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1 Introduction

The Wilson loop operator is one of the most fundamental operators of a gauge theory.

Its expectation value distinguishes a confining theory from one that is non-confining, is

used to compute the quark/anti-quark potential, and determines the expectation value of

gauge invariant operators as well as their correlation functions in various limits. Analytical

methods to compute Wilson loops in the large N-limit [1, 2] and for case of strong ’t Hooft

coupling proceeds by utilizing the AdS/CFT correspondence [3–5] whenever applicable. To

leading order in strong coupling, the Wilson loop is computed by finding a minimal area

surface in a higher dimensional space [6, 7]. For the standard case of N = 4 SYM, consid-

ered in this paper, the minimal area surfaces live in AdS5 × S5. This case is of particular

interest because the dual string theory is described by an integrable model [8]. Conse-

quently, the relationship between Wilson loops and minimal area surfaces has motivated

much work in the area [9–29]. The most studied one is the circular Wilson loop [30–37]

including small perturbations around it [38–40]. Also, a particularly important role has

been played by Wilson loops with light-like cusps [41] due to their relation with scattering

amplitudes [42–49]. More recently new results for Wilson loops of more general shape have

started to appear [20, 50–53], which includes solutions using Riemann theta functions. Such

solutions were obtained using the methods of [54, 55] and similar techniques that had been
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previously used to find closed string solutions [11, 56–64]. It is also important to recall

that in the large-N limit the Wilson loop in the gauge theory obeys the loop equation [65]

that can also be studied within AdS/CFT [66, 67].

In this paper, further insight into the properties of the Wilson loop operator is gained

through study of the minimal area surfaces in AdS5. Such surfaces are obtained utilizing

the simple but powerful Pohlmeyer [68]1 reduction. Beginning from a Euclidean world-

sheet living in AdS3 ⊂ AdS5 the surface is parameterized by the complex coordinate z

using conformal gauge. The world-sheet metric then reads

ds2 = 4e2αdz dz̄. (1.1)

Here α(z, z̄) is a real function on a region of the complex plane that can be taken as the

unit disk by a conformal transformation. Further, an important observation is that α(z, z̄),

the conformal factor of the world-sheet metric, obeys a non-linear equation similar to the

sinh-Gordon equation,

∂∂̄α = e2α − f(z)f̄(z̄) e−2α, (1.2)

where f(z) is an unknown holomorphic function. Such an equation is solvable independent

of the other variables and yields that finding a minimal area surface means solving a set

of linear differential equations once a solution is obtained for α(z, z̄). Further, the linear

equations are deformable by a complex parameter λ called the spectral parameter. When

|λ| = 1 a one-parameter family of minimal area surfaces is obtained which all have the

same area. Such deformations are called λ deformations2 and lead to an infinite number

of conserved quantities given by the holonomy of certain associated currents around a

non-trivial loop on the world-sheet.

One can use the Pohlmeyer reduction in two different ways. The first one is to find new

minimal area surfaces. Thus, an arbitrary function f(z) is chosen and then the solution

for the conformal factor is found and used to construct a surface. The Wilson loop where

the surface ends is then determined as part of the procedure. For example, an infinite

parameter family of solutions were found in [20, 50, 52] for the case where f(z) does

not vanish anywhere on the surface. These solutions are analytic and can be written in

terms of Riemann theta functions. The second way to use this method, is to try to find

a minimal area surface ending in any arbitrary given curve. The specified curve is used

to compute the boundary conditions for f(z) and α from which those functions, and the

corresponding surface, can be reconstructed. For the Euclidean case, this was discussed

in [70] where it was found that the Schwarzian derivative of the contour with respect

to the conformal angle3 determines all the boundary conditions necessary to reconstruct

the surface. However, finding the correct parameterization of the contour in terms of the

conformal angle requires solving a non-trivial problem involving reconstructing a potential

depending on the spectral parameter such that all its solutions are antiperiodic [70].

1See e.g. [69] for a more recent description of the method.
2This name was introduced in [53].
3If we write z = reiθ then θ is defined as the conformal angle parameterizing the world-sheet boundary

at r = 1.
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At this moment it is not clear how to solve such a problem but in a recent important

paper by Dekel [53] it was shown that such problem is solvable by studying perturbations

around the circle. Although such a perturbative approach had been considered before [38],

in [53] new methods extend the expansion to much higher orders than before providing a

useful tool for solving the problem.

Another, related approach is to extend the results associated with light-like cusps [49]

by considering the limit where the number of cusps goes to infinity in such a way that a

smooth curve is reproduced. This approach is used to great effect in a recent paper by J.

Toledo [71] where he managed to obtain a Y-system type of equation for the cross ratios

associated with a given curve. The Y-system uses as an input a curve in the world-sheet

describing the world-sheet boundary in the world-sheet coordinates where f(z) = 1. In the

language of the Pohlmeyer reduction this is equivalent to giving f(z) in the coordinates

where the world-sheet is the unit disk. Instead of using the more difficult approach of

solving for α and then computing the area, Toledo showed that, from the solution to the

Y-system of equations, the shape of the Wilson loop and the area of the associated surface

follow. As mentioned before, this approach was derived in a roundabout way and a direct

derivation that connects it with the methods discussed here and in [70] would make the

discussion more complete.

It should be noticed that in the case of Wilson loops with light-like cusps the world-

sheet is Euclidean while the target space has Lorentzian signature. This particular combi-

nation has neither been analyzed with the methods of [70], nor exact solutions have been

constructed as in [20, 50, 52]. For this reason, this paper is devoted to studying Euclidean

world-sheets in Lorentzian AdS3. Our main result is to extend the results of [70] to this

case and the construction of new exact solutions using theta functions. This requires imple-

menting the Pohlmeyer reduction for this new case and results in a construction analogous

to [70]. The Schwarzian derivative of the contour with respect to the conformal angle pro-

vides boundary conditions for the functions f(z) and α(z, z̄). The conformal angle is found

in principle by requiring that all conserved charges vanish. When computing the area we

find a new, simpler and more direct way to derive the formula for the area in terms of the

Schwarzian derivative of the contour. It avoids taking limits of the spectral parameter and

using the WKB approximation. The formula for the area is valid when f(z) has no zeros

in the unit disk, a condition that also applies to the formula given in [70] although it was

not made explicit there. After that, we construct an infinite parameter family of solutions

in terms of Riemann theta functions. Particular examples are used to check the previous

results in this paper. The same examples can be used to check the Y-system method of [71],

although we leave that for future work. Finally we derive some useful identities for the

theta functions that simplify some calculations with respect to previous work.

This paper is organized as follows: in the next section we derive the Pohlmeyer reduc-

tion relevant for this case. In section 3 we make contact with [70]. In particular we find a

simpler derivation for the area formula. In section 4 we present new solutions correspond

to the case where f(z) has no zeros in the unit disk and used them to test the results of

the previous sections. Finally, in the last section, we give our conclusions. In an appendix

we collect several useful formulas for theta functions and perform the computation of the

Schwarzian derivative of the contour in terms of those functions.
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2 Integrability and Pohlmeyer reduction

Surfaces of minimal area are found by implementing the well-known Pohlmeyer Reduc-

tion [68] which is based on the integrability of the string Sigma Model. The utility of

the method is due to its simplification of the problem; namely, it reduces solving the non-

linear string equations of motion (including the conformal constraints) to solving a single

Sinh-Gordon equation plus a set of linear differential equations.

This work builds upon previous results found in [20] by again considering general open

string solutions in Lorentzian AdS3 but now for the case of a world-sheet with Euclidean

signature. The Lorentzian AdS3 manifold is defined as a subspace of R2,2 subject to a

constraint on the coordinates Xµ (µ = −1, 0, 1, 2),

XµX
µ = −X2

0 −X2
−1 +X2

1 +X2
2 = −1. (2.1)

For later convenience, the relationships between the embedding coordinates and global

coordinates (t, φ, ρ)) and Poincare coordinates are now defined through the expressions (2.2)

and (2.3) respectively.

X−1 + iX0 = cosh ρ eit, X1 + iX2 = sinh ρ eiφ (2.2)

Z =
1

X−1 −X2
, X =

X1

X−1 −X2
, T =

X0

X−1 −X2
(2.3)

Further, the world-sheet is parameterized by the conformal coordinates (σ, τ) or equiv-

alently by the complex combinations z = σ + iτ and z̄ = σ − iτ which are more useful for

this work. For this choice, the world-sheet metric has the form

ds2 =
Λ(z, z̄)

2
dz dz̄. (2.4)

Working in conformal gauge, the action for the string Sigma Model is given by

S =
T

2

∫
dτ dσ (∂σX

µ∂σXµ + ∂τX
µ∂τXµ + Λ(XµXµ + 1)) (2.5)

where the Lagrange multiplier Λ enforces the embedding constraint. Consequently, follow-

ing from the action and the gauge choice, the equations (2.6), (2.7), and (2.8) determine a

surface of minimal area describing the string.

∂2
σX

µ + ∂2
τX

µ = ΛXµ, (2.6)

∂τX
µ∂σXµ = 0 (2.7)

∂τX
µ∂τXµ = ∂σX

µ∂σXµ (2.8)

Proceeding, the equations (2.6)–(2.8) are reduced to a single Sinh-Gordon equation.

The procedure utilized here begins by forming a 2 × 2 real matrix X using particular

combinations of the embedding coordinates,

X =

(
X−1 +X2 X1 +X0

X1 −X0 X−1 −X2

)
. (2.9)
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A result of choosing these combinations is that the embedding constraint requires that

detX = 1 namely X ∈ SL(2,R). Further, any such matrix can be written as the product

of any other two SL(2,R) group elements Aa(a = 1, 2) . Convenient for the current work,

this product is defined by the expression

X = A1A
−1
2 . (2.10)

A useful consequence of this choice, used later, is the introduction of a redundancy in the

description of X which implies an invariance under a world-sheet gauge transformation,

Aa → Aa U(z, z̄). (2.11)

In addition, these two group elements are used to define two one-forms,

Ja = A−1
a dAa, a = 1, 2 , (2.12)

which satisfy the relationships (2.13) and (2.14) where no summation on a is implied.

TrJa = 0 (2.13)

dJa + Ja ∧ Ja = 0, (2.14)

For reference, the conventions used for differential forms in coordinates z and z̄ are given

by (2.15)–(2.18).

a = azdz + az̄dz̄, (2.15)

da = (∂az̄ − ∂̄az) dz ∧ dz̄, (2.16)

a ∧ b = (azbz̄ − az̄bz)dz ∧ dz̄, (2.17)

(∗a)z = −iaz, (∗a)z̄ = iaz̄, ∗a ∧ b = −a ∧ ∗b, ∗ ∗ a = −a. (2.18)

The system of equations (2.6)–(2.8) describing the string are expressible in terms of

the matrix X as shown in (2.19)–(2.21).

d∗dX =
iΛ

2
X dz ∧ dz̄, (2.19)

det(∂̄X) = 0, (2.20)

det(∂X) = 0. (2.21)

However, more relevant now are their expressions in terms of the currents Ja. For the

equation of motion (2.19), substitution of the currents yields

J1 ∧ ∗J1 + ∗J1 ∧ J2 − J1 ∧ ∗J2 − ∗J2 ∧ J2 + d ∗ J1 − d ∗ J2 =
iΛ

2
dz ∧ dz̄ (2.22)

which is simplified by the fact that the currents Ja are traceless, (2.13),

d ∗ (J1 − J2) + ∗J1 ∧ J2 + J2 ∧ ∗J1 = 0. (2.23)
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In terms of the currents, the system of equations to be solved are the equations of mo-

tion and conformal constraints (2.26)–(2.28) as well as the defining equations for the cur-

rents (2.24) and (2.25).

dJ1 + J1 ∧ J1 = 0 (2.24)

dJ2 + J2 ∧ J2 = 0 (2.25)

d ∗ (J1 − J2) + ∗J1 ∧ J2 + J2 ∧ ∗J1 = 0 (2.26)

det(J1z̄ − J2z̄) = 0 (2.27)

det(J1z − J2z) = 0 (2.28)

Inspection of these equations reveals a more convenient description by defining two

new currents.

A =
1

2
(J1 − J2) (2.29)

B =
1

2
(J1 + J2) (2.30)

Summarizing, the system of equations to solve are the following.

dA+A ∧ B + B ∧ A = 0 (2.31)

d(∗A) + (∗A) ∧ B + B ∧ (∗A) = 0 (2.32)

dB + B ∧ B +A ∧A = 0 (2.33)

det(Az) = det(Az̄) = 0 (2.34)

TrA = 0 (2.35)

TrB = 0 (2.36)

While seemingly more complicated, everything is now in place to complete the reduc-

tion and solve the problem. A flat current a is defined as a linear combination of the

currents A and B which is also traceless.

a = αA+ β ∗A+ γB (2.37)

da+ a ∧ a = 0 (2.38)

Tr(a) = 0. (2.39)

The importance of the current a is the realization that a one parameter family of non-

trivial solutions exists given by α2 + β2 = 1 and γ = 1. This family is parameterized in

terms of the spectral parameter λ for which α + iβ = iλ and α − iβ = 1
iλ . Using these

facts, the flat current is written as follows.

a =
i

2

(
λ− 1

λ

)
A+

1

2

(
λ+

1

λ

)
(∗A) + B (2.40)

= iλAz̄ dz̄ +
1

iλ
Azdz + B. (2.41)

– 6 –



J
H
E
P
1
2
(
2
0
1
5
)
0
8
3

An additional restriction must be imposed since A and B are real whereas λ is generically

complex which means the flat current a also satisfies the following reality condition.

a(λ) = a

(
1

λ̄

)
(2.42)

Note that the original currents Ja can be recovered using the newly defined current a:

J1 = a(1) J2 = a(−1).

To determine a, first expand the current A in terms of the Pauli matrices, σa=1,2,3,

and generically complex coefficients ni using the notation n̄i = n∗i .

Az̄ = n1σ1 + n2iσ2 + n3σ3, (2.43)

Az = n̄1σ1 + n̄2iσ2 + n̄3σ3, (2.44)

In this way, the conditions detAz = 0 and detAz̄ = 0 are reinterpreted as a condition that

the coefficients are the components of a light-like vector defined by the metric diag(−,+,−):

n2
2 − n2

1 − n2
3 = 0.. (2.45)

For the coefficients written generically as ni = ni,R+ ini,I , the above requirement produces

two conditions on the real and imaginary parts:

n2
R = n2

I nR.nI = 0. (2.46)

Since the real and imaginary parts of the coefficient vector have the same signature and

are orthogonal they must be proportional to each other and are both either space-like

or light-like.

Now the gauge symmetry discussed earlier, (2.11), is re-expressed in terms of A as

Aa → U(z, z̄)−1Aa U(z, z̄) (2.47)

which amounts to an SL(2,R) = SO(2, 1) rotation of the vectors nR and nI . Assuming that

n2
R 6= 0, such a transformation always allows these vectors to be put into the following forms.

nR =
1

2
eα(0, 0, 1) (2.48)

nI =
1

2
eα(1, 0, 0) (2.49)

In the above expressions, α(z, z̄) is a real function. Thus. the flat current is

az =
1

iλ
Az + Bz =

1

2iλ
eα(iσ1 + σ3) + Bz (2.50)

az̄ = iλAz̄ + Bz̄ =
iλ

2
eα(−iσ1 + σ3) + Bz̄ (2.51)

and the flatness condition of the current determines the components of B:

Bz =
1

2
∂ ασ2 +

1

2
f(z)e−α (σ1 + iσ3), (2.52)

Bz̄ = −1

2
∂̄ α σ2 +

1

2
f̄(z̄)e−α (σ1 + iσ3), (2.53)
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Here, f(z) is an arbitrary holomorphic function. In addition, α satisfies

∂∂̄α = e2α − ff̄e−2α. (2.54)

At this point, conventions chosen for this work make it convenient to rotate the flat con-

nection with the SU(2) matrix

ã = R̂aR̂−1, R̂ =
1√
2

(1 + iσ1), R̂−1 =
1√
2

(1− iσ1), R̂2 = iσ1 (2.55)

to put it in a simpler form:

ãz =

(
−1

2∂α fe−α

1
λe

α 1
2∂α

)
, ãz̄ =

(
1
2 ∂̄α λeα

f̄ e−α −1
2 ∂̄α

)
, (2.56)

The new flat current satisfies the reality condition

ã(λ) = σ1ã

(
1

λ̄

)
σ1 (2.57)

Since ã is flat, we can solve the linear problem

dΨ(λ; z, z̄) = Ψ(λ; z, z̄)ã. (2.58)

We can choose Ψ(λ; z, z̄) to satisfy the reality condition

Ψ(λ; z, z̄) = iΨ

(
1

λ̄
; z, z̄

)
σ1 (2.59)

where the factor of i is chosen for convenience. With that choice, however, and since

J1 = a(1), J2 = a(−1), we can take A1 = Ψ(1)R̂, A2 = Ψ(−1)R̂ since A1,2 turn out to be

real. Thus, the solution to the non-linear problem reads

X = Ψ(1)Ψ(−1)−1. (2.60)

Therefore, the strategy is to solve the equation for α, replace it in the flat current, solve

the linear problem, and reconstruct the solution X. Actually, this procedure gives a one-

parameter family of real solutions that can be written as

X(λ) = Ψ(λ)Ψ(−λ)−1. (2.61)

for

|λ| = 1 (2.62)

The reason is that eqs. (2.31)–(2.36) are invariant under Az → (1/λ)Az, Az̄ → (1/λ̄)Az̄
whenever |λ| = 1. These surfaces end in different boundary contours but they all have the

same regularized area that, for any value of λ, is given by [42–48]:

Af = −2π + 4

∫
D
ff̄ e−2αdσdτ (2.63)

where the integral is over the domain D of the solution.
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3 Schwarzian derivative and the condition of vanishing charges

In [70] a method of approaching the problem using the condition of vanishing charges was

described. In particular the area was computed in terms of the Schwarzian derivative of

the contour. Those results were derived for Euclidean AdS3, in this section we rewrite

them for Lorentzian AdS3 to get some further insight into the surfaces. Later we are going

to provide concrete solutions in term of theta functions.

Following [70], in this section we take the world-sheet to be the unit disk in the complex

plane z. The boundary of the disk maps to the contour in the boundary of AdS3 and the

interior of the disk maps to the surface of minimal area that we seek. Near the boundary

the induced metric diverges implying that α→∞. Introducing a coordinate

ξ = 1− r2 (3.1)

we find that eq. (2.54) implies the behavior

α = − ln ξ + β2(θ)(1 + ξ)ξ2 + β4(θ)ξ4 +O(ξ5), (ξ → 0) (3.2)

From here we can compute the leading behavior of the flat current as we approach the

boundary. It is best written in terms of

ãξ 'ξ→0 −
λ

2ξ
e−iθσ+ −

1

2λξ
eiθσ− +O(ξ) (3.3)

ãθ 'ξ→0 −
i

ξ
σ3 −

iλ

ξ
e−iθσ+ +

i

λξ
eiθσ− +O(1) (3.4)

defined such that

∂ξΨ = Ψãξ, ∂θΨ = Ψãθ (3.5)

Defining

Ψ =

(
ψ1 ψ2

ψ̃1 ψ̃2

)
(3.6)

where, from (2.58) and (2.56), ψ1,2 satisfy the equations

∂ψ1 = −1

2
∂αψ1 +

1

λ
eαψ2 (3.7)

∂ψ2 =
1

2
∂αψ2 + f(z)e−αψ1 (3.8)

∂̄ψ1 =
1

2
∂̄αψ1 + f̄(z̄)e−αψ2 (3.9)

∂̄ψ2 = −1

2
∂̄αψ2 + λeαψ1 (3.10)

and the same for ψ̃1, ψ̃2 It follows that

ψ1 ' ψ10(θ)
1

ξ
, ψ2 ' ψ20(θ)

1

ξ
, (ξ → 0) (3.11)

with
ψ20(θ)

ψ10(θ)
= −λe−iθ (3.12)
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In the case of λ = 1 we can combine this with the reality condition ψ2 = −iψ∗1 to obtain

ψ1

ψ∗1
'ξ→0 ie

iθ, (λ = 1) (3.13)

In the case of λ = −1 we obtain

φ1

φ∗1
'ξ→0 −ieiθ, (λ = −1) (3.14)

where we used φ1,2 to denote solutions for λ = −1. The surface is then described by

X =

(
ψ1 −iψ∗1
ψ̃1 −iψ̃∗1

)(
−iφ̃∗1 iφ∗1
−φ̃1 φ1

)
= −2Im

(
ψ∗φ̃1 ψ1φ

∗
1

ψ̃∗1φ̃1 ψ̃1φ
∗
1

)
(3.15)

The normalization of the solutions should be such that detX = 1. However, when com-

puting the solution in Poincare coordinates the normalization cancels in x± = X ± T =

± tan t±
2 = ± tan t±φ

2 :

x+ =
ψ1φ

∗
1 − φ1ψ

∗
1

ψ̃1φ∗1 − ψ̃∗1φ1

, x− =
ψ̃∗1φ̃1 − ψ̃1φ̃

∗
1

ψ̃1φ∗1 − ψ̃∗1φ1

(3.16)

Near the boundary, equations (3.7)–(3.10) imply that

x+ =
ψ1

ψ̃1

, x− = − φ̃1

φ1
, (ξ = 0) (3.17)

The functions ψ1 and ψ̃1 are two linearly independent solutions of the linear problem

defined in the boundary along θ. It can be obtained from

∂θ(ψ1, ψ2) = (ψ1, ψ2)ãθ (3.18)

by eliminating ψ2. Defining

χ =
1√
ãθ21

(3.19)

the equation is

− ∂2
θχ(θ) + Vλ(θ)χ(θ) = 0 (3.20)

where

Vλ(θ) = −1

4
+ 6β2(θ)− f

λ
e2iθ − λf̄e−2iθ (3.21)

very similar to the Euclidean case. If β2(θ) and f(θ) are known, we need to find two

linearly independent solution of the equation for λ = 1 to determine x+ as their ratio and

the same for x− with λ = −1. Using the result for the Schwarzian derivative of the ratio

of two solutions {
ψ1

ψ̃1

, θ

}
= −2V (θ) (3.22)

we find

{x±(θ), θ} = −2Vλ=±1(θ) =
1

2
− 12β2(θ)± 2fe2iθ ± 2f̄ e−2iθ (3.23)
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That means that, if we knew the boundary contour x±(θ) in the conformal parameterization

then we could compute β2(θ)

β2(θ) =
1

24
[1− {x+, θ} − {x−, θ}] (3.24)

and also f(z) by using a dispersion relation. As in [70], one way to find such conformal

parameterization is to write eq. (3.20) after an arbitrary reparameterization θ(s):

− ∂2
s χ̃+ Ṽλ(s)χ̃(s) = 0 (3.25)

with

χ̃(s) =
1√
∂sθ

χ(θ) (3.26)

Ṽλ(s) = (∂sθ)
2 Vλ(θ(s))− 1

2
{θ(s), s} (3.27)

From eq. (3.23) it follows that

Ṽλ=±1 = −1

2
{x±, s} (3.28)

and also, more explicitly,

Ṽλ(s) = V0(s)− 1

2

(
λ+

1

λ

)
V1(s)− i

2

(
λ− 1

λ

)
V2(s) (3.29)

V0(s) = −1

4
({x+, s}+ {x−, s}) (3.30)

V1(s) =
1

4
({x+, s} − {x−, s}) = (f e2iθ + f̄ e−2iθ)(∂sθ)

2 (3.31)

V2(s) = i (f e2iθ − f̄ e−2iθ)(∂sθ)
2 (3.32)

Thus, knowing the boundary curve x±(s) in an arbitrary parameterization allows the com-

putation of V0,1(s) but leaves V2(s) undetermined. Similarly as in [70] the real function

V2(s) can be computed by requiring that all solutions of the Schrödinger equation (3.25)

are anti-periodic in the variable s. Once V2(s) is determined, it is possible to compute the

area and the conformal reparameterization θ(s). For later use it is convenient to recall the

relation to the boundary variables in global coordinates (t, φ):

ei(t±φ) =
1± ix±
1∓ ix±

, (3.33)

3.1 Computation of the area

To compute the regularized area we used formula (2.63). It can be simplified by observing

that the sinh-Gordon equation (2.54) implies

∂(∂̄2α− (∂̄α)2) = −f∂̄f̄e−2α + 4ff̄ ∂̄αe−2α (3.34)

Locally, we can rewrite this equation as

∂

(
2√
f̄

(∂̄2α− (∂̄α)2)

)
= −4∂̄

(
f

√
f̄ e−2α

)
(3.35)
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If f has no zeros inside the unit disk then this equation defines a conserved current on

the world-sheet. At this point it is useful to recall that, under a holomorphic coordinate

transformation z → w(z) the sinh-Gordon equation is invariant provided we change

α→ α̃ = α− 1

2
ln ∂w − 1

2
ln ∂̄w̄ (3.36)

f → f̃ =
f

(∂w)2
(3.37)

in particular implying √
fdz =

√
f̃dw, (3.38)

namely χ =
√
f dz is a holomorphic 1-form and then

W (z) =

∫ z

χ =

∫ z√
f(z′) dz′ (3.39)

is a function (0-form) on the disk such that χ = dW . On the other hand

2
[
∂̄2
w̄α̃− (∂̄w̄α̃)2

]
=

1

(∂̄w̄)2

{
2
[
∂̄2α− (∂̄α)2

]
− {w̄, z̄}

}
(3.40)

namely 2[∂̄2α− (∂̄α)2] transforms as a Schwarzian derivative. Since the difference between

two Schwarzian derivatives transforms homogeneously, we can rewrite eq. (3.35) as the

conservation of the current

j = jzdz + jz̄dz̄ (3.41)

jz = −4f

√
f̄ e−2α (3.42)

jz̄ =
2√
f̄

[∂̄2α− (∂̄α)2]− 1√
f̄
{W̄ , z̄} (3.43)

dj = 0 (3.44)

where we used the function W (z) defined in eq. (3.39) to write a current that transforms

appropriately under a coordinate transformation. Otherwise the extra term − 1√
f̄
{W̄ , z̄}

does not play any role since it is anti-holomorphic. Finally, we follow [49] and write the

area as (dσ ∧ dτ = i
2dz ∧ dz̄)

Af + 2π = 4

∫
D
ff̄e−2αdσdτ = − i

2

∫
D
j ∧ χ̄ (3.45)

= − i
2

∫
D
j ∧ dW̄ =

i

2

∫
D
d(W̄ j) (3.46)

The integral is over the unit disk whose boundary is parameterized as z = eiθ. Integrating

by parts we find

Af = −2π +
i

2

∮
∂D

W̄ (jz∂θz + jz̄∂θz̄) dθ (3.47)
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At the boundary α diverges and then, from eq. (3.42) jz vanishes whereas, from eq. (3.2)

jz̄ =
1√
f̄

(
12β2(θ)e2iθ − {W̄ , z̄}

)
+O(ξ) (ξ = 1− r2 → 0) (3.48)

Thus

Af = −2π +
i

2

∮
∂D

W̄√
f̄

(
12β2(θ)e2iθ − {W̄ , z̄}

)
∂θz̄ dθ (3.49)

Using eq. (3.24) together with the simple result

{x±, θ} =
1

2
− e−2iθ{x±, z̄}, z̄ = e−iθ (3.50)

it follows that

Af = −2π +
i

2

∮
∂D

W̄

∂̄W̄

[
1

2
{x+, z̄}+

1

2
{x−, z̄} − {W̄ , z̄}

]
dz̄ (3.51)

This result is invariant under reparameterizations of the boundary and therefore we can

choose an arbitrary parameter s instead of z̄:

Af = −2π +
i

2

∮
W̄

∂sW̄

[
1

2
{x+, s}+

1

2
{x−, s} − {W̄ , s}

]
ds (3.52)

Finally inside the disk we can take any other conformal parameterizations. In the next

section we use W (z) as a coordinate and just denote it as z. In that case the function

f(z) = 1 and the boundary of the world-sheet is given by a curve z(s) that has to be found

as part of the solution.

4 Solutions in terms of theta functions

In this section we discuss exact analytical solutions to the minimal area surface problem

that can be written in terms of Riemann Theta functions. It follows along the lines of

similar solutions constructed in [20, 50, 52]. We are going to consider the case where

the analytic function f(z) appearing in eq. (2.54) has no zeros inside the unit circle and

therefore can be set to f(z) = 1 by an appropriate conformal transformation of the unit

circle into a new domain in the complex plane that has to be found as part of the solution.

The equation for α reduces to the sinh-Gordon equation

∂∂̄α = 2 sinh 2α (4.1)

that has known solutions in terms of Riemann Theta functions associated to hyperelliptic

Riemann surfaces. We are going to define such a surface by an equation in C2

µ2 =

2g+1∏
i=1

(λ− λi) (4.2)
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where g is the (arbitrary) genus and (µ, λ) parameterize C2. For the solution to be real the

branch points have to be symmetric under the involution T : λ→ 1/λ̄, see also eq. (2.42).

We should then choose a basis of cycles {ai, bi} such that the involution maps:

(Ta)i = Tijaj , (Tb)i = −Tijbj . (4.3)

This choice defines the g × g matrices

Cij =

∮
ai

λj−1

µ(λ)
dλ, C̃ij =

∮
bi

λj−1

µ(λ)
dλ (4.4)

as well as a basis of holomorphic differentials

ωi =

g∑
j=1

λj−1

µ(λ)
C−1
ji (4.5)

such that ∮
ai

ωj = δij ,

∮
bi

ωj = Πij (4.6)

where Π = C̃C−1 is the period matrix of the Riemann surface. The next step is to choose

two branch points p1,3 ≡ (λ1,3, µ = 0) that map into each other under the involution

T . In addition we require that the path connecting them is an even half-period: C13 =
1
2(∆2iai + ∆1ibi), with ∆t

1∆2 and even integer. This half period define a Theta function

with characteristics that we call

θ̂(ζ) = θ

[
∆1

∆2

]
(ζ), ζ ∈ Cg (4.7)

Using the properties under the involution T : λ→ 1/λ̄ it is easy to prove that

Cij = −e−iφ TilC∗l g−j+1 (4.8)

C̃ij = e−iφ TilC̃
∗
l g−j+1 (4.9)

Π∗ = −TΠT (4.10)

where φ is defined through

e2iφ =

2g∏
i=1

λi (4.11)

These results imply that, if ζ∗ = ±Tζ, then θ(ζ), θ̂(ζ) ∈ R. As we approach the branch

points p1,3, the vector of holomorphic differentials ω(λ) diverges as 1/µ(λ); for that reason

it is convenient to define a new vector

ωf (λ)i =

g∑
j=1

λj−1C−1
ji = µ(λ)ωi (4.12)

and two particular values:

ω1 = − 1

λg−1
1

ωf (λ1), ω3 = ωf (λ3) (4.13)
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where λ1,3 are the projections of the points p1,3. If we further define the constant

C2
± = − θ̂2(a)

D1θ(a)D3θ(a)
(4.14)

then we obtain that the following reality condition is satisfied:

(C±ω1)∗ = T (C±ω3) (4.15)

Under all these conditions, from eq. (A.9) in the appendix, it follows that a real solution

to the sinh-Gordon equation can be written as

eα = Cα
θ(ζ)

θ̂(ζ)
, ζ = C±(ω1z + ω3z̄), (4.16)

where Cα is a constant equal to ±1, chosen so that eα is positive in the region of interest.

Such region of interest is taken to be a connected domain in the complex plane bounded

by a curve where θ̂ vanishes, namely α diverges. It should be noted that the condition that

θ̂ vanishes is only one real equation since θ̂ is real, a general theta function with arbitrary

characteristics would be complex and the condition that it vanishes would only be satisfied

at isolated points in the world-sheet.

The next step is to solve the linear problem for Ψ, namely eq. (2.58). To this end we

choose an arbitrary point p4 on the Riemann surface, for example on the upper sheet, and

write the solutions as

ψ1 = eµ4z+ν4z̄e
α
2
θ(ζ +

∫ 4
1 )

θ(ζ)
(4.17)

ψ2 = Aeµ4z+ν4z̄
θ(a−

∫ 4
1 )

θ̂(a−
∫ 4

1 )
e
α
2
θ̂(ζ +

∫ 4
1 )

θ(ζ)
(4.18)

where

µ4 = −C±D1 ln
θ̂(a)

θ(a−
∫ 4

1 )
(4.19)

ν4 = −C±D3 ln
θ̂(a)

θ̂(a−
∫ 4

1 )
(4.20)

and the constant A is given by

A = −C±
D3θ(a)

θ̂(a)
(4.21)

It is straight forward to use the properties (A.4) of the theta functions to prove that ψ1,2

solve the linear equations (3.7)–(3.10) with a spectral parameter

λ =
D3θ(a)

D1θ(a)

(
θ(a−

∫ 4
1 )

θ̂(a−
∫ 4

1 )

)2

(4.22)

Recall that real solutions require |λ| = 1 (see eq. (2.62)) which restricts the possible points

p4 that can be chosen, in fact, as discussed in the appendix, we have to choose |λ4| = 1.
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It is easy to see that |λ| = 1 implies that, if (ψ1, ψ2) is a solution to eqs. (3.7), (3.8)

then so is (ψ∗2, ψ
∗
1). However, one can check that for the solutions in eqs. (4.17), (4.18) such

solution is the same as the original (up to an overall constant). Instead, another, linearly

independent solution, to equations (3.7)–(3.10) is obtained by choosing the corresponding

point on the lower sheet of the Riemann surface that we denote as p4̄. Since p1 is a branch

point we have
∫ 4

1 = −
∫ 4̄

1 . The value of the spectral parameter does not change since it

can be seen that

λ =
D3θ(a)

D1θ(a)

(
θ(a+

∫ 4
1 )

θ̂(a+
∫ 4

1 )

)2

(4.23)

Finally, we also need to find solutions with spectral parameter −λ. For that purpose we

choose a point p5 on the upper sheet of the Riemann surface such that

− λ =
D3θ(a)

D1θ(a)

(
θ(a−

∫ 5
1 )

θ̂(a−
∫ 5

1 )

)2

(4.24)

and the corresponding point p5̄ on the lower sheet. It might seem that it is difficult to

find such point but it is actually quite simple as explained in the particular examples given

later in the paper where it is also shown how to find p4 such that |λ| = 1.

At this point we can write a complete solution to the linear problem as

φ11 = eµ4z+ν4z̄e
α
2
θ(ζ +

∫ 4
1 )

θ(ζ)
(4.25)

φ21 = Aeµ4z+ν4z̄
θ(a−

∫ 4
1 )

θ̂(a−
∫ 4

1 )
e
α
2
θ̂(ζ +

∫ 4
1 )

θ(ζ)
(4.26)

φ̃11 = e−µ4z−ν4z̄e
α
2
θ(ζ −

∫ 4
1 )

θ(ζ)
(4.27)

φ̃21 = Ae−µ4z−ν4z̄
θ(a+

∫ 4
1 )

θ̂(a+
∫ 4

1 )
e
α
2
θ̂(ζ −

∫ 4
1 )

θ(ζ)
(4.28)

φ12 = eµ5z+ν5z̄e
α
2
θ(ζ +

∫ 5
1 )

θ(ζ)
(4.29)

φ22 = Aeµ5z+ν5z̄
θ(a−

∫ 5
1 )

θ̂(a−
∫ 5

1 )
e
α
2
θ̂(ζ +

∫ 5
1 )

θ(ζ)
(4.30)

φ̃12 = e−µ5z−ν5z̄e
α
2
θ(ζ −

∫ 5
1 )

θ(ζ)
(4.31)

φ̃22 = Ae−µ5z−ν5z̄
θ(a+

∫ 5
1 )

θ̂(a+
∫ 5

1 )
e
α
2
θ̂(ζ −

∫ 5
1 )

θ(ζ)
(4.32)

where the constant A was defined in eq. (4.21). Using these functions we can write a
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solution Ψ to eq. (2.58):

Ψ(λ) =

(
φ11 φ21

φ̃11 φ̃21

)
, (4.33)

Ψ(−λ) =

(
φ̃12 φ̃22

φ12 φ22

)
, (4.34)

This is not the whole story since the actual matrices Ψ also have to satisfy the reality

conditions (2.59). Fortunately this problem is easily solved by first defining the linear

combinations

ΨF (λ) = Ψ(λ) + σ1[Ψ(1/λ̄)]∗σ1 (4.35)

ΨF (−λ) = Ψ(−λ) + σ1[Ψ(−1/λ̄)]∗σ1 (4.36)

that satisfy the same equations due to the symmetry (2.57) of the flat current but in

addition satisfy the reality condition

[ΨF (λ)]∗ = σ1ΨF (1/λ̄)σ1 (4.37)

Then we define

ΨR(λ) = iR̂ΨF (4.38)

that satisfy the reality condition (2.59) as required and can be checked using the definition

of R̂ in eq. (2.55). Finally we can write the solution to the non-linear problem as

X0 = ΨR(λ)ΨR(−λ)−1 (4.39)

X =
1√

detX0
X0 (4.40)

The intermediate matrices ΨF (λ) are useful since we can equally well write the solution in

the form

XF = ΨF (λ)ΨF (−λ)−1 =

(
X−1 + iX0 X1 + iX2

X1 − iX2 X−1 − iX0

)
(4.41)

=

(
cosh ρ eit sinh ρ eiφ

sinh ρ e−iφ cosh ρ e−it

)
(4.42)

This gives the shape of the surface analytically. In the next section we give particular

examples to get an idea of the shape of these solutions.

4.1 Computation of the area

The regularized area can be computed by using the formula (2.63)

Af = −2π + 4

∫
D
e−2αdzdz̄ (4.43)
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where we set f(z) = 1 since we are considering that case. The domain D is the region of

the complex plane bounded by the curve where θ̂ vanishes. Furthermore, from eqs. (A.7)

and (4.14) we find

e−2α =
1

C2
α

θ̂2(ζ)

θ2(ζ)
=
C2
±

C2
α

D13 ln
θ̂(a)

θ(ζ)
= − 1

C2
α

∂∂̄ ln θ(ζ) +
C2
±

C2
α

D13 ln θ̂(a) (4.44)

Thus, the regularized area is equal to

Af = −2π + 4
C2
±

C2
α

D13 ln θ̂(a)AWS −
4

C2
α

∫
∂∂̄ ln θ(ζ) dzdz̄ (4.45)

where AWS is the world-sheet area, namely the area of the domain D of the complex plane

that maps to the minimal surface. The last integral can be done using Gauss’ theorem in

the form ∫
∂∂̄Fdzdz̄ = − i

4

∮
(∂Fdz − ∂̄Fdz̄) = − i

2

∮
∂F∂θzdθ (4.46)

where in the last equality we used that
∮

(∂Fdz + ∂̄Fdz̄) =
∮
dF = 0. The final result for

the Area is then

Af = −2π + 4
C2
±

C2
α

D13 ln θ̂(a)AWS +
2i

C2
α

∮
∂ ln θ(ζ) ∂θz dθ (4.47)

with ∂ ln θ(ζ) = C±D1 ln θ(ζ) evaluated along the boundary. This gives a practical way to

evaluate the area for the solutions discussed in this section. We can now verify eq. (3.52).

Indeed starting from (3.52) and using eqs. (A.39), (A.41) we obtain

Af = −2π +
i

2C2
α

∮
z̄ ds

∂sz̄

(
1

2
{x+, s}+

1

2
{x−, s} − {z̄, s}

)
(4.48)

= −2π + 2i
C2
±

C2
α

∮
z̄∂sz̄ D

2
3 ln θ(ζs) ds (4.49)

where we renamed W → z for simplicity since we use W as the world-sheet coordinate.

Furthermore, since

∂sD3 ln θ(ζs) = C±∂sz̄ D
2
3 ln θ(ζs) + C±∂sz D13 ln θ(ζs) (4.50)

and also from eq. (A.18) we find

Af = −2π − 2i
C±
C2
α

∮
∂sz̄ D3 ln θ(ζs) ds− 2i

C2
±

C2
α

D13 ln θ̂(a)

∮
z̄∂sz ds (4.51)

Finally, since the world-sheet area AWS is given by

AWS = − i
2

∮
z̄∂sz ds (4.52)

and we can integrate by parts∮
∂sz̄ D3 ln θ(ζs) ds = −

∮
∂sz D1 ln θ(ζs) ds (4.53)

we find

Af = −2π + 2i
C±
C2
α

∮
∂sz D1 ln θ(ζs) ds+ 4

C2
±

C2
α

D13 ln θ̂(a)AWS (4.54)

in perfect agreement with eq. (4.54).
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4.2 Boundary curve

The boundary curve associated with these minimal area surfaces can be derived by using

eqs. (4.42), and (4.33)–(4.36)

ei(t+φ) =
(XF )12

(XF )22

∣∣∣∣
bdry.

=
−(ΨF (λ))11(ΨF (−λ))12 + (ΨF (λ))12(ΨF (−λ))11

−(ΨF (λ))21(ΨF (−λ))12 + (ΨF (λ))22(ΨF (−λ))11

∣∣∣∣
bdry.

(4.55)

and similarly for x̂−. This can be greatly simplified by studying the behavior of the

functions near the boundary as in eq. (3.11). However, since we are using here a world-

sheet parameterization such that f(z) = 1, the world-sheet is bounded by a curve z(s)

which generically is not a circle. For that reason we revisit the derivation. Consider a

point z0 at the world-sheet boundary and expand the coordinate z as

z ' z0 + (s+ iξ) ∂sz(s) (4.56)

where s represents fluctuations along the boundary and ξ towards the inside of the world-

sheet (ξ = 0 is the boundary). Instead of eq. (3.11) we now find

ψ1 ' ψ10(s)e−|∂sz| ln ξ, ψ2 ' ψ20(s)e−|∂sz| ln ξ, (ξ → 0) (4.57)

with
ψ10(s)

ψ20(s)
= − i

λ

∂sz

|∂sz|
(4.58)

Since ψ1,2 obey the same equations as ψ1,2 but with λ↔ −λ it follows that φ1,2 behave in

the same way with
φ10(s)

φ20(s)
=
i

λ

∂sz

|∂sz|
(4.59)

We can now simplify (4.55) to

ei(t+φ) =
φ21 + φ̃∗11

φ̃21 + φ∗11

∣∣∣∣∣
bdry.

(4.60)

As mentioned before, in this case (φ11, φ21) and (φ∗21, φ
∗
11) are linearly dependent solutions

implying that φ∗11/φ21 is constant on the world-sheet. In fact, using that

T

(∫ 4

1

)∗
=

∫ 4

1
−
∫ 3

1
(4.61)

where the matrix T is defined in eq. (4.3), we obtain

µ∗4 − ν4 = µ∗5 − ν5 = −iπC± (∆t
1.ω3) (4.62)

µ4 − ν∗4 = µ5 − ν∗5 = iπC± (∆t
1.ω1) (4.63)

θ∗
(
ζ +

∫ 4

1

)
= eiπ∆t

1(ζ+
∫ 4
1 )+ 1

2
iπ∆t

1∆2− 1
4
iπ∆t

1Π∆1 θ̂

(
ζ +

∫ 4

1

)
(4.64)
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Now the constant can be computed explicitly as

B1 =
φ̃∗11

φ̃21

= −φ
∗
11

φ21
=
θ̂(a+

∫ 4
1 )

θ(a+
∫ 4

1 )

1

A
eiπ∆t

1

∫ 4
1 + iπ

2
∆t

1∆2− iπ4 ∆t
1Π∆1 (4.65)

where A was defined in eq. (4.21). Finally we obtain

eit+ =
1 +B1x̂+

−B1 + x̂+
(4.66)

where

x̂+ =
φ̃21

φ21
= −e−2µ4z−2ν4z̄

θ̂(ζ −
∫ 4

1 )

θ̂(ζ +
∫ 4

1 )
(4.67)

Similarly

eit− =
1−B2x̂−
B2 + x̂−

(4.68)

where

x̂− = e−2µ̃+z̄−2µ̃−z
θ̂(ζ −

∫ 5
1 )

θ̂(ζ +
∫ 5

1 )
(4.69)

and

B2 =
θ̂(a+

∫ 5
1 )

θ(a+
∫ 5

1 )

1

A
eiπ∆t

1

∫ 5
1 + iπ

2
∆t

1∆2− iπ4 ∆t
1Π∆1 (4.70)

It is important to note that x̂± and x± are related by an SL(2,C) transformation (as follows

from eqs. (3.33), (4.66)) implying that

{x̂±, s} = {x±, s} (4.71)

Namely x̂±(s) is a conformally equivalent (but generally complex) description of the Wil-

son loop.

5 Examples

To illustrate the solutions we describe two Wilson loops associated with genus g = 2 auxil-

iary surfaces. These examples make clear the shape of the solutions we are discussing and

also provide the reader with concrete numbers that s/he can reproduce and use as a basis for

further work. For the same reason the results are rounded to just a few significant figures.4

5.1 Example 1

In example 1, we choose a surface with branch points −2,−1
2 , 0,

1
3 , 3,∞. This surface has

the required invariance under λ ↔ 1/λ̄. In addition it also has the symmetry λ ↔ 1/λ

that plays no role in the construction but simplifies the calculations.5 We choose a basis

4These calculations can be easily done using Maple or Mathematica.
5For example the hyperelliptic integrals appearing in the period matrix can be reduced to ordinary

elliptic integrals through the change of variables λ = (1 +
√
u)/(1−

√
u).
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of cycles as depicted in figure 1 such that property (4.3) is satisfied. The period matrix

is then

Π =

(
1.2063 i 0.4441 i

0.4441 i 1.2063 i

)
(5.1)

A zero a of the θ function can be found by choosing an arbitrary odd period, for example

a =
1

2
(I + Π)

(
0

1

)
(5.2)

Now we choose two branch points p1,3 such that the half-period C13 = 1
2(∆2 + Π∆1)

connecting them is even. We select p1 = 1
3 , p3 = 3 and thus

∆1 =

(
1

−1

)
∆2 =

(
0

0

)
(5.3)

which, from eq. (4.7), define θ̂. Furthermore, the vectors ω1,3 in eq. (4.13) follow from

eq. (4.12) as

ω1 = −3ωf

(
1

3

)
=

(
0.1738

−0.9256

)
, ω3 = ωf (3) =

(
−0.9256

0.1738

)
(5.4)

and a solution of the sinh-Gordon equation can then be written as

eα =
θ(ζ)

θ̂(ζ)
(5.5)

with (see eq. (4.16))

ζ =

(
−0.4425 i z̄ + 0.0831 i z

0.0831 i z̄ − 0.4425 i z

)
(5.6)

using

C2
± =

θ̂2(a)

D1θ(a)D3θ(a)
= − 8

35
. (5.7)

as follows form eq. (A.30). Now we choose two points p4,5 on the Riemann that determine

the values of the spectral parameter λ through eq. (4.22) that, following the results in

appendix A.2, can be inverted to give

λ4(γ) =
1 + 3eiγ

3 + eiγ
, λ = eiγ (5.8)

where we emphasized that the spectral parameter λ has to have modulus one. For this

example we choose

λ4 = λ(0.1), λ5 = λ(π + 0.1) (5.9)
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Figure 1. Hyperelliptic Riemann surface for Example 1. Cuts are in green, the brown path is a

half period used to define θ̂.

that determine the points p4,5 in the upper sheet and p4̄,5̄ in the lower sheet. Now we

can compute ∫ 4

1
=

(
−0.0056 + .1053i

0.0056− .2758i

)
(5.10)

∫ 5

1
=

(
.2091− .1767i

−.2091− .5578i

)
(5.11)

ν4 = −.3278− 0.0259i (5.12)

µ4 = −1.9791 + 0.0259i (5.13)

ν5 = .2533 + .1282i (5.14)

µ5 = −1.3980− .1282i (5.15)

which allows us to plot the surface as seen in figure 2. The boundary curve can be obtained

from the limit near the boundary or equivalently using equations (4.66)–(4.69) with

B1 = −.9964 + 0.0852i (5.16)

B2 = .9532− .3022i (5.17)

(5.18)

Finally the regularized area can be found to be

Af = −5.876 (5.19)

5.2 Example 2

In this case we choose the branch points at −1 − i,−1
2(1 + i), 0, 1

3 , 3,∞ and the basis of

cycles is chosen as in figure 3. The calculations are the same as in the previous example
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Figure 2. Minimal area surface embedded in AdS3 in global coordinates [t, ρ, φ]. The vertical

direction is time t, the radial direction is tanh ρ and the angle is φ.

and we just describe the values of the relevant quantities as well as depicting the cycles

and resulting surface in figs 3 and 4.

Π =

(
.1837 + 1.4177i .6416i

.6416i −.1837 + 1.4177i

)
(5.20)

a =
1

2
(I + Π)

(
0

1

)
(5.21)

p1 =
1

3
, p3 = 3 (5.22)

∆2 =

(
0

0

)
, ∆1 =

(
1

−1

)
(5.23)

C2
± =

θ̂2(a)

D1θ(a)D3θ(a)
=

4

5

√
2

17
e

3
4
iπ (5.24)

ζ =

(
(.1352 + .4419i)z̄ − (0.0284 + 0.0802i)z

(0.0284− 0.0802i)z̄ − (.1352− .4419i)z

)
(5.25)

λ4 = .9987 + 0.0500i, λ5 = −.9802− .1982i (5.26)∫ 4

1
=

(
0.0398 + .1027i

0.0520− .2854i

)
(5.27)
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-(1+i)/2

-1-i

0

Figure 3. Hyperelliptic Riemann surface for Example 2. Cuts are in green, the brown path is a

half period used to define θ̂.

∫ 5

1
=

(
−.2098− .1210i

−.6984− .5090i

)
(5.28)

ν4 = 0.3159− 0.0369i (5.29)

µ4 = 1.9562 + 0.3723i (5.30)

ν5 = −0.2647 + 0.0358i (5.31)

µ5 = 1.3756 + 0.2997i (5.32)

B1 = .9939 + .1105i (5.33)

B2 = −.9936− .1132i (5.34)

In this case the regularized area is given by:

Af = −5.644 (5.35)
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A Theta function identities

In this work we use the notation in [72], the calculations are similar to those in [20, 50].

However, there some small differences, the main one being that θ̂(ζ) is defined by an
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Figure 4. Minimal area surface embedded in AdS3 in global coordinates [t, ρ, φ]. The vertical

direction is time t, the radial direction is tanh ρ and the angle is φ.

even period and therefore it does not vanish at ζ = 0. For that reason we introduced

an additional odd half-period a such that θ(a) = 0. This modifies the formulas enough

that it is worth rewriting them. On the other hand the procedure is exactly the same as

in [20, 50], namely all identities follow from the quasi-periodicity of the theta function and

the fundamental trisecant identity [73–75], so we do not give detailed derivations. The

trisecant identity is

θ(ζ)θ

(
ζ +

∫ i

j
+

∫ l

k

)
= γijklθ

(
ζ +

∫ i

j

)
θ

(
ζ +

∫ l

k

)
+ γikjlθ

(
ζ +

∫ i

k

)
θ

(
ζ +

∫ l

j

)
(A.1)

with

γijkl =
θ(a+

∫ i
j )θ(a+

∫ k
l )

θ(a+
∫ i
l )θ(a+

∫ k
j )

(A.2)

where a is a non-singular zero of the theta function. Now we can take the limit pi → pj
and obtain the first derivative identity

Dj ln
θ(ζ)

θ(ζ +
∫ l
k)

= Dj ln
θ(a−

∫ j
l )

θ(a+
∫ j
k )
−

Djθ(a)θ(a+
∫ k
l )

θ(a+
∫ j
l )θ(a+

∫ k
j )

θ(ζ +
∫ j
k )θ(ζ +

∫ l
j )

θ(ζ)θ(ζ +
∫ l
k)

(A.3)
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Choosing various combination of points pj,k,l the following first derivative identities

are obtained

D3 ln
θ(ζ)

θ(ζ +
∫ 4

1 )
= D3 ln

θ̂(a−
∫ 4

1 )

θ̂(a)
− D3θ(a)

θ̂(a)

θ(a−
∫ 4

1 )

θ̂(a−
∫ 4

1 )

θ̂(ζ)θ̂(ζ +
∫ 4

1 )

θ(ζ)θ(ζ +
∫ 4

1 )

D3 ln
θ̂(ζ)

θ̂(ζ +
∫ 4

1 )
= D3 ln

θ̂(a−
∫ 4

1 )

θ̂(a)
− eiπ∆t

1.∆2
D3θ(a)

θ̂(a)

θ(a−
∫ 4

1 )

θ̂(a−
∫ 4

1 )

θ(ζ)θ(ζ +
∫ 4

1 )

θ̂(ζ)θ̂(ζ +
∫ 4

1 )

D1 ln
θ(ζ)

θ̂(ζ +
∫ 4

1 )
= D1 ln

θ(a−
∫ 4

1 )

θ̂(a)
− D1θ(a)

θ̂(a)

θ̂(a−
∫ 4

1 )

θ(a−
∫ 4

1 )

θ̂(ζ)θ(ζ +
∫ 4

1 )

θ(ζ)θ̂(ζ +
∫ 4

1 )

D1 ln
θ̂(ζ)

θ(ζ +
∫ 4

1 )
= D1 ln

θ(a−
∫ 4

1 )

θ̂(a)
− D1θ(a)

θ̂(a)

θ̂(a−
∫ 4

1 )

θ(a−
∫ 4

1 )

θ(ζ)θ̂(ζ +
∫ 4

1 )

θ̂(ζ)θ(ζ +
∫ 4

1 )
(A.4)

They can be combined with the trisecant identity (A.1) to obtain, for example

D3 ln
θ̂(ζ +

∫ 4
1 )

θ̂(ζ −
∫ 4

1 )
= D3 ln

θ̂(a+
∫ 4

1 )

θ̂(a−
∫ 4

1 )
+ eiπ∆t

1.∆2
D3θ(a)θ(a− 2

∫ 4
1 )

θ̂2(a−
∫ 4

1 )

θ2(ζ)

θ̂(ζ +
∫ 4

1 )θ̂(ζ −
∫ 4

1 )
(A.5)

Second derivatives can be obtained similarly, for example, from the first equation in (A.4)

we obtain, by taking derivative with respect to p4:

D43 ln θ

(
ζ +

∫ 4

1

)
= D43 ln θ̂

(
a−

∫ 4

1

)
+
D3θ(a)θ̂(ζ)

θ̂(a)θ(ζ)

θ(a−
∫ 4

1 )θ̂(ζ +
∫ 4

1 )

θ̂(a−
∫ 4

1 )θ(ζ +
∫ 4

1 )
D4 ln

θ̂(a−
∫ 4

1 )θ̂(ζ +
∫ 4

1 )

θ(a−
∫ 4

1 )θ(ζ +
∫ 4

1 )
(A.6)

Now we can take the limit p4 → p1 to obtain

D13 ln θ(ζ) = D13 ln θ̂(a)− D3θ(a)D1θ(a)

θ̂2(a)

θ̂2(ζ)

θ2(ζ)
(A.7)

and similarly

D13 ln θ̂(ζ) = D13 ln θ̂(a)− eiπ∆t
1.∆2

D3θ(a)D1θ(a)

θ̂2(a)

θ2(ζ)

θ̂2(ζ)
(A.8)

They can be combined into

D13 ln
θ(ζ)

θ̂(ζ)
= −D3θ(a)D1θ(a)

θ̂2(a)

[
θ̂2(ζ)

θ2(ζ)
− eiπ∆t

1.∆2
θ2(ζ)

θ̂2(ζ)

]
(A.9)

that becomes the sinh-Gordon equation in the main text. The reason is that one takes

ζ = C±(ω1z + ω3z̄) (A.10)

implying that

∂zF (ζ) = C±D1F (ζ), ∂̄z̄F (ζ) = C±D3F (ζ) (A.11)

where C± is a constant defined in eq. (4.14).
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Other useful identity can be obtained from (A.3) by taking pj = p3, pl = p4 and

expanding for pk → p3. The first non-trivial order gives

D3
3θ(a)

D3θ(a)
−
(
D2

3θ(a)

D3θ(a)

)2

= D2
3 ln

[
θ̂

(
ζ +

∫ 4

1

)
θ(ζ)θ̂

(
a−

∫ 4

1

)]
+

(
D3 ln

θ(ζ)

θ̂(ζ +
∫ 4

1 )θ̂(a−
∫ 4

1 )

)2

+
D2

3θ(a)

D3θ(a)
D3 ln

θ(ζ)

θ̂(ζ +
∫ 4

1 )θ̂(a−
∫ 4

1 )
(A.12)

Eq. (A.9) together with the identities in eq. (A.4) is all that is needed to check the equations

of motion. However we are also interested in computing the Schwarzian derivative of the

boundary contour. This is a more involved calculation for which we derive several identities

in the next subsection.

A.1 Identities at the world-sheet boundary

The previous identities are valid for any vector ζ ∈ Cg. Since the points at the boundary

of the world-sheet are zeros of θ̂, in this section we derive identities valid when ζ = ζs is

an arbitrary zero of θ̂, i.e. θ̂(ζs) = 0. From (A.4) we immediately get

D3 ln
θ(ζs)

θ(ζs +
∫ 4

1 )
= D3 ln

θ̂(a−
∫ 4

1 )

θ̂(a)
(A.13)

D1 ln
θ(ζs)

θ̂(ζs +
∫ 4

1 )
= D1 ln

θ(a−
∫ 4

1 )

θ̂(a)
(A.14)

from where we find

D1 ln
θ̂(ζs +

∫ 4
1 )

θ̂(ζs −
∫ 4

1 )
= 2D1 ln

θ̂(a)

θ(a−
∫ 4

1 )
= − 2

C±
µ− (A.15)

D3 ln
θ(ζs +

∫ 4
1 )

θ(ζs −
∫ 4

1 )
= 2D3 ln

θ̂(a)

θ̂(a−
∫ 4

1 )
= − 2

C±
µ+ (A.16)

Taking derivative with respect to p4 in identity (A.13) we find6

D43 ln θ

(
ζs +

∫ 4

1

)
= D43 ln θ̂

(
a−

∫ 4

1

)
(A.17)

D13 ln θ(ζs) = D13 ln θ̂(a) (A.18)

where, in the second one we also took the limit p4 → p1. Multiplying the second and fourth

equations in (A.4) by θ̂(ζ) and taking ζ = ζs it follows that

D3θ̂(ζs) = −eiπ∆t
1.∆2

D3θ(a)θ(a−
∫ 4

1 )

θ̂(a)θ̂(a−
∫ 4

1 )

θ(ζs)θ(ζs +
∫ 4

1 )

θ̂(ζs +
∫ 4

1 )
(A.19)

D1θ̂(ζs) = −
D1θ(a)θ̂(a−

∫ 4
1 )

θ̂(a)θ(a−
∫ 4

1 )

θ(ζs)θ̂(ζs +
∫ 4

1 )

θ(ζs +
∫ 4

1 )
(A.20)

6One could also take derivative with respect to p1 but then one has to be careful with a hidden dependence

on p1 through the definition of θ̂.
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Also, multiplying the second equation in (A.4) by θ̂(ζ) taking derivative D3 with respect

to ζ and setting ζ = ζs it follows that

D2
3 θ̂(ζs)

D3θ̂(ζs)
= 2D3 ln θ(ζs) (A.21)

where (A.13) was used to simplify the result. Taking derivative D3 with respect to ζ in

the third equation in (A.4), taking ζ = ζs, and using (A.20) we obtain

D13 ln
θ(ζs)

θ̂(ζs +
∫ 4

1 )
=

(
D1θ(a)θ̂(a−

∫ 4
1 )

θ̂(a)θ(a−
∫ 4

1 )

)2
D3θ̂(ζs)

D1θ̂(ζs)
(A.22)

Taking derivative D3 with respect to ζ in the first equation in (A.4), taking ζ = ζs, and

using (A.19) we obtain

D2
3 ln

θ(ζs)

θ(ζs +
∫ 4

1 )
= eiπ∆t

1.∆2
λ

C2
±

(A.23)

where we replaced

λ = C2
±

(
D3θ(a)θ(a−

∫ 4
1 )

θ̂(a)θ̂(a−
∫ 4

1 )

)2

(A.24)

as follows from the definitions of C± and λ, i.e. eqs. (4.14) and (4.22).

Finally, multiplying the second equation in (A.4) by θ̂(ζ) taking second derivative D2
3

with respect to ζ and setting ζ = ζs it follows that

D2
3 ln

θ̂(ζs +
∫ 4

1 )

θ(ζs)
+

(
D3 ln

θ̂(a−
∫ 4

1 )θ̂(ζs +
∫ 4

1 )

θ̂(a)θ(ζs)

)2

=

D3
3 θ̂(ζs)

D3θ̂(ζs)
− 3D2

3 ln θ(ζs)− 3 (D3 ln θ(ζs))
2 + eiπ∆t

1.∆2
λ

C2
±

(A.25)

where eqs. (A.21), (A.13), (A.23) were used to simplify the result. An equation similar to

the last one can be derived by simply setting ζ = ζs in eq. (A.12). The results agree only if

D3
3 θ̂(ζs)

D3θ̂(ζs)
− D2

3θ(ζs)

θ(ζs)
− 2

(
D3θ(ζs)

θ(ζs)

)2

=

D3
3θ(a)

D3θ(a)
−
(
D2

3θ(a)

D3θ(a)

)2

+
D2

3θ(a)D3θ̂(a)

D3θ(a)θ̂(a)
− D2

3 θ̂(a)

θ̂(a)
(A.26)

which is the last identity we need. It is equivalent to say that the left hand side is inde-

pendent of the zero if θ̂ that we take. In particular if we take ζs = a +
∫ 3

1 we obtain the

right-hand side.

A.2 Identities at particular points

One last type of identity is needed in order to fix the spectral parameter λ to any desired

value. Indeed, according to eq. (4.22), λ is obtained by first choosing a point p4 and

then computing

λ(p4) =
D3θ(a)

D1θ(a)

(
θ(a−

∫ 4
1 )

θ̂(a−
∫ 4

1 )

)2

(A.27)
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In practice we fix first λ and then choose p4 accordingly, namely we need to invert the

function λ(p4). The main observation is that the right hand side of the equation, as a

function of p4, has the following properties: it is a well-defined function on the Riemann

surface, namely independent of the path used to define the integral
∫ 4

1 . Second it takes the

same values on both sheets of the Riemann surface, namely it has no cuts and therefore it

is a well-defined function of λ4, the projection of p4 onto the complex plane. Finally, as a

function of λ4 it has a zero at λ = λ1 and a pole at λ4 = λ3 (where λ1,3 are the branch points

taken to be p1,3). It has no other zeros or poles. This last property is perhaps the only

that requires an explanation since, as function of p4 the theta functions in the numerator

and denominator have g − 1 additional zeros. The fact is that all those zeros coincide and

therefore cancel between numerator and denominator. This can be checked [72–75] using

Riemann’s theorem to write a = κ +
∫ q1
p1

+ . . . +
∫ qg−1

p1
where κ is the Riemann constant

and q1...g−1 are g − 1 points on the Riemann surface that turn out also to be the zeros of

the numerator and denominator. Taking into account all these properties, we can write

λ =
D3θ(a)

D1θ(a)

(
θ(a−

∫ 4
1 )

θ̂(a−
∫ 4

1 )

)2

= A0
λ4 − λ1

λ4 − λ3
(A.28)

for some constant A0. This constant can be evaluated by considering the limits λ4 → λ1

and λ4 → λ3. We obtain

A0 = − 1

C2
±

4λ2g−2
1∏

i 6=1,3(λ1 − λi)
= −ei∆t

1∆2
C2
±

4
λ3

∏
i 6=1,3

(λ3 − λi) (A.29)

where the products are over all branch points except p1, p3, 0 and ∞. Since the two

expressions for A0 have to agree we find that

C4
± =

16

λ1λ3

λ2g−2
1 e−iπ∆t

1∆2∏
i 6=1,3[(λ1 − λi)(λ3 − λi)]

(A.30)

Finally we get, for the spectral parameter λ

λ = ±i|λ3|eiπ∆t
1∆2

(
λ1

λ̄1

)g−1 ∏
i 6=1,3

(√
λi
√
λ̄1 − λ̄i√

λ1 − λi

)
λ4 − λ1

λ4 − λ3
(A.31)

which allows us to easily choose λ4 to obtain any λ we desire. In fact it is easily seen that

|λ| = 1 if and only if |λ4| = 1, thus for real solutions we just take λ4 on the unit circle.

A.3 Schwarzian derivative

The formulas summarized in the previous subsections can be used to derive a particularly

simple expression for the Schwarzian derivative of the contour similar to the one found

in [50]. We will be using that, from eq. (A.11) it follows that

∂sF (ζs) = ∂sz ∂zF (ζs) + ∂sz̄ ∂z̄F (ζs) (A.32)

= C±∂sz D1F (ζs) + C±∂sz̄ D3F (ζs) (A.33)
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In particular since θ̂(ζs) = 0, we obtain

∂sz D1θ̂(ζs) + ∂sz̄ D3θ̂(ζs) = 0 (A.34)

which determines the direction tangent to the world-sheet contour (z(s), z̄(s)). Now, start-

ing from

x̂+ = −e−2µ4z−2ν4z̄
θ̂(ζs −

∫ 4
1 )

θ̂(ζs +
∫ 4

1 )
(A.35)

we obtain using eqs. (A.33) and (A.15):

∂s ln x̂+ = −∂sz̄

(
2µ+ + C±D3 ln

θ̂(ζs +
∫ 4

1 )

θ̂(ζs −
∫ 4

1 )

)
(A.36)

Then, thanks to eq. (A.13) we find

∂2
s x̂+

∂sx̂+
=
∂2
s z̄

∂sz̄
− 2µ+∂sz̄ + 2C±∂sz̄D3 ln

θ(ζs)

θ̂(ζs +
∫ 4

1 )
(A.37)

Now it is straight-forward to compute {x̂+, s} = {x+, s} and then simplify the result using

eqs. (A.22) and (A.25) to obtain:

{x+, s} = {z̄, s} − 2λ1(∂sz̄)2 − 2

λ1
(∂sz̄)2 + 2C2

±(∂sz̄)2

[
−D

3
3 θ̂(ζs)

D3θ̂(ζs)
+ 3

D2
3θ(ζs)

θ(ζs)

]
(A.38)

Further simplification using eq. (A.26) results in:

{x+, s} = {z̄, s} − 2λ(∂sz̄)2 − 2

λ
(∂sz̄)2 + 2C2

±(∂sz̄)2
[
2D2

3 ln θ(ζs)− Csd
]

(A.39)

with Csd a constant given by

Csd =
D3

3θ(a)

D3θ(a)
−
(
D2

3θ(a)

D3θ(a)

)2

+
D2

3θ(a)D3θ̂(a)

D3θ(a)θ̂(a)
− D2

3 θ̂(a)

θ̂(a)
(A.40)

as used in the main text. Notice also that x− has the same expression as x+ except that

the point p4 in the Riemann surface is replaced by p5. In the Schwarzian derivative the

only effect is to replace λ→ −λ. Thus

{x−, s} = {z̄, s}+ 2λ(∂sz̄)2 +
2

λ
(∂sz̄)2 + 2C2

±(∂sz̄)2
[
2D2

3 ln θ(ζs)− Csd
]

(A.41)
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