e
− 2u
β1aQB[D̂0](u) . (4.3)

Because D0 is dimensionless, its Q2 dependence only arises via aQ. Taylor expanding

B[D̂0](u) and integrating term by term reproduces the perturbation series expansion of
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D̂0(aQ). The integral on the right-hand side is, however, only well defined if B[D̂0](u)

has no poles or cuts on the positive real u axis which is not the case for the QCD Adler

function. If poles and/or cuts, also termed infrared (IR) renormalon poles, are present

on the integration interval, ambiguities appear since on has to specify how the poles are

treated. (For example with the principal-value prescription.) It is generally assumed that

those ambiguities should cancel against corresponding ambiguities in the OPE terms, in

order to ensure that DV/A(Q2) is physical.

From the generic structure of a term in the OPE, the general form of an infrared

renormalon pole corresponding to an operator Od of dimension d can be deduced, with the

finding [2, 4]

B[DIR
0 ](u) =

dIRp
(p− u)κ

[ 1 +O(p− u) ] , (4.4)

where dIRp are non-perturbative normalisations (residua) of the renormalon poles that can-

not be determined from renormalisation group arguments. On the other hand,

p =
d

2
, κ = 1− δ + 2p

β2
β21
−
γ
(1)
Od

β1
. (4.5)

Here, δ is the leading power in as of the coefficient function, δ = 1 in our case of eqs. (2.3)

and (2.4), and γ
(1)
Od

is the leading order anomalous dimension of the operator Od. Hence,

the strength of the pole κ (as well as all sub-leading terms) only depends on coefficients of

the RG functions (and coefficient functions of the OPE contributions).

Before further discussing our particular case of the renormalon structure of dimension-6

four-quark operators, we have to investigate which operators contribute to the perturbative

ambiguity. To this end, we rewrite the current-current operators of eqs. (2.15) by means

of Fierz transformations and separating the quark chiralities, which in the case of Qo,s−
leads to

Qo− = − 4CF
Nc

(
ūLuRd̄RdL + (L↔ R)

)
+

4

Nc

(
ūLt

auRd̄Rt
adL + (L↔ R)

)
, (4.6)

Qs− = − 4

Nc

(
ūLuRd̄RdL + (L↔ R)

)
− 8

(
ūLt

auRd̄Rt
adL + (L↔ R)

)
. (4.7)

From (4.6) and (4.7) it is seen that the operators Qo,s− are order parameters of the SU(Nf )A
symmetry breaking and hence they cannot contribute to the perturbative ambiguity. This

is also obvious from the fact that for non-diagonal quark currents in V − A, the purely

perturbative contribution cancels and hence no related ambiguity can arise. This is different

for the operators appearing in V + A, where rewriting the current-current operators Qo,s+

results in

Qo+ =
2CF
Nc

(
ūLγµuLd̄Lγ

µdL + (L→ R)
)
− 2

Nc

(
ūLγµt

auLd̄Lγ
µtadL + (L→ R)

)
, (4.8)

Qs+ =
2

Nc

(
ūLγµuLd̄Lγ

µdL + (L→ R)
)

+ 4
(
ūLγµt

auLd̄Lγ
µtadL + (L→ R)

)
. (4.9)

Those two operators can and do have a perturbative ambiguity which is reflected in the

perturbative series of the unit operator of the OPE for the V + A correlator. The same

holds true also for the penguin operators Q3 to Q10.
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Regarding the pole structure of IR renormalon poles corresponding to dimension-6

operators in the OPE, the poles are located at p = u = 3. Furthermore, at Nc = 3 and for

three quark flavours, the exponent κ takes the value

κ =
64

27
− 2

9
γ
(1)
O6
. (4.10)

The strongest singularity is assumed for the most negative eigenvalue in ~γ
(1)
D,Q+

of eq. (2.32),

leading to κ = 3.173, while the weakest pole corresponds to an exponent κ = 1.992.

Let us briefly compare these findings with the large-β0 approximation.4 This approxi-

mation can be obtained by considering the large-Nf limit and then replacing −Nf/3→ β1.

In the anomalous dimension matrix of eq. (2.26) then only two entries, −β1 and −2β1, for

the operators Q3 and Q7, respectively, are left on the diagonal. Furthermore, the β2 term

in the exponent κ is absent, so that κ = 1 or 2. This is precisely in line with the result of

the large-β0 approximation for the Adler function that at u = 3 a linear and a quadratic

pole is induced by dimension-6 operators [2]. Hence, it is observed that full QCD tends to

make the u = 3 IR renormalon poles stronger in comparison to the large-Nf limit. This

conclusion also remains true for the operators appearing in the case of flavour-diagonal

correlators, because the eigenvalues of the anomalous dimension matrices are identical to

the ones of the flavour non-diagonal case.

5 Conclusions

In this work, we revisited the calculation of one-loop anomalous dimension matrices of

four-quark operators that enter vector and axial-vector correlators in QCD. We studied

flavour diagonal and non-diagonal currents. Our results are given for an arbitrary number

of quark colours, Nc, and flavours, Nf .

Explicit results for the anomalous dimension matrices of V − A and V + A flavour

non-diagonal operators are given in eqs. (2.25) and (2.26). In the V − A case, the set of

two operators of eq. (2.15) is closed under renormalisation. The V + A case requires the

inclusion of 7 additional penguin-type operators to obtain a minimal closed set. We also

presented the SU(2) flavour non-diagonal V +A anomalous dimension matrix in eq. (2.33).

Next, we investigated the anomalous dimension of flavour diagonal operators in V −A and

V + A currents, given in eqs. (3.3) and (3.5). In the former, 8 penguin operators have to

be added to the operator basis while in the latter 7 additional operators are sufficient.

The anomalous dimensions of some of these operators are related to renormalon singu-

larities of the Borel transformed purely perturbative contribution of the QCD correlators.

More specifically, part of the dimension-6 four-quark operators are related to the sub-

leading IR singularity located at u = 3, to which an ambiguity in the Borel resummed

series is associated. In order to investigate the specific structure of this singularity, it is

instructive to work with diagonal bases of operators. In such bases, one isolates the combi-

nations of operators that do not mix under renormalisation. The anomalous dimensions are

4For historical reasons, we speak about the “large-β0” approximation, although in the notation employed

in this work, the leading coefficient of the β-function is termed β1.
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simply the eigenvalues of the original anomalous dimension matrix. When a four-quark op-

erator entails an IR singularity in the Borel transformed perturbative series, the respective

eigenvalue is related to the strength of the IR singularity at u = 3 as given by eq. (4.5).

The operators in the V − A case do not have an associated ambiguity, since they are

order parameters of the SU(Nf )A symmetry breaking. The chiral structure of the V + A

operators indicates that they have renormalon singularities associated with them. Several

singularities appear, one for each operator combination. The most negative eigenvalue

yields the strongest singularity. In the V +A non-diagonal case the corresponding exponent

is κ = 3.173. In comparison with the large-Nf limit of QCD, in which one has a simple

and a quadratic pole related to two dimension-6 operators, the singularity in full QCD

is stronger.

Finally, we should comment on the implications of our results to the Borel models

of the Adler function that have been used in the discussion of the RG improvement of

the perturbative series in hadronic τ decays [4, 5]. As discussed in [5], the impact of

the sub-leading IR singularity is limited since the Borel transform is dominated by the

leading IR singularity, associated with the gluon condensate. Nevertheless, the results of

the present work allow for a refined modelling of the IR singularity at u = 3. However, the

numerical value of the strength of the strongest IR singularity associated with dimension-

6 four-quark operators is rather close to the one already employed in [4, 5]. The Borel

transformed series modelled in this way is not altered in any significant way. Therefore,

even taking into account the findings of the present study, the conclusions of refs. [4, 5]

remain valid.
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A Anomalous dimensions of four-quark operators

In this appendix, we present a generalisation of the results of reference [7] to an arbitrary

number Nc of colour degrees of freedom. In [7], the leading order anomalous dimension

matrix of a complete set of local spin-zero four-quark operators without derivatives was

calculated in the case of three quark flavours.
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The complete basis consists of 45 four-quark operators which in reference [7] were

chosen as follows: with respect to the Dirac-structure, there are five types of operators,

namely, scalar, pseudoscalar, vector, axial vector and tensor. They can be expressed as

ūΓud̄Γd =
(
ūud̄d, ūγ5ud̄γ5d, ūγµud̄γ

µd, ūγµγ5ud̄γ
µγ5d, ūσµνud̄σ

µνd
)

(A.1)

in the ūud̄d flavour case. Employing this notation, the complete basis O of operators can

be chosen to be:

O ≡
(
ūΓuūΓu, d̄Γdd̄Γd, s̄Γss̄Γs, ūΓud̄Γd, ūΓus̄Γs, d̄Γds̄Γs,

ūΓtaud̄Γtad, ūΓtaus̄Γtas, d̄Γtads̄Γtas
)
. (A.2)

In this basis, the leading order anomalous dimension matrix takes the form

γ
(1)
O =



A 0 0 0 0 0 B B 0

0 A 0 0 0 0 B 0 B

0 0 A 0 0 0 0 B B

0 0 0 C 0 0 D 0 0

0 0 0 0 C 0 0 D 0

0 0 0 0 0 C 0 0 D

E E 0 F 0 0 G H H

E 0 E 0 F 0 H G H

0 E E 0 0 F H H G


. (A.3)

The submatrices are given by:

A =



11
12 − 3CF

7
12 − 1

12 + 1
6Nc

− 1
12 − 1

8 + 1
4Nc

7
12

11
12 − 3CF

1
12 −

1
6Nc

1
12 − 1

8 + 1
4Nc

7
6 − 7

6
11
12 −

1
3Nc

11
12 −

3
2Nc

0

− 11
6

11
6

11
12 −

11
6Nc

11
12 0

3 + 6
Nc

3 + 6
Nc

0 0 3
2 + CF

 , (A.4)

B =


0 0 − 1

3 0 0

0 0 1
3 0 0

0 0 2
3 0 0

0 0 2
3 0 0

0 0 0 0 0

 , C =


− 3CF 0 0 0 0

0 − 3CF 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 CF

 , (A.5)

D =


0 0 0 0 − 1

2

0 0 0 0 − 1
2

0 0 0 3 0

0 0 3 0 0

−12 −12 0 0 0

 , E =


0 0 0 0 0

0 0 0 0 0

− 1
6

1
6

1
12 −

1
6Nc

1
12 0

0 0 0 0 0

0 0 0 0 0

 , (A.6)
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G =



3
2Nc

0 0 0 − Nc
8 + 1

2Nc

0 3
2Nc

0 0 − Nc
8 + 1

2Nc

0 0 − 3Nc
4 + 2

3
3Nc
4 −

3
Nc

0

0 0 3Nc
4 −

3
Nc

− 3Nc
4 0

− 3Nc + 12
Nc
− 3Nc + 12

Nc
0 0 CF − 3Nc

2

 , (A.7)

H =


0 0 0 0 0

0 0 0 0 0

0 0 1
3 0 0

0 0 0 0 0

0 0 0 0 0

 . (A.8)

In contrast to ref. [7], here, the matrices A, C and G already include the quark self-

energy contributions depicted in figure 1c) of [7], such that they are gauge independent.

(The corresponding matrices of [7] were given in the Feynman gauge without self-energy

contribution.)

This basis of operators is particularly handy to derive the following relation between

the 10 operators of the redundant basis of non-diagonal currents given in eqs. (2.5) to

(2.15). We find

Q5 =
Nc

Nc − 1

(
2Qo+ + 2Q3 + 2Q4 −Q7 −Q8

)
−Qs+ −Q6 +

1

2
(Q9 +Q10) . (A.9)

B Eigenvectors of anomalous dimension matrices

Here, we present the eigenvectors of the non-diagonal anomalous dimension matrices of

eqs. (2.25) and (2.26). The coefficients of the eigenvectors are displayed as the columns of

the matrices V̂ that diagonalise the bases, as defined in eq. (2.27). The results are given

for Nc = Nf = 3. For the V −A case one finds

V̂Q− =

(
4
3 −

1
6

1 1

)
. (B.1)

The matrix V̂Q+ , for the V +A case, reads

V̂Q+ =



−0.059 −0.028 0.472 −0.093 0.045 −0.015 0.316 0.081 −0.020

0.145 0.066 −0.664 0.100 0.082 −0.027 0.949 0.338 −0.117

−0.519 −0.209 −0.254 0.191 −0.138 0.043 0 0.313 −0.208

0.654 0.386 −0.159 0.077 0.292 −0.115 0 0.219 −0.105

0.527 0.226 0.496 −0.469 −0.942 0.275 0 0.856 −0.447

0 −0.314 0 0.287 0 0.064 0 0 −0.312

0 0.578 0 0.115 0 −0.173 0 0 −0.157

0 −0.450 0 −0.359 0 −0.839 0 0 −0.399

0 0.340 0 −0.703 0 0.413 0 0 −0.671



. (B.2)
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