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1 Introduction

The 2d conformal field theories (CFT) related to the sl(2) algebra, like the Virasoro, the

WZW models with the affine sl(2) KM algebra and their supersymmetric extensions, are

by now well established. This includes explicit expressions for basic data as the operator

product expansion (OPE) coefficients (3-point functions) and the braiding/fusing matrices

transforming conformal blocks. Much less is known about these structures in the CFT

with higher rank symmetries, although a considerable progress in Toda CFT [2] was made

by Fateev and Litvinov (FL) [1, 3]. Further advances in the field are important for the

development of the higher rank 2d CFT as well as for potential applications in the string

theory side of the AdS/CFT correspondence.

In the free field (Coulomb gas) approach the OPE constants are represented by com-

plicated integrals which have to be computed explicitly before analytic continuation. The

alternative derivation of functional relations arising from locality (crossing symmetry) of

particular 4-point functions involving degenerate vertex operators requires the knowledge of

fundamental braiding/fusing matrix elements, which in general are also part of the problem.

In [1, 3] Fateev and Litvinov developed a general method of recursively computing

certain class of conformal integrals and gave explicit examples of 3-point constants.1 In

the case of Toda W3 theory they have as well computed the fundamental fusing matrix

directly from the integral representations of the 4-point blocks; some partial results in the

general Wn case were also obtained.

In this paper we are dealing with the sl(4) Toda conformal theory W4. The 3-point func-

tions known so far involve one vertex operator Vβ with a degenerate charge β proportional

1Apart from these traditional 2d methods a novel approach to the computation of the 3-point constants

is provided by the (5d version of the) AGT-W relation [4, 5], see [6, 7], where the main example of [1] has

been recently reproduced, as well as references therein.
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to the fundamental weight ω1, or ω3 = ω∗1, i.e., the highest weight of the 4-dimensional

sl(4) representation. Our focus instead is on the symmetric representations β = β∗ and,

in particular, β = −kω2b, where ω2 is the highest weight of the 6-dimensional fundamental

sl(4) representation and k is arbitrary.2 The real parameter b parametrises Toda central

charge. In section 2 we present a 3-point OPE constant for two partially degenerate (“4d

scalars”) and one symmetric representations

(β1, αi) = 0 = (β2, αi) , for i = 1, 3 , (β3, α1) = (β3, α3) . (1.1)

The 3-point constant is obtained by deriving and solving a recurrence relation for the

corresponding Coulomb gas integrals along the method of [1, 8], which is then analytically

continued.

In section 3 we use this data to derive the fusing matrix F transforming the corre-

sponding 4-point conformal blocks with one fundamental vertex V−ω2b. Here we follow

a path somewhat opposite to the standard consideration in which - given the fusing ma-

trix, one solves for the 3-point constants the system of equations implied by locality of

the 4-point function. We shall not need the explicit integral realisation of this particular

Toda 4-point function with three more partially degenerate representations of the type

βa = −kaω2b , a = 1, 2, 3 . In the intermediate channels appear also vertex operators with

symmetric weights so that in the equations the more general constants of the type (1.1)

derived in section 2 are needed. The restriction to chiral vertex operators Vβa of such par-

ticular highest weights effectively restricts the braiding/fusing matrix to a 3×3 submatrix;

its matrix elements are explicitly described.

Finally in this section we check a braiding identity, which is equivalent to a standard

identity for the modular group on the sphere with 4 holes. This relation imposes restrictions

solely on certain products of F matrix elements and allows in principle for more general

solutions for the individual F matrix elements than the ones computed in the W4 CFT. The

semi-classical “heavy charges” limit of the identity is a particular sl(4) analog of the one

exploited in the strong coupling sl(2) sigma model constructions in [9, 10]. This suggests

that the explicit expressions for the products of the fusing matrix elements extracted from

Toda CFT (or their closely related WZW model counterparts) may eventually be used as

a first step in higher rank generalisations of that work.

In the last section 4 we compare the 3-point constants in two regions of the central

charge, W4 analogs of the two Virasoro theory ingredients of Liouville gravity (non-critical

string theory) with c > 25 (Liouville) and c < 1 (”matter”). We discuss a BPS-like

relation for the two sets of weights which is intrinsic for the vertex operators of the ŝl(4)

WZW models, related to Toda theory by the quantum Hamiltonian Drinfeld Sokolov (DS)

reduction. Although it seems that there are no direct W4 analogs of the physical fields

of Liouville gravity, we show that the product of the two 3-point Toda constants with

weights subject to the BPS constraint trivialises in the semi-classical “light” charges”

limit. Furthermore we speculate on the possible implications for the related WZW 3-point

2These highest weights correspond to scalars in the context of 4d conformal group representations, where

in general the (nonnegative, integer) components 2ji = −(β, αi)/b, i = 1, 3 label the SL(2,C) spins, while

4 = (β, ω2)/b corresponds to the 4d conformal dimension.
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correlators (the determination of which is still an open problem) and make a comparison

with computations of related 3-point correlators in the supergravity approximations of the

AdS5 × S5 strings [11, 12].

The appendix contains some details of the computation of the 3-point functions, includ-

ing one slightly more general constant not presented in section 2, as well as an alternative

Coulomb like representation of the 4-point functions discussed in section 3. It reveals a

connection to certain Liouville correlators.

2 3-point W4 constants

We consider the W4 CFT with central charge

cT = 3(1 + 20Q2) = 3

(
41 + 20

(
b2 +

1

b2

))
> 243 , Q =

1

b
+ b , (2.1)

for real values of the parameter b. We shall skip the detailed presentation of the basics of

Toda conformal theory and the free field (Coulomb gas) representation of the correlation

functions: the reader is referred to [1], as well as to the original paper of Fateev and

Lukyanov [2], formulated in the dual region of central charge with b→ ib in (2.1).

The OPE constant of 2d scalar vertex operators is

c(β1, β2 , 2ρQ− β3) = lim
x3→∞

(x2
3)24(β3) 〈V2ρQ−β3(x3)Vβ2(1)Vβ1(0)〉Coulomb

where the conformal dimension is given by the sl(4) inner product

4(β) =
1

2
(β, 2ρQ− β) (2.2)

and ρ =
∑3

i=1 ωi is the Weyl vector. The dimension (2.2), as well as the two other W4

quantum numbers, are invariant with respect to an action of the Weyl reflection group

w ? β = Qρ+ w(β −Qρ) (2.3)

so that any of the vertex operators Vw?β represents the same field. The Coulomb gas

representation of the OPE constant is defined for the charge conservation condition

β3
12 + b

∑
i

siαi := β1 + β2 − β3 + b
∑
i

siαi = 0 ⇒ bsi = −(β3
12, ωi) . (2.4)

The integers si in front of the simple roots αi in (2.4) count the number of screening charge

vertex operators Vαib(z, z̄) , i = 1, 2, 3, from the interaction term of Toda action. These

operators are spinless fields of dimension 4(αib) = 1. Formula (2.4) describes a generic

sl(4) type fusion rule in which β3 is obtained by a shift of, say, β1 with the weight diagram

Γ−β2/b = {−β2/b− siαi} of the representation of highest weight −β2/b, times (−b).
The OPE constant is given by a

∑
i si− multiple 2d integral Is1,s2,s3(β1, β2) (formula

(1.33) of [1] recalled in (A.1) below). We compute this integral in the particular case when

the three highest weights are chosen as in (1.1). The components (βa, α2) of the weights

in (1.1) take arbitrary values, subject of the condition (2.4); the latter implies that s1 = s3

and we shall assume that the integer l := −(β3, α1)/b = s2 − 2s1 is nonnegative.

– 3 –



J
H
E
P
1
2
(
2
0
1
5
)
0
7
9

We shall skip the detailed computation of the OPE constant since it follows straight-

forwardly the steps of the method explained in [1], which is based on the use of a sl(2)

type duality formula [8] in order to derive recursion relations for sl(n) Toda multiple 2d

integrals; see the appendix for a short summary of the procedure. In our case after s steps

one gets an integral of type

Is1−s,s2−2s,s3−s(β1 + sω2b, β2 + sω2b)

so that setting s = s3 = s1 the integral is reduced to known Liouville Coulomb inte-

gral. In particular for β2 = −ω2b the resulting formula reproduces the structure constants

ch := c(β1,−ω2b, 2ρQ − (β1 − hb)) of the fusion of Vβ1 with the fundamental field V−ω2b

corresponding to three of the six points of the weight diagram Γω2 , i.e.,

β3 = β1 − hb with

h = ω2 ; h = ω2 − α2 = w2(ω2) ; h = −ω2 = ω2 − 2α2 − α1 − α3 = w2312(ω2) .
(2.5)

These are the three weights of Γω2 preserving the symmetric type β3 = β∗3 with l ≥ 0.

The expressions for these OPE constants reproduce special cases of the general formula

(1.51) of [1] valid for arbitrary β1. For the partially degenerate weights of type (β1, αi) =

0 , i = 1, 3 the remaining three OPE constants in [1] vanish, in agreement with the vanish-

ing of the corresponding sl(4) tensor product decomposition multiplicities: the sl(4) (or

ŝl(4)) Verma modules of highest weights λ = −β/b with non-negative integer components

l(i) = (λ, αi), i = 1, 3 have two singular vectors, whose factorisation imposes additional re-

strictions on the fundamental fusion rule. In particular in the case (λ1, α1) = 0 = (λ1, α3)

for each of the three weights h = ±(−ω1 + ω3) , ω2 − (ω1 + ω3) ∈ Γω2 there is an odd Weyl

group element w1, or w3, or both, the shifted action of which keeps λ3 = λ1 + h invariant,

a property which does not depend on the value of (λ1, α2), and which implies the vanishing

of the corresponding fusion multiplicities.3

Our next step is the standard analytic continuation of the OPE constant, to be denoted

C(β1, β2, 2ρQ−β3) for weights of the type (1.1) not restricted by (2.4), so that the Coulomb

gas OPE constant is reproduced as a double residue

c(β1, β2, 2ρQ− β3) = res(β3
12,ω2−2ω1)=−(s2−2s1)b res(β3

12,ω1)=−s1bC(β1, β2, 2ρQ− β3) (2.6)

where s1 and s2 − 2s1 are nonnegative integers.

3The sl(4) pattern of the W4 fusion rules multiplicities is independently proved in the particular case of

integer dominant weights −β/b extrapolating the rational b2 result in [13], derived by reduction of the ŝl(n)

WZW Verlinde formula. The fusion rule of f = −ω2b with representations of generic highest weight can

be derived algebraically accounting for the factorisation of the null states in the corresponding completely

degenerate W4 Verma module. The three independent singular vectors - two at level 1 and one at level

2, inherited via the quantum DS reduction from the singular vectors of ŝl(4) module, are not sufficient.

Together with the two projective Ward identities corresponding to the zero modes W
(j)
0 of the spin j = 3

and j = 4 currents, they provide five relations which eliminate the 3-point matrix elements containing the

negative modes W
(j)
−k , 1 ≤ k ≤ j − 1: the latter determine the action on the fields of all higher negative

modes W
(j)
−n, n ≥ j. To derive the fusion rule itself one needs to explore the factorisation of three more

descendent null states, presumably at levels up to 5, as suggested by the classical KZ equation for this

representation; see the general discussion in [1, 14, 15] applied to W3 examples.
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We shall write down the related formula for β3 = β∗3 replaced by 2ρQ−β3, equivalently

obtained by multiplication with the reflection amplitude R(β3) corresponding to the longest

Weyl group element w121321 [1]

R(β) = (b2(1−b2)λT )
(2ρQ−2β,ρ)

b

∏
α>0

Υb((ρQ− β, α))

Υb((β − ρQ, α))
, (2.7)

namely,

C(β1, β2, β3) = R(β3)C(β1, β2, 2ρQ−β3) (2.8)

=
(
b2(1−b2)λT

) (2ρQ−β123,ρ)
b

∏
α=α1,α14

Υb((β3−ρQ, α)+Q)∏
α=α1,α13

Υb((β3−ρQ, α))
×

∏
a=1,2

Υb((βa, α2))

Υb((β123−2βa, ω2−ω1))

Υb(b) Υb((β3, α2))

Υb((β
3
12, ω1))Υb((β123, ω2−ω1)−2Q)

×

∏
a=1,2

Υb((βa−ρQ, α24)+Q)

Υb((β123−2βa, ω1)−Q)

Υb(b) Υb((β3−ρQ, α24)+Q)

Υb((β
3
12, ω2−ω1)−Q)Υb((β123, ω1)−3Q)

.

Here λT is proportional to the Toda cosmological constant, λT = πµTγ(b2). Recall that

Υb(x) is an entire function with zeros at x = −nb−m/b and x = Q+nb+m/b, n,m ∈ Z≥0 ,

satisfying the functional relations

Υb(x+ bε) = γ(xbε) bε(1−2xbε) Υb(x) , ε = ±1 , (2.9)

γ(x) = Γ(x)/Γ(1 − x). In the products over positive roots in (2.8) the root α1 can be

replaced with α3 (and α13 = α1 + α2 - with α24 = α2 + α3) since β3 = β∗3 , ρ = ρ∗. The

ratio in the second line of (2.8) produces a finite constant for (β3, α1)→ −lb , l−nonnegative

integer so that (2.8) has sense for such values of β3 whenever the components (βa, α2) of

the three weights are generic. We have also used that the two weights β1, β2 have zero

components (βa, αi) = 0 for i = 1, 3 in order to write (2.8) in a form which makes it

explicitly symmetric when the third weight β3 is also chosen of this type, i.e., l = 0 , as we

shall need it below: in that particular case (β, ω2 − ω1) = (β, ω1) in all products of this

type in the denominators in the last two lines.

Using (2.3) the terms in (2.8) depending on the three vertices, i.e., the eight Υb-factors

in the denominators of the last two lines, can be also written as points on an orbit of the

Weyl group acting on the three weights (as discussed, e.g., in [6, 7] for the FL example)

(
Υb((β123−2ρQ, ω1))Υb((w

(3)
13 ? β123−2ρQ, ω1)) Υb((w

(3)
121321 ? β123−2ρQ, ω1))

)−1

∏3
j=1 Υb((w

(j)
2132 ? β123−2ρQ, ω1))

∏
i=1,2 Υb((w

(i)
2132w

(3)
13 ? β123−2ρQ, ω1))

(2.10)

where w′(1)w(3) ? β123 = w′ ? β1 + β2 + w ? β3 , etc..

– 5 –
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3 Locality, fusing matrix, braiding identity

Consider the local 4-point function 〈VfVβ1Vβ2Vβ3〉 of primary spinless operators Vβ(z, z̄)

one of which is labelled by a fundamental highest weight, in our case f = −bω2. The most

interesting for the applications are the cases in which the remaining three primary fields

have highest weights βa with nonnegative integer components l
(i)
a = −(βa, αi)/b , i = 1, 3

and generic (βa, α2) (or, any of their Weyl group related values providing equivalent vertex

representations). These representations arise from doubly reducible Verma modules with

two singular vectors. The projective Ward identities and the factorisation of all singular

vectors - as well as the descendent null states in the fundamental representation f give

restrictions on the conformal blocks reducing the space of descendent states described in

terms of powers of the modes W
(j)
−k , 1 ≤ k ≤ j − 1, to a finite dimensional subspace,

see [1, 16, 17] for different approaches to this problem. Instead of the detailed analysis

of this space one can give, as in [3], an alternative argument showing that at least a

subclass of these 4-point functions admit an integral Coulomb gas like representation, see

the appendix. This indicates that all descendent states of the above space are eliminated

so that the fusion channels of these highly degenerated 4-point functions follow the sl(4)

pattern dictated by the completely degenerate field V−ω2b; in what follows we restrict to

this subclass of 4-point functions. In the case when all l
(i)
a = 0 , i = 1, 3 , a = 1, 2, 3 - which

is the main case under consideration below, the alternative Coulomb representation allows

to identify the linear differential equation satisfied by the 4-point function.

The 4-point function admits different equivalent diagonal decompositions in conformal

blocks. They are related by braiding transformations, i.e., matrix realisation of the braid-

ing group with generators ei , i = 1, 2, 3 on the plane (Riemann sphere) with 4 holes; ei is

exchanging the chiral vertex operators at the i-th and i+1-th points and the notation refers

to the fixed ordered points, not to the labels of the concrete interchanged operators. In par-

ticular the generators e2 (for the above order of the corresponding chiral vertex operators)

is represented by non-trivial braiding matrix B proportional to the fusing matrix F

Bβ1−hsb,β2−htb

[
β1 β2

f β3

]
(ε)=eiπε(4(β3)+4(f)−4(β1−hsb)−4(β2−htb))Fβ1−hsb,β2−htb

[
β1 β3

f β2

]
,

Bγ,δ

[
β1 β2

β4 β3

]
(ε)Bδ,γ′

[
β2 β1

β4 β3

]
(−ε) = δγγ′

(3.1)

while e1 and e3 , which exchange the operators in the first two, respectively last two,

fixed points, reduce due to triviality of F , to diagonal matrices. Locality (symmetry under

exchange of two 2d fields) requires that the function is invariant under such transformations

relating different diagonal chiral decompositions. This results in equations involving fusing

matrix elements and products of 3-point constants. In the case under consideration the

equations take the form of a finite sum. E.g., for the exchange of Vβ1 and Vβ2 they read∑
hs∈Γω2

chs(β1)C(β1−hsb, β2, β3)

cht(β2)C(β1, β2−htb, β3)
Fβ1−hsb,β2−htb Fβ1−hsb,β2−hub = δht,hu (3.2)

=
∑

hs∈Γω2

(F−1)ht hsFhs hu .

– 6 –
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Here chs(β1) is a shorthand notation for the OPE constant c(−ω2b, β1, 2ρQ− (β1 − hsb)),
see the general formula (1.51) in [1]. In particular ch=ω2 = 1. In general hs stands for

the weights of the weight diagram Γω2 of the 6 dimensional representation, but for our

restricted set of highest weights βa = −kaω2b , a = 1, 2, 3, three of the OPE coefficients chs
given in [1] vanish, as discussed above, so we are left with summation over 3 of the weights,

as given in (2.5). A shorthand notation for the matrix Fhs,ht = Fβ1−hsb,β2−htb in the last

equality in (3.2) is used.

As indicated in the r.h.s. of (3.2) the matrix formed by the ratio of constants times F

can be identified with the inverse matrix F−1

chs(β1)C(β1 − hsb, β2, β3)

cht(β2)C(β2 − htb, β1, β3)
Fβ1−hsb,β2−htb = (F−1)ht,hs . (3.3)

It is furthermore required that

(F−1)ht,hs = Fht,hs(β2, β1), (3.4)

a consequence of the pentagon relation for F (or of the normalization relation in (3.1) ). In

a shorthand notation we shall denote Fβ1−sω2b,β2−tω2b(β1, β2) = Fs,t(β1, β2) = Fs,t , s, t =

±1 , Fβ1−h̄b,β2−tω2b
= Fh̄,t , for h̄ := ω2−α2 , etc., suppressing the dependence on the third

argument β3.

The ratios in (3.3) will be denoted

Uh,h′(β1, β2) :=
ch(β1)C(β1 − hb, β2, β3)

ch′(β2)C(β2 − h′b, β1, β3)
=

Uh,+(β1, β2)

U+,+(β1, β2)Uh′,+(β2, β1)
(3.5)

and thus one needs to compute all Uh,+. We give the explicit expression of the first of these

ratios, computed from (2.8)

U+,+(β1, β2) :=
C(β1 − bω2, β2, β3)

C(β1, β2 − bω2, β3)
=
γ(1 + b(β2 − ρQ, α2))γ(1 + b(β2 − 2ρQ, α2))

γ(1 + b(β1 − ρQ, α2))γ(1 + b(β1 − 2ρQ, α2))
×

γ
(
b((β2

13, ω1)− b
2)
)
γ
(
b((β2

13, ω1)−Q− b
2)
)

γ
(
b((β1

23, ω1)− b
2)
)
γ
(
b((β1

23, ω1)−Q− b
2)
) . (3.6)

By analogy with the Liouville case this suggests the following ansatz for F :

Fβ1−ω2b,β2−ω2b

[
β1 β3

−ω2b β2

]
= F+,+(β1, β2) =

Γ(b(Qρ− β2, α2)) Γ(1− b(ρQ− β1, α2))

Γ(b((β2
31, ω1)− b

2)) Γ(1− b((β1
23, ω1)− b

2))
×

Γ(b(2ρQ− β2, α2)) Γ(1 + b(β1 − 2ρQ, α2))

Γ(b((β2
31, ω1)− b

2 −Q)) Γ(1− b((β1
23, ω1)− b

2 −Q))
. (3.7)

From (3.7) one computes F+,+(β2, β1) and confirms, using (3.3), that it indeed satisfies (3.4)

F+,+(β2, β1) =
C(β1 − ω2b, β2, β3)

C(β1, β2 − ω2b, β3)
F+,+(β1, β2) = (F−1)+,+ .

– 7 –



J
H
E
P
1
2
(
2
0
1
5
)
0
7
9

Altogether we have

U+,+ F
2
+,+ = F+,+(β2, β1)F+,+(β1, β2)

=
sinπb((β2

31, ω1)− b
2) sinπb((β1

23, ω1)− b
2)

sinπb(ρQ− β1, α2) sinπb(Qρ− β2, α2)
×

sinπb((β2
31, ω1)− b

2 −Q)) sinπb((β1
23, ω1)− b

2 −Q))

sinπb(2ρQ− β1, α2) sinπb(2ρQ− β2, α2)

=:
ABA′B′

P1[β1]P1[β2]P2[β1]P2[β2]
. (3.8)

Here Pk[β] := sinπb((β, α2)− kQ) and A,B,A′, B′ denote the four sin’s in the numerator

correspondingly.

We proceed in this way to obtain Fh,+ for the other two shifts of β1 → β1 − hb.

Then with the help of simple trigonometric relations one checks and proves the first of

the diagonal equations in (3.2), for ht = hu = ω2. Similarly one finds eight of the nine F

matrix elements checking the related equations. The expression for Uh̄,h̄, however, has a

different structure, not suggesting straightforwardly an expression for Fh̄,h̄

Uh̄,h̄(β1, β2) = γ(3ρQ−b(β1,α2))
γ(1+b(ρQ−β1,α2))

γ(1+b(β2−3ρQ,α2))
γ(b(β2−ρQ,α2)) . (3.9)

On the other hand writing the general expression of an inverse of a 3 × 3 matrix, F−1
ij =

εiklεjmn
2 detF FmkFnl with i, j, k, l,m, n = + ,− , h̄ we have, e.g.,

Fh̄,+(β2, β1) =
1

detF
(F−,+Fh̄,− − F−,−Fh̄,+)

etc. From this we can determine detF :

detF (β1, β2) ==−
∏

α=α2,α24,α14

(β1 − ρQ, α)

(β2 − ρQ, α)
. (3.10)

Then, e.g., from

Fh̄,h̄(β2, β1) =
1

detF
(F+,+F−,− − F+,−F−,+)

we can determine Fh̄,h̄ and check the remaining identities in (3.2).

Summarising we get for the matrix elements of F starting with (3.7)

F−,+(β1, β2) = F+,+(w2132 ? β1 , β2)

Fh̄,+(β1, β2) = Fβ1−h̄b,β2−ω2b

[
β1 β3

−ω2b β2

]
=

Γ(1−Qb)
Γ(1− 2Qb)

×

Γ(1+b(β1−3ρQ, α2)) Γ(1−b(β1−ρQ, α2)) Γ(b((Qρ−β2, α2)) Γ(b((2ρQ−β2, α2))

Γ(b((β2
13, ω1)− b

2−Q))Γ(1−b((β1
23, ω1)− b

2 ))Γ(1−b((β3
12, ω1)− b2 )) Γ(1−b((β123, ω1)− b

2−2Q))

F+,−(β1, β2) = F+,+(β1, w2132 ? β2)

F−,−(β1, β2) = F+,+(w2132 ? β1 , w2132 ? β2) (3.11)

Fh̄,−(β1, β2) = Fh̄,+(β1, w2132 ? β2)
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F+,h̄(β1, β2) = Fβ1−ω2b,β2−̄hb

[
β1 β3

−ω2b β2

]
=

Γ(Qb)

Γ(2Qb)
×

Γ(1−b(Qρ−β1, α2)) Γ(1−b(2ρQ−β1, α2)) Γ(b(3ρQ−β2, α2)) Γ(b(β2−ρQ, α2))

Γ(b((β3
12, ω1)− b

2 )) Γ(b((β123, ω1)− b2 − 2Q))Γ(b((β2
13, ω1)− b

2 )) Γ(1−b((β1
23, ω1)− b

2−Q))

F−,h̄(β1, β2) = F+,h̄(w2132 ? β1, β2)

Fh̄,h̄(β1, β2) =
Γ((β2 − ρQ, α2)b)Γ(1 + (ρQ− β1, α2)b)

Γ(1 + (β2 − 3ρQ, α2)b)Γ((3ρQ− β1, α2)b)
×(

1 +
2 cosπQb sinπb((β3

12, ω1)− b
2 −Q) sinπb((β123, ω1)− b

2 − 3Q)

sinπb((β1, α2)− 3Q) sinπb((β2, α2)− 3Q)

)
.

The last matrix element can be written in various different ways.

Let us introduce some additional notation

D = D[β1, β2, β3] := sin πb

(
(β123 − 2ρQ, ω1)− b

2

)
,

D′ = sinπb

(
(β123 − 2ρQ, ω1)− b

2
+Q

)
= D[β1, β2, w13 ? β3] ,

C = sinπb

(
(β3

12, ω1)− b

2

)
= D′[β1, β2, w2132 ? β3] ,

C ′ = sinπb

(
(β3

12, ω1)− b

2
−Q

)
= D[β1, β2, w2132 ? β3] , (3.12)

and A,A′, B,B′, explicitly described above, are also written in terms of Weyl group action

A = D′[β1, w2132 ? β2, β3] , A′ = D[β1, w2132 ? β2, β3] ,

B = D′[w2132 ? β1, β2, β3] , B′ = D[w2132 ? β1, β2, β3] .
(3.13)

Denoting F̃ = F (β2, β1), we have for the products F̃hs,htFht,hs of matrix elements

in (3.2)

F̃+,+F+,+ =
AA′BB′

P1[β1]P2[β1]P1[β2]P2[β2]
, F̃+,−F−,+ =

CC ′DD′

P3[β1]P2[β1]P1[β2]P2[β2]
,

F̃+,h̄Fh̄,+ =
2 cosπb2A′BCD′

P1[β1]P3[β1]P1[β2]P2[β2]
,

F̃−,+F+,−=
CC ′DD′

P1[β1]P2[β1]P3[β2]P2[β2]
, F̃−,−F−,− =

AA′BB′

P3[β1]P2[β1]P3[β2]P2[β2]
,

F̃−,h̄Fh̄,−=
2 cosπb2AB′C ′D

P1[β1]P3[β1]P3[β2]P2[β2]
,

F̃h̄,+F+,h̄=
2 cosπb2AB′CD′

P1[β1]P2[β1]P1[β2]P3[β2]
, F̃h̄,−F−,h̄=

2 cosπb2A′BC ′D

P3[β1]P2[β1]P1[β2]P3[β2]
,

F̃h̄,h̄Fh̄,h̄ =
(AA′BB′ − CC ′DD′)2

P2[β1]P2[β2]
∏3
k=1 Pk[β1]Pk[β2]

=
(cosπb2 cosπb((β3, α2)−2b)−cosπb((β1, α2)−2b) cosπb((β2, α2)−2b))2

P1[β1]P1[β2]P3[β1]P3[β2]
.

(3.14)
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Compare with the Liouville case where (β, α) = 2βL , (β, ω) = βL and

FLs,t = FLβ1−sωb,β2−tωb

[
β1 β3

−ωb β2

]
, s, t = ±1

satisfying4

FL+,+F̃
L
+,+ = FL+,+

1

detF
FL−,− = F̃L−,−F

L
−,− =

AB

P1[β1]P1[β2]
,

FL+,−F̃
L
−,+ = −FL+,−

1

detF
FL−,+ = F̃L+,−F

L
−,+ =

CD

P1[β1]P1[β2]
.

(3.15)

One can analogously compute the fusing matrix elements corresponding to the sl(4)

fundamental weights ω1 = ω∗3 using the 3-point constant computed by Fateev and Litvi-

nov [1] in which two of the weights are arbitrary and the third is proportional to one of

these fundamental weights; this will be a special case of the 4 × 4 F matrix. Partial data

on the braiding matrices in that case is also provided (though in a different gauge) by the

Boltzmann weights defining integrable A
(1)
3 lattice models [18] taking a proper limit of the

spectral parameter.

Finally we check a braiding relation relevant for the 4-point chiral blocks under con-

sideration, namely (choosing the sign ε = 1 in (3.1) )

Ω1Ω2Ω3 := (e2
1)(e2e

2
1e
−1
2 )(e3e2e

2
1e
−1
2 e−1

3 ) = e−4πi4(f) . (3.16)

In the limit b → 0 the r.h.s. of (3.16) becomes an identity for any of the fundamental

weights f = −ωib. In our case 4(f) = 4(−ω2b) = −5
2b

2 − 2.

The meaning of the l.h.s. of (3.16) is a composition of monodromies around the three

vertex coordinates. On the sphere with 4 (ordered) points e1 and e3 are represented by

diagonal braiding matrices; e2 in Ω2 is represented by (3.1), while in Ω3 it is represented

by the same braiding matrix with β3 and β1 exchanged. Using the defining relations of the

braiding group

eiei+1ei = ei+1eiei+1 , eiej = ejei for j 6= i± 1 (3.17)

(3.16) is reduced to the first of the two additional relations on the generators {ei} which

characterise the modular group on the sphere with 4 holes [19]

e1e2e
2
3e2e1 = e−4πi4(f) , (e1e2e3)4 = e−2πi(4(f)+

∑3
a=14(βa)) . (3.18)

Take the trace of (3.16)

Tr(Ω1Ω2) = e−4πi4(−ω2b)Tr(Ω−1
3 ) . (3.19)

The eigenvalues of the monodromy Ω are computed from the difference of Toda dimensions

p(β, h) = 4(β − hb)−4(β)−4(−bω2) = 2bQ+ b(β − ρQ, h) (3.20)

4Analogous relations hold in the sl(2) WZW case. The braiding matrices differ by β - independent

phases (Q is replaced by b) and by normalisation so that effectively detF = 1 = detB, i.e., F ∈ SL(2).
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where in general h ∈ Γω2 is a weight in the 6-dim weight diagram Γω2 of the fundamental

representation ω2 = (0, 1, 0), i.e., h = ±ω2,±(ω2 − ω1 − ω3),±(ω1 − ω3). Thus in general

the trace of the diagonal monodromy

Tr(Ω) = Tr(e2
1) =

∑
h∈Γω2

e2πip(β,h) = eiπ4bQχω2(2πib(β − ρQ)) (3.21)

is proportional to the character χω2(µ) of the fundamental representation ω2 = (0, 1, 0)

evaluated at the “angle” µ = 2πb(β − ρQ). (For f = ωi in the formula corresponding

to (3.20) h ∈ Γωi and the constant term in the r.h.s. is given by (ωi, ρ)bQ.) Denote by q(β)

the normalized diagonal matrix

qhs,ht(β) = δhs,ht e
2πib(β−ρQ,hs) = e−4πiQΩ .

In terms of F and its inverse F̃ the relation (3.19) reads (collecting the three overall terms

e4iπb2 in the r.h.s.)∑
hs,ht

qhs(β1)Fhs,htF̃ht,hsqht(β2) = e−4iπ(3b2+4(−ω2b))Tr q−1(β3) . (3.22)

In our case of “scalar” (in 4d sense) weights βa the relation involves a 3×3 submatrix and ac-

cordingly q(β) reduces to the diagonal submatrix with matrix elements e2πi(β−ρQ,hs) , hs =

±ω2 , ω2 − α2. Thus the sums in the l.h.s. of (3.22) run over these three weights, while the

r.h.s. reduces to

r.h.s.′ = e−2iπb2(2 cos 2πb(β − 2ρQ, α2) + e2πib2) . (3.23)

Each of the products in (3.14) which appear in the l.h.s. of (3.22) in this case is a second

order polynomial in 2 cos πb(β − 2ρQ, α2), as is the expression in (3.23), so the reduced

relation is checked order by order.

In (3.22) F enters only through the products Fhs,htF̃ht,hs , hence it is a restriction

on these products. In principle the identity (3.16) with diagonal braiding determined

from (3.20) may admit more general solutions for the individual F matrix elements than

the present Toda CFT solution (3.7), (3.11). Indeed the sl(2) analog of the identity (3.16)

with trivial r.h.s. has been exploited in the recent papers [9, 10] on AdS3×S3 sigma model

3-point correlators in the semi-classical strong ’t Hooft coupling λ limit with large quantum

numbers. Identifying b2 = 1/
√
λ this corresponds to the semiclassical limit b → 0 with

three heavy charges βa/b = ηa/b
2, ηa - finite. In the sigma model case the eigenvalues of

the monodromy matrix e2πi(η(x),h) depend on the spectral parameter x and the solution

for the individual F = F (x) matrix elements depends nontrivially on the specific spectral

curve. On the other hand the expression for the products Fhs,htF̃ht,hs as functions of η(x)

coincides with those in the WZW model, or, up to normalization, with those of Virasoro

theory (cf. (3.15) and footnote 4). One may expect that the Toda theory data and their

WZW extensions for the fundamental representations f = −ωib can similarly be used as a

starting point, although in this case the equation (3.19) is less restrictive by itself, compared

with the sl(2) case where it uniquely determines the fusing matrix products.

– 11 –



J
H
E
P
1
2
(
2
0
1
5
)
0
7
9

4 The 3-point functions in the compact (“matter”) region and BPS-like

relation

By analogy with the Liouville gravity described by two dual Virasoro CFT with c > 25

(Liouville) and c < 1 (”matter”) we shall extend here the results of section 2 to another

region of central charge of the W4 CFT, parametrised by the same real parameter b as (2.1),

cm = 3(1− 20e2
0) < 3 , e0 =

1

b
− b . (4.1)

The sum of central charges (2.1) and (4.1) is compensated by the contribution of the ghosts

(pairs (bk, ck) of dimensions (k, 1− k) , k = 2, 3, 4), i.e., c+ cm + cghost = 0.

The conformal dimension of vertex operator V
(m)
e is given by

4m(e) =
1

2
(e, e− 2ρe0) , (4.2)

invariant under the action of the Weyl group

ŵ(e) := ρe0 + w(e− ρe0) = b

(
w · e

b
− 1

b2
w · 0

)
(4.3)

(i.e., the horizontal projection of the shifted action of the affine Weyl group elements t−w.0w

on (e/b+ kω0), times b, where k + 4 = 1/b2).

The minimal W4 theory in the region (4.1) for rational b2 has been discussed in [2].

Here the real parameter b is generic and we shall consider vertex operators V
(m)
e with

symmetric charges e = (rω2 + s(ω1 + ω3))b = e∗. Such W4 representations are degenerate

for nonnegative integers r, s. Once again we consider a 3-point function of vertex operators

two of which have highest weights of type ea = raω2b , a = 1, 2, and one - a general

symmetric weight e3 = e∗3. The Coulomb gas computation is performed as before, with

interaction term defined by vertex operators V
(m)
−αib, or, one can directly continue the Toda

Coulomb gas OPE constants (being given by finite products of ratios of γ functions) to

b2 → −b2 , Qb → e0b , βb → eb. This OPE constant can be expressed directly in terms of

Υb-functions with the result

Cm(e1, e2, e3) = Rm(e3)Cm(e1, e2, 2ρe0 − e3) (4.4)

=
(
b2Qbλm

) (e123−2ρe0,ρ)
b

∏
α=α1,α13

Υb((e3 − ρe0, α) + b)∏
α=α1,α14

Υb((e3 − ρe0, α) + e0 + b)
×

∏
a=1,2

Υb((e123−2ea, ω2−ω1)+b)

Υb((ea, α2)+b)

Υb((e
3
12, ω1)+b)Υb((e123, ω1)− 2e0 +b)

Υb(b)Υb((e3, α2)+b)
×

∏
a=1,2

Υb((e123−2ea, ω1)−e0+b)

Υb((ea, α2)−e0+ b)

Υb((e
3
12, ω2−ω1)−e0+b)Υb((e123, ω2−ω1)−3e0+b)

Υb(b)Υb((e3, α24)−e0+b)

where λm = πµmγ(−b2) with µm - the analog of the cosmological constant, multiplying

the interaction term in the action. The reflection amplitude corresponding to the longest
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Weyl group element w121321 is the analytic continuation of (2.7) (written first as a finite

ratio of γ-functions and then rewritten in terms of Υb-functions)

Rm(e3) =
(
b2Qbλm

) (2e3−2ρe0,ρ)
b

∏
α>0

Υb((e3 − ρe0, α) + b)

Υb((e3 − ρe0, α) + e0 + b)
. (4.5)

Analogously to (2.10) the eight three charge factors in (4.4) can be written as points on an

orbit with respect to the shifted Weyl action (4.3). The F - matrix elements are obtained

by the same analytic continuation of the Toda ones in (3.7), e.g.,

Fme1+ω2b,e2+ω2b

[
e1 e3

ω2b e2

]
=

Γ(b(e0ρ− e2, α2)) Γ(1− b(ρe0 − e1, α2))

Γ(b((e2
31, ω1) + b

2)) Γ(1− b((e1
23, ω1) + b

2))
×

Γ(b(2ρe0 − e2, α2)) Γ(1 + b(e1 − 2ρe0, α2))

Γ(b((e2
31, ω1) + b

2 − e0)) Γ(1− b((e1
23, ω1) + b

2 − e0))
(4.6)

etc..

The W4 CFT is described alternatively as the (principal) quantum DS reduction of a

ŝl(4) WZW model (or its dual). With the parametrisation in (2.1) and (4.1) in the non-

compact and compact WZW analogs the corresponding Sugawara dimensions are given by

4Su(β) =
1

2
(β, 2ρb− β) , 4Su

m (e) =
1

2
(e, e+ 2ρb) , (4.7)

invariant (along with the higher Casimir eigenvalues) under the standard shifted action of

the Weyl group on the sl(4) weights −β/b and e/b. The dimensions of the vertex operators

in the WZW theory and their reduced Toda counterparts are related as5

4(β) = 4Su(β) +
1

b
(β, ρ) , 4m(e) = 4Su

m (e)− 1

b
(e, ρ) . (4.8)

For any pair of weights β and e related by an element w of the Weyl group one has a

BPS-like relation

β = −bw · e
b

= bρ− w(e+ bρ)

⇒ 4Su(β) +4Su
m (e) = 0 . (4.9)

In particular there is only one nontrivial element of Weyl group, w2132, s.t. its shifted

action preserves the sl(4) representations of type (λ, α1) = 0 = (λ, α3), namely, w2132 ·λ =

−λ− 4ω2, so that the first line of (4.9) reads

β = −bw2132 ·
e

b
= e+ 4ω2b ⇒ (β, α2)/b = (e, α2)/b+ 4 . (4.10)

5On the level of 2-and 3-point functions the reduction amounts (up to a constant) to a ”x→ z” limit of

the sl(4) isospin variables, see [20] and references therein. In particular, for the vertex highest weights of

type (λ, α1) = 0 = (λ, α3) , to which we shall restrict in what follows, they are described by a 4d vector xµ
and the ”x→ z” limit reads x2ij → |zij |4. E.g., applied to the WZW 2-point functions G

(m)
e (x12; z12, z̄12) =

(x212)(e,ρ)/2b |z12|−24Su
m (e) and Gβ(y12; z12, z̄12)) = (y212)−(β,ρ)/2b |z12|−24Su(β) this reproduces, in agreement

with (4.8), the corresponding 2-point functions of the W4 fields up to constants.
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While the sum of Sugawara dimensions vanishes according to (4.9), for the sum of the

related by (4.8) W4 dimensions one has 4(e+ 4bω2)+4m(e)=8.

Recall that in the sl(2) case the relation in the first line of (4.9) and its dual yield for the

Virasoro dimension 4(εe+ αbε)+4m(e)=1 , ε = ±1. Accordingly the products cc̄ VβV
(m)
e

(where c, c̄ are the chiral components of the ghost of dimension −1), or
∫
d2xVβV

(m)
e ,

describe BRST invariant operators - the tachyons of the Liouville gravity. They have

trivial, up to leg factors, 3-point function [21, 22]. Apparently unlike the Virasoro case one

cannot realise W4 analogs of such operators through products of vertex operators from the

two regions of the theory.

Nevertheless in view of the relation between the ŝl(4) WZW and the W4 conformal

theories we may expect that the 3-point constants in the two W4 regions are closely related.

Indeed, take all ea = (0, ra, 0)b and impose (4.10), i.e., C(β1, β2, β3) = C(e1 + 4ω2b, e2 +

4ω2b, e3 + 4ω2b). One then has for the product of the two related constants

Cm(e1, e2, e3)C(β1, β2, β3) =

3∏
a=1

φ((βa, α2))A(β1, β2, β3) C̄m(e1, e2, e3) C̄(β1, β2, β3)

= λ
(2ρQ−β123,ρ)

b
T λ

(e123−2ρe0,ρ)
b

m

3∏
a=1

(b2)3
∏
α=α2,α24,α14

γ((βa−ρb, α)b)

γ((ρQ− βa, α24)b)
A(β1, β2, β3) , (4.11)

where

A(β1, β2, β3) =
(
(1− b4)2((β123 − 2ρQ, ω1)b)2

3∏
a=1

((β123 − 2βa, ω1)−Q)b)2
)−1

.

The γ-factors in the second line of (4.11) (analogs of the leg factors in Liouville gravity)

can always be removed by proper field normalisation. The intermediate notation C̄ and C̄m
in the r.h.s. of the first equality refers to the constants obtained from the corresponding C

in (2.8) and Cm in (4.4) by replacing Q→ b and eo → −b, respectively, in the Υb-functions.

This is achieved by the use of one of the functional relations (2.9) and produces finite

products of γ-functions for each of the two constants, that are furthermore compensated in

the product CCm up to the factor A(β1, β2, β3) in (4.11) and
∏
a φ((βa, α2)), the explicit

expression of which we skip. As clear from (4.11) the product C̄C̄m itself is trivial up

to field renormalisation: the modified denominator from the third (fourth) line in (2.8)

cancels the modified numerator from the fourth (third) line in (4.4) respectively.

One may expect that the two constants C̄m(e1, e2, e3) and C̄(β1, β2, β3) will describe

the corresponding 3-point constants of the compact and noncompact WZW model. This

conjecture remains to be checked. In any case the triviality of the product C̄ C̄m whenever

the relation (4.10) is imposed is a property expected for the correlators of BRST invariant

states in the non-critical string model described by a G/G topological CFT, see, e.g., [23].

In the semi-classical limit b → 0 with “light” charges, i.e., (βa, α2)/b = σa are as-

sumed finite, the factor in (4.11) which depends nontrivially on the three charges goes

to a numerical constant, A(σ1b, σ2b, σ3b) → 1/9. In other words in this limit the cancel-

lation expected for the WZW counterparts of the W4 constants holds true for the Toda

constants themselves.
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We conclude with a remark about the “light-charge” limit of each of the constants

C̄(β1, β2, β3) and C̄m(e1, e2, e3) computed using the asymptotics of Υb(x)

lim
b→0

Υb(b)/Υb(σb) = Γ(σ)bσ−1 .

As explained above in these constants compared to the initial Toda ones one replaces Q→ b

and e0 → −b. All weights are taken to be proportional to the second fundamental weight

ω2, βa = σaω2b , ea = raω2b. We have in the limit b→ 0 with finite σa , ra

C̄(β1, β2, β3) ∼ Γ
(σ123

2
− 2
)∏

a

Γ(σ1232 − σa)
Γ(σa)

×Γ
(σ123

2
− 3
)∏

a

Γ
(
σ123

2 − σa − 1
)

Γ(σa − 1)
(4.12)

and

C̄m(e1, e2, e3) ∼ 1

Γ( r1232 +3)

∏
a

Γ(ra+1)

Γ( r1232 −ra+1)
× 1

Γ( r1232 +4)

∏
a

Γ(ra+2)

Γ( r1232 −ra+2)
. (4.13)

One recognizes in the Γ-function ratios of the first lines in (4.12) and (4.13) precisely the

expressions of the 3-points constants of scalar 4d fields computed by integrating the bulk-

bounday kernels (classical vertex operators) over the cosets AdS5 and S5, respectively [11,

12]. In this comparison we identify the charges (βa, α2)/b - with the 4d scalar field conformal

dimensions 4a and the weights ea/b (taking nonzero integer values) with the 4d isospins

given by the SU(4) representation (0, Ja, 0).6 The condition (4.10) for which the product

of (4.12) and (4.13) trivialises implies with such identification Ja = 4a − 4.

On the other hand we can identify (βa, α2)/b = (βa, ω2)/b with 4a + 4 instead. Then

neither of the two factors in C̄ (4.12) reproduces the AdS5 result, but the trivialisation of

the full C̄ C̄m (and, in this limit, of the Toda constants product CCm itself) due to (4.10)

holds true for Ja = 4a, which is the actual 4d supersymmetric BPS condition for the given

class of representations; the second line in (4.9) is equivalent to the vanishing of the second

Casimir of the superconformal algebra sl(2, 2|4).7 Note that Toda light charge classical

correlators can be computed alternatively by integrals of the exponential fields over the

“bulk” SL(4) group, as shown on examples in [1], generalising the computation [25] in the

Liouville case.

5 Concluding remarks

We have constructed 3-point functions in the W4 Toda theory and have used them to

derive novel data on a fundamental braiding/fusing matrix extending the rank 1 results.

The solution described by a 3 × 3 matrix applies to a particular class of representations

6These are the AdS5 and S5 free field ingredients of the 3-point function of “chiral primary opera-

tors” with 4a = Ja at strong coupling λ [12]. The full correlator involves an additional factor coming

from the coupling constant of the supergravity cubic interaction term, which compensates the product

of the expressions in the r.h.s. of the first lines of (4.12) and (4.13) taken with σa = 4a , ra = Ja
(formula (3.40) of [12]).

7Different identifications for the three weights are also possible (reminiscent of the mixed correlators

discussed in [24]).
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arising from partially degenerate Verma modules with highest weights proportional to the

sl(4) fundamental weight ω2. The examples of OPE structure constants computed here and

in [1] are still quite simple and need to be extended to positive integer “4d spin” components

l
(i)
a = −(βa, αi)/b , i = 1, 3. For that purpose the AGT-W approach [6, 7] might be more

constructive. On the other hand one can try to exploit the pentagon equation for the 6×6

F matrix as a recursive relation given the initial data computed here and in [1].

We have analysed a higher rank analog of the braiding relation which played a basic

role in the construction of the semi-classical limit of a class of 3-point functions on AdS3×
S3 [9, 10] and have identified it with a standard identity in the modular group on the

plane with four holes. The explicit data for the solutions of the braiding identity provided

by Toda CFT, in particular their “heavy charge” limit, may thus find application to the

quasiclassics of conformal sigma models described by compact and noncompact forms of

SL(4, C), generalising the SL(2, C) results. Here again for a realistic application one needs

first to extend the result beyond the particular class of representations.

More precisely, for this application one needs the extension of the Toda modular data to

that of its WZW model counterpart; we hope to return to this problem. The computation

of the corresponding ŝl(4) WZW 3-point functions is important also in view of the possible

application to the G/G models. As we have observed, the affine sl(4) WZW theories can

alternatively describe the simplest BPS states in the “light charge” classical limit by a

different mechanism than the one provided by the supergravity approximation. The 2d

CFT expected to describe the worldsheet realisation of the N = 4 YM theory lacks the

affine symmetry of the (super)conformal WZW models. Nevertheless further development

of the latter may provide some inside on the structure of the former.
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A Details on the calculation of the Coulomb integrals

We start with briefly recalling the technique [1] of computation of some multiple inte-

grals generalising Selberg integrals. The Toda 3-point Coulomb integral (with one type of

screening charges) is given by

Is1,s2,s3(β1, β2) =

∫ 3∏
k=1

dµsk(t(k))D−2b2

sk
(t(k))× (A.1)

s1,s2∏
i,j

(
|t(1)
i − t

(2)
j |

2b2
) s3,s2∏

i,j

(
|t(3)
i − t

(2)
j |

2b2
) 3∏
k=1

sk∏
i=1

|t(k)
i |
−2(β1,αk)b|t(k)

i − 1|−2(β2,αk)b
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where

Ds(t) =

s∏
i<j

|ti − tj |2 , dµs(t) =
1

πss!

s∏
j=1

d2tj .

The integral can be computed recursively for particular sets of weights β1, β2, exploiting a

duality formula [8] originating from the Virasoro theory of central charge c = −2∫
dµn(y)Dn(y)

n∏
i=1

n+m+1∏
j=1

|yi−tj |2pj =

∏n+m+1
j=1 γ(1 + pj)

γ(1 + n+
∑

j pj)

n+m+1∏
i<j

|ti − tj |2+2pi+2pj×

∫
dµm(u)Dm(u)

m∏
i=1

n+m+1∏
j=1

|ui − tj |−2−2pj . (A.2)

This formula results from two alternative Coulomb gas representations of the n + m + 2-

point function, obtained by replacing each vertex with its dual of the same conformal

dimension; the compatibilty of the two charge conservation conditions, involving different

numbers of screening charges, fixes the parameter b parametrizing the central charge. The

two integral representations coincide up to a constant Cn({pj}) = C−1
m ({−1−pj}), indicated

in the r.h.s. of (A.2), which is given by a product of reflection amplitudes.

For the particular integral discussed in section 2 the dependence on the two charges

in (A.1) simplifies since (β1, αi) = 0 = (β2, αi) for i = 1, 3. The calculation of the in-

tegral starts applying (A.2) for n = s1 − 1 ,m = 0 and pj = −Qb , j = 1, . . . , s1 , iden-

tifying the power of coordinate differences in the r.h.s. with the factor D
1+2pj
s1 (t(1)) =

D−2b2
s1 (t(1))/Ds1(t(1)) in (A.1). The formula (A.2) is then applied to the integrals over

{t(k)}, sequentially for k = 1, 2, 3 with m = s2 − 2 ,m = s3 − 1 ,m = 0 , respectively. The

result is an integral of the same type as (A.1), with shifted indices and arguments described

in section 2. After s1 steps one obtains

Is1,s2,s3(β1, β2) = KI0,s2−2s1,0(β1 + s1bω2, β2 + s1bω2) (A.3)

where the integral in the r.h.s. is a Coulomb Liouville integral with s2 − 2s1 screening

charges
3∑

a=1

βLa + (s2 − 2s1)b = Q , 2βLa := 2(βa, ω1) + s1b , a = 1, 2 . (A.4)

It is a residue of the DOZZ formula at the values corresponding to the charge conserva-

tion condition in (A.4), or, in Toda variables - at (β3
12, ω2 − 2ω1) = (β3, α1) = −lb with

nonnegative integer l = s2 − 2s1.

The constant K in (A.3) is given by

K =

s1−1∏
s=0

(
b((s1+1)b2+1) γ((s− s1)b2)

)
lim
ε→0

Υb(2Q+ (s2 − 2s1)b+ ε)

Υb(2Q+ (s2 − s1)b+ ε)(
b−2Qb

γ(−b2)

)−4(β312,ω3)

b ∏
α=α2,α24

∏
a=1,2

Υb((Qρ− βa, α))

Υb((Qρ− βa, α)− s1b)
(A.5)

Υb(3Q− s2b− (β1 + β2, α2))Υb(4Q− 2s1b− (β1 + β2, α2))

Υb(3Q+ (s1 − s2)b− (β1 + β2, α2))Υb(4Q− s1b− (β1 + β2, α2))
.
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In writing (A.5) we have used the functional relation (2.9) to replace products of γ -

functions with ratio of Υb− functions. The ratio of (regularized) Υb-functions in the r.h.s.

of the first line is a finite product of γ’s, written in a compact form. This factor can be

rewritten getting rid of the nonnegative integers s1, s2 using (2.4) and then can be continued

for arbitrary βa of the type in (1.1) without the restrictions implied by (2.4), thus giving
Υb((β3,α1)−Q)

Υb((β
3
12,ω2−ω1)−Q)

. Analogously are rewritten and continued the factors in the second and

the third line. On the other hand the product in the first line can be written as a residue

of an analytically continued expression

res(β3
12,ω1)=−s1b

Υ(b)

Υ((β3
12, ω1))

= bs1[(s1+1)b2+1]
s1−1∏
s=0

γ((s− s1)b2) . (A.6)

Altogether, combining with the Liouville constant discussed above, one obtains the expres-

sion for the OPE constant C(β1, β2, 2ρQ − β3) in (2.8). It is valid for weights of the type

in (1.1), while the Coulomb OPE is recovered as in (2.6).

A slightly more general case, in which the OPE constant c(β1, β2, 2ρQ − β3) can be

computed along the same path, is provided by charges β1, β2 s.t., say, β2 is of the same

kind as before, (β2, αi) = 0, i = 1, 3 , while β1 has two nonvanishing components, e.g.,

(β1, α1) = 0 . The integral is computed under the condition s3 ≥ s1. After s1 steps the

sl(4) type integral reduces to a sl(3) type I0,s2−2s1,s3−s1 which furthermore is reduced to

Liouville type I0,s2−s1−s3,0. In particular the resulting expression for the example β2 =

−ω2b , s1 = 0 , s3 = 1 = s2 reproduces the OPE formula (1.51) in [1] for the shift β3 =

β1 − (ω2 − α24)b = β1 − (ω1 − ω3)b:

c(β1,−ω2b, 2ρQ− (β1 − ω2b+ α24b)) =

(
πµ

γ(−b2)

)2 γ((β1 − ρQ, α3)b)γ((β1 − ρQ, α24)b)

γ((β1, α3)b)γ(Qb+ (β1 − ρQ, α24)b)
.

If we set (β1, α3) = 0 - as in the case considered in section 2, the r.h.s. vanishes.

For the analytic continuation of c(β1, β2, 2ρQ− β3) one obtains

C(β1, β2, 2ρQ− β3) =
(b2e0bλ)

−(β312,ρ)

b Υ3
b(b)

Υb((β3
12, ω1)Υb((β3

12, ω2 − ω1)−Q)

Υb((ρQ− β1, α2))Υb((ρQ− β1, α24))Υb((ρQ− β2, α2))Υb((ρQ− β2, α13))

Υb((β123∗ − 2ρQ, ω2 − ω1)−Q)Υb((β123∗ − 2ρQ, ω1))

1

Υb((β1
23, ω1)−Q)Υb((β1

23, ω2 − ω1))

1

Υb((β2
13∗ , ω2 − ω1))Υb((β2

13∗ , ω1)−Q)
(A.7)∏

α>0 Υb((β3 − ρQ, α))

Υb((β3
12, ω3 − ω1) + (β3 − ρQ, α24))Υb((β123∗ , ω3 − ω1) + (ρQ− β∗

3 , α24))

Υb((ρQ−β1, α3))

Υb((β123∗−2ρQ, α2−ω2))Υb((β3
12, α2−ω2))Υb((ρQ−β1, α3) + (β3

12, ω3−ω1))Υb((β3
12, ω3−ω1))

valid for arbitrary β3 and (β2, α1) = 0 = (β2, α3) , (β1, α1) = 0. Taking the residue

at (β3
12, ω3 − ω1) = 0 and then setting (β1, α3) = 0 one reproduces the OPE constant

C(β1, β2, 2ρQ− β3) with β3 = β∗3 of section 2.

Similarly one derives the analog of the constant (A.7) with (β1, α3) = 0 and nonzero

components (β1, αi) 6= 0 , i = 1, 2.
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The duality formula (A.2) can be used to show that the 4-point Toda functions of the

type discussed in section 3 admit an alternative integral representation. The derivation

is a certain generalisation of the one in [26] for the case of Liouville correlators with one

degenerate field, shown to be proportional to a Coulomb Liouville correlator with generic

weights; similar consideration appears in [1, 3].

Consider the 4-point function 〈V−ω2b(x)Vβ1(0)Vβ2(1)V2ρQ−β4(∞)〉CG with vertex high-

est weights (βa, αi) = 0, i = 1, 3 , a = 1, 2, β3 = −ω2b and (β4, αi) = −lb , i = 1, 3 with

non-negative integer l. We assume that this is a Coulomb correlator with weights satsfying

the charge conservation condition −(β4
123, ω1)/b = s1 = s3, with a positive integer s1. It

is given by the multiple integral Is1,s2,s1(β1, β2, β3) with s2 − 2s1 = −(β4
123, ω2 − 2ω1)/b =

−(β4, α1)/b = l. This integral is converted recursively with the help of (A.2) similarly to

what was done above for the 3-point function. Unlike that computation the recursion does

not preserve the type of the integral, since at the first step formula (A.2) is applied in the

last integration with respect to {t(3)
j , j = 1, 2, . . . , s3} with m = 2, i.e., one more double

integral is added and this structure after the first step is recursively repeated, yielding for

1 ≤ s ≤ s1 the integral

Is1−s,s2−2s,s3−s+1;2(β
(s)
1 , β

(s)
2 , 0;β

(s)
3 )(x) := (A.8)∫

dµs3−s+1(t(3))Φ(s)(x; t(3))

∫
dµ2(t(4))D2(t(4))

s3−s+1∏
j=1

2∏
i=1

|t(3)
j − t

(4)
i |

2b2×

|t(4)
i |

2(β
(s)
1 −2ρQ,α2)b|t(4)

i − 1|2(β
(s)
2 −2ρQ,α2)b|t(4)

i − x|
−2(β

(s)
3 +2ρQ,α2)b

where

β(s)
a = (βa + sω2b) , a = 1, 2, 3 (A.9)

and Φ(s)(x; t(3)) is the integrand of Is1−s,s2−2s,s3−s+1(β
(s)
1 , β

(s)
2 , 0)(x) integrated over the

first two sets of variables {t(1)
j |, j = 1, 2 . . . s1 − s} , {t(2)

i |, i = 1, 2 . . . s2 − 2s} so that

∫
dµs3−s+1(t(3))Φ(s)(x; t(3)) = Is1−s,s2−2s,s3−s+1(β

(s)
1 , β

(s)
2 , 0)(x) .

Setting s = s1 = s3 we obtain the integral I0,l,1; 2 up to a constant Ωs1,l({βa}). In

this integral s1 is a parameter appearing in the new weights β
(s1)
a , so the integral can be

continued to generic values of βa. The constant Ωs1,l({βa}) is analytically continued then

for non-integer s1 = −(β4
123, ω1)/b keeping l non-negative integer. This determines the

initial correlator with the charge conservation condition dropped

〈V−ω2b(x)Vβ1(0)Vβ2(1)V2ρQ−β4(∞)〉 = Ωl({βa})|x|2b(4Qρ−(β1,α2))|x− 1|2b(4Q−(β2,α2))×
I0,l,1; 2(β1 − (β4

123, ω1)ω2, β2 − (β4
123, ω1)ω2, 0;β3 − (β4

123, ω1)ω2)(x) , (A.10)
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Ωl({βa}) =
b4(β4

123,ω1)bb2Qblγ(−b2)l+1

γ(−Qb+ (β4
123, ω1)b)γ((β4

123, ω1)b)

Υb(2Q)

Υb(Q)
× (A.11)

(
b2(1−b2)λT

)− (β4123,ρ)

b Υ2
b(b)

Υb((β
4
123, ω1))Υb((β

4
123, ω2 − ω1)−Q)

l−1∏
k=0

b−b(3Q+lb) γ(kb2 + 2Qb)×

2∏
a=1

Υb((βa, α2)Υb((βa − ρQ, α2))

Υb(Q+ (β4
123 − 2βa, ω1))Υb(2Q+ (β4

123 − 2βa, ω1))
×

Υb((β4 − ρQ, α24))Υb((β4 − ρQ, α14))

Υb((β1234, ω2 − ω1)− 2Q)Υb((β1234 − 2ρQ, ω1))
.

The constant Ωs1,l({βa}) is recovered as the coefficient of an order two pole of Ωl({βa})
in (A.11) at (β4

123, ω1) = −s1b , s1 ∈ Z>0. The appearance of the pole of order two is due

to the fact that l is a non-negative integer. Alternatively the expression in (A.11) can be

further extended for generic values of l so that the second order pole splits into two first

order poles - then the initial Coulomb representation of the l.h.s. is recovered by a double

residue as in (2.6).

For l = 0 the integral in the r.h.s. can be interpreted, after integrating over t(3), as a

Liouville Coulomb integral I
(b̃)
2 (β̃1, β̃2, β̃3)(x) with a modified parameter b2→ b̃2 =−Qb,

2β̃ab̃ = −(β(s1)
a , α2)b+ 2Qb = −(βa, α2)b+ (β4

123, ω1) + 2Qb , a = 1, 2 ,

2β̃3b̃ = (β
(s1)
3 , α2)b+ 2Qb = (β3, α2)b− (β4

123, ω1) + 2Qb ,

2β̃4b̃ = 2(β̃123 + 2b̃)b̃ = −(β4, α2)b− (β4
123, ω1)b+ 2 .

(A.12)

This integral represents a 4-point function which admits three fusion channels - in

agreement with the truncated to three terms Toda fusion rule. According to the result

in [26] this Coulomb Liouville 4-point function is furthermore related to a Liouville 4-

point function with one degenerate field V−b̃, which satisfies a third order BPZ differential

equation. The observed relation between 4-point functions in the W4 and the W2 theory

(with modified parameter b̃ = −Qb) suggests that there will be also a relation for the fusing

matrices. Indeed, the 3× 3 F matrix transforming the Virasoro block with the degenerate

vertex highest weight βL = −b̃ and three arbitrary representations has similar structure to

the F matrix computed in section 3; the precise identification will be presented elsewhere.

The derivation of the above Coulomb representation can be extended to a more general

set of weights, e.g., restricting only the components (βa, α1) = 0 , a = 1, 2 and with non-

symmetric β4 s.t. −(β4, α1)/b = l ∈ Z≥0 . To ensure that s3 − s1 ∈ Z≥0 one has to impose

additional restrictions on the combination of components (β4
12/b, α1−α3).The set includes

the doubly degenerate weights with l
(3)
a = −(βa, α3)/b ∈ Z≥0 , a = 1, 2, 3.
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