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1 Introduction

Turbulence is a ubiquitous phenomenon of fluid flows which plays a key role in many

physical scenarios. At a broad level, turbulence takes place when non-linear interactions of

a large number of degrees of freedom dominate over dissipative effects (the so-called high

Reynolds number regime). Due to its intrinsic strongly non-linear and far from equilibrium
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character, a thorough understanding of this phenomenon from first principles remains

elusive. The goal of understanding goes well beyond academic interests, as a deeper grasp

of this phenomenon would impact a broad range of areas including weather dynamics,

astrophysical processes, aerodynamics, etc.

Making this enterprise difficult, as thoroughly discussed in e.g. [1–6], is turbulence’s

chaotic nature, the flow of energy towards smaller or larger wavelengths, and its non-

linearity. Common approaches in the analytical study of fluid turbulence rely on dimen-

sional and statistical arguments, often assuming as many statistical symmetries as are

possible. These include rotational, parity, and translational invariance, as well as station-

arity in time. These efforts have been aided and complemented by numerical and physical

experiments which provide important clues as to the extent to which such analytical results

are robust with respect to departures from these simplifying assumptions.

To date, the majority of our understanding of fluid turbulence is for non-relativistic,

incompressible fluid flows described by the Navier-Stokes equation. The relativistic regime,

which is necessarily compressible, has received less attention. Nevertheless, many applica-

tions of interest naturally require its consideration. Examples include astrophysical fluid

flows (e.g. [7]), as well as applications of the fluid/gravity correspondence (see [8] and ref-

erences therein). This correspondence indicates that the behaviour of large black holes in

asymptotically anti-de Sitter spacetimes disturbed by long wavelength perturbations can

be studied by considering the relativistic hydrodynamics of a conformal fluid. In particu-

lar, the correspondence relates the fluid stress tensor to the asymptotic behaviour of the

spacetime metric, as well as to intrinsic and extrinsic geometrical data of the black hole

horizon. Thus, the understanding of turbulent relativistic fluids bears relevance also to the

study of gravity.

In the present work, we add to a handful of steps already taken to understand rel-

ativistic turbulence [9–16] by performing both analytical and numerical analysis of such

fluid flows, placing particular emphasis on two spatial dimensions. In part, we build upon

previous work by Fouxon and Oz [9], who derived some scaling relations for relativistic

hydrodynamic turbulence applicable to d ≥ 3 spatial dimensions. Firstly, we present some

useful remarks regarding the special case of spatial dimension d = 2, together with new

scaling relations in this case in both the inverse- and direct-cascade ranges. Secondly, we

describe the current state of our numerical simulations of forced turbulence on a toroidal

spatial domain, with the full spacetime topology being given by T 2 × R.

This work is organized as follows. Section 2 describes background information on

energy scaling and velocity correlations which are standard results in non-relativistic tur-

bulent fluids. Section 3 provides a discussion of some analogous concepts in the relativistic

case, and derivations of scaling relations for this regime, with a particular attention to the

dependence on dimensionality. New relativistic scaling relations will be derived for the

hydrodynamic stress-energy tensor and vorticity both in the inverse energy cascade (3.20)

and in the direct enstrophy cascade (3.28), (3.34) (see also (D.15)). They reduce in the

non-relativistic limit to known scaling relations of incompressible fluid turbulence. Sec-

tion 4 describes the numerical implementation employed, the initial conditions adopted

as well as the statistical properties of the resulting weakly-compressible turbulent flow.
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We illustrate such compressibility through figure 1, which shows that both absolute and

relative velocities are on the order of 20% of the speed of sound. In this regime, we demon-

strate that the term
〈
ρ′ργ′2v′L

〉
in eq. (4.6) is highly sensitive to compressive effects (see

figure 5 and 6), at least insofar as it has a much wider probability distribution than its

incompressible counterpart 〈v′L〉. This term might give a non-negligible contribution upon

an increase in sample size since it cannot be argued to vanish by statistical symmetries, un-

like its incompressible counterpart. We summarize in section 5, and we have also included

relevant information in the appendices, which we hope will prove useful for newcomers to

the subject.

In this work, letters in the beginning of the alphabet {a, b, c. . . } will denote spacetime

indices, while those beginning from {i, j, k. . . } will denote purely spatial ones. We adopt

a Minkowski metric with signature (−,+,+,+), and we will either denote spatial vectors

with a bold symbol r or with index notation ri, where appropriate. Furthermore, square

brackets [.] will be used in section 2.1 to refer to a quantity’s units. Angle brackets 〈.〉 will

denote ensemble averages. Finally, we use units in which the speed of light c = 1.

2 Background: non-relativistic fluid turbulence

The characteristics of turbulence are most cleanly studied within inertial ranges, which are

length scales far from any friction, forcing, or viscous scales. In inertial ranges, the transfer

of an inviscidly conserved quantity is independent of scale. Consequently, key aspects of the

analysis are often simplified. One illustration is the possibility of using simple dimensional

arguments to derive the famous Kolmogorov scaling as described in section 2.1.

Of particular interest for our discussion is the observation that the number of distinct

inertial ranges that can exist has a dependence on dimensionality. In spatial dimensions

d > 2, if energy is being injected at a large scale Lf and is being dissipated (e.g. by

viscosity) at a small scale Lν , then there will be an inertial range at length scales L such

that Lν � L� Lf for which the rate of energy flow between scales is independent of scale.

On the other hand, for d = 2, there exists an additional inviscidly conserved quantity called

enstrophy which gives rise to a second inertial range [5]. In what follows, we discuss some

classic results in these ranges for d = 2 which are particularly relevant for our discussion

(the interested reader may consult e.g. [17] and references therein for further details).

2.1 Energy scaling

In the inertial range for energy in d = 2, the specific kinetic energy E = v2/2 transfers

preferentially toward larger length scales (since this behaviour is opposite to the d > 2

case, this inertial range is referred to as the inverse-cascade range). On the other hand,

the specific enstrophy, defined by Z = ω2/2 (where ω = ∇ × v is the vorticity, a pseudo-

scalar quantity in d = 2), is associated with the direct-cascade range, so-named since it

transfers preferentially toward smaller length scales. In these ranges, power-law scaling of

the specific energy spectrum E(k) can be obtained by dimensional analysis [17] as reviewed

below. (Note that unless otherwise specified, energy and enstrophy are given per unit mass).
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The energy spectrum has units of energy per wavenumber, or

[E(k)] =
length3

time2
. (2.1)

Let us restrict to the energy inertial range where the rate of energy transfer through scale

k is given by ε 6= ε(k). Now, assuming that the only relevant scales are ε and k, the ansatz

E(k) ∝ εpkq for some p and q allows us to solve for the powers p, q through a comparison

with eq. (2.1):

length3

time2
=

(
(length2/time2)

time

)p(
1

length

)q
=

length2p−q

time3p
. (2.2)

This yields p = 2/3, q = −5/3, which is the famous Kolmogorov scaling (see e.g. [17]),

E(k) ∝ ε2/3k−5/3. (2.3)

This scaling, theoretically obtained for all dimensions, has been reported in early exper-

iments of 3D turbulence, such as in a jet of air under laboratory conditions [18], and

in effectively-2D turbulence, such as in planetary atmospheres [19], electromagnetic-layer

experiments where a thin layer of electrolyte is externally forced by magnetic fields [20],

etc. Numerical experiments have also shown such behavior in, e.g. simulations of forced,

steady-state, 2D incompressible Navier-Stokes tubulence [21]. It is known to be violated,

however, both numerically and experimentally in d > 2, leading to an anomalous scaling

exponent (see the discussion in [22] and references therein, e.g. [23]).

In the special case of d = 2, a further relation can be obtained which is valid in the

direct-cascade range. Here, the rate of transfer of enstrophy η towards small scales is

independent of scale. Using an analogous ansatz in this range, E(k) ∝ ηpkq, gives

length3

time2
=

(
(1/time2)

time

)p(
1

length

)q
=

length−q

time3p
. (2.4)

This yields p = 2/3 and q = −3, thus giving a different scaling of the energy,

E(k) ∝ η2/3k−3, (2.5)

for which there is a dimensionless multiplicative logarithmic correction which we will not

discuss (see [17]). This scaling has been observed simultaneously with the −5/3-scaling

in both 2d turbulence in a soap film [24], and more tentatively in the limit of very high

spatial resolution in numerical simulations [25].

2.2 Velocity structure functions

Another classical result in the theory of turbulence is the scaling of velocity structure func-

tions in the 2D inverse cascade range, which highlights important statistical correlations in

a turbulent flow. A velocity structure function of order n is a Galilean invariant, defined as〈
n∏
i=1

(v(r)− v(0)) · êi

〉
, (2.6)
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where each êi is a unit vector oriented in some fixed direction with respect to the spatial sep-

aration r, and the angle brackets 〈.〉 denote an ensemble average. In statistically isotropic

conditions, it suffices to consider only longitudinal and transverse directions êL, êT , which

are parallel and perpendicular to the vector r, respectively (see [26]). For brevity, let us

define δv‖(r) = (v(r)−v(0)) · r̂ and δv⊥(r) = (v(r)−v(0)) · r̂⊥, where isotropy now serves

not only to make the notion of transverse unambiguous, but also implies these quantities

depend only on the distance r = |r|.
For non-relativistic, incompressible turbulent flows, one can derive scaling relations for

velocity structure functions by introducing a statistically homogeneous, isotropic, random

external force. The external force helps to establish the inertial ranges, and its statistical

characteristics allow for a clean calculation (see [27] for the d = 2 case). The force has an

energy injection rate εI , in terms of which one finds in the inverse-cascade range r � Lforcing

in d = 2 that 〈[
δv‖(r)

]3〉
= 3

〈
δv‖(r) [δv⊥(r)]2

〉
=

3

2
εIr. (2.7)

If we suppose that this relation implies a scaling of the individual velocity differences as

δv ∝ r1/3, then this immediately implies a scaling for all orders of structure functions

Sn(r), with any mixing between longitudinal and transverse components, given by

Sn(r) ∝ rn/3, (2.8)

provided only an even number of transverse components appear (see appendix C for

an elaboration of this point). This general scaling has been observed in various experi-

ments [20, 28, 29], as well as in forced 2D Navier-Stokes turbulence [21]. Note that the

scaling in eq. (2.8) is known to be violated in all direct cascades, except for the n = 3

structure function (see [22] and references therein, e.g. [23]). We stress that this is by no

means a complete list of references, and the interested reader should see [17] for a survey

of previous work.

3 Relativistic hydrodynamic turbulence

We now turn our attention to the case of interest, namely relativistic hydrodynamics. Let

us concentrate on the equations of motion given by the conservation of the stress-energy

tensor Tab,

∂aTab = 0, (3.1)

where a, b, c . . . are spacetime indices ranging from 0 . . . d, with d the spatial dimension.

Our goal is to derive the scaling behaviour of correlations which are analogous to those

found in Navier-Stokes turbulence.

3.1 Relativistic relations I: Fouxon and Oz derivation

For the sake of our presentation, we now reproduce in a more detailed manner the deriva-

tion of the scaling relations presented by Fouxon and Oz [9] for the particular case of

– 5 –



J
H
E
P
1
2
(
2
0
1
5
)
0
6
7

relativistic turbulence (see also [30] for compressible non-relativistic turbulence). Our no-

tation, however, will differ: quantities evaluated at the point r2 will have a prime, while

quantities evaluated at the point r1 will not.

As for Navier-Stokes turbulence, by including a random, homogeneous, and isotropic

external force in the equation of motion, the inertial regime can be explored. We begin with

∂aTab = fb. (3.2)

and assume a steady-state condition,

∂0
〈
T0i(t)T

′
0i(t)

〉
= 0, (3.3)

with no sum on i. We stress that this condition is stronger than if we were to sum over i,

since in the single-point limit it enforces the stationarity of average square momentum T0i
in separate directions individually, whereas summing would enforce the stationarity of the

total. Acting with the derivative gives

0 =
〈
∂0T0i(t)T

′
0i(t)

〉
+
〈
T0i(t)∂

0T ′0i(t)
〉
. (3.4)

Notice that interchanging the points 1 and 2 amounts to inverting the spatial coordinate

axes, but this leaves the product T0iT
′
0i unchanged. This can be easily seen by considering

a perfect fluid Tab = (ρ + p)uaub + pηab, expressing u = γ(1, vi), where vi is the spatial

velocity, and realizing that the switch changes the sign of each vi but the product vv′

remains unchanged. We can therefore switch points 1 and 2 in the first term of eq. (3.4)

without consequence, which combines the two terms to give

0 =
〈
T0i(t)∂

0T ′0i(t)
〉
,

=
〈
T0i(t)[−∂′jT ′ij(t) + f ′i(t)]

〉
, (3.5)

where we have used eq. (3.2) to replace the time derivative, and a sum on j is understood.

It is important to stress that the spatial derivative here is with respect to the coordinates

of point 2 (we have denoted this with a prime, ∂′). This means that it views functions of

r1 as constant, and so can be brought out of the ensemble average. Thus,

∂′j
〈
T0i(t)T

′
ij(t)

〉
=
〈
T0i(t)f

′
i(t)
〉
.

Now, notice that homogeneity implies that these averaged quantities are functions of the

separation r ≡ r2 − r1 only, so ∂′j ≡ ∂/∂(r2)j = ∂/∂rj ≡ ∂j when acting on them.

This gives,

∂j
〈
T0i(t)T

′
ij(t)

〉
=
〈
T0i(t)f

′
i(t)
〉
. (3.6)

Assuming that r � Lf ≡ the correlation length of the forcing allows the approximation

〈T0i(t)f ′i(t)〉 ≈ 〈T0i(t)fi(t)〉 ≡ εi, which is now constant with respect to r. Using the fact

that the left-hand side is a gradient and 〈T0i(t)T ′ij(t)〉 is isotropic (not a function of angle),

eq. (3.6) can be integrated over a d-shpere using Stokes’ theorem. This yields〈
T0i(t)T

′
ij(t)

〉
=
εirj
d
. (3.7)
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This completes the derivation. Assuming instead that r � Lf does not allow one to

integrate eq. (3.6) without more information, as the result would depend on the details

of the forcing at all scales up to r. Also, note that if one wished to enforce that fi is

divergence-free, then fi would only be isotropic in the sense that 〈f̂i(k)f̂ i(k)〉 is a function

of k only, so one should sum over i in eq. (3.7) in that case.

3.2 Relativistic relations II: the case of d = 2

In this section we concentrate on the behaviour of 〈T0i(t)T ′ij(t)〉 for the special case of

d = 2 in the inverse-cascade range, as well as an additional correlation function in the

direct-cascade range which involves a quantity resembling vorticity.

A special treatment of d = 2 is required, since whether the steady-state condition (3.3)

is appropriate depends upon whether the energy injected by the external force can be re-

moved. For d > 2, since injected energy transfers to small scales, it will encounter the

viscous scale and be dissipated. There is evidence that this behavior persists even for

arbitrarily small viscosity, and is known as the energy dissipation anomaly (see [6]). This

can be understood heuristically as a result of the direct cascade of energy; a finite viscos-

ity, no matter how small, will produce strong energy dissipation below the viscous scale,

and the direct cascade of energy guarantees that this scale will eventually be encountered.

Mathematically, this can be understood in the incompressible case as a result of the un-

boundedness of enstrophy. One can derive the energy balance equation with no forcing or

friction [6],

dE

dt
= −2νΩ, (3.8)

where E ≡
〈
v2/2

〉
is the mean energy and Ω ≡

〈
ω2/2

〉
is the mean enstrophy. If Ω can

become comparatively large as the viscosity ν becomes small, then the right-hand side of

eq. (3.8) can remain non-zero. The balance equation for Ω contains a source term which is

due to vortex stretching, preventing one from bounding its growth. Thus, if the anomalous

energy dissipation persists in the relativistic regime for d > 2, then the energy injected by

the external force can be removed and the steady-state condition (3.3) is appropriate.

On the other hand, the situation is different when d = 2. Vortex stretching is absent

in this case, which means no source term appears in the enstrophy balance equation, thus

being given by [17]

dΩ

dt
= −2νP, (3.9)

where P =
〈
|∇ω|2 /2

〉
is the mean palinstrophy, and where we have again restricted to

the incompressible case with no forcing or friction. Eq. (3.9) says that the mean enstro-

phy is dissipated in time, which means it is bounded from above. It follows that the

energy dissipation vanishes in the limit of zero viscosity, since the enstrophy cannot grow

comparatively. If this fact remains true in the relativistic regime, then the steady-state

condition (3.3) is inappropriate for d = 2 in the inviscid limit. Even without taking that

– 7 –



J
H
E
P
1
2
(
2
0
1
5
)
0
6
7

limit, when the forcing and viscous scales are sufficiently separated, one would expect en-

ergy dissipation to be small (and to remain small over time, due to the inversely-cascading

energy), thus easily failing to balance the injection of energy.

Thus, in the next section we present an alternative derivation which gives rise to

different scaling behaviour of the same correlation functions. (It is worth mentioning

that large-scale energy may transfer towards the viscous scale through the formation of

shockwaves or large gradients, where it would be dissipated. This might allow the steady-

state condition (3.3) to hold in d = 2.)

Lastly, in d = 2 the balance equation for the palinstrophy P reads

dP

dt
= −ν

〈(
∇2ω

)2〉− 〈(∂iω) (∂jω)
(
∂jui

)〉
, (3.10)

which has a source term of indefinite sign. This means that the palinstrophy P cannot be

bounded from above, so there may be an enstrophy dissipation anomaly in d = 2 [17, 27] if P

can become large enough that the right-hand side of eq. (3.9) remains non-zero for arbitrar-

ily small ν. This will allow us to derive new correlation functions in the relativistic case by

considering a different steady-state condition involving quantities that resemble vorticity.

3.2.1 Scaling in the inverse-cascade range

We now derive a relativistic scaling relation in the inverse-cascade range by adapting a

strategy used in the incompressible Navier-Stokes case [27]. Let us begin by defining a

quantity ε by

ε ≡ ∂0
〈
T0iT

i
0

2

〉
, (3.11)

where we are summing over i this time. What follows does not require ε to be independent

of time. Consider a new form of stationarity, weaker than eq. (3.3), which is consistent

with a lack of removal of energy,

0 = ∂0
〈
(T ′0i − T0i)(T ′i0 − T i0)

〉
= ∂0

〈
T ′0iT

′i
0 + T0iT

i
0 − 2T0iT

′i
0

〉
. (3.12)

Notice that expression (3.12) reduces in the Newtonian limit to the stationarity of a second-

order velocity structure function. Now, homogeneity implies
〈
T ′0iT

′i
0

〉
=
〈
T0iT

i
0

〉
, and recall

that we have already evaluated the third term on the right-hand side of this equation in

eq. (3.5). Upon replacement, one obtains

0 = ∂0
〈
T0iT

i
0

〉
− 2

〈
T0if

′i〉+ 2∂j
〈
T0iT

′i
j

〉
,

or, using the definition eq. (3.11),

∂j
〈
T0iT

′i
j

〉
=
〈
T0if

′i〉− ε. (3.13)

At this point, we must relate
〈
T0if

′i〉 to our choice of external force. We adopt a

divergence-free homogeneous Gaussian random field with zero mean, characterized by its

two-point correlation function (see e.g. [31]),〈
f ′i(t

′)fj(t)
〉

= Fij(r)δ(t′ − t), (3.14)
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such that Fij decays rapidly beyond the forcing scale Lf . We impose isotropy in the sense

that trF ≡ F ii is a function of r only and, as shown in appendix A, trF = 2
〈
T0if

′i〉, which

gives us greater control over this term. Furthermore, since fi is divergence-free, trF = ∂kΘk

for some appropriate Θk. This can be seen by first noting that fi, if divergence-free, can

be written in terms of a stream function ψ as fi = εij∂
jψ. Thus,〈

fif
′i〉 =

〈
(εik∂

kψ)(εin∂
′nψ′)

〉
= ∂k

〈
(εikψ)(εin∂

′nψ′)
〉
. (3.15)

We can then relate this to trF by integrating eq. (3.14) with respect to time to eliminate

the δ-function, then defining Θk ≡
∫
dt′
〈
(εikψ)(εin∂

′nψ′)
〉
, thereby showing trF = ∂kΘk by

construction.

Our expression eq. (3.13) thus becomes

∂j
〈
T0iT

′i
j

〉
=

1

2
∂jΘj − ε, (3.16)

which, under the isotropic conditions assumed, integrates to〈
T0iT

′i
j

〉
=

1

2
(Θj − εrj) , (3.17)

a result which holds for all r. For the inverse-cascade range, this result further simplifies

since Θj is negligible there. To see this, first note that for j = T the transverse direction,

〈T0iT ′ij 〉 vanishes by isotropy and rj vanishes by definition, so ΘT must also. For ΘL,

recall that we have stipulated that trF decays rapidly beyond the forcing scale Lf . Thus,

integration of trF over a disc of radius r will approach a constant as r exceeds the forcing

scale Lf , whereas applying the divergence theorem yields∫
disc

trFdA =

∫
disc

∂jΘjdA

=

∫
∂(disc)

Θj r̂
jrdθ

= 2πrΘL. (3.18)

Thus the longitudinal component ΘL decays at least as quickly as 1/r, becoming negligible

at large distance. Consequently, 〈
T0iT

′i
j

〉
= −εrj

2
(3.19)

in the inverse-cascade range, where we have neglected the subleading term. Notice that

this result has the opposite sign with respect to the d > 2 case, which in the incompressible

limit is known to reflect the inverse cascade of energy. As a word of caution, note that this

scaling is usually presented as positive since the points r2 and r1 are switched. In other

words, eq. (3.19) is equivalent to 〈
T ′0iT

i
j

〉
= +

εrj
2
. (3.20)
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Thus, when comparing the overall signs in eqs. (3.7) and (3.19) with the literature, one

should be mindful of this point.

It is interesting to note that in the incompressible limit, the constant ε =
〈
vif

i
〉

is the

lowest order term in the Taylor series of
〈
vif
′i〉 [27]. Thus, in the short-distance limit, the

first non-zero term in the Taylor series of Θj − εrj is proportional to r2rj . This gives the

cubic scaling of the third order velocity correlation familiar from the statistical theory of

incompressible turbulence. However, incompressibility plays a crucial role in this result, so

we cannot make a similar inference in the relativistic case without additional assumptions.

Finally, had we used the slightly weaker steady-state condition that

∂0
〈
(T ′0i − T0i)(T ′i0 − T i0)

〉
= constant not necessarily zero, we would clearly still ob-

tain linear scaling in the inverse-cascade range, although with a different proportionality

constant. This weaker assumption might hold on a periodic 2D spatial domain, such as

a torus, in the absence of any removal of energy. However, since energy would cascade

towards the longest available length scale, anisotropy would grow as energy condensates

into the lowest mode (see appendix E for a numerical simulation of this scenario). Thus,

the linear scaling obtained here would be expected to hold only in the intermediate stage

when the flow is still isotropic.

3.2.2 Scaling in the direct-cascade range

In the incompressible, non-relativistic case, the statistics in the direct-cascade range can

be cleanly studied using a steady-state condition of correlations involving the vorticity. A

similar strategy can be adopted here, although subtleties arise with regard to the precise

expression of vorticity adopted. In what follows we describe what we consider the most

straightforward path and refer to appendix D for a related option. First, consider the

spatial component of eq. (3.2),

∂0T0i + ∂jTij = fi, (3.21)

and apply the 2-dimensional curl to obtain

∂0
(
εik∂kT0i

)
+ ∂j

(
εik∂kTij

)
=
(
εik∂kfi

)
. (3.22)

The incompressible limit of this is the standard equation for vorticity. However, it is inter-

esting to note that eq. (3.22) does not describe what is normally regarded as the relativistic

vorticity, even though it has the same incompressible limit. (We describe the behaviour of

the relativistic vorticity in appendix D, together with a mention of the subtleties related to

deriving scaling relations with it.) We identify the right-hand side of eq. (3.22) as the curl

of the external force, which we will denote as F . For brevity, let us also define the first two

quantities in brackets as ω = εik∂kT0i and ω̄j = εik∂kTij , giving the suggestive expression

∂0ω + ∂jω̄j = F . (3.23)

We may now multiply this expression by ω′ and take the ensemble average, which gives,

∂0
〈
ωω′

2

〉
+
∂ 〈ω̄jω′〉
∂(r1)j

=
〈
Fω′

〉
. (3.24)

– 10 –



J
H
E
P
1
2
(
2
0
1
5
)
0
6
7

We have explicitly shown that the spatial derivative is with respect to the point r1. It

acts on a correlation which, by the assumption of homogeneity, is a function of separation

r = r2 − r1 only. Thus, we can change ∂/∂(r1)j to −∂/∂rj , which herein we write simply

as ∂j , thus giving

∂0
〈
ωω′

2

〉
− ∂j

〈
ω̄jω

′〉 =
〈
Fω′

〉
. (3.25)

Assuming the existence of a dissipation anomaly for the quantity
〈
ω2/2

〉
, which would

balance the injection from the external force, we can impose the steady-state condition

∂0
〈
ωω′

2

〉
= 0 (3.26)

even for arbitrarily small viscosity. Thus eq. (3.25) yields

∂j
〈
ω̄jω

′〉 = −
〈
Fω′

〉
. (3.27)

In the direct-cascade range r � Lf , 〈Fω′〉 ≈ 〈Fω〉 ≡ ε, which allows us to integrate

eq. (3.27) using isotropy, obtaining 〈
ω̄jω

′〉 = −ε
2
rj . (3.28)

Summarizing so far, we find that
〈
T0iT

′i
j

〉
scales linearly in the inverse-cascade range

with the opposite sign relative to the d > 2 case, and its linear scaling in the inverse-

cascade range ought to be robust with respect to the background topology, subject to the

assumption of isotropy. Furthermore, we found that 〈ω̄jω′〉 scales linearly in the direct-

cascade range.

Finally, it is possible to integrate eq. (3.28) twice more to obtain a cubic scaling of

〈T0TT ′LT 〉 in the direct-cascade range, but through this procedure one obtains no infor-

mation about the purely longitudinal correlation 〈T0LT ′LL〉. To see this, begin by writing

the left-hand side of eq. (3.28) with ω̄j and ω′ appearing explicitly in terms of the stress-

energy tensor,

〈
ω̄jω

′〉 =

〈(
εmn

∂Tmj
∂(r1)n

)(
εik

∂T ′0i
∂(r2)k

)〉
=

∂

∂(r1)n
∂

∂(r2)k

〈
εmnεikTmjT

′
0i

〉
= −∂n∂k

〈
εmnεikTmjT

′
0i

〉
, (3.29)

where we have again used ∂/∂(r2)
i = −∂/∂(r1)

i = ∂/∂ri ≡ ∂i in the last line, which is true

when the derivative acts on functions of the separation r = r2 − r1 only. For cleanliness,

define Anj ≡ ∂k
〈
εmnεikTmjT

′
0i

〉
, so that eq. (3.28) now reads

∂nA
n
j =

ε

2
rj . (3.30)
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We wish to integrate this over a disc using the divergence theorem, so let us obtain a scalar

equation by projecting the j-index onto the longitudinal direction L, giving

∂nA
n
L =

ε

2
r. (3.31)

Integration over a disc, assuming isotropy so that ALL 6= ALL(θ), yields

ALL ≡ ∂k
〈
εmLεikTmLT

′
0i

〉
=
ε

6
r2. (3.32)

A further application of the divergence theorem yields〈
εmLεiLTmLT

′
0i

〉
=

ε

24
r3. (3.33)

Using the identity εmLεiL = δmiδLL − δmLδiL, one obtains the final result,〈
TTLT

′
0T

〉
=

ε

24
r3, (3.34)

valid in the direct-cascade range.

4 Implementation details

In order to test the derived scaling relations, we numerically implement the relativistic hy-

drodynamical equations subjected to an external force with suitable statistical properties.

We then extract relevant quantities from the numerical solution, as described below. In

what follows we provide details of our implementation.

4.1 Flux-conservative formulation

For convenience we express the equations of motion in flux-conservative form. In the

absence of driving-sources, this helps to ensure energy-momentum conservation at the

discrete level. As discussed in [32, 33], the combination of discrete operators satisfying

summation by parts together with a Runge-Kutta integrator of third order guarantees an

energy conserving scheme. Eq. (3.2) gives two expressions, already in the desired form,

∂0T00 + ∂iTi0 = 0, (4.1)

∂0T0i + ∂jTij = fi, (4.2)

where i and j are spatial indices. These equations fully determine the system in the ultra-

relativistic regime where the conservation of particle number becomes irrelevant at the

classical level. We take {T00, T0i} to be our set of conservative variables, and evolve them

directly. Using a perfect fluid with the conformal equation of state p = ρ/2, the equations

of motion become

∂0
(

3

2
ργ2 − 1

2
ρ

)
+ ∂i

(
3

2
ργ2vi

)
= 0

∂0
(

3

2
ργ2vi

)
+ ∂j

(
3

2
ργ2vivj +

1

2
ρδij

)
= fi,
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where we have used ua = γ(−1, ~v). We define our conservative variables as D ≡ (ρ/2)(3γ2−
1), Si ≡ (3/2)ργ2vi and our primitive variables as (ρ, vi) for i = 1, 2. Note that the second

equation provides the time-evolution of Si, which then sources the first equation for the

time-evolution of D. The forcing function fi, which is completely spatial, is described in

appendix B.

The transformation from conservative variables (D,Si) to primitive variables (ρ, vi) is

given by

ρ =
2D

3γ2 − 1
, vi =

2Si
3γ2ρ

, (4.3)

Solving for the Lorentz factor in terms of the conservative variables amounts to solving

a quadratic equation for γ2. The presence of ρ in the denominator presents a potential

problem in the recovery of vi when ρ = 0. In general applications, this technical issue

can be circumvented by artificially maintaining a non-zero floor or atmosphere for ρ, small

enough so as not to affect the dynamics appreciably. However, in our simulations the

density never reaches zero, so this mechanism is never invoked.

4.2 Spatio-temporal reduction of the ensemble average 〈.〉

It is often impractical to calculate 〈.〉 as an ensemble average. In practice, one exploits

statistical symmetries and the assumption of ergodicity to reduce 〈.〉 to a spatial or temporal

average. For instance, for a statistically homogeneous and isotropic flow, one computes 〈.〉
as an average over pairs of points with a scalar separation r = |~r|. Further details on the

mathematical subtleties involved in doing these reductions rigorously are given in [6], and

will not be discussed here.

Taking eq. (2.6) as an example, the homogeneous and isotropic averaging process

means that all quantities in the product are projected onto directions defined relative to

the separation vector r. Thus, when computing the average spatially on a numerical grid,

although r itself may vary in direction from term to term, the relative directions between

r and the projection directions must remain the same.

With this in mind, we understand that the spatial indices in eq. (3.7) stand for projec-

tions onto those directions. This implies that when the j-th direction, ĵ, is perpendicular

with ~r, the correlation in eq. (3.7) vanishes since rj = ~r · ĵ = 0. This is a consequence of

isotropy, and we elaborate on it in appendix C.

4.3 Numerical experiments

Our simulations take place on a torus and, as mentioned, unless some some form of large-

scale extraction of energy is employed, energy will build up in the longest mode. To address

this issue, we adopt a convenient approach by augmenting eq. (4.2) with a linear ‘friction’

term −αT0i on the right-hand side,1 giving

∂0T0i + ∂jTij = fi − αT0i. (4.4)

1Alternatively, one can in principle remove this energy build-up through a suitable analysis as de-

scribed in appendix E. We have however found that the approach employing the friction term is more

straightforward.
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Figure 1. Velocity (left) and density (middle) distributions for a single representative realization

of the flow. The velocity peaks at v = 0.14c and the highest velocity is = 0.52c. The density

peaks at ρ = 0.97, and has a standard deviation of 0.055. Right: the standard deviation of the

longitudinal and transverse velocity differences δvL, δvT , as a function of separation r/L, as drawn

from 10 realizations of the flow. The distributions of these velocity differences are roughly Gaussian

with zero mean. Note the overall magnitude of ∼ 0.16 as compared with the sound speed 0.71.)

The friction term causes the system to evolve towards an approximately constant total

energy. For sufficiently small α > 0, this final state exhibits inertial range scaling in the

Newtonian spectral energy E(k), and thereby exhibits fully developed turbulent behaviour.

By dimensional analysis, α can be related [17] to the energy injection rate εI and the friction

length-scale Lα through

α ∼
(
εI
L2
α

)1/3

. (4.5)

For a given εI , we choose α such that the friction length scale Lα is a few times smaller

than the spatial extent of the domain. We next describe the setup of our simulation of

fully-developed, steady-state turbulence, described by eq. (4.4).

The initial conditions adopted are {ρ = 1, vi = 0}, and the uniform spatial grid has

N2 = 8002 points (which admits the Nyquist wavenumber kmax = 400, expressed in grid

units; one can convert to real units via 2πkmax/L) and periodic boundary conditions are

imposed. For concreteness, all reported times will be given in multiples of the light-crossing

time tLC = L/c, with L ≡ the size of the box, which we set numerically to 10. The random

external force employed is described in appendix B, and with its strength controlled by

the parameter Ψ(0) = 3 × 10−5 we find a suitable value of the friction strength to be

α = 1.8× 10−2, producing a large-scale energy cutoff around k = 5, as shown in figure 3.

Figure 1 displays the velocity and density distributions at a representative time when

the flow appears statistically stationary, as well as the standard deviation of the velocity

differences δvL, δvT as a function of separation. This is intended to convey the degree to

which this flow differs from the non-relativistic, incompressible case. In particular, notice

that the peak of the velocity distribution at v ∼ 0.14c corresponds to a Lorentz gamma

factor γ ∼ 1.01, while the largest velocity is v ∼ 0.52c, corresponding to γ ∼ 1.17. The

bulk of the flow can therefore be considered non-relativistic (for comparison, the sound

speed for this 2 + 1 dimensional conformal fluid is cs ∼ 0.71c, so the flow is also subsonic).
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Figure 2. Total Newtonian kinetic energy and total Newtonian enstrophy displayed as functions

of time, measured in multiples of the light-crossing time tLC of the box. Plateaus occur quickly,

indicating a statistically steady-state. Analysis is performed at t = 25tLC for each run.

The density distribution shows a standard deviation of 0.055 and a peak at 0.97. The

velocity differences are roughly Gaussian distributed with zero mean, and their widths

σ are comparable to the sound speed. One may thus describe this flow as being in the

weakly-compressible regime. Notice that the density distribution peaks at a value less than

1 and has a stronger tail at lower values, which means that a bias is formed in favour of

under-density with respect to the initially uniform value of 1. Given the characteristics of

the flow described, employing the Newtonian energy and enstrophy to connect with known

results in the Newtonian regime is justified.

The total specific Newtonian kinetic energy of a representative simulation is shown as a

function of time in figure 2. The energy plateaus after approximately t = 20tLC, indicating

a statistically steady-state. Correlation functions are computed at t = 25tLC. In order

to obtain snapshots of the flow which are statistically independent, one can choose the

temporal spacing between samples to be at least one large-eddy turnover time, determined

through T = U/L, where U is a typical large-scale speed and L is the large length scale.

We estimate U by applying a low-pass Fourier filter to the velocity field at a representative

time t = 25tLC, with all wavenumbers larger than the friction scale kα being set to zero,

then choosing U as the mode of the resulting velocity distribution. The large length scale

L is chosen as 2πLα. We find this procedure gives roughly T = 25tLC, which is the same

amount of time required to evolve the fluid from rest to a steady-state. Thus, we opt to

evolve the fluid from rest to obtain each flow realization, rather than evolve from a steady-

state at time t to a later time t+ T . This reduces the risk that each flow realization is not

statistically independent.

The spectral energy E(k) and flux Π(k) (averaged over 200 flow realizations) are

shown in figure 3. Π(k) is computed using the formula Π(k) =
〈
v<k · (v

<
k ·∇v>k )

〉
+〈

v<k · (v
>
k ·∇v>k )

〉
, as described in [6]. Here, the superscripts >,< denote Fourier-filtered

quantities with all wavenumbers set to zero below or above the given k, respectively. The

familiar Kolmogorov scaling of the spectral energy E(k) ∝ k−5/3 seems to hold, and the

spectral energy flux exhibits qualitative behaviour similar to that displayed in [25]. The

intersection of Π(k) with the horizontal axis at k = 100 indicates the injection of energy

– 15 –



J
H
E
P
1
2
(
2
0
1
5
)
0
6
7

100 101 102 103

k

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
ar

bi
tr

ar
y 

un
its

k5/3E(k)

Π(k)

100 101 102

k

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

ar
bi

tr
ar

y 
un

its

E(k)

k−5/3

Figure 3. Left: isotropic Newtonian spectral energy E(k) and energy flux Π(k) averaged over

200 flow realizations. E(k) is compensated by the inverse Kolmogorov power law k5/3, and both

quantities are scaled to a convenient, comparable magnitude for the purposes of presentation. Note

the semi-log scale. The energy flux Π(k) crosses zero at k = 100, indicating the injection of energy

there, while it takes on negative values for k < 100, indicating the inverse-cascade of energy. Right:

for ease of visual comparison, we plot E(k) in a manner that is common in previous work, e.g. [25].
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Figure 4. Left: numerical evidence of isotropy. The mixed correlation 〈δvLδvT 〉 is supposed to

vanish under isotropy, and it is measured to be less than the non-vanishing purely longitudinal

correlation
〈
δv2L
〉

by a factor of more than 103. All correlations are computed over 104 flow realiza-

tions. Right: numerical evidence that
〈
fif
′i〉 and

〈
fiT
′i
0

〉
are proportional, in particular vanishing

quickly with increasing r. Note that the former has been scaled by an overall constant in order to

match with the latter at r = 0. We show only the longitudinal correlations here — the transverse

ones look the same.

there, since energy is flowing away from that length scale. Negative values of Π(k) for

k < 100 indicate the inverse-cascade of energy.

To provide evidence that the flow is indeed statistically isotropic, we compute 2nd-order

velocity correlation functions of purely longitudinal and mixed types, the latter of which is

expected to vanish under isotropic conditions. Figure 4 (left) illustrates the results obtained

with an average over 104 flow realizations, which shows the mixed type being negligible

with respect to the purely longitudinal case. In addition, the right plot demonstrates that

we have achieved
〈
fif
′i〉 ∝ 〈fiT ′i0 〉, which is a crucial part of the derivation in section 3.2.1

of the linear scaling of
〈
T0iT

′ij〉 in the inverse-cascade range. However, the proportionality
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Figure 5. Correlations plotted as functions of the separation r/L, with L ≡ the size of the box.

Left: velocity structure functions of orders n = 1 − 4, compensated by the Kolmogorov scaling

rn/3 (see [17] for details about this expectation). The odd orders have an absolute value operation

performed on δvL, which causes them to converge more rapidly with sample size N . Right: the two

relativistic correlations 〈T ′0LTLL〉 and 〈T ′0TTLT 〉 which are not expected to vanish under isotropic

conditions, along with their incompressible limits (9/4) 〈v′LvLvL〉 and (9/4) 〈v′T vLvT 〉. The factors

of 9/4 are left over after the limit is taken. All correlations are computed over 104 flow realizations

with a grid size of 8002.

factor is on the order of 103 rather than 2 as the argument in appendix A would suggest.

This discrepancy is not surprising, as our force is not δ-correlated in time as the argument in

appendix A requires. A proper numerical implementation of δ-correlated statistics requires

a modified integration algorithm, as described in [34].

As a further display of the properties of this flow, we also compute velocity structure

functions of orders 1 through 4, but with the absolute value of the velocity differences

taken in the case of odd orders (this has been argued [35] to preserve the scaling properties,

though it obscures the overall magnitude of the correlation). By taking the absolute value,

all contributions to the correlation add constructively, which improves the convergence

drastically (this is what was done in [13] for a relativistic fluid in d = 3). The scaling

behaviour reflects the Kolmogorov expectation 〈|δvL|n〉 ∝ rn/3 increasingly poorly as n

increases, but the same phenomenon has also been reported in [25] for positive-definite

velocity structure functions.

Lastly, it is interesting to closely examine the non-vanishing correlations, 〈T ′0LTLL〉 and

〈T ′0TTLT 〉, together with their incompressible limits, (9/4) 〈v′LvLvL〉 and (9/4) 〈v′T vLvT 〉),
respectively. This comparison will be discussed in the next section.

4.4 Discussion

The correlations shown in figure 5 (right) are still unresolved, even with a sample size of

104 flow realizations. We observe this by computing, at each r/L, the standard deviation

of the sample divided by the square root of the number of samples, σ/
√
N . We find it to be

comparable with the value of the correlation itself, and thus conclude that the fluctuations

have not averaged down sufficiently. Poor signal-to-noise constitutes the main difficulty in

– 17 –



J
H
E
P
1
2
(
2
0
1
5
)
0
6
7

0.00 0.05 0.10 0.15 0.20 0.25
r/L

2

1

0

1

2

3

4

5 1e 7
9
4

〈
v ′L vL vL

〉
〈
T ′0LTLL

〉
−
〈
3
4
ρ′ ργ′2 v ′L

〉

Figure 6. The purely longitudinal relativistic correlation plotted without its spoiler term〈
3
4ρ
′ργ′

2
v′L

〉
, as compared with its incompressible limit. The agreement is considerably improved,

demonstrating that the spoiler term is sensitive to compressive effects.

numerically measuring odd-order correlations in compressible turbulence. For our current

simulation, a much larger sample size is required, as we will discuss later.

Nevertheless, some relevant conclusions can still be made. Firstly, notice in figure 5

(right) that there is a great disparity in how well 〈T ′0TTLT 〉 and 〈T ′0LTLL〉 match with their

incompressible limits. The former is indistinguishable from its limit in the plot, though

zooming in reveals that there are small differences. The latter, on the other hand, bears

little resemblance to its incompressible limit. To gain insight about this, consider the two

correlations written in terms of the primitive variables:

〈
T ′0LTLL

〉
=

〈
9

4
ρ′ργ′

2
γ2v′LvLvL

〉
+

〈
3

4
ρ′ργ′

2
v′L

〉
, (4.6)

〈
T ′0TTLT

〉
=

〈
9

4
ρ′ργ′

2
γ2v′T vLvT

〉
. (4.7)

In the incompressible limit, γ, ρ → 1. The 2nd term on the right-hand side of eq. (4.6)

will therefore become ∝ 〈v′L〉 which is zero by statistical symmetries. Indeed, we find

numerically that the overall magnitude of
〈
3
4ρ
′ργ′2v′L

〉
is roughly 105 times larger than

〈v′L〉. This indicates that the underlying probability distribution for this term is highly

sensitive to compressive effects, which cause it to become considerably wider, translating

into much larger fluctuations. We can also implicate this term in the disagreement between

eq. (4.6) and its incompressible limit by subtracting it from eq. (4.6). We display the result

in figure 6, where it is seen that the agreement improves considerably. It remains to be seen

whether this spoiler term will average down to become negligible in the weakly compressible

regime we are exploring here.

Secondly, note that the third-order velocity correlation 〈v′LvLvL〉 has been successfully

resolved in simulations of an exactly-incompressible fluid in [21] when averaged over only

tens of flow realizations, albeit with a larger grid size of 20482. As a proof of principle,
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switching to the less-costly case of an exactly-incompressible fluid2 we obtain similar re-

sults for our current grid size of 8002, shown in figure 7 after averaging over 7 × 104 flow

realizations. An investigation into the dependence of the signal-to-noise of the correlations

on compressive effects and the nature of the random external force is left for future stud-

ies. For such work, it is important to estimate the sample size required to resolve a given

correlation. Such an estimate can be obtained in terms of the standard deviation of the

underlying distribution and the scaling prediction. For instance, eq. (3.20) provides the pre-

diction for the strength of the signal. Supposing the underlying distribution for T ′0iT
i
L|r=rI

has a standard deviation σ(rI), where rI is a separation within the inverse-cascade range.

Then the signal-to-noise ratio SNR would be given by

SNR =
εrI
2

N1/2

σ
, (4.8)

where N is the sample size. Solving for N yields

N =

(
2σ

εrI
SNR

)2

. (4.9)

5 Summary

In this work we derived scaling relations in fully-developed relativistic turbulence in two

spatial dimensions. We considered both the inverse- and direct-cascade ranges, and the

relativistic results reduce in the non-relativistic limit to the corresponding scalings in the

incompressible case. This derivation bridges known results in the field of incompressible

fluid turbulence with ongoing work in the relativistic case.

We have also begun a numerical experiment in an effort to measure the derived scal-

ing relations through direct numerical simulations. We showed through figure 1 that the

flow displays Mach numbers around 0.2 in both absolute and relative velocities, and is

thus weakly-compressible. In this regime, the probability distribution underlying the term〈
ρ′ργ′2v′L

〉
in eq. (4.6) acquires a large standard deviation as compared with its incom-

pressible counterpart, 〈v′L〉, being 105 times larger with the same sample size. While the

latter can be argued to vanish by isotropy, the former cannot. This opens the possibility

that this ‘spoiler term’ provides the dominant deviation of eq. (4.6) from its incompressible

limit to leading order in compressive effects, although this must be verified by increasing

the sample size considerably. It would be interesting to observe deviations of the relativis-

tic correlations derived here from their incompressible limits in the highly-compressible or

relativistic regimes.

The signal-to-noise of odd-order correlations is the overarching difficulty in measur-

ing them accurately. Indeed, previous studies of compressible Navier-Stokes turbulence

(e.g. [36–38]) and relativistic turbulence (e.g. [13]) sidestepped this issue for the case of

velocity structure functions by taking the absolute value of the velocity differences, 〈|δv|n〉.
2Which incorporates a Poisson solver to impose incompressibility, and adopts a second-order “white

noise” Runge-Kutta algorithm [34].
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Figure 7. Top row:
〈
(δvL)3

〉
(left) and (r/L)−1

〈
(δvL)3

〉
(right) averaged over 7× 104 realizations

of an incompressible flow at 8002 resolution. For visual comparison, a linear trend is displayed as a

straight line on the left. The flat interval on the right plot also corresponds to a linear trend, which

is a similar result to that of [21]. Negative values have been indicated in red on the left. Bottom:

the sample average and uncertainty σ/N1/2 plotted versus sample size N for the purely longitudinal

velocity structure function
〈
(δvL)3

〉
|r=rI , for a separation rI in the inertial range (indicated with

an arrow in the top row). This separation corresponds to a wavenumber of k = 35 in grid units. The

uncertainty reduces to roughly 1/2 of the average at N = 7× 104, translating into a signal-to-noise

ratio of ∼ 2.

The result of this procedure is that every term in the average adds constructively, and the

scaling behavior has been argued in [35] to be preserved. In our case, an analogous work

around is not available for the relativistic correlations in eq. (3.20), since the coupling of

factors of the velocity in Tij prevent writing the correlations in terms of velocity differences.

We are continuing our effort to resolve the correlations, and those results will be left for a

future communication.

As a final comment, our work examining the behaviour of relativistic, conformal fluids

undergoing turbulence has a natural connection with both conformal field theories and

gravity through holography and the fluid-gravity correspondence (e.g. [39–41]). The cor-

respondence relates the fluid stress tensor in d dimensions to the asymptotic behaviour of

a d + 1 dimensional black hole spacetime metric (up to counter-terms to obtain a finite

expession) as,

Tab = lim
r→∞

rd

8πG
(d+1)
N

(Kab −Kγab) , (5.1)
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where γab andKab are the intrinsic and extrinsic curvatures respectively of a timelike surface

at r → ∞. It implies that in the turbulent gravitational regime, correlations involving

the metric tensor itself should obey scaling behaviour of the form discussed here.3 The

implications of such an intriguing observation are still unexplored.
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A Relating
〈
T0if

′i〉 and trF

Here we present an adaptation of an argument by Novikov [44]. In [44] it was shown that,

for a homogeneous Gaussian random field fi(x, t) satisfying eq. (3.14), one can write its

correlation with a functional R[f ] as

〈fi(r, t)R[f ]〉 =

∫
Fik(r − r′)

〈
δR[f ]

δfk(r′, t)

〉
d3r′. (A.1)

The strategy is to then regard T0i as a functional of the external force f , then compute

its functional derivative and plug that into the above relation. To this end, one writes the

equation of motion as

T0i(r, t) = T0i(r, 0)−
∫ t

0
∂jTijdτ +

∫ t

0
fidτ. (A.2)

Upon applying the variational derivative at differing position and time t′ such that 0 <

t′ < t, one obtains

δT0i(r, t)

δfk(r′, t′)
= −

∫ t

t′

δ

δfk(r′, t′)
∂jTijdτ + Θ(t− t′)δki δ(r − r′), (A.3)

where Θ is the step function with Θ(0) = 1/2. The appearance of the step function and the

change of the lower limit of integration from 0 to t′ is a physical requirement, namely that

nothing can depend on the force evaluated at a future time. For instance, the integrand

on the right-hand side evaluated at a time τ cannot depend on the force at a time t′ > τ ,

and so the lower limit of integration cannot extend below t′. Upon evaluating eq. (A.3) at

3That would apply even in asymptotically flat scenarios [42, 43].
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equal time, the integral appearing on the right-hand side vanishes so long as the integrand

remains finite, and one obtains

δT0i(r, t)

δfk(r′, t)
=

1

2
δki δ(r − r′). (A.4)

Setting R[f ] = T0i(r
′′, t) and then using eq. (A.4) and eq. (A.1), one obtains the

desired result, 〈
T0if

′i〉 =
1

2
trF. (A.5)

B The forcing function

We wish to construct a Gaussian random forcing function which is divergence-free and

statistically homogeneous and isotropic, whose two-point correlation decays quickly with

increasing distance, and which is delta-correlated in time (sometimes called white noise in

time). In symbols, ∂if
i = 0 and〈

fi(r, t
′)fj(0, t)

〉
= Fij(r)δ(t− t′), (B.1)

where F ii ≡ trF = trF (r).

This latter condition is the sense in which this is an isotropic vector field. For fi
divergence-free, the stronger form of isotropy where Fxx = Fxx(r) and Fyy = Fyy(r) forces

Fxx = Fyy = 0. One can see this by moving to Fourier space, where the xx and yy two-

point correlation functions become 〈f̂x(k)f̂∗x(k)〉 ≡ g(k) and 〈f̂y(k)f̂∗y (k)〉 ≡ h(k), for some

functions g, h of the magnitude of the wavevector only. The divergence-free condition reads

kxf̂x + kyf̂y = 0, which allows us to convert between these correlation functions. Thus, for

kx 6= 0 〈
f̂xf̂

∗
x

〉
=

〈
k2y
k2x
f̂yf̂
∗
y

〉
=
k2y
k2x

〈
f̂yf̂
∗
y

〉
,

which contradicts
〈
f̂y(k)f̂∗y (k)

〉
≡ h(k) unless h(k) = 0. This is why we chose to sum over

i in section 3.2.1, since the divergence-free nature of the force played a role in the argument.

In our simulations, to generate a divergence-free force we derive it from a stream

function ψ such that f = (∂yψ,−∂xψ). We thus specify ψ itself as a Gaussian random,

homogeneous, isotropic scalar field which is delta-correlated in time. In symbols,〈
ψ(r, t′)ψ(0, t)

〉
= Ψ(r)δ(t− t′), (B.2)

with Ψ(r) a thin Gaussian function, which ensures a short correlation length. In practice, ψ

is built in Fourier space, where the reality condition ψ̂∗(k) = ψ(−k) is imposed, and where

each mode receives a complex amplitude drawn from zero-mean Gaussian distributions

whose widths are given by Ψ̂1/2(k). As constructed, ψ satisfies eq. (B.2). The force itself

then has trF whose Fourier transform is a wide Gaussian weighted by k2. In real space,

trF behaves as is plotted in figure 4 (right). At each step in the Runge-Kutta integration

this procedure is repeated anew, thus giving different individual realizations of the random

force. This is the sense in which we have approximated a delta-correlation in time. A

proper implementation requires a modified algorithm, as described in [34].
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C The consequences of isotropy

In their seminal paper, Karman and Howarth [26] argue as follows (we reproduce their

argument for d = 2). Let the two points under consideration lie on the x-axis. We say

that the x-direction is the longitudinal direction, pointing directly between the two points,

while we say that all other perpendicular directions are transverse directions. The triple

velocity correlation functions can be listed as

〈vx(0)vx(~r)vx(~r)〉 , 〈vy(0)vx(~r)vx(~r)〉 , 〈vx(0)vx(~r)vy(~r)〉
〈vy(0)vx(~r)vy(~r)〉 , 〈vx(0)vy(~r)vy(~r)〉 , 〈vy(0)vy(~r)vy(~r)〉 .

Now, both directions ŷ and −ŷ are transverse, and by isotropy (or parity-invariance in

d = 2) every correlation will be invariant under a switch between them. However, any

correlation with an odd number of y-components will undergo a change of sign when the

y-axis is inverted. Those correlations therefore vanish. The remaining correlations are

〈vx(0)vx(~r)vx(~r)〉 , 〈vy(0)vx(~r)vy(~r)〉 , 〈vx(0)vy(~r)vy(~r)〉 . (C.1)

The incompressibility condition
∑

i ∂ivi = 0 further implies that only one of these remain-

ing three correlations is independent (see [26]). In the relativistic case, there does not

necessarily exist an analogous condition, so all three correlations might be independent.

The same arguments about sign-flipping apply in the case of homogeneous, isotropic

turbulence in a special relativistic perfect fluid. For a correlation such as 〈T0iT ′ij〉, one can

see for example with a perfect fluid energy-momentum tensor

Tab = (ρ+ p)uaub + pηab, (C.2)

where ~u = γ(1, ~v), that for i 6= j we will have Tij = (ρ + p)γ2vivj undergo a change in

sign when one of the i- or j-axes is inverted. On the other hand, if i = j, then Tii =

(ρ + p)γ2vivi + pδii does not change sign when the i-axis is inverted. Furthermore, T0i =

(ρ+p)γ2vi changes sign when the i-axis is inverted. Thus all the facts are in place to run the

same arguments presented in [26]. This allows us to conclude that the only non-vanishing

correlations of this type are〈
T0LT

′
LL

〉
,
〈
T0TT

′
LT

〉
,
〈
T0LT

′
TT

〉
, (C.3)

where L and T are the longitudinal and transverse directions, respectively.

D Vorticity behavior: 2+1 case

D.1 Unforced case

The goal here is to derive a relativistic equation for the vorticity as defined in [12]. In that

reference, vorticity is defined as

Ωµν = ∇[µρ
1/duν] , (D.1)

– 23 –



J
H
E
P
1
2
(
2
0
1
5
)
0
6
7

and was shown to give rise to the conserved current,

Jµ ≡ ρ−2/3(ΩαβΩαβ)uµ , (D.2)

for a conformal perfect fluid. To derive a scaling relation for this case by following a

strategy similar to section 3.2.2, we first require an equation in conservation form for a

quantity related to vorticity.

Obviously the quantity W a ≡ εabcΩbc satisfies ∂aW
a = 0. This fact can also be

obtained from the following argument. As discussed in [12], in 2+1 dimensions Ωab =

εabcu
cΩ where Ω2 ≡ ΩabΩ

ab. It follows that

∂aW
a ≡ ∂a(Ωua) = Ω∂au

a + ua∂aΩ ,

= Ω∂au
a − Ω

2

(
∂au

a − 2

3ρ
ua∂aρ

)
,

= Ω∂au
a − Ω

2
(∂au

a2) ,

= 0 ; (D.3)

where we have used in the first line the relation derived in appendix C of [12] to show

∂aJ
a = 0 and in the last line the hydrodynamic conservation equation along the flow

velocity,

uµ∂µρ = − d

d− 1
ρ(∇µuµ) ≡ − d

d− 1
ρΘ , (D.4)

We therefore have,

∇0(Ωu
0) +∇i(Ωui) = 0 , (D.5)

with Ω =
(
∂[a(Tub])∂

[a(Tub])
)1/2

which reduces to the standard vorticity equation in the

Newtonian limit.

D.2 Forced case

Suppose now there is a force acting in the problem, so that the conservation equation reads

∇aT ab = f b. Projecting this equation along ua and orthogonal to it gives,

ua∂aρ = −3

2
ρ∂au

a − 1

2
uaf

a , (D.6)

ua∂aub = − 1

3ρ
P ab ∂aρ+

1

3ρ
Pbaf

a . (D.7)

Now, using the above relations, we have from eq. (D.1),

uaΩab = ua∂[a(ρ
1/3ub]) ,

= ua∂a(ρ
1/3ub)− ua∂b(ρ1/3ua) ,

= ubu
a∂aρ

1/3 + ρ1/3ua∂aub + ∂bρ
1/3 ,

= P ab ∂aρ
1/3 + ρ1/3

(
− 1

3ρ
P ab ∂aρ+

1

3ρ
Pabf

a

)
,

=
ρ−2/3

3
Pabf

a . (D.8)
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We are interested now in exploring the condition ∂aW
a = 0 as in the previous section

under the influence of a force. To proceed, let us observe that

εabcΩbc = εadcδbdΩbc ,

= εadc(P bd − udub)Ωbc ,

= εadcP bdΩbc −
ρ−2/3

3
εadcudP

b
c fb ,

= εadcP bdΩbc +
ρ−2/3

3
εadcucP

b
dfb . (D.9)

We thus arrive at the equation,

0 = ∂a

(
εadcP bd

(
Ωbc +

ρ−2/3

3
ucfb

))
(D.10)

This equation however does not relate the vector W a in the way we sought, i.e. an equation

of the form ∂aW
a = F . Nevertheless, it does motivate what the right vorticity-related

vector should be, namely Wa ≡ εadcP bdΩbc which, from the derivation above, satisfies

∂aWa = εadc∂a

(
ρ−2/3

3
P bc udfb

)
,

= εadc∂a

(
1

3T 2
P bc udfb

)
, (D.11)

where we have used ρ = T 3 in the second line. Notice that

WaWa = ΩabΩ
ab +O(f) , (D.12)

with O(f) denoting terms depending linearly or quadratically on f b, thus in the absence of

forcingWaWa = ΩabΩ
ab and we recover the conservation of vorticity, eq. (D.5), as expected

from this quantity.

D.3 Scaling argument

A scaling argument in the direct-cascade range involving the relativistic vorticity Wa can

also be made, following section 3.2.2 closely. First, define the right-hand side of eq. (D.11)

as a forcing term F̃ = εadc∂a
(

1
3T 2P

b
c udfb

)
, where we use a tilde to distinguish this force

from the one in section 3.2.2. This gives the equation of motion succinctly as

∂aWa = F̃ . (D.13)

Second, consider the steady-state condition ∂0 〈W0W ′0〉 = 0, and apply the time derivative

and use the equation of motion to obtain,

∂i
〈
WiW ′0

〉
= −

〈
F̃W ′0

〉
, (D.14)
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t=40 t=160 t=200

t=280 t=360 t=640

Figure 8. Progression of the vorticity during the emergence of an energy condensate. The colour

scale is omitted since this figure is only meant to qualitatively illustrate the anisotropic features of

the energy condensate. All times are quoted in multiples of the light-crossing time tLC.

where ∂i stands for the derivative with respect to the separation r = r2 − r1. Lastly,

notice that far below the forcing scale, r � Lf , the right-hand side is constant, 〈F̃W ′0〉 ≈
〈F̃W0〉 ≡ ε̃, so upon integration (using isotropy)

〈
WiW ′0

〉
= − ε̃

2
ri, (D.15)

which is valid in the direct-cascade range. Notice that it is more difficult to integrate this

expression twice than it is for the expression eq. (3.28) due to the presence of the projector

in the definition of Wa, which prevents taking the derivative operator outside without

picking up additional terms. This means that obtaining an r3 scaling relation from this

linear one is not as straightforward as in the case of eq. (3.28).

E Energy condensate

In the absence of large-scale removal of energy in 2D, energy will build up in the gravest

mode. Such a state is called an energy condensate. For completeness, we present the energy

condensate and a method for removing it from the analysis. As a concrete example, we

adopt a periodic doman with grid size N2 = 4002 and a homogeneous, isotropic, random

external force acting at kf = 50, normalized to a real-space amplitude β = 0.6. After

a sufficiently long time, the inverse cascade leads to an energy condensate, as shown in

figure 8. The figure displays the progression of the vorticity, with all times quoted in

multiples of the light-crossing time tLC. The colour scale has been omitted. Notice the

late-time appearance of two dominant vortices of opposing sign.
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Figure 9. Wavelet decomposition of the vorticity field at t = 960tLC with a threshold value of 3.

Left: the full vorticity field. Middle: the incoherent part. Right: the coherent part.
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Figure 10. Wavelet decomposition of the spectral energy of the condensate at t = 960tLC using

Coiflet-12 wavelets and a threshold of 1. Left: E(k) for the full velocity field. Middle: E(k) for the

incoherent part of the velocity field. Right: E(k) for the coherent part of the velocity field. The

scaling behaviour of approximately k−3, k−1, and k−3, respectively, is consistent with [45].

To analyze the resulting energy condensate one can make use of wavelets [45]. We

perform a similar analysis here as far as decomposing the velocity field into coherent and

incoherent parts and computing the spectral energy of each. Figure 10 illustrates the

obtained results. The decomposition is performed using Coiflet-12 wavelets, which are a

complete set of functions which are localized in both real and Fourier space. Their first

two moments vanish (as well as their third and fourth moments), thus they couple weakly

to Gaussian features. In other words, a relatively large number of basis elements with

relatively low weights are required to represent Gaussian features of the data, whereas non-

Gaussian features are represented by fewer basis elements with higher weights. Assuming

the incoherent part of the velocity field is closer to Gaussian than the coherent part, one

can therefore extract the incoherent part by imposing a threshold on the field in wavelet

space, setting to zero all wavelet weights above a certain value, and then transforming back

to real space. The remainder is the coherent part.

To get a sense of what this procedure does, figure 9 displays such a decomposition of the

vorticity at t = 960tLC using a threshold value of 3. Notice the increased blurriness of the

coherent part of the vorticity (a common feature of compressed images, being represented

by a small number of basis elements), and the dominant overall amplitude of the coherent

part with respect to the incoherent part. The energy scalings displayed in figure 10 are
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approximately consistent with [45]. Note that there is a significant amount of arbitrariness

in the choice of threshold value and wavelet type which we do not attempt to address here.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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