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1 Introduction

As suggested by the AdS/CFT correspondence, spacetime could be emerging from the

renormalization group (RG) flow of the boundary CFT. The radial direction in the bulk is

the embodiment of RG flow. It remains unclear how geometry in the bulk can be reproduced

from data on the boundary without using any pre-existing information provided by the

bulk side, like a bulk-to-boundary propagator. Ever since the seminal work by the Ryu

and Takayanagi [1, 2], the relation between geometry in the bulk and the entanglement

of the boundary state has been studied extensively (see e.g. [3–6] for general discussions

relevant to this subject). However, a working prescription on building the bulk spacetime

from boundary entanglement remains much desired.

– 1 –



J
H
E
P
1
2
(
2
0
1
5
)
0
8
1

A promising framework to achieve the above goal is an efficient numerical algorithm

proposed for evaluating the ground states of many-body systems by evolving the RG

flow through the network of local unitary operations (LUs), i.e., the quantum circuit.

This algorithm is called the multi-scale entanglement renormalization ansatz, denoted as

MERA [7, 8] (and its continuous version cMERA [9]) and is a revised version of real space

renormalization of the quantum state by also removing local entanglement (the LUs for

such kind of functions are called disentanglers in MERA) besides coarse graining (the cor-

responding LUs are called isometries in MERA). A keen observation in [10] about the

resemblance between the geometric structures of quantum circuit for MERA and the AdS

space initiates further elaborated works [11–18] along this direction.

However, very little is known about the explicit form of the LUs in MERA except

in simple free models [9, 13–15] based on variational principle. Nevertheless, we expect

the modification of the entanglement structure due to the LUs at every step of RG will

be encoded in the increment of bulk geometry being generated along the radial direction.

This leads to a recent proposal in [19, 20] (see also [21–23]) that each (open/closed) bulk

surface corresponds to a quantum (mixed/pure) state at a particular RG scale set by the

radial position of the surface. Moreover, states at different RG scales are related by LUs of

MERA along the RG trajectory. This new proposal takes into accounts the entanglement

renormalization in contrast to the earlier works [24–29] on the holographic reconstruction

of the bulk geometry.

To refine the connection between the bulk geometry and boundary entanglement renor-

malization in more microscopic sense, one needs some bulk geometric picture for the spatial

distribution of entanglement so that the action of LUs of MERA on it generates the bulk

line element along the RG trajectory. Besides, the entanglement entropy for some region

can be understood as the additive sum of the contribution from the pairs of points with

one end inside and one outside. This provides a microscopic view point of entanglement

entropy, a concept called entanglement contour as introduced in [30]. In the current de-

scription, the entanglement contour characterizes the fraction of each pair to the total

entanglement entropy.

In this sense, the recent developments in differential entropy [31–36] offers powerful

tools ready for this purpose. Especially, a special way of discussing the distance measured

in 3D hyperbolic space by the the integral geometry (see e.g. [37]) leads [38] to express the

differential entropy (the length of the holographic target bulk curve) as the volume of the

kinematic space of the geodesics intersecting the target bulk curve. Moreover, each point in

the kinematic space by itself corresponds to a geodesic with two boundary end points. The

end points can be intuitively and holographically associated with two infinitesimally small

spatial regions on the boundary, and their entanglement contribution to the differential

entropy is weighted by the volume measure of the kinematic space. This picture will serve

as the starting point of this work.

In this paper, we will adopt the framework introduced in [38] and take the tools therein

to explore the local and microscopic understanding of the relation between bulk line element

and the entanglement renormalization under the quantum state RG flow of the boundary

CFT. We divide the entanglement entropy of a point (or rather infinitesimal spatial region)
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with its complement into contributions from every other point and consider each piece as

a new type of additive measure of spatial entanglement. This quantity, labeled by a pair

of points corresponds to the metric in the kinematic space (with the points serving as

coordinates). It is very similar yet not exactly the same as the entanglement contour

introduced in [30]. For clarity, we will anyway use the the term entanglement contour

but the reader should keep in mind their minor discrepancy. The additive feature of

the entanglement contour enables us to study its renormalization (holographically a point

in the kinematic space of integral geometry) in a RG step (by advancing the boundary

cutoff surface).

In this microscopic picture we find that the holographic differential entropy at particu-

lar RG scale z = z̃ (z is also the radial coordinate) measures the long-distance entanglement

contour, i.e., contributed by the entanglement contour of pairs with end-points separated

by distance larger than 2z̃. As the area of the bulk surface for the differential entropy is

unaffected by shifting the boundary, this implies that the associated long-distance entan-

glement contour is preserved under RG flow. This is consistent with the picture of MERA

in which disentangler only removes the short-distance entanglement. Based on this fact,

we can derive the RG equation for the corresponding entanglement contour.

We furthermore generalize the above construction to (a spatial slice of) general (d +

1)-dimensional static spacetime, for which a point in the kinematic space is a (d − 1)-

dimensional surface that consists of all the geodesics passing through it. The volume form

in the kinematic space can be determined by an invariant (2d−2)-form in the phase space of

all geodesics and in the end-point coordinates, it is again given by the second derivatives of

the geodesic length. The metric element can be reconstructed using the Crofton’s formula

in integral geometry and we explicitly demonstrate the construction using a homogeneous

and isotropic space. Moreover, the correspondence between the kinematic volume element

and the entanglement contour between two points can be generalized to higher dimensions

straightforwardly. Hopefully this will offer a nice prescription on how to construct geometry

from the entanglement structure.

The layout of the paper is as follows. In section 2, we review the basics of integral

geometry. In section 3, the connection between integral geometry and the renormalization

group flow of entanglement contour is discussed. We explore the possible applications of

integral geometry in higher dimensions in section 4. We conclude and discuss some of

the future directions in section 5. Some of the relevant materials are relegated to the

appendices.

2 Integral geometry in AdS/CFT

Integral geometry offers helpful tools in reconstructing the bulk geometry from boundary

data in the context of AdS/CFT correspondence. In section 2.1 we will first briefly review

the basics of integral geometry and demonstrate how it works in pure AdS3. We will

follow, though not very closely the discussion in [38] (see also [39] for different applications

of integral geometry). In section 2.2 we will then generalize the results obtained in [38]

and compute the distance between two points in a generic AdS3 space. In section 2.3, we
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consider the special case in which the two points are infinitesimally apart and their distance

becomes the line element. We will further study the line element in later sections.

2.1 Review of integral geometry

In the framework of integral geometry, the volume of a q-dimensional object M q in a d-

dimensional symmetric spaceM can be measured by r-dimensional planes. More precisely,

the volume of M q can be expressed in terms of an integral over an auxiliary space K called

kinematic space, which consists of all the r-planes. In the context of AdS/CFT, we apply

integral geometry to a d-dimensional spatial slice of the stationary bulk spacetime. In

AdS3 (d = 2), the planes we need to consider are geodesics (r = 1) and we are mainly

interested in the bulk curves (q = 1), whose lengths can be written in terms of integrals

via the Crofton’s formula (G is the Newton constant of bulk gravity)

σ(γ)

4G
=

1

4

∫
γ∩Γ 6=∅

N(γ ∩ Γ) εK , (2.1)

whereN(γ∩Γ) denotes intersection number between the bulk curve γ and oriented geodesics

Γ ending on the boundary, and εK denotes the volume form of the kinematic space K.

In the case of pure AdS3 the measure follows from that of the spacetime isometry

group and has a natural entropic interpretation

εK(u, v) =
∂2S(u, v)

∂u∂v
du ∧ dv . (2.2)

The function S(u, v) is the length (divided by 4G) of the geodesic with u, v being the

boundary end points, which are now also the coordinates of the kinematic space. According

to Ryu-Takayanagi (RT) formulation [1, 2], S(u, v) is the holographic entanglement for the

the boundary interval [u, v], which is also denoted as SEE(u, v) (or simply SEE(|u− v|) for

a translationally invariant state). The second derivative of ∂u∂vS can be understood as

the limiting case of the conditional mutual information defined as

I(A,C|B) := S(AB) + S(BC)− S(ABC)− S(B) . (2.3)

In the current case, we choose

A = (u− du, u), B = (u, v), C = (v, v + dv) ,

and hence I(A,C|B) = ∂u∂vS dudv, which is positive definite as a result of strong subad-

ditivity.

The causal structure of kinematic space tells that two geodesics sharing the same

left or right end point are null separated,1 and hence the end points can be used as null

coordinates. As a result, we have the following metric in the kinematic space

ds2 =
∂2S(u, v)

∂u∂v
dudv . (2.4)

1Following [38] a geodesic γ1 is in the future of γ2 if the interval of γ1 contains that of γ2.
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Substituting in the volume form (2.2), the right hand side of (2.1) becomes∫
γ∩Γ 6=∅

∂2S(u, v)

∂u∂v
du ∧ dv = −

∮
∂S(u, v(u))

∂u
du . (2.5)

The integral is reduced to a surface integral over geodesics v(u) tangent to the bulk curve

and this is essentially the differential entropy (A.4) (see appendix A for a review on differ-

ential entropy). Differential entropy E can be understood as the continuum limit (n→∞)

of the following quantity

E =

n∑
k=1

[SEE(Ik)− SEE(Ik+1 ∩ Ik)] , (2.6)

where Ik denotes the intervals that cover the boundary and SEE(Ik) is the entanglement

entropy for each of them. We note that differential entropy is a quantity defined entirely

from the data on the boundary.

We note however that at this point the set of geodesics intersecting γ cannot be de-

termined without further input from the bulk. To see how the geometry of the (bulk)

real space is entirely encoded in the kinematic space, the first step to take is to construct

bulk points in the kinematic space. When a bulk curve shrinks to zero in size, it turns

into a point and intuitively we can identify the set of geodesics passing through it as the

correspondence in the kinematic space. This set for a point A is a (d − 1)-dimensional

subspace pA (called point curve) in the kinematic space.

To be concrete, we will write down the specific forms of geodesics and point curves in

pure AdS3. In the global coordinate, the metric reads

−
(

1 +
R2

L2

)
dT 2 +

(
1 +

R2

L2

)−1

dR2 +R2dθ2 . (2.7)

A point in AdS3 bulk can be mapped to a cover of the boundary {I[α(θ)]} (a collection of

intervals I[α(θ)] whose union ∪θI[α(θ)] is the boundary), where θ is the angular coordinate

of the center of an interval and α(θ) is half of its length. The function α(θ) contains all

the necessary information to specify the intervals and hence we use it as the label. More

specifically, a geodesic passing through (R, θ̃) subtends an interval centered at θ and the

half length of this interval α(θ) is given by

α(θ) = cos−1

[
R cos(θ − θ̃)√
L2 +R2

]
. (2.8)

The corresponding entanglement entropy of the interval is given by

SEE(α) =
L

2G
log

2L sinα

µ
, (2.9)

where µ is the UV cutoff. We can rewrite SEE in terms of end points u, v and they are

related to α, θ by

θ =
u+ v

2
, α =

v − u
2

. (2.10)
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Plugging (2.9) into (2.4), we get the metric in the kinematic space

ds2 =
L

4G

du dv

2 sin2(v − u)/2
, (2.11)

The point A is then described by a point curve pA given by v(u)

v(u) = 2 cos−1

 √
L2 +R2 sin

(
u
2

)
+R sin

(
u
2 − θ̃

)
√
L2 + 2R2 − 2R

√
L2 +R2 cos(u− θ̃)

 . (2.12)

It appears that we again need the information from the bulk (2.8). However, as demon-

strated in [38], the point curves can be constructed iteratively. We will come back to this

point later.

We can define in K a region p̃A, called the future of pA which consists of geodesics

that will sweep through A when being deformed to the boundary. They fill up the region

above the curve pA. The distance between two points A,B again follows from (2.1). Only

geodesics that intersect the geodesic between A,B contribute to the length and they all lie

in the region sandwiched by the two curves pA, pB. More precisely they are specified by

(see figure 1 for specific examples)

p̃A∆p̃B ≡ (p̃A ∪ p̃B)− (p̃A ∩ p̃B) . (2.13)

The distance then takes the following form

d(A,B)

4G
=

1

4

∫
p̃A∆p̃B

εK . (2.14)

In higher dimensions, the Crofton’s formula can be generalized [37],∫
Mq∩Lr 6=∅

σq+r−d(M
q ∩ Lr) εK =

Od . . . Od−rOq+r−d
Or . . . O1O0Oq

σq(M
q) , (2.15)

where σn denotes the volume (area/length) of an n-dimensional object and On is the area

of unit n-sphere

On =
2π

n+1
2

Γ
(
n+1

2

) . (2.16)

Here we again use εK to denote the measure of the kinematic space K, which now consists

of all the r-dimensional planes2 and the integration is over all the planes that intersect

the q-dimensional surface M q. Intuitively, each r-plane performs a measurement on the

volume and sees the size of the cross section σq+r−d(M
q ∩ Lr). The formula (2.15) then

tells us that the total volume can be obtained by adding up all the pieces. Notice that we

no longer introduce the factor (4G)−1 in εK because generically σq(M
q) is not related to

entanglement entropy. We will discuss integral geometry in higher dimensions in section 4.

2The planes in (2.15) are unoriented. But for convenience, we often consider oriented geodesic and put

in a compensated factor like 1/2 in (2.1) (the other 1/2 follows from O2/O1).

– 6 –



J
H
E
P
1
2
(
2
0
1
5
)
0
8
1

Figure 1. Examples of point curves. Coordinates of x (midpoint) and ∆x (size) instead of end

points u, v are used to parameterize a geodesic. On the left A = (x̃, z̃) and B = (x̃, z̃ + dz̃) and on

the right A = (x̃, z̃) and B = (x̃+ dx̃, z̃). In either case, p̃A∆p̃B is indicated by the shaded region.

2.2 Generalization to generic AdS3 spaces

Although in [36, 38] the Crofton’s formula (2.1) was only fully tested in pure AdS3 and

its quotient (BTZ black holes), it is not difficult to see that the formula is valid in more

general situations. Here we would like to use it to compute the distance between two points

in a generic AdS3 space. In this space the geodesics can be parameterized using their end

points u, v and the volume form is given by (2.2). Points (or rather point curves) are given

by one dimensional surfaces in the kinematic space. We consider two bulk points A and

B, and their point curves are denoted by pA and pB respectively. We work in a Poincare

patch and without lost of generality we also assume vA(u) < vB(u) as u → −∞ (see e.g.

the right panel of figure 1 for an example of this kind). The distance between A,B can be

computed by summing over all the geodesics intersecting the geodesic which connects A

and B, i.e., by (2.1),

d(A,B)

4G
=

1

4

∫ +∞

−∞

∣∣∣∣∂S(u, vB(u))

∂u
− ∂S(u, vA(u))

∂u

∣∣∣∣ du
=

1

2

(∫ u(pA∩pB)

−∞
−
∫ +∞

u(pA∩pB)

)[
∂S(u, vB(u))

∂u
− ∂S(u, vA(u))

∂u

]
du

:= [SB(u)− SA(u)]
∣∣∣
u(pA∩pB)

, (2.17)

where pA ∩ pB is the geodesics passing through both points A and B, i.e., corresponds in

kinematic space to the intersection point of the right panel of figure 1, and u(pA∩pB) is its

left end point on the boundary. In the last step, we define SA,B(u) as the length (divided

by 4G) of the geodesic from the bulk point A (or B) to u and use the following relation

∂S(u, vA(B)(u))

∂u
=
dSA(B)(u)

du
, (2.18)

which is continuous in either branch. We note that in contrast to (A.5) the derivative with

respect to one of the end points becomes a total derivative when the other end point is

held fixed. Note that SB(u) − SA(u) is the difference in length of the two geodesics that
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start from A and B respectively but both end at u on the boundary. Obviously, as the final

expression of (2.17) is evaluated on the geodesic pA ∩ pB, this (infinitesimal) difference is

by construction the (line element) distance between A and B. We note that the derivation

above is independent of specific geometry of the (bulk) real space.

2.3 Line element from integral geometry

Previously we have discussed the construction of the length of a bulk curve from the

integral geometry. A particular case for this construction is to obtain the line element, i.e.,

the metric of the infinitesimal interval, which is the building block of the bulk differential

geometry. This is essentially the infinitesimal version of (2.14). For simplicity we will work

in the Poincare coordinate so that the metric takes the form

ds2 =
L2

z2
(dz2 + dx2 − dt2) . (2.19)

We now like to obtain the line element between two infinitesimally separated bulk points

along radial direction, i.e., (x̃, z̃) and (x̃, z̃+ dz). By the integral geometry, we need the set

of geodesics corresponding to the point curve for the bulk point (x̃, z̃). These geodesics can

be parametrized by the coordinate of the highest point x, for which the geodesic subtends

an interval on the boundary of length

∆x = 2z̃

√(
x− x̃
z̃

)2

+ 1 . (2.20)

As the metric (2.19) is translational invariant along the x-direction, it is more con-

venient to parametrized the kinematic space of the geodesics by x and ∆x instead of the

null-coordinates u, v, i.e., x = 1
2(u + v),∆x = u − v. Then, the measure factor ∂u∂vS

becomes −∂2
∆xS so that we obtain the line element from (2.14) as following (see figure 1

for the region to be integrated):

√
gzzdz = 4G dz

∫ +∞

−∞

1

2

(
− d2S

d∆x2

) ∣∣∣∣d∆x

dz̃

∣∣∣∣ dx = dz

∫ +∞

x̃

Lz̃ dx

[(x− x̃)2 + z̃2]3/2
=
L

z̃
dz .

(2.21)

Here we introduce the absolute value for the difference in ∆x between two points to account

for the positive volume. Similarly, the generic line element can be constructed as following:

ds = −4Gdz

∫ +∞

−∞

1

2

d2S

d∆x2

∣∣∣∣d∆x

dz̃

∣∣∣∣ dx =
dz

2

∫ +∞

−∞

L|k(x− x̃) + z̃|dx
[(x− x̃)2 + z̃2]3/2

=

√
1 + k2L

z̃
dz ,

(2.22)

where k := ∂z̃x̃.

2.4 Line element from entanglement renormalization via AdS/MERA

The motivation of this work starts from the observation that the bulk line element con-

structed above via integral geometry can also be obtained from the holographic entangle-

ment renormalization. This then suggests that entanglement renormalization could also be

understood from the integral geometry point of view.
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The idea of entanglement renormalization was first proposed in [7, 8] in the context

of solving many-body systems by adopting a network of local unitary transformations

(LUs). This algorithm is called multi-scale entanglement renormalization ansatz (MERA).

Later on it was realized [10–12] that the geometric structure of MERA network of gapless

system is of AdS space. This equivalence is then coined as AdS/MERA correspondence,

see also [13–18] for later development.

Motivated by AdS/MERA, a more refined picture in the context AdS/CFT proposed

recently [19, 20, 22] (see also [21]) is the so-called surface/state correspondence (SS-duality),

which we will adopt for our discussions in this work. The proposal states that any co-

dimensional two convex surface Σ is dual to a holographic quantum state described by den-

sity matrix ρ(Σ). Especially, if Σ is closed, it is dual to a pure state ρ(Σ) = |ψ(Σ)〉〈ψ(Σ)|.
In the context of AdS/CFT, the bulk space can be foliated into congruence of these convex

surfaces, and different surfaces/states are connected by a network of LUs which can be

interpreted as renormalization flow if one follows the UV to IR directions. The LUs of

MERA are utilized to disentangle the IR-irrelevant degrees of freedom (d.o.f.) from the

the IR-relevant ones. By keeping only the IR-relevant d.o.f., the RG flow can be treated

as a unitary transformation. The feature of disentangling the IR-relevant and irrelevant

d.o.f. makes the RG flow as a process of entanglement renormalization.

Based on SS-duality, We now demonstrate that the line element of AdS3 can also be

understood as the holographic entanglement renormalization, i.e., disentangler and isom-

etry (both are LUs) in the MERA construction if one follows the AdS/MERA proposal.

The simplest way to see this is to consider the entanglement between a semi-infinite line

interval [x̃,∞) and its complement in holographic CFT2. The holographic entanglement

entropy is given by the length of the a vertical bulk line x = x̃, i.e.,
∫ √

gzzdz. If we

move from a surface/state at z to the one at z + dz, the length is then deduced by the

amount
√
gzzdz so that the entanglement across the point at x̃ decreases by the amount

of 1
4G

√
gzzdz.

Next we consider a more complicated case for the entanglement removal of a line

interval of length `. The holographic entanglement entropy for the surface/state ψ(z̃) at

scale z = z̃ can be obtained by the RT formula and the result is3

SEE(`; z̃) =
L

2G
log

`
2 +

√
( `2)2 + z̃2

z̃
. (2.23)

Thus, the amount of the entanglement removal when we move the surface/state at z = z̃

to the one at z = z̃ + dz is given by

− dSEE

dz

∣∣∣
z̃
dz =

L

4G

`

z̃
√

( `2)2 + z̃2
dz . (2.24)

Interestingly, if we take the limit `→∞, then (2.24) becomes

− dSEE

dz

∣∣∣
z̃
dz → L

4G

2dz

z̃
. (2.25)

3Notice that the RG running of a state, or rather in this particular case the running of SEE(`; z̃) must

agree with the geometry of the bulk as indicated by surface/state correspondence.
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The additional factor of two is due to the double counting of two sides of the interval.

After deducting this factor we reproduce the line element as obtained from the integral

geometry. This agrees with the implication that the entanglement entropy being removed

by LUs is converted into the line element.

We can also apply integral geometry to the space enclosed by a closed convex surface.

Notice that unlike in [38], for a general surface we need to parameterize the geodesics by

their end points on the surface. For example, if the surface is the slice z = z̃ then we

use the corresponding S(u, v; z̃) (which obviously is different from S(u, v; 0)) to define the

measure. It is non-trivial that the volume in the kinematic space can be expressed using

the boundary data on this slice. We will prove this in section 4.1. The ability to define

entanglement contour on different slices yet still identify it with the kinematic measure

makes it possible to study the RG running of entanglement contour, which we will do later

in this section.

3 Refined entanglement renormalization and integral geometry in AdS3

Motivated by the different constructions of the bulk line element either from integral ge-

ometry method or from entanglement renormalization, in this section we will explore the

connection between integral geometry and entanglement renormalization in AdS3. We will

then generalize the consideration to higher dimensional AdS space in the next section.

To proceed, we will first reconsider the Ryu-Takayanagi (RT) formula of the holographic

entanglement form the integral geometry point of view. By this way, we recognize the

kinematic measure can be understood as entanglement contour, i.e., an additive measure

of entanglement density proposed in [30]. Furthermore, by adopting the SS-duality, we

can see geometrically how the long-distance entanglement contour renormalizes under the

change of RG scale. Especially, a RG equation of the long-distance entanglement contour

will be proposed based on the fact that the local unitary operation of MERA can only

remove short-range entanglement but keep the long-distance one intact.4

3.1 Entanglement contour associated with pair of points

According to the RT formula, entanglement entropy in a two dimensional CFT can be

computed from geodesic in the bulk. The latter is the special case of bulk curve and its

area can be reproduced using the Crofton’s formula (2.1). More explicitly, we consider

the surface state which is a horizontal surface at z = z̃ and the holographic entanglement

entropy for the interval I` := [ x̃, x̃ + ` ] can be rewritten as the sum of contribution

associated with spatially separated pairs of points

SEE(`; z̃) =
1

2

∫ x̃

−∞
du

∫ x̃+l

x̃
dv
∂2S(u, v; z̃)

∂u∂v
+

1

2

∫ ∞
x̃+`

dv

∫ x̃+l

x̃
du
∂2S(u, v; z̃)

∂u∂v
. (3.1)

In the above either u or v is inside I` but not both. The expression (3.1) can be easily

understood holographically as shown in figure 2: when using the integral geometry to

4Here the notions of long and short are only defined relatively compared to the RG scale. In a discrete

picture, the short-distance entanglements refer to the those between neighboring sites while all others are

viewed as long.
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Figure 2. We can visualize the kinematic space metric ∂u∂vS(u, v) as counting the amount of

entanglement between pairs of points crossing the entangling surface, which contribute the entan-

glement entropy in an additive sense. Only the geodesics such as the green ones (starting one end

at x̃) intersecting the RT geodesic (the blue one) contribute to the entanglement entropy of interval

covered by RT geodesic, while the red one does not.

obtain the length of RT geodesic Γ`;z̃ for the holographic entanglement entropy, only the

set of geodesics intersecting this RT one are counted. As Γ`;z̃ has end points at u = x̃

and v = x̃ + ` only the geodesics with one end-point in I` and another one outside will

intersect Γ`;z̃.
5

In the limiting case ` → dx, (3.1) is now counting the entanglement of a point (with

its complement) and can be reduced to

SEE(dx; z̃) :=

∫ ∞
0

s̄(r, x̃; z̃)dr =
1

2
dx

(∫ x̃

−∞

∂2S(u, v; z̃)

∂u∂v

∣∣∣
v=x̃

du+

∫ ∞
x̃

∂2S(u, v; z̃)

∂u∂v

∣∣∣
u=x̃

dv

)
,

(3.2)

Notice that the validity of this equation is independent of the Crofton’s formula and follows

from the fact that S(u, v; z̃) is by definition entanglement entropy of an interval.

The integral (3.2) shows the additive feature of the entanglement entropy in terms

of the differential sum of the density quantity s̄(r, x̃; z̃), which measures the infinitesimal

contribution to entanglement entropy parameterized by a pair of points located at (x̃, z̃) and

(x̃±r, z̃) with r := |u−v|. This kind of the quantity is recently proposed in [30] and is called

“entanglement contour” which should be positive and summed to the entanglement entropy

(see also [40, 41] for a similar concept). Formally, entanglement contour sA(i) ≥ 0 is defined

as contribution to the entanglement entropy SA from a subset i ⊂ A (
∑

i sA(i) = SA).

Instead, s̄(r, x̃; z̃) of (3.2) is defined for i ⊂ Ā, here A is the line element dx at x̃ and

Ā is its compliment. However, we will abuse the terminology a bit and also call s̄ the

entanglement contour. As SĀ = SA for a pure state, in this case s̄ is then the ordinary

5Due to the additive feature of (3.1), it is tempting to visualize the pairs of points as Bell pairs so that

the entanglement entropy is counting the number of Bell pairs crossing the entangling surface. However,

this visualization could be too naive to be compatible with the interpretation of the metric ∂2S(u,v;z̃)
∂u∂v

the

conditional mutual information.
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entanglement contour for the region Ā.6 An interesting implication of this microscopic

picture of entanglement entropy is that the entanglement contour is definitely not bi-partite

as the target point is correlated with all other points.7

Based on (3.2) we can define the long-distance entanglement contour (of a point) for

latter usage, which only includes the contour of pairs separated by distance larger than

some length scale `≥. That is, we just set the lower limit of the integral (3.2) to be `≥,

and define

Θ(`≥, x̃; z̃)dx :=

∫ ∞
`≥

s̄(r, x̃; z̃)dr =
1

2
dx

(
∂S(x̃− `≥, v; z̃)

∂v

∣∣∣
v=x̃
− ∂S(u, x̃+ `≥; z̃)

∂u

∣∣∣
u=x̃

)
.

(3.3)

We note that this quantity by definition is another entanglement contour since s̄(i ∪ j) =

s̄(i) + s̄(j). The first term of the entanglement contour s̄(r, x̃; z̃) (contribution from the

segment dx at x̃) agrees with the entanglement contour of the semi-infinite interval I`→∞
as defined below.

The holographic entanglement contour for the entanglement entropy of an interval I`
of length ` for a surface/state ψ(z) (at scale z) can be constructed similarly in the way of

integral geometry, i.e., using (3.1). In the limit of `→∞, we have

SEE(x > x̃; z̃) :=
1

2
lim
`→∞

SEE(`; z̃) =

∫ ∞
x̃

s(x̃, x; z̃)dx =
1

2

∫ ∞
x̃

∂xS(x̃, x; z̃)dx . (3.4)

This integral is performed over half of the point curve of a point at (x̃, z̃) (see figure 3) and

gives half of the differential entropy for the geodesic lim`→∞ Γ`;z̃ [42]. Here the entangle-

ment contour s(x̃, x; z̃) follows the usual definition, i.e.,
∑

i∈A sA(i) = SA.

Note that, rewriting the entanglement entropy in terms of differential entropy also

provides us a way to understand (2.25) (i.e., renormalization of entanglement entropy

matches the length of line element) from the viewpoint of integral geometry, i.e., half of the

difference between the differential entropies of the two point curves gives their distance.

Notice that we need to switch to the midpoint coordinate in order to rewrite (3.4) as

differential entropy of a point, producing an extra factor of 2.

At this moment, it is interesting to compare the entanglement contour holographically

obtained here (in the UV limit) with the one for the gapless system on the 1D lattice solved

numerically in [30]. For pure AdS3, the holographic entanglement contour for I`→∞ is

s(|x− x̃|; z̃) := s(x̃, x; z̃) =
L

8G

1√
(x− x̃)2 + z̃2

, (3.5)

6As we shall see later in section 4, the definition of entanglement contour and its correspondence with

the kinematic measure can be carried over to higher dimensions even though the entanglement contour can

no longer be understood as conditional mutual information.
7Some more minor constraints for the entanglement contour can be found in [30]. In particular, for a

subset X ⊂ A, unitary transformation restricted to X changes neither sA(X) or sA(A−X). This implies

that ∂u∂vS(u, v; z̃) as entanglement contour is a quantity tied to a pair of points since it is invariant under

the transformation on the region away from u, v. One can see this by noting that S can also be computed

from the two-point correlator of heavy operator. However, such property is not obvious if we instead view

it as the conditional mutual information since the tripartite entanglement between A,B,C in general is

disrupted by a transformation involving B and ABC.
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Figure 3. Various geodesics passing through the point at z = z̃. When the boundary is lifted to

z = z̃, they become curves sharing the same end points and cover the successive intervals denoted

as {Ik}, which can be used to define differential entropy (2.6). In this case, the longer curves (e.g.

the green one) always contain the shorter (the red and blue ones) entirely (i.e., I1 ⊂ I2 ⊂ · · · Ik ⊂
Ik+1 ⊂ · · · ⊂ I` so that SEE(Ik)−SEE(Ik+1 ∩ Ik) = 0). From the perspective of the boundary (now

at z = z̃), this implies the differential entropy is given by the length of the longest geodesic.

where z̃ is regarded as the UV cutoff. In the UV limit z̃ → 0, the entanglement contour

s(|x− x̃|; z̃ = 0) ∝ 1/|x− x̃|, this agrees with the result in [30]. Moreover, it is easy to see

the aforementioned fact that Θ(`≥, x̃; z̃) = 2s(|x− x̃| := `≥; z̃).

In this subsection, we introduce the notion of the entanglement entropy of a point with

its complement. This notion seems peculiar but provides a very refined picture. In the

next subsection we see that its peculiarity helps to consider the entanglement renormal-

ization in the context of SS-duality. Especially, we can derive a holographic RG equation

for Θ(`≥, x̃; z̃).

3.2 RG equation of long-distance entanglement contour

In the previous discussions we have elaborated the relation between the entanglement

entropy and the bulk geometry from the integral geometry approach. Especially, bulk line

element can be reproduced from the infinitesimal RG flow of the entanglement entropy, and

the vice versa the entanglement contour can be arrived from the bulk integral geometry for

which a new microscopic measure of entanglement is deduced. It would be nice if further

information about the surface/state ψ(z) of SS-duality as defined in [20–22] can be obtained

from the entanglement contour, of which the RG flow should be related to the LUs of the

corresponding MERA network. Unfortunately, a definite recipe of constructing these LUs

based on entropic consideration remains out of reach. Despite that, it does not prevent one

from studying the entanglement renormalization in the context of AdS/MERA duality.

One interesting question we would like to answer is how the LUs under the RG flow

affect the entanglement contour. Intuitively, the LUs only act on the contour of short-

ranged pairs so that these operations under RG flow can only remove the short-distance

entanglement but keep the long-distance one intact. This is consistent with the fact that

∆x in (2.20) does have a minimum 2z̃ for a surface state at z = z̃. However, a typical

RG running behavior of the entanglement contour given in (3.5) seems to contradict to

the local nature of entanglement renormalization as (i) the entanglement contour is finite

even for x − x̃ < z̃ so that the short-distance entanglement is not removed completely;

– 13 –
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Figure 4. For a pair of points a and b separated by a distance larger than twice of the RG scale

z̃, there are two dual situations of partition intervals for some k and k′ shown here. The combined

contributions to the different entropy form these two dual situations is positive. See main text for

detailed description. Note that for better vision we move the points a, b off the axis.

and (ii) the entanglement contours of all length scales decrease in the RG flow so that the

long-distance contour seems to not remain intact under the local unitary operations. We

will see that these contradictions are just illusion caused by introducing the cutoff in a

continuous theory.

Holographically, it is easy to understand the entanglement contour for the long-distance

entanglement, i.e., long-distance entanglement contour. Let us consider the differential

entropy associated with the bulk line z = z̃. According to the integral geometry repre-

sentation of the differential/entanglement entropy such as the one given in (3.2), only the

contour associated with pairs separated by distance greater than 2z̃ will have nonzero con-

tribution as the geodesic connecting the pair can intersect the z = z̃ line. Formally, the

corresponding long-distance entanglement contour for the surface state ψ(z = 0) is given

by the quantity Θ(2z̃, x̃; 0) previously defined in (3.3).

3.2.1 Field theory point of view

Before we study the holographic RG flow of long-distance entanglement contour in full

details, we would like to give a heuristic picture of the long-distance entanglement contour

for a surface/state at RG scale z = z̃ from the field theory point of view. Here the

corresponding entanglement contour contributing to the differential entropy is labelled by

a pair of points a, b separated by a distance `≥. Despite of using the bi-partite labelling,

the entanglement contour by its nature is not bi-partite as emphasized before.

The set of intervals for evaluating the differential entropy is denoted by {Ik} as usual.

For the current case, the length of each Ik is 2z̃, i.e., for a surface/state at RG scale z = z̃.

For `≥ > 2z̃, then there should exist two corresponding situations as depicted in figure 4.

The left panel is the situation that it happens to have a particular interval Ik so that

a ∈ Ik − Ik+1 and b /∈ Ik. Here we assume a is to the left of b and the center of Ik is also

to the left of the center of Ik+1). According to (3.2), the contour of this pair contributes

to SEE(Ik) but not to SEE(Ik ∩ Ik+1), that is, it has positive contribution to SEE(Ik) -

SEE(Ik ∩ Ik+1), i.e., the k-th fractional part of the differential entropy. At the same time,

there should also be a particular Ik′ for which the same pair is in the situation as depicted

in the right panel of figure 4: b ∈ Ik′ − Ik′+1 and a /∈ Ik′ ,8 so that the pair also has positive

contribution to the differential entropy.

8To be more precise, before taking the continuous limit pairs of size `≥ > 2z̃ −∆Ik−Ik+1 can contribute

but in the limit ∆Ik−Ik+1 → 0.
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Figure 5. In contrast to figure 4, for the pair of points a and b separated by a distance shorter

than 2z̃, the contributions to the differential entropy from the dual situations shown here cancel

each other. The left-panel situation gives negative contribution which cancels the positive one from

the right-panel one.

In contrast, for `≥ < 2z̃ we also have two corresponding situations as depicted in

figure 5. In this case, the situation in the left panel with a ∈ Ik − Ik+1 gives the negative

contribution to the differential entropy, and cancels the positive contribution from the one

in the right panel with b ∈ Ik′ − Ik′+1. This implies that there is no contribution to the

differential entropy from the entanglement contour of the pairs separated by a distance

larger than 2z̃.

In summary, the differential entropy constructed by the intervals of length equal to

2z̃ only counts entanglement contour associated with the pairs separated by a distance

greater than 2z̃. The contributing contours measure the long-distance correlation of size

beyond 2z̃ (even though not all the long-distance entanglement is captured by the contour)

and they can be considered as the manifestation of the cost for performing the task called

constrained state merging introduced in [42]. This task is performed by the operations

restricted to within the region of size smaller than 2z̃.

3.2.2 Integral geometry point of view

Now we like to consider how the entanglement contour renormalizes along the RG flow

from the integral geometry point of view. We notice that the change of the cutoff line

from z = z1 < z̃ to z = z2 < z̃ will not affect the measure of the kinematic space (number

density of geodesics) at z = z̃ as long as z1, z2 < z̃

∂2S(u(z1), v(z1); z1)

∂u∂v
du(z1) ∧ dv(z1) =

∂2S(u(z2), v(z2); z2)

∂u∂v
du(z2) ∧ dv(z2) , (3.6)

where u(z), v(z) are end-point coordinates defined on different slices. Obviously, the in-

tegrated form of (3.6) also holds. By Crofton’s formula, It implies that the differential

entropy of some bulk curve (within the region z > z̃) is invariant as we move the running

RG scale from z = z1 < z̃ to z = z2 < z̃.

Moreover, as we can see from figure 6 the distance |u(z)−v(z)| between the end points

of the same geodesic shrinks along the RG flow. In other words, the same correlation is

seen as for shorter scale from the viewpoint of an IR observer.

To derive some concrete result from the fact of (3.6), we consider renormalization of

the long-distance entanglement contour (of a point) (3.3) (see also (3.2)) in homogeneous

space, i.e. holographically dual to pure AdS3. For a surface/state ψ(z̃), the entanglement

entropy between a line element around the point at (x̃, z̃) and its complement is Θ(0, x̃; z̃)
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as already given by (3.3). Due to the assumed homogeneity along x-direction, Θ(`, x̃; z) is

independent of x̃ (thus we omit the x̃ in Θ(`, x̃; z) hereafter) so that we can add up the this

contour on a horizontal closed line (by imposing periodic boundary condition x̃ ∼ x̃+ Lx)

to arrive its length (or the entanglement entropy) Θ(0; z̃)Lx. On the other hand, the

length can be seen as the differential entropy for the surface/state ψ(z), which using (2.5)

and (3.3) is given by
∫
∂∆xS(∆x)dx̃ = LxΘ(2

√
z̃2 − z2; z). The equivalence of the above

two different views is guaranteed by the same integral geometric construction and then

it yields

Θ(2
√
z̃2 − z2; z) = Θ(0; z̃) . (3.7)

Eq. (3.7) implies that the long-distance entanglement (more precisely, the part captured

by the contour) is reshuffled into shorter scale as one flows the surface state from the UV

state ψ(0) to ψ(z).

This result of (3.7) can be understood holographically as follows. As shown in figure 6,

the entanglement contour for the differential entropy associated with the line element

around the point (x̃, z̃) is manifested as the geodesic with (x̃, z̃) as its highest point. The

locations of the pair of points are then specified by its intersection with the cutoff surface

for the UV reference state. As long as z ≤ z̃, the entanglement contour remains after the

RG step from ψ(0) to ψ(z) but with the separation of the end points change from 2z̃ to

2
√
z̃2 − z2. As the contour of all the other pairs contributed to Θ(2

√
z̃2 − z2; z) are mani-

fested in a larger geodesic than the above one so that they also remain after the above RG

step. Thus the long-distance entanglement contour remains the same after the RG running

as long as the running scale z < z̃.

In some sense, this reshuffling is similar to the isometry operations of MERA, for which

the entanglement of a pair are not removed but rescaled under coarse-graining into that

of a new pair.9 This is exactly what we have shown in figure 6. On the other hand, there

are situations in which the entanglement contour of a pair of points is removed under RG

flow, as shown in (the red-dotted geodesic of) figure 6. The entanglement entropy reduced

in this case is also turned into (a proportion of) the length of the line element as predicted

by the Crofton’s formula (2.1). This is similar to the disentangler operations in MERA.

In fact, the above entanglement renormalization can be encoded in the following RG

equation for the entanglement contour, i.e.,

d

dz
Θ(2

√
z̃2 − z2; z) = 0 . (3.8)

It is easy to see that Θ(`≥; z) = 2s(`≥; z̃) given by (3.5) trivially satisfies (3.8). Moreover,

one can also see that (3.7) is consistent with RG equation (3.8).10

9On a MERA network, a similar process is realized as transferring of entanglement to the sites on the

next layer, which is part of the isometry operation. We note however that the correspondence is not precise

because a site in general carries entanglement to both sides and hence the entanglement entropy is not

always reduced when the site is dragged across ∂A.
10As the entanglement entropy of finite interval is related to integration of entanglement contour, we

think the RG equation of renormalized entanglement entropy in [43] could be related to some integrated

form of (3.8). This issue deserves further study.
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Figure 6. The long-distance entanglement is invariant under RG flow but it is reshuffled to shorter

scale. Two situations are shown here. The first is the blue geodesic which intersects both surface

states at z and z+dz. This implies that the entanglement contour for the intersecting pair of points

is just reshuffled but not removed. However, the entanglement entropy is reduced (and turned into

line element dz) as the left end point is dragged across the entangling surface (the intersection

points of the vertical bar with the horizontal lines). The second situation is the red-dotted geodesic

for which the intersecting points shrink to none as the surface state is pushed up from z to z + dz.

The first situation is similar to isometry operation in MERA, while the second is to disentangler.

Taking derivative with respect to z, we get

− ∂zΘ(0; z)dz = −2∂`≥Θ(`≥; 0)|`≥=2zdz . (3.9)

Being positive, the l.h.s. is the change of the total entanglement entropy (of every point)

under RG because Θ(0; z) counts the entanglement contribution with any distance from

the point x = x̃. On the other hand, Θ(`≥; z) only counts the ones with distance greater

than `≥ so that −∂`≥Θ(`≥; z) (also positive) is essentially the entanglement density at a

certain length scale `≥. This RG equation tells that which portion of the entanglement is

removed under each step of the RG flow.

One can easily generalized the above RG equation for the entanglement contour to

more generic background other than the pure AdS3 space. Let ∆(z̃; z) denotes the length

of the interval spanned by the geodesic and we choose the parameter z̃ so that ∆(z; z) = 0,

then the RG equation is

d

dz
Θ(∆(z̃; z); z) = 0 , with ∆(z; z) = 0 , (3.10)

which implies

− ∂zΘ(0; z)dz = −∂`≥Θ(`≥; 0)|`≥=∆(z,0)d∆(z; 0) . (3.11)

Other than a non-trivial Jacobian between z and the length scale on the boundary, we

reach essentially the same conclusion.

Finally we would like to remark on how the RT formula can be realized from the

renormalization of entanglement contour. Both types of LUs (disentangler and isometry)

can be visualized as segments of geodesics (red and blue respectively in figure 6) chopped
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off by the surfaces of RG, which are the analogues of the links (disentangler/isometry)

connecting neighboring sites on the MERA network. Taking both types of geodesics (long

and short) into account, the Crofton’s formula (2.1) turns into the familiar form in MERA

length of curve γ = #(LUs cut) . (3.12)

Moreover, the entanglement entropy of an interval A is bounded by the number of cuts

(LUs that reduce the density matrix ρA to the one with no entanglement)

SA ≤ #(LUs cut) = length of curve γ ending on ∂A, (3.13)

which is precisely the MERA version of RT formula.

To summarize, the entanglement structure of a quantum state is depicted by the col-

lection of entanglement contours labeled by pairs of points on the boundary. As RG flow

progresses, the contour of pairs shorter than the cutoff are completely removed and they

are no longer relevant for the entanglement of the new state ψ(z) (or its corresponding

geometry) because these pairs correspond to the entanglements over scales shorter than

the cutoff. All the entanglement contours over longer scales remain intact and are simply

relabeled. Both types of operations are local.

4 Generalization to higher dimensions

We have demonstrated that, using AdS3 as an example, the connection between entan-

glement and geometry becomes manifest in the framework of integral geometry. In this

section, we would like to generalize this construction to (the d-dimensional spatial slice of)

d+ 1-dimensional stationary spacetime.

4.1 Kinematic space

The key observation in 3D case we have is that the volume measure of the auxiliary kine-

matic space of all geodesics is tied to the entanglement at a particular scale. Furthermore,

this volume measure can be understood as the entanglement contour measuring the amount

of entanglement between two boundary end points of a geodesic. Instead of using geodesics,

in higher dimensions one can measure the area (corresponding to holographic entanglement

entropy or differential entropy by RT formula) of a co-dimension two surface11 by using the

r-dimensional (r ≥ 1) planes via the formula in integral geometry. However, for simplicity

and inspired by our construction in 3D case, we will stick to r = 1 case for which the useful

formula of integral geometry is a special case of (2.15) (with r = 1 and q = d− 1), i.e.,∫
Md−1∩L1 6=∅

N(Md−1 ∩ L1) εK =
Od
O1

σd−1(Md−1)

4G
, (4.1)

where Md−1 is a (d−1)-dimensional target hypersurface of volume σd−1(Md−1) and L1 are

a set of geodesics with the kinematic space measure εK, each of which intersects Md−1 at

N(Md−1∩L1) points. As usual we normalize the measure by multiplying (4G)−1 so that the

integral becomes dimensionless and corresponds to entanglement (or differential) entropy.

11To avoid confusion we always define the co-dimension of an object in the bulk with respect to the

d+ 1-dimensional spacetime.
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It is known [37, 44] that the measure εK for geodesics (i.e., r = 1) on a general

Riemannian manifold M12 can be constructed as follows (see e.g. [37] for more details).

We consider a d-dimensional Euclidean Riemannian manifold M, which is endowed with

a metric gµν . The phase space X of all geodesics is then a (2d − 1)-dimensional space

with coordinates (xµ, pµ). The conjugate momentum is related to the velocity ẋµ (dot

for derivative with respect to the parameter τ of each geodesic) by pµ = gµν ẋ
ν/|ẋ| and is

subject to the constraint p2 = 1. The geodesics as integral curves provide a foliation FG of

X . We have the following (2d− 2)-form

εX =
1

4G

 d∑
µ=1

dpµ ∧ dxµ

d−1

, (4.2)

whose restriction on X/FG then gives the measure εK.

We can choose to parameterize a geodesic using its end points (~x1, ~x2) on a slice (with

coordinates xi (i = 1, . . . d− 1)), which is a member of the family of convex hypersurfaces

foliating M. The slices also correspond to dual surface states at different RG scales as

parametrized by the radial coordinate xd, which can also be treated as the parameter of

the geodesic. With the help of action-angle relation of Hamilton-Jacobi argument, i.e.,

pi = ∂iS, the measure then becomes

εK =
1

4G
det

[
∂2S(~x1, ~x2)

∂~x1∂~x2

] d−1∏
i=1

dxi2 ∧ dxi1 , (4.3)

where we still use S to denote the length of geodesic but generically it no longer has direct

connection with entanglement entropy. One can easily see that for d = 2, the measure (4.3)

reduces to (2.4) when the slice is the boundary. Volume integral in the kinematic space is

independent of the parameter τ , i.e.,∫
∂τ εK =

d− 1

4G

∮
∂τ

d∑
µ=1

pµdxµ

 d∑
µ=1

dpµ ∧ dxµ

d−2

=
d− 1

4G

∮
dL

 d∑
µ=1

dpµ ∧ dxµ

d−2

= 0 , (4.4)

where L :=
√
gµν ẋµẋν . So we are free to choose any slice, which then justifies the use of

S(u, v; z̃) in (3.4) and (3.1).

With the generic measure (4.2), one can show that the Crofton’s formula (4.1) remains

valid for a general Riemannian manifold (see e.g. [37]). Here is a sketch of the proof.

Let us first consider an infinitesimal area element dσ on the hypersurface Md−1. A local

coordinate is chosen so that Md−1 is parameterized by yd = 0. We have additional freedom

to take dσ to yµ = 0 and diagonalize the metric at this point

ds2 =
d∑

µ=1

gµµdyµ2.

12The precise criteria the Riemannian manifold has to meet so that it is uniquely determined by the

boundary-to-boundary distances remains unknown (see e.g. [45, 46]). Detailed discussions are beyond the

scope of the current paper. We will simply assume M has this property of boundary distance rigidity.
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We then make use of (4.3) and choose y1,...,d−1 as the position coordinates for the geodesics.

The conjugate momentum can be parameterized using the angle αµ between the momentum

and the vielbein,

αµ := eµ · p⇒ pµ =
√
gµµ cosαµ .

The measure (4.2) (for geodesics passing through neighborhood of yµ = 0) then becomes

εK =
1

4G

d−1∏
i=1

√
gii sinαidαi ∧ dxi . (4.5)

One can easily pick up the area element dσ =
∏d−1
i=1

√
giidx

i. Notice that the area element

for a unit (d− 1)-sphere is

εSd−1 =
1

cosαd

d−1∏
i=1

sinαidαi ,

and therefore εK can be written as

εK =
1

4G
cosαdεSd−1 ∧ dσ . (4.6)

To get the area element of dσ, geodesic along every direction needs to be counted (to be

precise, we only integrate over half of the solid angle cosαd > 0 to avoid over counting).

The angular integration gives a factor of∫
cosαdεSd−1 =

Od
O1

.

As we can see, the Crofton’s formula (4.1) is then correctly reproduced. We would like to

remind the reader that the results above only applies to the case of r = 1 and construction

for generic r is little known.

As discussed previously for 3D (d = 2) case (3.2), the holographic entanglement en-

tropy of an infinitesimal area element at a point A can be expressed in terms of an integral

over the geodesics with one of the end points at A. Thus this volume form can be thought

as the entanglement contour specified by the end points of the geodesic. However, this

entanglement contour lacks precise definition in the context of field theory unlike its 3D

counterpart. The length of a geodesic is related to the two-point functions of heavy oper-

ators and hence is a measure for the correlation on the field theory side. However, to our

best knowledge its precise connection with entanglement entropy remains unclear. Instead,

we can treat it as the holographic definition waiting for the field theory verification.

4.2 Bulk line elements from intersecting geodesics

As in the 3D case, we will now explicitly show how bulk line element can be obtained

from the measure (4.8) of integral geometry. For simplicity we will only consider the bulk

space of homogeneity and isotropy. We would like to emphasize that the Crofton’s formula

applies to more general spaces but the general prescription to reconstruct the metric from
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co-dimension two surface is unknown to us. As before let us work in Poincare coordinate,

in which the metric takes the form,

ds2 = −f̃(z)dt2 +

d−1∑
i=1

g(z)(dxi)2 + g(z)f(z)dz2 . (4.7)

As in a 2-body system we can go from the end point coordinates (~x1, ~x2) to the mid-point

~x := 1
2(~x1 + ~x2) and their separation ∆~x := ~x1 − ~x2, the latter of which can in turn be

expressed in terms of the distance 2r := |~x1 − ~x2| and the orientation Ω. The measure in

the kinematic space takes the following form

εK =
1

4G
ω(~x, α,Ω) εBd ∧ dr ∧ dΩ , (4.8)

where εBd is the volume measure of the boundary, i.e., for ~x.

Due to the homogeneity and isotropy, the measure of the kinematic space can be

characterized only by the separation 2r of the end points of the geodesic, or equivalently

and more conveniently by its height at z = z∗ (along the radial direction), i.e.,

εK =
1

4G

ωh(z∗)

Od−2
εBd ∧ dz∗ ∧ dΩ . (4.9)

Note that, the relation between r and z∗ can be shown to be

r =
√
g(z∗)

∫ z∗

z̃
dz

√
f(z)√

g(z)− g(z∗)
. (4.10)

It is not difficult to see that due to the symmetry the matrix in (4.3) satisfies

(
∂2S(r)
∂x11∂x

2
2
. . .

. . . . . .

)
∂x12
∂r

∂x12
∂θ . . .

∂x22
∂r

∂x22
∂θ . . .

. . . . . . . . .

 =

−
∂2S(r)
∂r2

∂x12
∂r

1
r
∂S(r)
∂r

∂x12
∂θ . . .

−∂2S(r)
∂r2

∂x22
∂r

1
r
∂S(r)
∂r

∂x22
∂θ . . .

. . . . . . . . .

 ,

where r, θ, . . . are the polar coordinates for ∆~x and hence

det

[
∂2S(r)

∂~x1∂~x2

]
= −∂

2S(r)

∂r2

(
1

r

∂S(r)

∂r

)d−2

. (4.11)

Using the facts that ∂rS(r) = 2
√
g(z∗) and Od/O1 = Od−2/(d − 1), we can rewrite (4.3)

into the form of (4.9) to extract ωh(z) as given by

ωh(z) = −Od
O1

d− 1

4
[g(z)]

d−3
2
dg(z)

dz
. (4.12)

Notice that a factor of 1/2 is put in so that we can sum over all the orientation Ω in

applying (4.1).

We are ready to calculate the line element ds along the radial direction by apply-

ing (4.1) similar to AdS3 case except that Md−1 is not a line but should be approximated

by an infinitesimal cylinder of length ds and spherical cross-section of radius δ. We note
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Figure 7. Various coordinates used in (4.13) (left) and (4.17) (right). In the former case, we

consider a cylinder surrounding the line element from (0, z̃) to (0, z̃ + dz). The size of the cylinder

has been exaggerated for artistic reason. The origin O of the polar coordinate lies at (0, z̃). The

horizontal distance between O and the mid-point is denoted by r̃, which can be mapped to a new

variable z∗ using the black geodesic. Geodesics with the same r̃ yet different heights hit the cylinder

at various points. For example, the red geodesic hits the cylinder at z = z′, z′ ∈ (z̃, z̃ + dz) and we

can define the horizontal distance r from the intersection point to the mid-point (red dashed line). In

the latter case, the only difference is that now r is the distance between two points on the slice z = z̃.

that for a cylinder of infinitesimal size, no geodesic can intersect it more than twice. For

convenience, let us introduce a polar coordinate (r̃, Ω̃) on the horizontal surface H at z = z̃

with the starting point of the line element as its origin (i.e., the line element is stretching

from (0, z̃) to (0, z̃ + dz)). We thus label by r̃ the distance between the origin of the polar

coordinate and the projection of the mid-point of the geodesic to H. On the other hand, the

horizontal distance between the lower intersection point of the geodesic with the cylinder

and the mid-point is just r, which is related to the height of the mid-point z∗ by (4.10).

A geodesic has to hit the cylinder somewhere (z′) between z̃ and z̃ + dz to contribute and

therefore its height has to lie in a certain range (determined by (4.10)). To avoid confusion,

we denote the height of a geodesic as h (instead of z∗), which is related to r, z′ by (4.10).

See the left panel of figure 7 for the graphic specifications. With all these specifications of

coordinate variables, the detailed steps to compute the area of the cylindrical line element

are shown as follows:

4G

∫
(Sd−2×ds)∩L1 6=∅

2εK = 2

∫ ∞
0

r̃d−2dr̃

∫
dΩ̃

∫ h(r,z̃+dz)

h(r,z̃)

∫
ωh(h)dh

dΩ

Od−2

= −(d− 1)Od−3Od
(d− 2)Od−2O1

σd−2(δ)dz

∫ 0

g(z̃)

∂z∗
∂z̃

∣∣∣
r

∂r

∂z∗

∣∣∣
z̃
g(z∗)

d−3
2 dg(z∗)

=
(d− 1)Od−3Od
(d− 2)Od−2O1

σd−2(δ)dz

∫ g(z̃)

0

√
f(z̃)√

g(z̃)− y
y
d−2
2 dy

=
(d− 1)Od−3Od

(d− 2)Od−2Od−1

Od
O1

√
f(z̃)g(z̃)

d−1
2 σd−2(δ)dz

=
Od
O1

√
f(z̃)g(z̃)

d−1
2 σd−2(δ)dz . (4.13)
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In the above, the orientation of the geodesic is also limited to a small solid angle of the

size so that ∫
dΩ =

2

d− 2

(
δ

r̃

)d−2

Od−3 =
2σd−2(δ)

r̃d−2

Od−3

(d− 2)Od−2
, (4.14)

where σd−2(δ) is the area of the spherical cap. Notice that by definition the geodesics are

oriented so that integration of solid angle Ω is over the whole range, which leads to the

factor of 2 in (4.14) as both orientations contribute. These facts are used to arrive the 3rd

line of (4.13). Besides this, we also need to perform the integration of h (to get ∂z̃z∗|rdz)

and then change the integration variable r̃ to a new variable z∗ using (4.10), i.e., we use

the chain rule:
∂z∗
∂z̃

∣∣∣
r

∂r

∂z∗

∣∣∣
z̃

= −∂r
∂z̃

∣∣∣
z∗

=
√
g(z∗)

√
f(z̃)√

g(z̃)− g(z∗)
. (4.15)

Note that the difference between r̃ and r is O(δ) so that it will contribute to the O(δ2)

order and can be neglected for the area. Moreover, we should also express ωhdz∗ in terms

of dg(z∗) using (4.12). We can then read off the line element ds from the area,

volSd−2×ds =
√
f(z̃)g(z̃)dz × g(z̃)

d−2
2 δd−2(δ)⇒ ds =

√
f(z̃)g(z̃)dz , (4.16)

which is exactly what follows from the metric.

We notice that the derivation above is completely general and is independent of the

precise forms of the metric and geodesic (we do assume homogeneity and isotropy). After

the cancellation of rd−2 from (4.14), the specific form of r(h, z̃) is no longer needed.

Generic line element can be computed in a similar way. As in the 3D case, we can

parameterize the line element using z coordinate. Without lost of generality, we can place

the line element along x1-direction i.e., dx1 = kdz. In this case, it is more convenient

to consider an infinitesimal strip aligned along the line element with the widths of δ in

the transverse dimensions (x2, . . . xd−1), i.e., (x1, x2, · · · , xd−1, z) = (kdz, δ, . . . , δ, dz), and

hence the cross section (surface orthogonal to the line element) of this strip is σd−2(δ). The

specifications of the coordinate variables are given in the right panel of figure 7, following

that the area of the strip line element can be again calculated by using (4.1),

4G

∫
Bd−1∩L1 6=∅

εK =

∫ ∞
0

r̃d−2dr̃

∫
dΩ̃

∫ ∫
ωhdh

dΩ

Od−2

=

∫ ∞
0

r̃d−2dr̃

∫
dΩ̃

∫ ∫
ωh
∂z∗
∂r

∣∣∣
z̃
dr

dΩ

Od−2

=
(d− 1)Od
2Od−2O1

σd−2(δ)dz

∫ g(z̃)

0

∫ ∣∣∣∣∣ky d−3
2 − cos θ

√
f(z̃)√

g(z̃)− y
y
d−2
2

∣∣∣∣∣ dydΩ̃

=
Od
O1

g(z̃)
d−1
2 σd−2(δ)

√
k2 + f(z̃)dz . (4.17)

One can then easily pick up the line element ds =
√
k2 + f(z̃)dz from the area. In the

third line of (4.17), we rewrite the angular volume form in terms of Cartesian coordinates

rd−2drdΩ = 2dx1 . . . dxd−1 − 2x1

r

∂r

∂z̃

∣∣∣
z∗

dzdx2 . . . dxd−1 , (4.18)
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where r is now the horizontal distance from the midpoint of the geodesic intersecting the

strip to its end point on H, and x1 = r cos θ. At the lowest order (in dz and δ) we have

r = r̃. The z-component in the line element provides the second term in (4.18). The

factor of 2 is due to orientation as explained above. We note that the integrand flips sign

where the contributing region in the kinematic space pinches off. This can be remedied by

manually putting in the absolute sign. To evaluate the integral in the third line, we can

perform the following change of variable, y = g(z̃)/(1 + w2) and the integral in (4.17) then

becomes∫ g(z̃)

0

∫ ∣∣∣∣∣ky d−3
2 − cos θ

√
f(z̃)√

g(z̃)− y
y
d−2
2

∣∣∣∣∣ dydΩ̃

= 2g(z̃)
d−3
2

∫ ∞
0

∫ ∣∣∣∣∣ kw

(w2 + 1)
d+1
2

−
cos θ

√
f(z̃)

(w2 + 1)
d+1
2

∣∣∣∣∣ dwdΩ̃

= 2g(z̃)
d−3
2 Od−3

[∫ ∞
0

∫ π

π
2

(
kw

(w2 + 1)
d+1
2

−
cos θ

√
f(z̃)

(w2 + 1)
d+1
2

)
sind−3 θdwdθ

+

∫ ∞
cos θ
√
f(z̃)

k

−
∫ cos θ

√
f(z̃)

k

0

∫ π
2

0

(
kw

(w2 + 1)
d+1
2

−
cos θ

√
f(z̃)

(w2 + 1)
d+1
2

)
sind−3 θdwdθ


= g(z̃)

d−3
2 Od−3

√π Γ
(
d−2

2

) (
2
√
f(z̃) + k2 −

√
f(z̃)− k

)
2Γ
(
d+1

2

) +

√
π Γ
(
d−2

2

)
(
√
f(z̃) + k)

2Γ
(
d+1

2

)


=
Od
π
g(z̃)

d−3
2

√
f(z̃) + k2 . (4.19)

We have shown that the the metric (4.7) other than pure AdS space can be recon-

structed using the generalized Crofton’s formula (4.1). In arriving the line elements we

have used the explicit form (4.10) of the geodesic to determine the point curves, i.e., one

should know the bulk metric in advance to determine the explicit form of geodesic. Thus,

our results can only been seen as a consistency check of the integral method to generic

space, but not a priori derivation of the line element. However, as shown in [38], the point

curves can be constructed iteratively purely in kinematic space without knowing bulk met-

ric and the explicit from of geodesic. For completeness, the procedure of the construction

is briefly outlined below.

We assume the point curves for all the points with radial coordinate up to z = z̃ are

known. Each point A corresponds to a d − 1 dimensional subspace pA in the kinematic

space, which we can parameterize as vA
i(u) using the end points ui, vA

i (i = 1, . . . d − 1).

As we have shown, all the line elements and therefore the metric in this region (z ≤ z̃)

can be reconstructed. The point is then to compute the quantity ∇xAvAi which are the

shift functions that determine the new point curve. We use xA to denote the coordinates

of the bulk point A and vA
i for the point curve. For every component i, we essentially

need to determine the 1-forms ∇xAvAi. Some of its components tj · ∇vAi, where ti are the

tangent vectors along the surface z = z̃, are already known. What remains to be found is

the component n · ∇vAi along the orthogonal direction. Moreover, the component k · ∇vAi
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along the unit tangent vector ki of the geodesic vA
i(u) always vanishes as the same geodesic

(starting from end point u) passes through every point on itself. Angles between k and ti, n

can be computed from ti · ∇S (S being the length of geodesic which follows from (4.1)).

As a result n · ∇vAi can be obtained by solving k · ∇vAi = 0. Let us take the space (4.7)

as a specific example. As we can see from (4.15), the vector ∂z̃z∗|r we are after can be

obtained from the known point curve ∂z∗r|z̃ and the conjugate momentum ∂z̃r|z∗ (i.e., ∇l,
the gradient of the length of geodesic with respect to the end point).

4.3 Holographic entanglement entropy and its renormalization from integral

geometry

The formula (4.1) can also be applied to a minimal surface whose area is the holographic

dual of the entanglement entropy according to Ryu-Takayanagi formula. Here we will only

consider the entanglement entropy in vacuum across a spherical surface. This sphere of

radius R is the boundary of a disk D and the surface in bulk (pure AdS) is denoted by γD.

In this case, only geodesics with either one of the end points inside the disk D contribute

to the integral. For convenience here we switch to the coordinate of end points in which

the measure is given by the distance between the two points

εK =
Ld−1

4G

ω′(|~̃x− ~x|)
Od−2

dd−1~̃x ∧ dd−1~x, ω′ = 2d−1(d− 1)
Od
O1
|~̃x− ~x|2−2d . (4.20)

The area can be expressed in the following form

σ(γD)

4G
=
O1

Od

∫
Sd−1∩Lr 6=∅

εK =
Ld−1

4G

∫ R

0
r̃d−2dr̃

∫
dΩ̃

∫ ∞
R

∫
ω′ rd−2dr

dΩ

Od−2

=
Ld−1

4G

∫ ∞
0

r̃d−2dr̃

∫ ∞
R

∫
2d−1(d− 1)(r̃2 − 2r̃r cos(θ) + r2)1−drd−2drdΩ

=
Ld−1

4G

∫ R

0
r̃d−2dr̃

∫ ∞
R

rd−2dr
4d−1(d− 1)π

d
2 csc dπ

2

(
r̃2 + r2

)
Γ
(
1− d

2

)
Γ(d− 1) (r2 − r̃2)d

. (4.21)

As expected, the area is divergent (as the limits of the integral approach R) and we need

to impose some kind of cutoff δ

σ(γD)

4G
=
Ld−1

4G

∫ R−Rδ

0
r̃d−2dr̃

∫ ∞
R+Rδ

rd−2dr
4d−1(d− 1)π

d
2 csc dπ

2

(
r̃2 + r2

)
Γ
(
1− d

2

)
Γ(d− 1) (r2 − r̃2)d

=
Ld−1

4G

∫ 1

4δ
(δ+1)2

22d−3π
d
2 csc dπ

2

Γ
(
1− d

2

)
Γ(d− 1)

(1− t)
d−3
2

td−1
dt . (4.22)

We note that the final result is regularization dependent and the cutoff we use is by no

means the same as that used in computing the area of γD (cutoff in radial coordinate). As

a result (4.22) is different from the familiar form [2],

σ(γD)

4G
=
Od−2L

d−1

4G

∫ 1

δ

(
1− y2

) d−3
2

yd−1
dy . (4.23)
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However, it can be shown that (4.22) has the right divergent behavior and gives the

same universal term as (4.23) in arbitrary dimensions

σ(γD)

4G
=
ad−2

δd−2
· · ·+ ad−2−2k

δd−2−2k
· · ·+

{
a0 log δ , d even

a0 , d odd
, k ∈ integers , (4.24)

where

a0 =
Ld−1

4G
×

 (−1)
d
2Od−2(d−3)!!
(d−2)!! , d even

π
d
2
−1Γ

(
1− d

2

)
, d odd

. (4.25)

For example, when d = 4 (4.22) gives

σ(γD3)

4G
=
Ld−1

4G

( π

2δ2
+ 2π log δ + . . .

)
, (4.26)

whose universal term agrees with the one from (4.23).

In a higher dimensional homogeneous space, we can add up the pairs separated by

a scale greater than `≥ and define the long-distance entanglement contour Θ(`≥, ~x; z̃)

as in (3.3)

Θ(`≥, ~x; z̃)dd−1~x :=

∫ ∞
`≥

∫
s̄(r, ~x; z̃)rd−2drdΩ . (4.27)

As before we can consider the case when Md−1 is a horizontal surface H at constant z = z̃.

Only geodesics of the height h greater than z̃ can intersect the surface and the area σ(H)

is given by the volume of the region h > z̃ in the kinematic space and naturally the volume

form ω(x, h,Ω) can be understood as contribution from entanglement contour above the

particular scale h (h > z̃). It is easy to see that regardless of dimensions, the long-

distance entanglement contour is invariant under the RG flow. Moreover, evolution of the

entanglement contour under the RG flow is the same as described previously in section 3.2

since it follows from how the horizontal slices cut the geodesics. Each pair associated

with some entanglement contour contracts along the flow until the contour is eventually

removed from the spectrum. In other words, we have the same RG equations (3.10) (3.11)

as before and the picture of LUs acting as disentangler and isometry on the entanglement

contours also remains valid. The generalized Crofton’s formula then implies that the area

of a (co-dimension two) surface is given by the number of LUs it cuts, which is the higher

dimensional generalization of (3.12).

5 Conclusion

In this work we propose a new physical interpretation for the measure in the kinematic space

of integral geometry as the entanglement (contour) associated with the two end points of

geodesics on the boundary. We then show that along the RG flow the entanglement contour

evolves as if under the influence of local unitary operations in MERA (or rather cMERA).

Moreover, a RG equation for the long-distance entanglement contour is derived, which

could be used as a guide for deriving the bulk dynamics. Our result is the refinement of

the AdS/MERA duality by looking into the renormalization of the entanglement contour

for a pair of points, which is a new type of measure of spatial entanglement.
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The central theme of this study is to understand bulk geometry, which is encoded

in the kinematic space of the integral geometry, from the entanglement of the boundary

field theory, or vice versa. In AdS3 case the measure of the kinematic space is tied to the

entanglement entropy so that our construction of bulk geometry can have a thorough

field theory realization. This is however, not the case in higher dimensional cases as

it is not known whether there is entropic interpretation of the kinematic space. The

difficulty also lies in the fact that we are short of field-theoretical tool of calculating the

entanglement contour despite of the success of evaluating the entanglement entropy in the

past few years. Therefore, our result though based on holography can be thought as an urge

for field theorists to take more seriously this microscopic understanding of entanglement

renormalization.

In our approach the entanglement contour is the physical interpretation of εK, which

may shed some light on how in general dimensions it can be computed from the quantum

entanglement of a field theory state in higher dimensions. Unfortunately, at this point its

connection with entanglement entropy remains unclear. We also notice that in general if

multi-partite entanglement is involved, the mutual information is monogamous (see [47]

for relevant discussions)

I(B,A1) + I(B,A2) ≤ I(B,A1 ∪A2) ,

and hence the mutual information is not additive for a general many-body quantum state in

contrast to the entanglement contour. Thus, this will make the task of finding an additive

entanglement density such as the entanglement contour in field theory side more difficult.

Instead of geodesics, a different option for the building block of bulk geometry is

the spherical minimal surfaces. The construction of point curves and distance in pure

AdS is straightforward. However, in this case it seems more difficult to find an entropic

interpretation for the generalized Crofton’s formula because the intersection is a (d − 2)-

dimensional object not a point.

One ultimate goal of AdS/MERA duality is to derive the bulk dynamics such as Ein-

stein equation purely from the structure of entanglement renormalization of MERA without

any a priori input from the bulk side such as the bulk metric. We hope that our result can

shed some light on this issue in a more concrete way in the near future.
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A Differential entropy in general dimensions

For reader’s convenience, here we collect some background materials on differential entropy

in general dimensions (mostly from [35, 36]). The idea of hole-ography is that the area A of

a (co-dimension two) bulk surface γb can be constructed from differential entropy E[I(λ)]

via Bekenstein-Hawking entropy formula

E[I(λ)] =
A(γb)

4G
, (A.1)
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where G is the Newton constant in the bulk. Differential entropy is defined using the

entropy of a collection of co-dimension one strips I(λ) (or intervals for 2d field theories)

that cover the boundary. All these strips are determined by the minimal surfaces tangent

to the bulk surface. More precisely, we can foliate the bulk surface γb using co-dimension

three slices sb(λ) parameterized by λ and at each slice there is a unique minimal surface

Γ(λ) tangent to γb. The surface Γ(λ) hits the boundary at two disconnected surfaces λL(λ)

and λR(λ), which are the end points (boundary) of a strip. Differential entropy is then

defined for the strips each of which is specified by the two end points (γL(λ), γR(λ))

E =

∮
dλ

∂S(γL(λ), γR(λ′))

∂λ′

∣∣∣∣
λ′=λ

. (A.2)

where S holographically is computed by the area of minimal surface, i.e., saddle point of

the action with end points (γL, γR),

S =

∫
L(γ, γ̇)dσds =

1

4G

∫ √
det(∂aγµ∂bγνgµν)dσds . (A.3)

Here we parameterize the surface using slices labeled by s and σi (i = 1 . . . d − 2) are the

coordinates on each slice. The area is expressed in terms of the determinant of the induced

metric where the indices a, b run over s as well as all the σ’s and µ, ν run over all d spatial

coordinates. Let us give a sketch of proof how the integral (A.2) can reproduce the length

of the bulk curve. We note that it can be rewritten in the form of action angle variable

E =

∮
dλ γ′R

∂S(γL, γR)

∂γR
=

∮
dλΓ′µp

µ
∣∣∣
sR
, (A.4)

the latter of which because of the periodicity is a constant of motion (evolution with respect

to s) ∮
dλ
dS

dλ
=

∮
dλ

(
Γ′µp

µ
∣∣∣
s2
− Γ′µp

µ
∣∣∣
s1

)
= 0 . (A.5)

Therefore we can move the point along each geodesic to the contact point γb(γ) = Γ(γ, sb)

and the differential entropy becomes the length of the curve,

E =

∮
dλΓ′µp

µ
∣∣∣
sb

=

∮
dλL(γb(λ), γ′b(λ)) . (A.6)

The integration needs to be performed in closed contour so that there is no contribution

from boundary term (A.5). However, this constraint can be relaxed. For example, in three

dimensions, one can define the integral

f(θ, θ̃) =
1

2

∫ θ̃

θ

dS

dα
dθ , (A.7)

where the angular coordinate θ serves the role of λ. The function α(θ) is the half length

of the interval centered at θ and subtended by the geodesic passing through θ̃.13 This

13The radial coordinate R of the point is related to α(θ), θ, θ̃ via eq. (2.8).
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is essentially the differential entropy for a point, which we will discuss in more details in

appendix B.1. In pure AdS3, it takes the following form

f(θ, θ̃) =
L

8G
log

sin
[
α(θ) + θ̃ − θ

]
sin
[
α(θ)− θ̃ + θ

] , (A.8)

where θ̃ is the angular coordinate of the point. As explained in [36], this quantity is tied

to the boundary contribution of differential entropy, namely that

A

4G
=

1

2

∫ θ(θ̃f )

θ(θ̃i)

dS

dα
dθ + f(θ(θ̃f ), θ̃f )− f(θ(θ̃i), θ̃i) . (A.9)

In this equation, we relax the constraint in defining differential entropy and now its range

of angular coordinate has end points whose angular coordinates are θ̃i and θ̃f respectively.

The highest points (or mid points of the corresponding intervals) of the two geodesics

passing through the end points have angular coordinates θi, θf . We note that in general

(unless the bulk curve has constant radial coordinate), the point at which the geodesic is

tangent to bulk is not always its highest point and therefore θi,f 6= θ̃i,f . The difference

between the length of a bulk curve (with end points) and the (partial) differential entropy

is compensated by the boundary terms that are associated with the (partial) differential

entropy of a point. More precisely, the integral of differential entropy needs to be continued

from θf,i to θ̃f,i to remove the boundary terms. It is not difficult to understand this physical

meaning of the boundary terms from the general definition of differential entropy. When

the integral has end points, eq. (A.5), which is essentially the difference between the length

of bulk curve and differential entropy reduces to the boundary term S, which by definition

is the length of the geodesic starting from the tangent point on the bulk curve and ending

on the boundary.

People often use the other definition of differential entropy (as it is the original form

proposed)

Ẽ[α(θ)] :=
1

2

∮
dS

dα
dθ , (A.10)

the integrand of which is different from that of (A.2) by a total derivative since the latter

is given by

E =
1

2

∫
dS

dα
d[θ + α(θ)] = Ẽ +

1

2

∫
dS . (A.11)

The difference in the differential is due to λL = θ + α(θ) if we choose λ = θ. The total

derivative gives an extra boundary term given by the half length of the geodesic that is

tangent to the end points. Due to this difference between E and Ẽ, the physical meaning

of f(θ, θ̃) changes and now [36] it represents the length of a segment on the geodesic from

the end point (with angular coordinate θ̃) to the mid point θ. Note however that this

discrepancy in the definition of differential entropy does not affects the validity of (A.1).
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B Construction of a co-dimension three object in higher dimensions

Here we would like to generalize the construction in [36] to higher dimensions in a very

direct way. First of all, we note that the intervals for a point in AdS3 are those spanned by

all the geodesics that go through the point. In higher dimensions, the intervals for a hole

become the minimal surfaces that are tangent to the bulk surface at a co-dimension three

surface. A simple analogy then implies that a co-dimension three surface P corresponds

to all the minimal surfaces passing through it. As we shall see, this is indeed the case.

Moreover, the infinitesimal distance between two of such objects PA,B can be computed

from their respective differential entropies.

B.1 General construction

Let us first look at the “differential entropy” of a co-dimension three object P (which we

will call extended point) in d+ 1 bulk space. As we see from (A.5), it can be expressed in

terms of action angle variable

E(P ) =

∮
DλΓ′µp

µ
∣∣∣
sb
. (B.1)

In this case, all the minimal surfaces go through P (i.e., Γ(λ, sb) = P ) and therefore

Γ′(λ, sb) = 0. This agrees with our intuitive understanding that the differential entropy for

a “point” is zero. Notice that λ here is no longer a number as the tangent vector in general

can vary along P and we need d − 1 functions λµ(σa) (a = 1, . . . d − 2) to parameterize

the minimal surface passing P . Strictly speaking, E(P ) is not the differential entropy in

higher dimensions, which is by definition an integral of a single variable λ (instead of a

function). However, as we shall see this new definition correctly reproduce the infinitesimal

distance between two objects PA,B and in the special case with translational symmetry,

E(P ) reduces to the differential entropy.

Now we move on to the computation of distance between two extended points. First

of all we recall that [36] in AdS3 the distance is related to the differential entropy of αAB =

min{αA, αB} (which also follows from (2.13)). In the language of integral geometry, we

need to glue together two point curves pA and pB at λ0 (αA(λ0) = αB(λ0)) and the resulting

differential entropy reproduces the distance. We are expecting a similar recipe in higher

dimensions. The point is to find the transition point λ0 where the discontinuity occurs

and accounts for distance since the differential entropy for a point is a total derivative. A

natural guess is where the difference in the integrand becomes zero

∆AB
δS(γL(λ0), γR(λ′))

δλ′

∣∣∣∣
λ′=λ0

= 0 . (B.2)

Restricting to infinitesimal distance, we can replace ∆AB by derivative and exchange the

order of derivatives. As a result the transition point is at where

vµ
δ

δλ

∂

∂sµB
S
∣∣∣
λ0

= vµ
δpµ(sB)

δλ

∣∣∣
λ0

= 0 . (B.3)
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Such a discontinuity leads to a nonzero differential entropy

E(P ) =

∮
Dλ

δS

δλ
= ∆ABS

∣∣∣
λ0

= dvS =

∫
P
vµpµ

∣∣∣
λ0
. (B.4)

As we explained above, both vµ and pµ are functions along P (parameterized by σ). The

momentum pµ by definition is a normalized vector

pµ =
gµν γ̇

ν

|γ̇|
, (B.5)

and therefore is orthogonal to its derivative. As a result, at the transition point λ0 we have

vµ parallel to pµ. In this case, E(P ) becomes the gradient of the area functional along

its tangent vector and corresponds to the area of the infinitesimal co-dimension two bulk

surface stretching between the bulk lines PA and PB. In other words, we prove that the

construction of P does give the infinitesimal distance. Generalization to finite distance is

straightforward as the differential entropy follows from the surface term ∆ABS|λ0 where

λ0 is the minimal surface connecting the two points PA, PB. The difference then gives the

area of the minimal surface between the two points.

We would like to emphasize that the contribution to E(P ) follows from the discon-

tinuity at a particular configuration λ0. As a result, it is not always necessary to do the

integration over all possible λ. For example, when both v and P are translationally invari-

ant, we only need to consider minimal surfaces that are translationally invariant (in the

d − 3 longitudinal dimensions) and λ reduces to a variable (because it is independent of

σa). In this case E(P ) can be understood as differential entropy.

B.2 Example: a space with translational symmetry

The discussion in appendix B.1 may be a bit technical. So here we present a specific

example with translational symmetry. In this case, E(p) becomes the differential entropy

and we can compute the integral explicitly. As we shall see, the result agrees with the

general formula (B.4) and correctly reproduces the bulk metric. It has been shown that

the differential entropy for a bulk (co-dimension two) surface with translational symmetry

can be expressed in a closed form [33]. So we will restrict ourselves to this case and study

the bulk dual of a special set of strips, which correspond to a co-dimension three surface

in the bulk. This bulk object is a hyper-plane at (x1 = x̃, z̃), which is extended in the

xi-direction (i = 2, . . . d− 1)).

Let us consider the general translationally invariant space [33],

ds2 = −g0(z)dt2 +
d−1∑
i=1

gi(z)(dxi)2 + g1(z)f(z)dz2 . (B.6)

Without lost of generality, we can pick x1 as the transverse dimension of the strip, which is

translationally invariant in the other d−2 directions. We denote a strip by its center x1 = x

and height z∗. We will see that the bulk geometry can still be reproduced from the variation

of the “differential entropy” associated with an extended point. First of all we note that

the entanglement entropy still satisfies 4G∂∆xS =
√
g(z∗) := y(z∗) (g :=

∏d−1
i=1 gi).
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A direct application of the formula (2.21) leads to

2G

∫ +∞

−∞

d2S

d∆x2

∣∣∣∣d∆x

dz̃

∣∣∣∣ dxdz = −
∫ 0

y(z̃)

∂x

∂z̃

∣∣∣
y
dydz̃ = dz

∫ y(z̃)

0

ydy
√
f(z̃)√

g(z̃)− y2

=
√
g(z̃)f(z̃)dz , (B.7)

which precisely agrees with the line element along radial direction. In the second equality

we use
∂y

∂z̃

∣∣∣
x

= −∂x
∂z̃

∣∣∣
y
/
∂x

∂y

∣∣∣
z̃
,

and the third equality follows from

∂x

∂z̃

∣∣∣
z∗

=
√
g(z∗)

√
f(z̃)√

g(z̃)− g(z∗)
, (B.8)

where x is related to z̃ and z∗ by

x− x̃ =
√
g(z∗)

∫ z∗

z̃
dh

√
f(h)√

g(h)− g(z∗)
. (B.9)

So we obtain the “distance” between two extended points, which is the area of the in-

finitesimal (d − 1)-surface swept out by the “point” when it moves from z̃ to z̃ + dz̃. As

in the d = 2 case, such area is equal to the amount of entanglement entropy removed in

the RG flow.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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