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1 Introduction

In last couple of years, amazing progress has been made by Cachazo, He and Yuan [CHY] in

a series of papers [1–5], where tree-level amplitudes of a host of quantum field theories can

be calculated using solutions of a set of algebraic equations. These are called the scattering

equations and appear in the literature in a variety of contexts [6–14].

The mysterious relationship between the CHY approach and the standard QFT

paradigm has been explained from different points of view. In [15], using the BCFW

on-shell recursion relation [16, 17] the validity of the CHY construction for φ3 theory

and Yang-Mills theories has been proven. A broader understanding is achieved using am-

bitwistor string theory [18–28], where using different world-sheet fields, different integrands

in the CHY approach for different theories — which we will call CHY-integrands, a func-

tion of the coordinates zi in a Riemann surface — have been derived alongside with the

natural appearance of scattering equations. A nice point of ambitwistor approach is that it

provides the natural framework for loop scattering equations as studied in [21, 24], which
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lead to a breakthrough in [28]. A third understanding is given in [29], where inspired by

the field theory limit of string theory, a dual model has been introduced, based on which a

direct connection between the CHY approach and the standard Feynman diagram method

has been established not only at the tree-level in [30, 31], but also at the one-loop level (at

least for φ3 theory) in [32] (see also [33]).1

Although conceptually the CHY approach is remarkable and very useful for many

theoretical studies of properties of scattering amplitudes, when applying to real evaluation,

one faces the problem of solving scattering equations, which has (n − 3)! solutions in

general. Furthermore, when n ≥ 6, one encounters polynomials of degree exceeding five,

rendering analytic solutions in radicals hopeless. Nevertheless, while the solutions can be

very complicated, when putting them back into the CHY integrand and summing up, one

obtains simple rational functions. These observations have led people to wonder if there

is a better way to evaluate the CHY-integrand without explicitly solving the scattering

equations. In [35], using classical formulas of Vieta, which relate the sums of roots of

polynomials to the coefficients of these polynomials, analytic expression can be obtained

without solving roots explicitly. More general algorithms are given by two works. In one

approach [36], using known results for scalar φ3 theory, one can iteratively decompose

the 4-regular graph determined by the corresponding CHY-integrand to building blocks

related to φ3 theory, thus finishing the evaluation. In another approach [30, 31], by careful

analysis of pole structures, the authors wrote down a mapping rule, so that from the related

CHY-integrand, one can read out contributions of corresponding Feynman diagrams.

Both approaches are powerful and have avoided the need of solving the scattering

equations explicitly. Furthermore, based on these perspectives, especially the mapping rule,

one can use Feynman diagrams to construct the CHY-integrand. These results produce a

very interesting phenomenon: two different CHY-integrands can produce the same result.

For example, there are two very different CHY-integrands for scalar φ4 theory: one is given

in [5], while another one is given in [30, 31]. We are naturally led to wonder how to explain

the equivalence of different CHY-integrands.

In fact, as a rational function of coordinates zi on a Riemann surface, the equivalence

can occur on three different levels.

1. At the first level, their equivalence is pure algebraic, i.e., through some algebraic ma-

nipulations, one rational expression can be transformed to another one. For example,

for 4-point amplitudes of φ3 theory, on the one hand we have the integrand I1 =
1

z12z23z34z41

1
z12z23z34z41

where we have defined zij = zi − zj which gives a contribution

of 1
s12

+ 1
s41

. On the other hand, we have the integrands I21 = 1
z12z23z34z41

1
z12z24z43z31

which gives − 1
s12

and the integrand I22 = 1
z12z23z34z41

1
z13z32z24z41

which gives − 1
s41

. It

is easy to check algebraically that I1 = −I21 − I22. Equivalences at this level is of

course rather trivial and in order to proceed to the other two levels of equivalences, we

need to change our viewpoint to algebraic geometry, i.e., to transform the scattering

equations to a set of polynomials of (n− 3) variables, defining an ideals I;

1Recently, inspired by the development of CHY-approach, a new method to construct all loop integrands

for general massless quantum field theories has been proposed in [34].
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2. The difference of two CHY-integrands can be written as J(I1 − I2) = P
Q where both

P,Q are polynomials and J is the Jacobian we will review shortly. If P belongs to

the ideal I, then for each solution of the scattering equations P = 0, thus at the

second level we say that I1 is equivalent to I2;

3. However, in practice, most of the time something more complicated happens and we

find that though P does not belong to the ideal I and J(I1 − I2) = 0 when and only

when we sum over all solutions. If this happens, we say that I1 is equivalent to I2

at the third level. It is clear that this is the most involved situation, and indeed, in

practice this is the most frequently encountered.

Motivated by the above considerations and bearing in mind that indeed the most

conducive perspective on studying the scattering equations is through the language of

algebraic varieties and polynomial ideals [37, 38], we turn to this method of attack. The

above problem thus translates to finding the sum over the rational function P
Q evaluated at

the roots of a zero-dimensional ideal I, and testing whether the sum is zero. Luckily, there is

a theorem in commutative algebra, due to Stickelberger, which addresses the situation [39].

We will discuss the theorem and the associated algorithm in illustrative detail. It turns out

that this method not only checks the equivalence at the third level, but also evaluates the

integration without solving the scattering equations. In this sense, it is in the spirit of the

methods in [36] and [30, 31]. Although it is sometimes less efficient compared to these two

methods, it does provide a very different angle to approach the problem and could have

very advantageous repercussions.

The structure of the paper is as follows. We begin with a brief review of the tree-

level scattering equations in section 2, before laying down the foundations of the theory

of zero-dimensional ideals in section 3, especially that of companion matrices. We then

illustrate the technique with ample computational examples in section 4, before concluding

with remarks in section 5.

2 Review of tree-level scattering equations

In this section, we offer a brief review of tree-level scattering equations and the reader is

referred to [1–3, 5] for details. The scattering equations are given by

Ea ≡
∑
b 6=a

sab
za − zb

= 0, a = 1, 2, . . . , n , (2.1)

where sab = (ka + kb)
2 = 2ka · kb, and ka with a = 1, 2, . . . , n are n massless momenta for

n-external particles and zi are complex variables living on CP1 with n punctures. Although

there are n equations, only (n−3) of them are linear independent after using the momentum

conservation and massless conditions which translate to the following three relations∑
a

Ea = 0,
∑
a

Eaza = 0,
∑
a

Eaz2
a = 0 , (2.2)

which are, in fact, the consequence of the SL(2,C) symmetry on the CP1. Because of this,

we can insert only (n − 3) delta-function. To make sure the result does not depend on
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which three equations have been removed, we make following combination and define the

measure2

Ω(E) ≡ zijzjkzki
∏

a 6=i,j,k
δ (Ea) , (2.3)

with zij = zi − zj . With the above, the general tree-level amplitude is given by

An =

∫ ∏n
i=1 dzi

vol(SL(2,C))
Ω(E)F(z) =

∫ ∏n
i=1 dzi
dω

Ω(E)F(z) , (2.4)

where dω = dzrdzsdzt
zrszstztr

comes after we use the Möbius SL(2,C) symmetry to fix the location

of three of the variables zr, zs, zt by the Faddeev-Popov method. Different QFTs give

different forms of the CHY-integrand F(z). Invariance under the Möbius transformation

requires F(z) to have proper transformation behaviors, i.e., under z′ = az+b
cz+d , we have

F(z)→

(
n∏
i=1

(czi + d)4

(ad− bc)2

)
F(z) . (2.5)

To simplify expression (2.4) further, we integrate out the delta-functions to arrive at

the key expression

An =
∑
sol

zijzjkzkizrszstztr
(−)i+j+k+r+s+t|Φ|rstijk

F , (2.6)

where three arbitrary indices i, j, k correspond to three removed scattering equations while

three arbitrary indices r, s, t correspond to the above mentioned three fixed locations. The

sum is over the solution set of the scattering equations, which is generically a discrete set

of points. Furthermore, in the above, the Jacobian matrix Φ is calculated as (a for rows

and b for column)

Φab =
∂Ea
∂zb

=


sab
z2
ab

a 6= b

−
∑
c 6=a

sac
z2
ac

a = b , (2.7)

and |Φ|rstijk is the determinant of Φ after removing the i-th, j-th and k-th rows and r-th,

s-th and t-th columns.

Specific examples. Now we list some examples in the literatures [2, 3] (more can be

found in [5]). According to the CHY formula, the integrand unifying scalars(b = 0),

gluons(b = 1) and gravitons (b = 2) is given by

Fb,n =
( ∑
α∈Sn/Zn

Tr(Tα(1) . . . Tα(n))

zα(1)α(2) . . . zα(n)α(1)

)2−b(
Pf ′ Ψ

)b
, (2.8)

2A nice explanation of this fact can be found in [15, 37].
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where the sum is over permutations on n elements by the symmetric group Sn, up to cyclic

ordering of Zn, Ψ is a 2n× 2n antisymmetric matrix defined by Ψ =

(
A −Ct

C B

)
(where t

is the transpose of the matrix), with A,B,C being n× n matrices with components

Aab =

{
ka·kb
za−zb

0
, Bab =

{
εa·εb
za−zb
0

, Cab =

{
εa·kb
za−zb

−
∑

c 6=a
εa·kc
za−zc

for
a 6= b

a = b
, (2.9)

and Pf ′ Ψ is the reduced Pfaffian (square-root of the determinant) of Ψ defined by

Pf ′ Ψ = 2
(−1)i+j

zi − zj
Pf Ψij

ij , (2.10)

where 1 ≤ i, j ≤ n and Ψij
ij is the matrix Ψ removing rows i, j and columns i, j. We recall

that the Pfaffian of a 2n× 2n antisymmetric matrix can be computed as

Pf Ψ =
1

2nn!

∑
σ∈S2n

sgn(σ)

n∏
i=1

Ψσ2i−1σ2i , (2.11)

where sgn(σ) is the signature of σ ∈ S2n. Importantly, Pf Ψij
ij is non-zero on the solutions

of scattering equations, while Pf ′ Ψ is independent of the choice of i, j.

Specifically, we have that

• For color-ordered bi-adjoint scalar φ3 theory,

Fφ3 =
1

z2
12z

2
23 · · · z2

n1

. (2.12)

• For color-ordered Yang-Mills theory with ordering {1, 2, . . . , n},

FYM =
1

z12z23 · · · zn1
Pf ′ Ψ . (2.13)

• For gravity,

FG = (Pf ′ Ψ)2 =
4

(zi − zj)2
Det(Ψij

ij) . (2.14)

Having presented the above examples, let us go back to (2.6). As is clear from the

expression, the right hand side is a rational function in the complex variables zi. To

employ methods developed in algebraic geometry, we need to associate solutions to a zero-

dimensional algebraic variety defined by some polynomials. In other words, we should

rewrite Ea defined in (2.1) to an equivalent polynomial system. This has been done in a

beautiful paper [37], where it has been shown that scattering equations are equivalent to

following set of polynomials

0 = hm ≡
∑

S∈A,|S|=m

k2
SzS , 2 ≤ m ≤ n− 2 , (2.15)
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where the sum is over all n!
(n−m)!m! subsets S of A = {1, 2, . . . , n} with exactly m elements

and kS =
∑

b∈S kb and zS =
∏
b∈S zb. The algebraic geometry, notably the affine Calabi-

Yau properties of (2.15), has been investigated in [38].

A very useful observation made in [15, 37] is that If all k2
S 6= 0, then values of za are

all distinct. The set (2.15) has not fixed gauge. One of the choice of gauge will be to set,

as is standard with points on CP1, the three points z1 =∞, z2 = 1 and zn = 0. Under this

choice, the set of polynomial is reduced to

h̃1≤m≤n−3 ≡ lim
z1→∞

hm+1

z1
=

∑
S∈A/{1,n},|S|=m

(kS + k1)2zS |z2=1,zn=0 , (2.16)

In summary, h̃ defines a zero-dimensional ideal in the polynomial ring in n − 3 variables.

Then, using the standard Bézout’s theorem, the number of points in this ideal (solutions

of the scattering equation) is
∏n−3
m=1 deg(h̃m) = (n− 3)!.

Instead of computing the amplitude with formula (2.6) by summing over all solutions

of scattering equations, we will show in next section that, using the companion-matrix

method, we can compute the amplitude An =
∑

sol
P
Q as the trace of certain matrix com-

posed of so-called companion matrices Tzi

An = Tr(P ′|zi→TziQ
′−1|zi→Tzi ) , (2.17)

without the explicit solutions of scattering equations.

3 The mathematical framework

As mentioned in the introduction, it is expedient to consider the problem within the frame-

work of ideal theory. Our problem is thus the following.

Problem: Let I = 〈fi〉 be a zero-dimensional ideal in R = C[x1, . . . , xn]

generated by fi=1,2,...,k(x1, . . . , xn) ∈ R and let r(x1, . . . , xn) be an arbitrary

rational function in the fraction field of R. Because dimC I = 0, I = tNj=1{zj}
is a discrete set of, say N , points. We wish to evaluate

N∑
j=1

p(zj)

where each summand is an evaluation of p at one of the discrete set of zeros

zj . In particular we wish to test whether this sum is 0. This is the level 3

equivalence mentioned in the introduction.

Of course, the idea is to solve this without explicitly finding the roots zj . This can

be done using the technique of companion matrices [40] (cf. also [41]). Suppose a Gröbner

basis for I has been found for some appropriate monomial ordering and B is an associated

monomial basis for I, which can be seen as a vector space of dimension d. Then the

multiplication map by the coordinate variable xi

R/I −→ R/I

Ti : f −→ xif (3.1)

– 6 –
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is an endomorphism of quotient rings. In the basis B of monomials, this is a d× d matrix

and is called a companion matrix. Clearly, {Ti} all mutually commute and thus can be

simultaneously diagonalized. We have the following [39]:

Theorem 3.0 (Stickelberger) The complex roots zi of I are the vectors of simultaneous

eigenvalues of the companion matrices Ti=1,...,n, i.e., the corresponding zero dimensional

variety consists of the points:

V(I) = {(λ1, . . . , λn) ∈ Cn : ∃v ∈ Cn∀i : Tiv = λiv} .

We point out that the original statement of the theorem is in terms of annihilators in

algebraic number theory and is perhaps a little abstruse. Fortunately, the computational

algebraic-geometry community has rephrased this into the readily usable form of companion

matrices [40, 42]. In particular, we have the following important consequence:

Corollary 1 Our desired quantity

N∑
j=1

r(zj) = Tr[r (T1, . . . , Tn)]

where the evaluation of the rational function r on the matrices Ti is without ambiguity since

they mutually commute.

We remark that because r is rational, whenever the companion matrices appear in the

denominator, they are to be understood as the inverse matrix.

3.1 Warmup

Before proceeding to examples in our context, we present two simple exercises to demon-

strate our algorithm. Computations can be made in Macaulay2 [42] or Singular [43], or

the latter’s interface with Mathematica [44]. Let

I := 〈xy − z, yz − x, zx− y〉 ⊂ R = C[x, y, z] . (3.2)

We know, of course, that there are 5 roots

V(I) = {(0, 0, 0), (−1,−1, 1), (−1, 1,−1), (1,−1,−1), (1, 1, 1)} . (3.3)

Now we consider two functions, where one is polynomial and another, rational:

p(x, y, z) = 3x3y + xyz, Q(x, y, z) =
3x3y + xyz

2xy2 + 4z2 + 1
. (3.4)

It is easy to find, after summing over the solutions, that∑
V(I)

p = 4 ,
∑
V(I)

Q =
20

21
. (3.5)

We now show how the companion matrices work without finding the roots (3.3) explicitly.

– 7 –
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In the lex ordering of x ≺ y ≺ z, the Gröbner basis and the monomial basis are,

respectively,

GB(I) =
〈
z3 − z, yz2 − y, y2 − z2, x− yz

〉
; B = {1, y, yz, z, z2} . (3.6)

Therefore, we have that, in the quotient ring R/I,

x.B = {yz, z, z2, y, yz} , y.B = {y, z2, z, yz, y} , z.B = {z, yz, y, z2, z} , (3.7)

so that

Tx =

 0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 1 0 0 0

0 0 1 0 0

 , Ty =

 0 1 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

 , Tz =

 0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 1

0 0 0 1 0

 . (3.8)

Therefore, the sum over the roots of p is

Tr
(
3T 3

xTy + TxTyTz
)

= 4 (3.9)

and we have nice agreement with (3.4).

For the Q, the numerator is N = 3T 3
xTy + TxTyTz =


0 0 0 3 1

0 1 3 0 0

0 3 1 0 0

0 0 0 1 3

0 0 0 3 1

, while the denomi-

nator is D = 2TxT
2
y + 4T 2

z + I =


1 0 2 0 4

0 5 0 2 0

0 0 5 0 2

0 2 0 5 0

0 0 2 0 5

. Thus we calculate Tr(ND−1) = 20
21 , which

is the right answer on comparing with (3.4).

Before going to examples of scattering equations, let us give some remarks. First,

the theorem in its original form is for polynomial test functions r, while functions we will

meet in scattering equations are rational functions, i.e., the form P
Q with both P,Q are

polynomials. Luckily, the theorem and corollary can be generalized trivially since we can

diagonalize companion matrices simultaneously because the next remark.

Now, there is a second part of the theorem which states that the companion matrices

can be simultaneously diagonalized if and only if the ideal I is a radical ideal. That is,

there are no multiple roots. However, as shown in [15], if all k2
S 6= 0, the solutions of zi will

all be different, so we indeed have a radical ideal and find simultaneous eigenvalues readily.

Third, since there are (n − 3)! solutions, the size of Ti will be in general d = (n − 3)!

which will become very large with n. Although with this counting, the efficiency of the

method may be arguable, it does make the following property manifest: after summing

over all solutions, the final result must be rational functions of k, ε.

4 Illustrative examples

In the following, we will use several examples to demonstrate the companion matrix

method. The n = 4 case is simple. The companion matrix is 1-dimensional, equaling

to the single solution of scattering equations. We compute the amplitudes in scalar φ3,

– 8 –
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Yang-Mills and gravity theories to show the validity of the method. For n = 5, we first

study the amplitude of scalar φ3 theory, and show that the amplitude-level identity can be

understood by the fact that the trace of matrix is a linear mapping, and use it the explain

a 7-point identity proposed in [31]. For the amplitudes of Yang-Mills and gravity theories,

we will show that the companion matrix method indeed produce the correct amplitudes.

For n = 6, the scalar φ3 theory will be shown to detect the pole structures so that the

amplitude can be constructed by setting appropriate kinematics. The Next-MHV gluon

amplitude is also presented as an example to show the validation of companion matrix

method in a more difficult situation. Finally, for n = 7 amplitudes of scalar φ3 theory,

we demonstrate that, when companion matrices are computed in the diagonal form, the

diagonal elements of the integrand matrix (which we recall to be an (n − 3)! × (n − 3)!

matrix for n-points) have one-to-one mapping to the integrand computed at the (n − 3)!

solutions of the scattering equations, so they are not only equivalent at the amplitude level,

but also at the level of each solution as indicated by Stickelberger’s theorem.

4.1 Four-point amplitudes

The n = 4 case is trivial. There is only 4− 3 = 1 variable left, so the companion matrix is

just a complex number. Let us remove three scattering equations E1, E2, E4 and gauge-fix

three points z1 =∞, z2 = 1 and z4 = 0. The remaining one scattering equation is

E3 =
∑
b 6=3

s3b

z3 − zb
=

s13

z3 − z1
+

s23

z3 − z2
+

s34

z3 − z4
=

(s23 + s34)z3 − s34

z3(z3 − 1)
. (4.1)

We can define the ideal I =
〈
(s23 + s34)z3 − s34

〉
in C[z3]. It is a linear function, so

the Gröbner basis and monomial basis are trivially

GB(I) =
〈
(s23 + s34)z3 − s34

〉
, B = {1} . (4.2)

The polynomial reduction of z3B = {z3} over Gröbner basis of ideal I gives the remainder{
s34

s23+s34

}
. Thus in the quotient ring, the companion matrix is given by

Tz3B =

{
s34

s23 + s34

}
→ Tz3 =

s34

s23 + s34
. (4.3)

We now proceed to the three cases of concern.

4.1.1 Scalar φ3 theory

For the 4-point amplitude in scalar φ3 theory, we wish to compute (recall that the three

points z1, z2, z4 have been gauge fixed)

A4 =
∑
sol

z2
12z

2
24z

2
41

|Φ|124
124

1

z2
12z

2
23z

2
34z

2
41

= −
∑
z3∈sol

1

s34(z3 − 1)2 + s23z2
3

≡
∑
z3∈sol

P (z3)

Q(z3)
, (4.4)

where we have used the simplification

|Φ|124
124 = Φ33 = −s34

z2
3

− s23

(z3 − 1)2
→ 1

|Φ|124
124

= − z2
3(z3 − 1)2

z2
3(s12 + s23)− 2z3s12 + s12

, (4.5)
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so that the factor 1/z2
23z

2
34 cancels the numerator of 1/|Φ|124

124. We see that the final expres-

sion is summed over the (discrete) solution set of the scattering equation which is rather

trivial here. The summand is a rational function in the free variable z3 which we define as

P/Q; of course, P = 1 here and Q will be used later.

Finally, using the simple expression for the companion matrix Tz3 from (4.3), we have

Tr

(
P (Tz3)

Q(Tz3)

)
=Tr

(
− 1

Tz3Tz3(s12+s23)− 2Tz3s12+s12

)
=−s23 + s34

s23s34
=− 1

s14
− 1

s12
, (4.6)

after some identities between Mandelstam variables have been used. This is indeed the

same answer as the standard known result as given in the introduction.

4.1.2 Yang-Mills theory

For 4-point amplitude in Yang-Mills theory, we want to compute (under gauge-fixing z1 =

∞, z2 = 1, z4 = 0),

AYM
4 =

∑
sol

z2
12z

2
24z

2
41

|Φ|124
124

Pf ′Ψ8×8

z12z23z34z41
≡
∑
z3∈sol

PYM(z3)

QYM(z3)
. (4.7)

To avoid the divergence when taking the limit z1 →∞, one of the removed rows(columns)

in Ψ should be 1, otherwise some terms in Pf ′Ψ8×8 would lead to infinity. Let us then

choose the reduced Pfaffian as

Pf ′Ψ8×8 =
−2

z1 − z2
Pf Ψ12

12 . (4.8)

The large z1 dependence of Pf ′Ψ8×8 is then 1/z2
1 , and together with the factor from the

scalar part, we obtain a finite integrand when taking the z1 →∞ limit. Explicitly, the new

matrix Ψ̃ ≡ Ψ12
12 is a 6× 6 matrix,

Ψ̃ =



0 k3k4
z3−z4 − ε1k3

z1−z3 − ε2k3
z2−z3

∑
c 6=3

ε3kc
z3−zc − ε4k3

z4−z3
k3k4
z4−z3 0 − ε1k4

z1−z4 − ε2k4
z2−z4 − ε3k4

z3−z4
∑

c 6=4
ε4kc
z4−zc

ε1k3
z1−z3

ε1k4
z1−z4 0 ε1ε2

z1−z2
ε1ε3
z1−z3

ε1ε4
z1−z4

ε2k3
z2−z3

ε2k4
z2−z4

ε1ε2
z2−z1 0 ε2ε3

z2−z3
ε2ε4
z2−z4

−
∑

c 6=3
ε3kc
z3−zc

ε3k4
z3−z4

ε1ε3
z3−z1

ε2ε3
z3−z2 0 ε3ε4

z3−z4
ε4k3
z4−z3 −

∑
c 6=4

ε4kc
z4−zc

ε1ε4
z4−z1

ε2ε4
z4−z2

ε3ε4
z4−z3 0


, (4.9)

whose Pfaffian is given by

Pf Ψ12
12 = Ψ̃16Ψ̃25Ψ̃34 − Ψ̃15Ψ̃26Ψ̃34 − Ψ̃16Ψ̃24Ψ̃35 + Ψ̃14Ψ̃26Ψ̃35 + Ψ̃15Ψ̃24Ψ̃36

−Ψ̃14Ψ̃25Ψ̃36 + Ψ̃16Ψ̃23Ψ̃45 − Ψ̃13Ψ̃26Ψ̃45 + Ψ̃12Ψ̃36Ψ̃45 − Ψ̃15Ψ̃23Ψ̃46

+Ψ̃13Ψ̃25Ψ̃46 − Ψ̃12Ψ̃35Ψ̃46 + Ψ̃14Ψ̃23Ψ̃56 − Ψ̃13Ψ̃24Ψ̃56 + Ψ̃12Ψ̃34Ψ̃56 . (4.10)

The reduced Pfaffian Pf ′Ψ8×8 in this case is a rational function with denominator z2
3(z3−1).

Together with the factor 1/z23z34 = 1/z3(z3 − 1), they cancel the numerator of 1/|Φ|124
124,

leaving a z3 in the denominator of integrand.
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Therefore, it is immediate that the numerator of the integrand comes entirely from the

numerator of the reduced Pfaffian:

PYM = z2
3

(
− s12ε̃1,3ε̃2,4 − 2ε̃3,4κ1,3κ2,4 + 2ε̃2,4κ1,4κ3,2 − 2ε̃1,4κ2,4κ3,2 + 2ε̃2,4κ1,3κ3,4

+ 2ε̃2,4κ1,4κ3,4 − 2ε̃1,4κ2,4κ3,4 + 2ε̃2,3κ1,3κ4,2 − 2ε̃1,3κ2,3κ4,2 + 2ε̃1,2κ3,2κ4,2

+ 2ε̃1,2κ3,4κ4,2 + 2ε̃1,3κ2,4κ4,3

)
+ z3

(
− s12ε̃1,4ε̃2,3 + s12ε̃1,3ε̃2,4 + s12ε̃1,2ε̃3,4

− 2ε̃3,4κ1,4κ2,3 + 2ε̃3,4κ1,3κ2,4 − 2ε̃2,4κ1,3κ3,4 − 2ε̃2,4κ1,4κ3,4 + 2ε̃1,4κ2,3κ3,4

+ 2ε̃1,4κ2,4κ3,4 − 2ε̃1,2κ3,4κ4,2 + 2ε̃2,3κ1,3κ4,3 + 2ε̃2,3κ1,4κ4,3 − 2ε̃1,3κ2,3κ4,3

− 2ε̃1,3κ2,4κ4,3 + 2ε̃1,2κ3,2κ4,3

)
− s12ε̃1,2ε̃3,4 , (4.11)

where ε̃i,j ≡ εiεj , κi,j ≡ εikj . The denominator of the integrand, on the other hand, is

QYM = z3
3(s12 + s23)− 2z2

3s12 + z3s12 = z3Q , (4.12)

where Q is the denominator of integrand for the scalar φ3 theory from (4.4).

In summary, by computing Tr(PQ−1|z3→Tz3
), we arrive at

AYM
4 = ε̃1,3ε̃2,4 − ε̃1,4ε̃2,3 − ε̃1,2ε̃3,4 −

s12

s23
ε̃1,4ε̃2,3 −

s23

s12
ε̃1,2ε̃3,4

+
1

s12

(
− 2ε̃3,4κ1,4κ2,3 + 2ε̃3,4κ1,3κ2,4 − 2ε̃2,4κ1,3κ3,4 − 2ε̃2,4κ1,4κ3,4 + 2ε̃1,4κ2,3κ3,4

+ 2ε̃1,4κ2,4κ3,4 − 2ε̃1,2κ3,4κ4,2 + 2ε̃2,3κ1,3κ4,3 + 2ε̃2,3κ1,4κ4,3 − 2ε̃1,3κ2,3κ4,3

− 2ε̃1,3κ2,4κ4,3 + 2ε̃1,2κ3,2κ4,3

)
+

1

s23

(
− 2ε̃3,4κ1,4κ2,3 + 2ε̃2,4κ1,4κ3,2 − 2ε̃1,4κ2,4κ3,2 + 2ε̃1,4κ2,3κ3,4 + 2ε̃2,3κ1,3κ4,2

− 2ε̃1,3κ2,3κ4,2 + 2ε̃1,2κ3,2κ4,2 + 2ε̃2,3κ1,3κ4,3 + 2ε̃2,3κ1,4κ4,3 − 2ε̃1,3κ2,3κ4,3

+ 2ε̃1,2κ3,2κ4,3

)
. (4.13)

The pole structures are similar to the scalar φ3 theory, while the terms without poles

come from the gluon four-vertex. Of course, by momentum conservation and the property

εiki = 0, we can further write the above result as a function of all independent kinematics,

for example by using identities εjk4 = −εjk3− εjk2− εjk1 and ε4k4 = 0. This result agrees

with the one computed directly by Feynman diagrams.

4.1.3 Gravity

For the 4-point amplitude in gravity, we want to compute

AG
4 =

∑
sol

z2
12z

2
24z

2
41

|Φ|124
124

Det′(Ψ8×8) =
∑
sol

z2
12z

2
24z

2
41

|Φ|124
124

(Pf ′Ψ8×8)2 ≡
∑
z3∈sol

PG(z3)

QG(z3)
, (4.14)

under the gauge-fixing z1 = ∞, z2 = 1, z4 = 0. As in Yang-Mills theory, we choose the

reduced Pfaffian as

Pf ′Ψ8×8 =
−2

z1 − z2
Pf Ψ12

12 , (4.15)
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and as above, we know that the squared reduced Pfaffian (Pf ′Ψ8×8)2 is a rational function

with denominator z4
3(z3 − 1)2. This cancels the numerator of 1/|Φ|124

124, leaving a z2
3 in

the denominator of integrand, so that the numerator of integrand equals to the square of

numerator of reduced Pfaffian:

PG = (PYM)2 , (4.16)

while the denominator of integrand is

QG = z4
3(s12 + s23)− 2z3

3s12 + z2
3s12 = z2

3Q = z3Q
YM . (4.17)

Combining all together, we have

PG

QG
=

(PYM)2

z3QYM
=
QYM

z3

(PYM)2

(QYM)2
= Q

(PYM)2

(QYM)2
, (4.18)

where Q is the denominator of integrand for scalar φ3 theory from (4.4) and the expressions

for PYM and QYM are given in (4.11) and (4.12). In the present case of n = 4, there is only

one solution for scattering equations, and the companion matrix is really 1-dimensional

in (4.3), so although in general Tr(M1M2) 6= Tr(M1) Tr(M2), here we simply have

Tr
(PG

QG

)
= Tr(Q) Tr

(PYM

QYM

)2
= − s12s23

s12 + s23
(AYM)2 . (4.19)

By BCJ relation [45], we can rewrite this to the familiar one

AG
4 = s12AYM

4 (1, 2, 3, 4)AYM
4 (1, 2, 4, 3) , (4.20)

in agreement with the known result by KLT relation [46–50].

4.2 Five-point amplitudes

For n = 5 amplitudes, there are five scattering equations, but only two of them are in-

dependent. Under the gauge-fixing z1 = ∞, z2 = 1, z5 = 0, the Dolan-Goddard’s for-

mula [15] gives:

f1 = s12 + s13z3 + s14z4 , f2 = s45z3 + s35z4 + s25z3z4 . (4.21)

We can solve these two equations to get two solutions:

sol1 : z3 =
−s12s25 − s13s35 + s14s45 −

√
∆

2s13s25
, z4 =

−s12s25 + s13s35 − s14s45 +
√

∆

2s14s25
,

and

sol2 : z3 =
−s12s25 − s13s35 + s14s45 +

√
∆

2s13s25
, z4 =

−s12s25 + s13s35 − s14s45 −
√

∆

2s14s25
,

where ∆ = (s12s25 + s13s35 − s14s45)2 − 4s12s13s25s35. We can see that, in general the

solutions are not rational functions, as is to be expected from high degree polynomials,
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though of course the final result of the sum over these points will be. One can see that the

cancelations and simplifications will be very involved.

Let us turn to our companion matrix method. Define ideal I =
〈
f1, f2

〉
in the polyno-

mial ring C[z3, z4], the Gröbner basis of ideal I in Lexicographic order z3≺z4 is given by

GB(I) =
〈
s12s45 + s12s25z4 − s13s35z4 + s14s45z4 + s14s25z

2
4 ,

s12 + s13z3 + s14z4 , s45z3 + s35z4 + s25z3z4

〉
. (4.22)

The monomial basis in this Gröbner basis is B = {1, z4}. Polynomial reduction of z3B and

z4B over GB(I) gives the companion matrices Tz3B = z3B, Tz4B = z4B as

Tz3 =

(
− s12
s13

− s14
s13

s12s45
s13s25

s14s45−s13s35
s13s25

)
, Tz4 =

(
0 1

− s12s45
s14s25

s13s35−s14s45−s12s25
s14s25

)
, (4.23)

which are 2×2 matrices, in accordance with the number of solutions of scattering equations.

We note that the companion matrices actually formally “live” in the ideal I itself by

satisfying scattering equations, i.e.,

f1→ s12I2×2 + s13Tz3 + s14Tz4

=

(
s12 0

0 s12

)
+

(
−s12 −s14
s12s45
s25

s14s45−s13s35
s25

)
+

(
0 s14

− s12s45
s25

s13s35−s14s45−s12s25
s25

)
= 02×2 , (4.24)

and likewise, s45Tz3 + s35Tz4 + s25Tz3Tz4 = 02×2. This is, of course, a general property by

construction since the companion matrices are constructed as multiplication (on a partic-

ular basis), so that substituting into the defining polynomials would vanish in the quotient

ring. The situation is very much analogous to the classical result of Cayley-Hamilton

that a matrix satisfies its own characteristic polynomial. It is worth to emphasize this

discussion as

Corollary 2 The companion matrices satisfy the defining polynomials of the given ideal.

The above corollary shows some kind of equivalence between solutions of scattering

equations and companion matrices of monomial basis over the Gröbner basis of scattering

equations. With these companion matrices, we now proceed to compute the trace of the

integrands to obtain the amplitude for different theories.

4.2.1 Scalar φ3 theory

The 5-point amplitude of scalar φ3 theory is given by

A5 =
∑
sol

z2
12z

2
25z

2
51

|Φ|125
125

1

z2
12z

2
23z

2
34z

2
45z

2
51

=
∑
sol

1

|Φ|125
125(z3 − 1)2(z3 − z4)2z2

4

≡
∑

z3,z4∈sol

P (z3, z4)

Q(z3, z4)
,

(4.25)

where we have used that

|Φ|125
125 =

(
− s23

(z3−1)2
− s34

(z3 − z4)2
− s35

z2
3

)(
− s24

(z4−1)2
− s34

(z3 − z4)2
− s45

z2
4

)
− s2

34

(z3 − z4)4
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and as above, defined the appropriate P and Q, which are, explicitly,

P = z2
3(z4 − 1)2 ,

Q =
(
s35(z3 − 1)2 + s23z

2
3

)
(z3 − z4)2

(
s45(z4 − 1)2 + s24z

2
4

)
+s34

[
s45(z3 − 1)2z2

3(z4 − 1)2

+z2
4

(
z2

3

(
s24(z3 − 1)2 + s23(z4 − 1)2

)
+ s35(z3 − 1)2(z4 − 1)2

)]
. (4.26)

Now, we wish to compute the trace of the matrix PQ−1 upon substituting z3 and

z4 by their associated companion matrices, instead of summing over all the complicated

solutions of the scattering equations. In other words, we should replace the variables z3, z4

as Tz3 , Tz4 in the integrand, i.e., P ′ = P |z3→Tz3 ,z4→Tz4
, Q′ = Q|z3→Tz3 ,z4→Tz4

(Hereafter

we will always use P ′, Q′ to denote the matrices after replacing zi to Tzi). The product

of variables z3, z4 changes to the product of matrices Tz3 , Tz4 , and since the companion

matrices are commutable, their order does not matter in here. Then we should compute

the inverse of matrix Q′, and the final result is given by Tr(P ′Q′−1).

Recalling that the physical poles appearing in the color-ordered amplitude are

s12, s23, s34, s45, s15, we can define them as the independent Mandelstam variables, and

rewrite all the other Mandelstam variables in P,Q, Tz3 , Tz4 by using following identities:

s35 = s12 − s34 − s45 , s24 = s15 − s23 − s34 , s25 = s34 − s15 − s12 ,

s14 = s23 − s45 − s15 , s13 = s45 − s12 − s23 . (4.27)

After some algebraic manipulation, readily performed by Mathematica, we obtain

Tr(P ′(Tz3 , Tz4)Q′−1(Tz3 , Tz4)) =
1

s15s23
+

1

s12s34
+

1

s15s34
+

1

s12s45
+

1

s23s45
, (4.28)

which agrees with the known result [30, 31].

Let us further consider an example, corresponding to the two-cycles3

{(1, 2, 3, 4, 5), (1, 3, 5, 2, 4)}, in the language of [30, 31, 36]. Using the CHY-integrand

defined by above two-cycles, we have

A′5 =
∑
sol

z2
12z

2
25z

2
51

|Φ|125
125

1

z12z23z34z45z51

1

z13z35z52z24z41
≡ P1(z3, z4)

Q1(z3, z4)
, (4.29)

which is represented by the so-called pentacle diagram (shown in figure 1)from the view

of integration rules. Using the mapping rule given in [30, 31], the answer is known to be

zero. By directly computing the trace, we indeed find that Tr(P ′1Q
′−1
1 ) = 0 and confirms

this result.

In fact, for this example, although CHY-integrands of A5 and A′5 are different, after

simplification, their difference appears only in the numerator, i.e.,

P1 = z3z4(1− z3)(1− z4)(z3 − z4) , Q1 = Q . (4.30)

3Each cycle defines an expression, e.g., Cyclea(1, 3, 5, 2, 4) = 1/(z13z35z52z24z41), and the two-cycles

denotes the expression given by CycleaCycleb.
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1

2

34

5

Figure 1. The pentacle diagram representing the CHY-integrand defined by the two-cycles

{(1,2,3,4,5),(1,3,5,2,4)}.

Since the trace of matrix is a linear mapping, in particular Tr(M1+M2) = Tr(M1)+Tr(M2),

relations between results of different integrands should also have hints in the integrand

level. For example, let us consider the following three CHY-integrands defined by three

two-cycles α2 ≡ {(1, 2, 3, 4, 5), (1, 2, 3, 5, 4)}, α3 ≡ {(1, 2, 3, 4, 5), (1, 2, 4, 5, 3)} and α4 ≡
{(1, 2, 3, 4, 5), (1, 3, 2, 5, 4)}. With some calculations, we find

A5(α2) =
∑
sol

z2
12z

2
25z

2
51

|Φ|125
125

1

z12z23z34z45z51

1

z12z23z35z54z41
≡
∑
sol

P2

Q
,

A5(α3) =
∑
sol

z2
12z

2
25z

2
51

|Φ|125
125

1

z12z23z34z45z51

1

z12z24z45z53z31
≡
∑
sol

P3

Q
,

A5(α4) =
∑
sol

z2
12z

2
25z

2
51

|Φ|125
125

1

z12z23z34z45z51

1

z13z32z25z54z41
≡
∑
sol

P4

Q
(4.31)

where they share the same denominator Q, but different numerators

P2 = z3(z3 − z4)(z4 − 1)2 , P3 = z3(z3 − 1)(z3 − z4)(z4 − 1) ,

P4 = z2
3(z3 − z4)(z4 − 1)2 . (4.32)

After putting back the companion matrices, we find that

A5(α2) = Tr(P ′2Q
′−1) =

1

s12s45
+

1

s23s45
,

A5(α3) = Tr(P ′3Q
′−1) =

1

s12s45
, A5(α4) = Tr(P ′4Q

′−1) =
1

s23s45
.

Realizing that the polynomials have the simple relation

P3 + P4 − P2 = P1 , (4.33)

we obtain the identity amongst these amplitudes as

Tr(P ′2Q
′−1) = Tr((P ′3 + P ′4 − P ′1)Q′−1) = Tr(P ′3Q

′−1) + Tr(P ′4Q
′−1) + Tr(P ′1Q

′−1)

→ A5(α2) = A5(α3) +A5(α4) + 0 . (4.34)
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Above example demonstrates an idea how to find relations among different amplitudes.

Starting from different CHY-integrands, we can equalize their denominators by multi-

plying proper polynomial both at the denominator and the numerator. After that, the

relations among different amplitudes can be understood from the relations among different

numerators.

Let us demonstrate above idea by another example, i.e., the 7-point amplitude-level

identity given by eq. (3.7) of [31], viz., amplitude obtained from the CHY-integrand

1

z12z23z34z45z56z67z71

1

z12z27z74z46z65z53z31
(4.35)

is identical to the sum of following two amplitudes obtained from two CHY-integrand

1

z12z23z34z45z56z67z71

1

z12z56z37z46

(
1

z14z27z35
+

1

z25z74z31

)
. (4.36)

Under gauge-fixing z1 =∞, z2 = 1, z7 = 0 and excluding the 1-st, 2-nd and 7-th scattering

equations, the Jacobian is

1

|Φ|127
127

=

∏6
i=3 z

2
i (zi − 1)2

∏
3≤i<j≤6(zi − zj)2

Q
. (4.37)

Thus we can immediately get the numerator of integrand after inserting the above three

terms. The first term gives

P1 = z3z5(z4 − 1)(z5 − 1)(z6 − 1)(z3 − z6)

6∏
i=3

zi(zi − 1)

i 6=5∏
3≤i<j≤6

(zi − zj) , (4.38)

while the other two terms give

P2 = z4z5(z4 − 1)(z5 − 1)(z6 − 1)(z3 − z6)

6∏
i=3

zi(zi − 1)

i 6=5∏
3≤i<j≤6

(zi − zj) , (4.39)

P3 = −z5(z4 − 1)(z6 − 1)(z3 − z5)(z3 − z6)

6∏
i=3

zi(zi − 1)

i 6=5∏
3≤i<j≤6

(zi − zj) . (4.40)

Note that

P1 − P2 − P3 (4.41)

= z5(z4 − 1)(z6 − 1)(z3 − z6)(z4 − z5 + z3z5 − z4z5)

6∏
i=3

zi(zi − 1)

i 6=5∏
3≤i<j≤6

(zi − zj) ,

while the trace Tr((P ′1 − P ′2 − P ′3)Q′−1) is zero. Note also the following decomposition

z4 − z5 + z3z5 − z4z5 = (z3 − 1)(z5 − z4) + z4(z3 − z5) , (4.42)
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so that we can write P1 − P2 − P3 = P4 + P5, with

P4 = −z5(z3 − 1)(z4 − 1)(z6 − 1)(z3 − z6)(z4 − z5)

6∏
i=3

zi(zi − 1)

i 6=5∏
3≤i<j≤6

(zi − zj) , (4.43)

P5 = z4z5(z4 − 1)(z6 − 1)(z3 − z5)(z3 − z6)

6∏
i=3

zi(zi − 1)

i 6=5∏
3≤i<j≤6

(zi − zj) , (4.44)

which correspond to two-cycles

{(1, 2, 7, 4, 6, 5, 3), (1, 2, 5, 6, 7, 3, 4)} , {(1, 2, 3, 4, 5, 6, 7), (1, 3, 7, 2, 5, 6, 4)} (4.45)

respectively with Tr(P ′4Q
′−1) = 0, Tr(P ′5Q

′−1) = 0.

We thus conclude that strictly speaking, the amplitude-level identity between (4.35)

and (4.36) is up to some CHY-integrands which have vanishing amplitude. More explicitly,

the identity (4.35)=(4.36)+(4.45) holds exactly at the integrand-level, while (4.45) has

vanishing final result, so that (4.35)=(4.36) holds at the amplitude-level. This provides the

amplitude-level identity an explanation from the basic linearity of the trace.

4.2.2 Yang-Mills theory

For 5-point amplitude in Yang-Mills theory, we want to compute

AYM
5 =

∑
sol

z2
12z

2
25z

2
51

|Φ|125
125

Pf ′Ψ10×10

z12z23z34z45z51
≡

∑
z3,z4∈sol

PYM(z3, z4)

QYM(z3, z4)
, (4.46)

under gauge-fixing z1 =∞, z2 = 1, z5 = 0. Let us choose the reduced Pfaffian as

Pf ′Ψ10×10 =
−2

z1 − z2
Pf Ψ12

12 , (4.47)

where Ψ12
12 is a 8× 8 matrix. As in the 4-point case, the large z1 dependence of Pf ′Ψ10×10

is 1/z2
1 , while 1/(z12z23z34z45z51) is also 1/z2

1 . Together with the factor z2
12z

2
25z

2
51 in nu-

merator, we get a finite integrand under the z1 →∞ limit.

We now follow the standard computation procedure:

1. Write down the expressions for |Φ|125
125 and Pf ′Ψ10×10, and work out PYM(z3, z4),

QYM(z3, z4);

2. Replace the variables zi’s by companion matrices Tzi , as P ′ = P |zi→Tzi , Q
′ =

Q|zi→Tzi ;

3. Compute the inverse of Q′ and the trace Tr(P ′Q′−1).

The result for un-specified helicities is quite lengthy. For illustration, let us consider

the 5-point amplitude with helicity AYM
5 (g−1 , g

−
2 , g

+
3 , g

+
4 , g

+
5 ). The polarization vector is

defined as

ε−µ (k) =
〈k|γµ|r]√

2[k r]
, ε+µ (k) =

〈r|γµ|k]√
2〈r k〉

, (4.48)
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and we choose the reference momenta as r1 = r2 = k3, r3 = r4 = r5 = k2. Thus settled,

the only surviving products of polarization vectors are ε−(k1) · ε+(k4) and ε−(k1) · ε+(k5).

After imposing momentum conservation for ε±(ki) · kj to reduce the ambiguity, we can

simplify the 8× 8 matrix Ψ̃ ≡ Ψ12
12 as

0 k3k4
z3−z4

k3k5
z3−z5 0 0 Ψ̃16 − ε4k3

z4−z3 − ε5k3
z5−z3

k3k4
z4−z3 0 k4k5

z4−z5 − ε1k4
z1−z4 − ε2k4

z2−z4 − ε3k4
z3−z4 Ψ̃27

ε5k1+ε5k3
z5−z4

k3k5
z5−z3

k4k5
z5−z4 0 ε1k2+ε1k4

z1−z5
ε2k1+ε2k4
z2−z5

ε3k1+ε3k4
z3−z5

ε4k1+ε4k3
z4−z5 Ψ̃38

0 ε1k4
z1−z4 − ε1k2+ε1k4

z1−z5 0 0 0 ε1ε4
z1−z4

ε1ε5
z1−z5

0 ε2k4
z2−z4 − ε2k1+ε2k4

z2−z5 0 0 0 0 0

Ψ̃61
ε3k4
z3−z4 − ε3k1+ε3k4

z3−z5 0 0 0 0 0
ε4k3
z4−z3 Ψ̃72 − ε4k1+ε4k3

z4−z5
ε1ε4
z4−z1 0 0 0 0

ε5k3
z5−z3 −

ε5k1+ε5k3
z5−z4 Ψ̃83

ε1ε5
z5−z1 0 0 0 0


, (4.49)

where

Ψ̃16 = −Ψ̃61 =
ε3k1

z3 − z1
+

ε3k4

z3 − z4
− ε3k1 + ε3k4

z3 − z5
,

Ψ̃27 = −Ψ̃72 =
ε4k1

z4 − z1
+

ε4k3

z4 − z3
− ε4k1 + ε4k3

z4 − z5
,

Ψ̃38 = −Ψ̃83 =
ε5k1

z5 − z1
+

ε5k3

z5 − z3
− ε5k1 + ε5k3

z5 − z4
. (4.50)

This greatly simplifies the result of reduced Pfaffian, which reads, after our gauge-fixing,

Pf ′Ψ10×10 ≡
NΨ

DΨ
= −2

z4κ2,1 + z4κ2,4 − κ2,1

z3z4(z4−1)(z3 − z4)

((
z3−z4

)
ε̃1,5κ3,1κ4,1 −

(
z3−z4

)
ε̃1,4κ3,1κ5,1

−(z3−z4)ε̃1,4κ3,1κ5,3 − z4ε̃1,5κ3,4κ4,1 + z3ε̃1,5κ3,1κ4,3 + z4ε̃1,4κ3,4κ5,1

)
, (4.51)

where we recall again that ε̃i,j = εiεj , κi,j = εikj . The factor of scalar part

1/(z12z23z34z45z51) after gauge fixing is 1
z4(z3−1)(z3−z4) , and the Jacobian |Φ|125

125 is the same

as in the scalar theory,

1

|Φ|125
125

=
z2

3z
2
4(z3 − 1)2(z4 − 1)2(z3 − z4)2

QYM
, (4.52)

where QYM is a polynomial of z3, z4 and Mandelstam variables, and it is also the denomi-

nator of integrand. The numerator of 1/|Φ|125
125 cancels the denominator of Pf ′Ψ and that

of scalar part, leaving a factor z3(z3 − 1)(z4 − 1) in the numerator. Combined with the

numerator NΨ of Pf ′Ψ10×10, they contribute to PYM = z3(z3 − 1)(z4 − 1)NΨ.

Then it is straightforward to apply the replacements P ′YM(Tz3 , Tz4) =

PYM(z3, z4)|zi→Tzi , Q′YM(Tz3 , Tz4) = QYM(z3, z4)|zi→Tzi , and compute the trace

Tr(P ′YM (Q′YM)−1). To make the computation more efficient, we can firstly apply the poly-

nomial reduction of PYM(z3, z4), QYM(z3, z4) over GB(I). The remainders R(PYM), R(QYM)

are polynomials of z4 only, since the monomial basis is {1, z4}. Then we can proceed by

replacing z4 → Tz4 for the remainders, and compute the corresponding trace. This gives
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the same result as with the original PYM, QYM, but the computation would be much faster.

With Mathematica, we obtain

Tr(P ′YM(Q′YM)−1) = 2
ε̃1,5κ2,1κ3,1κ4,3 + ε̃1,4κ2,1κ3,4κ5,1 − ε̃1,5κ2,1κ3,4κ4,1

s12s34

+2
ε̃1,5κ2,1κ3,1κ4,1 + ε̃1,5κ2,1κ3,1κ4,3−ε̃1,4κ2,1κ3,1κ5,1−ε̃1,4κ2,1κ3,1κ5,3

s12s45

+2
ε̃1,5κ2,4κ3,4κ4,1 − ε̃1,5κ2,4κ3,1κ4,3 − ε̃1,4κ2,4κ3,4κ5,1

s15s34
. (4.53)

The missing of the pole terms 1/(s15s23), 1/(s23s45) (terms involving pole s23) is due

to the choice of polarization vectors. However, the s23 pole do exist, hiding in κ2,i, κ3,i.

Directly rewriting the spinor brackets for ε̃i,j , κi,j and sij , and using the Schouten identities

we get the famous MHV-amplitude [51, 52]

Tr(P ′YM(Q′YM)−1) =
〈1 2〉4

〈1 2〉〈2 3〉〈3 4〉〈4 5〉〈5 1〉
. (4.54)

4.2.3 Gravity and n-point KLT relations

For 5-point amplitude in pure gravity theory, under gauge-fixing z1 = ∞, z2 = 1, z5 = 0,

we wish to compute

AG
5 =

∑
sol

z2
12z

2
25z

2
51

|Φ|125
125

(Pf ′Ψ10×10)(Pf ′Ψ̃10×10) =
∑
sol

z2
12z

2
25z

2
51

|Φ|125
125

(Pf ′Ψ10×10)2 . (4.55)

Let us consider the gravity amplitude AG
5 (1−−, 2−−, 3++, 4++, 5++), so that we can use

the same reduced Pfaffian Pf ′Ψ10×10 as in the Yang-Mills case. Here, we do not have the

factor of scalar part, but the square of the factor of the reduced Pfaffian. The numerator of

1/|Φ|125
125 cancels the squared denominator of reduced Pfaffian z2

3z
2
4(z4−1)2(z3−z4)2, leaving

a factor of (z3 − 1)2 in the numerator. Hence, we have QG = QYM, and PG = (z3 − 1)2N2
Ψ

with NΨ given in (4.51).

Thus, all the ingredients have been computed in the Yang-Mills situation above, and

we only need to work out the trace Tr(P ′G(Q′G)−1), which gives a lengthy result:

〈1 2〉4
(
〈1 2〉7 〈1 5〉 〈3 4〉 [2 1]

4
[3 1]

3
[4 2] [4 3]

2
[5 1]

3
+ 971 more terms

)
〈1 3〉 〈1 4〉 〈1 5〉 〈2 3〉2 〈2 4〉2 〈2 5〉3 〈3 4〉 〈3 5〉 〈4 5〉 [2 1] [3 1]

2
[3 2]

2
[4 1] [4 2] [5 1] [5 2] [5 3] [5 4]

where we can see that all poles si,j , i, j = 1, . . . , 5 appearing therein, indicating the colorless

structure of gravity amplitude.

This complicated expression can be simplified by non-trivially imposing momentum

conservation and Schouten identities. Applying the algorithm described in the appendix

of [53], for instance, we can simplify AG
5 (1−−, 2−−, 3++, 4++, 5++) to

〈1 2〉6 [4 3] [5 3]

〈1 4〉 〈1 5〉 〈2 4〉 〈2 5〉 〈3 4〉 〈3 5〉
+

〈1 2〉6 [4 3] [5 4]

〈1 3〉 〈1 5〉 〈2 3〉 〈2 5〉 〈3 4〉 〈4 5〉

+
〈1 2〉6 [5 3] [5 4]

〈1 3〉 〈1 4〉 〈2 3〉 〈2 4〉 〈3 5〉 〈4 5〉
. (4.56)

which agrees perfectly with the result given by KLT relation [46–50].
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More generally, for n-point amplitude, under the usual gauge-fixing z1 = ∞, z2 = 1,

zn = 0, we wish to compute

AG
n =

∑
sol

z2
12z

2
2nz

2
n1

|Φ|12n
12n

(Pf ′Ψ2n×2n)(Pf ′Ψ̃2n×2n) =
∑
sol

z2
12z

2
2nz

2
n1

|Φ|12n
12n

(Pf ′Ψ2n×2n)2 . (4.57)

In order to write down the reduced Pfaffian, we need to compute the Pfaffian of a (2n− 2)

×(2n−2) matrix, which is quite complicated. Direct computation using the above formula

is obviously very difficult, just like the direct computation of gravity amplitude by Feynman

diagram. So we would like to follow the KLT formalism, and compute the gravity amplitude

as square of Yang-Mills amplitudes.

An important property of the reduced Pfaffian is that, it can be expanded [3] as

Pf ′Ψ =
∑

α∈Sn−3

∑
β∈Sn−3

S[α|β]AYM
n (1, β, n, n− 1)

(z1 − zα2)(zα2 − zα3) · · · (zαn−2 − zn−1)(zn−1 − zn)(zn − z1)
, (4.58)

where α, β are permutations of labels 2, 3, . . . , n − 2, and S[α|β] is the S-kernel. The

appearance of AYM
n is a consequence of certain integrand summing over all (n−3)! solutions

of scattering equations in the original derivation, and in the companion matrix method, it

corresponds to the trace of that integrand when changing variables to companion matrices.

In any event, it is a constant, and can be dragged out of the trace.

Using this expression, we can expand one Pf ′Ψ in the gravity amplitude,

AG
n =

∑
sol

∑
α∈Sn−3

(
P (z3, z4, . . . , zn−1)

Q(z3, z4, . . . , zn−1)

)
×

∑
β∈Sn−3

S[α|β]AYM
n (1, β, n, n− 1) , (4.59)

P

Q
≡ z2

12z
2
2nz

2
n1

|Φ|12n
12n

Pf ′Ψ2n×2n

z1α2zα2α3 · · · zαn−2,n−1zn−1,nzn1
. (4.60)

The trace Tr(P ′(Tzi)Q
′−1(Tzi)) for the set α gives AYM

n (1, α, n− 1, n), and the summation

over permutations of α can be taken out of the trace, and we thereby arrive at the KLT

relation.4

4.3 Six-point amplitudes

We proceed onto six-point amplitudes, i.e., n = 6. Using the standard gauge-fixing z1 =∞,

z2 = 1, z6 = 0, Dolan-Goddard’s polynomial form [37] of the scattering equations is given by

f1 = s12 + s13z3 + s14z4 + s15z5 , (4.61)

f2 = s123z3 + s124z4 + s125z5 + s134z3z4 + s135z3z5 + s145z4z5 , (4.62)

f3 = s56z3z4 + s46z3z5 + s36z4z5 + s26z3z4z5 . (4.63)

We can thus define the ideal I =
〈
f1, f2, f3

〉
in the polynomial ring C[z3, z4, z5]. The degree

of ideal I is 6, so according to Bézout’s theorem, it has 6 solutions, though it is not possible

to obtain analytic expressions for these solutions, as already seen in the 5-point cases. Let

us then consider the companion matrix method.

4Note that the ordering of set α(or β) here defined in [3] is the reverse of that defined in [48].
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We generate the Gröbner basis for I in Lexicographic ordering z3 ≺ z4 ≺ z5. Analyti-

cally, the explicit expression of GB(I) is rather complicated, especially in the presence of

so many parameters sij in the ring. By varying the exponents to some high power, the

polynomial reduction of the monomials za3
3 za4

4 za5
5 (with ai from 0 to some finite number,

say 20) over GB(I) gives the monomial basis

B = {1, z5, z
2
5 , z

3
5 , z

4
5 , z

5
5} .

The polynomial reduction of z3B, z4B and z5B over GB(I) gives the companion ma-

trices Tz3 , Tz4 , Tz5 , which are 6 × 6 matrices. Again, we need to compute P ′ =

P |z3→Tz3 ,z4→Tz4 ,z5→Tz5
Q′ = Q|z3→Tz3 ,z4→Tz4 ,z5→Tz5

, and the final amplitude is given by

A6 = Tr(P ′Q′−1), without summing over all solutions of scattering equations.

Since the operations we need are multiplication of matrices, taking inverse or trace of

matrices, so in principle it can be done analytically. However, the symbolic manipulation

for n = 6 case is quite complicated, especially when taking the inverse of matrix Q′ and

simplifying the tedious trace result in Mathematica, so we introduce random numeric kine-

matics — i.e., by Monte Carlo assignments of the parametres sij — to get the final result.

One will see that, as is customary with coefficient fields in polynomial rings, trying a few

large prime numbers would suffice very quickly.

4.3.1 Scalar φ3 theory

We can write the amplitude as

A6 =
∑
sol

z2
12z

2
26z

2
61

|Φ|126
126

1

z2
12z

2
23z

2
34z

2
45z

2
56z

2
61

=
∑
sol

1

|Φ|126
126(z3 − 1)2(z3 − z4)2(z4 − z5)2z2

5

≡
∑

z3,z4,z5∈sol

P (z3, z4, z5)

Q(z3, z4, z5)
, (4.64)

where

Φ126
126 =

Φ33 Φ34 Φ35

Φ43 Φ44 Φ45

Φ53 Φ54 Φ55

 , |Φ|126
126 = Det(Φ126

126) . (4.65)

Prime kinematic strategy. The idea is the following. Since we know for scalar φ3

theory, the final result of A6 should take the form

A6 =
∑
ı,ıi

cı

sı1sı2sı3

, (4.66)

where sıi are the independent Mandelstam variables of physical poles s12, s23, s34, s45, s56,

s16, s123, s234, s345, and the summation is over all possible products of three physical poles,

e.g., 1
s12s23s56

, 1
s12s45s234

, etc. So in total we have
(

9
3

)
= 84 terms, which we denote as Sı,

ı = 1, 2, . . . 84, and the amplitude is expanded as A6 =
∑84

ı=1 cıSı, where cı is either 0 or 1.

To each physical pole we now randomly assign a prime number, i.e., we are working

with the much simpler polynomial ring C[z] instead of C(s)[z]. In this case, the computation
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of Tr(P ′Q′−1) is trivial within seconds, and the result as well as Sı’s are all numbers. Next,

we shall find the solutions
∑84

ı=1 cıSı = Tr(P ′Q′−1) for cı’s. However, doing this by brute-

force is impossible since there are 84 cı’s and each one can take 0 or 1, so one would go

through all 284 possibilities, which is far beyond any computational ability.

We therefore adopt the following strategy: instead of setting all coefficients to numbers,

we can assign all physical poles to prime numbers except one pole. For example, we would

leave s345, to detect first the coefficients of Sı’s which contains the pole 1
s345

. Keeping one

symbolic variable s345 would extend the computation time of Tr(P ′Q′−1) up to minutes,

but it is still very manageable, while keeping two or more symbolic variables would make

the computation of Tr(P ′Q′−1) in Mathematica very hard for a laptop.

Let us see the above strategy in action. Setting the kinematics (coefficient variables)

as, e.g.,

s12 = 7 , s23 = 37 , s34 = 79 , s45 = 97 ,

s56 = 131 , s16 = 179 , s123 = 181 , s234 = 223 ,

while leaving s345 free, we get

Tr(P ′Q′−1) = − 64909247478

1878479042622679
− 32736

9601739s345
. (4.67)

Among the Sı’s, there are
(

8
2

)
= 28 terms containing physical pole s345, and the number

marked by 1
s345

in Tr(P ′Q′−1) should be expanded into these 28 terms.5 This is thus a

problem in Egyptian fractions. By going through all 228 possibilities of cı, we find the

unique expansion

32736

9601739

1

s345
=

(
1

7× 79
+

1

79× 179
+

1

7× 97
+

1

97× 179

)
1

s345
, (4.68)

So mapping to the physical poles, we find that

− 1

s12s34s345
− 1

s16s34s345
− 1

s12s45s345
− 1

s16s45s345
(4.69)

is a part of A6.

Now, we try to get more poles. Taking the kinematics as, e.g.,

s12 = 7 , s23 = 37 , s34 = 79 , s45 = 97 ,

s56 = 131 , s16 = 179 , s123 = 181 , s345 = 251 ,

while leaving s234 free, we get

Tr(P ′Q′−1) = − 35960

68541427s234
− 13829207594

302048840293589
. (4.70)

The part marked by the physical pole s234 can be uniquely expanded as

35960

68541427

1

s234
=

(
1

37× 179
+

1

79× 179
+

1

37× 131
+

1

79× 131

)
1

s234
, (4.71)

5In fact, using the compatibility among poles, we can greatly reduce the number of possible combinations

of poles. We will consider this fact in latter examples.
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thus

− 1

s16s23s234
− 1

s16s34s234
− 1

s23s56s234
− 1

s34s56s234
, (4.72)

is also a part of A6. With the same procedure, we find that for physical pole s123,

− 1

s12s45s123
− 1

s23s45s123
− 1

s12s56s123
− 1

s23s56s123
(4.73)

is also part of A6. Finally, we need to determine the coefficients cı of Sı’s without physical

poles s123, s234, s345. There are in total
(

6
3

)
= 20 terms. Taking the kinematics as, e.g.,

s12 = 7 , s23 = 37 , s34 = 79 , s45 = 97 ,

s56 = 131 , s16 = 179 , s123 = 181 , s234 = 223 , s345 = 251 ,

computing the Tr(P ′Q′−1) and extracting the contributions from re-

sults (4.69), (4.72), (4.73), the remaining result can be uniquely expanded as

− 714874

46539628933
= − 1

7× 79× 131
− 1

37× 97× 179
, (4.74)

so the last part for A6 is

− 1

s12s34s56
− 1

s16s23s45
. (4.75)

Putting all the above together, we therefore conclude that

A6 = −
(

1

s12s34s56
+

1

s16s23s45
+

1

s12s45s123
+

1

s23s45s123
+

1

s12s56s123

+
1

s23s56s123
+

1

s12s34s345
+

1

s16s34s345
+

1

s12s45s345
+

1

s16s45s345

+
1

s16s23s234
+

1

s16s34s234
+

1

s23s56s234
+

1

s34s56s234

)
. (4.76)

This prime-numeric method can be applied to all the cases of n = 6 amplitudes of scalar

φ3 theory.

4.3.2 Yang-Mills theory

For Yang-Mills theory, when n = 6, we meet the first “not so simple” gluon amplitude,

i.e., the next-MHV amplitude, so it is worthwhile to verify the companion matrix method

with this non-trivial example. To illustrate, let us consider the split helicity amplitude

AYM
6 (g−1 , g

−
2 , g

−
3 , g

+
4 , g

+
5 , g

+
6 ), and choose the reference momenta as r1 = r2 = r3 = k4,

r4 = r5 = r6 = k3, so that only ε̃1,5, ε̃1,6, ε̃2,5, ε̃2,6 are non-zero. The object we want to

compute is

AYM
6 =

∑
sol

z2
12z

2
26z

2
61

|Φ|126
126

Pf ′Ψ12×12

z12z23z34z45z56z61
≡

∑
z3,z4,z5∈sol

PYM(z3, z4, z5)

QYM(z3, z4, z5)
. (4.77)
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Here both the Jacobian |Φ|126
126 and reduced Pfaffian Pf ′Ψ12×12 are very complicated, so

it is almost impossible to compute it analytically. As in the scalar φ3 example, we can

follow the semi-analytic procedure, and set the physical poles as some prime numbers,

while keeping Ψ12×12(all ε̃i,j = εiεj , κi,j = εikj and kikj in Ψ) analytic. In this case, the

ideal and Gröbner basis are just algebraic systems of polynomials with integer coefficients,

while the elements of companion matrices are rational numbers. So the computation is

very fast.

The Jacobian under the chosen gauge-fixing is

1

|Φ|126
126

=
z2

3z
2
4z

2
5(z3 − 1)2(z4 − 1)2(z5 − 1)2(z3 − z4)2(z3 − z5)2(z4 − z5)2

DΦ(z3, z4, z5)
, (4.78)

where DΦ is polynomial in z3, z4, z5. The reduced Pfaffian together with the factor of scalar

part give

NΨ(z3, z4, z5, ε̃i,j , κi,j , kikj)

z3z4z2
5(z3 − 1)2(z4 − 1)(z5 − 1)(z3 − z4)2(z3 − z5)(z4 − z5)2

(4.79)

under the chosen gauge-fixing for some polynomial numerator NΦ. So we have

PYM(z3, z4, z5) = z3z4(z4 − 1)(z5 − 1)(z3 − z5)NΨ , QYM(z3, z4, z5) = DΦ . (4.80)

Note that NΨ originates from the Pfaffian of a 10 × 10 antisymmetric matrix, where by

definition, each term in the Pfaffian is a product of five elements in the matrix. So each

term in NΨ is a product of five elements selected from ε̃i,j , κi,j , kikj , combined with a

monomial of z3, z4, z5, for example, 2z3
3z

4
4 ε̃2,6κ1,2κ3,1κ4,1κ5,1.

Finally we can take the replacement P ′YM = PYM|zi→Tzi , Q
′YM = QYM|zi→Tzi and

compute the trace Tr(P ′YM(Q′YM)−1). It is given as

Tr(P ′YM(Q′YM)−1) =
44

6141149
ε̃2,6κ1,2κ3,2κ4,1κ5,1 −

1

877307
ε̃2,5κ1,3κ3,2κ4,1κ6,2

+500 more terms . (4.81)

Using the techniques shown in scalar φ3 theory, we can uniquely decompose the rational

numbers as

44

6141149
=

1

7× 181× 131
+

1

181× 37× 131
,

1

877307
=

1

181× 37× 131
, (4.82)

so we can conclude that

Tr(P ′YM(Q′YM)−1) =

(
1

s12s123s56
+

1

s123s23s56

)
ε̃2,6κ1,2κ3,2κ4,1κ5,1

− 1

s123s23s56
ε̃2,5κ1,3κ3,2κ4,1κ6,2 + 500 more terms . (4.83)

Rewriting them as spinor products and applying the simplification algorithm for spinor

expression, we get a one-page long result, which remarkably agrees with the known an-

swers [54, 55].
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4.4 Seven-point amplitudes

The companion matrices Tzi are simultaneously diagonalizable, and according to Stickel-

berger’s theorem, the complex roots zi of ideal I are the vectors of simultaneous eigenvalues

of the companion matrices Tzi . Thus when they are evaluated in the diagonal form, the

matrices P ′ = P |zi→Tzi , Q
′ = Q|zi→Tzi , P

′Q′−1 are also diagonal, and it builds the one-

to-one mapping between diagonal elements of (n − 3)! × (n − 3)! matrix P ′Q′−1 and the

integrand P/Q evaluated at the (n − 3)! complex solutions of scattering equations. To

demonstrate this, let us go through a 7-point example of scalar φ3 theory.

As usual, let us gauge fixing z1 =∞, z2 = 1, z7 = 0, and the amplitude is given by

A7 =
∑
sol

z2
12z

2
27z

2
71

|Φ|127
127

1

z2
12z

2
23z

2
34z

2
45z

2
56z

2
67z

2
71

≡
∑

z3,z4,z5,z6∈sol

P (z3, z4, z5, z6)

Q(z3, z4, z5, z6)
, (4.84)

where

Φ127
127 =


Φ33 Φ34 Φ35 Φ36

Φ43 Φ44 Φ45 Φ46

Φ53 Φ54 Φ55 Φ56

Φ63 Φ64 Φ65 Φ66

 , |Φ|127
127 = Det(Φ127

127) . (4.85)

The Dolan-Goddard polynomial form [37] of the scattering equations is given by

f1 = s12 + s13z3 + s14z4 + s15z5 + s16z6 , (4.86)

f2 = s123z3 + s124z4 + s125z5 + s126z6

+ s134z3z4 + s135z3z5 + s136z3z6 + s145z4z5 + s146z4z6 + s156z5z6 , (4.87)

f3 = s1234z3z4 + s1235z3z5 + s1236z3z6 + s1245z4z5 + s1246z4z6 + s1256z5z6

+ s1345z3z4z5 + s1346z3z4z6 + s1356z3z5z6 + s1456z4z5z6 , (4.88)

f4 = s67z3z4z5 + s57z3z4z6 + s47z3z5z6 + s37z4z5z6 + s27z3z4z5z6 . (4.89)

We can define the ideal I =
〈
f1, f2, f3, f4

〉
in polynomial ring C[z3, z4, z5, z6], and generate

the Gröbner basis of I in Lexicographic order z3 ≺ z4 ≺ z5 ≺ z6. The degree of ideal I

is 24, so the variety of ideal I is given by 24 point solutions for which there are no closed

form solutions.

Let us set the kinematics (all physical poles) as some prime numbers,

s12 = 5, s23 = 37, s34 = 43, s45 = 61, s56 = 97, s67 = 101, s17 = 139,

s123 = 151, s234 = 163, s345 = 191, s456 = 211, s567 = 223, s671 = 251, s712 = 263

(4.90)

in the following computation. The solutions of scattering equations fi = 0, i = 1, 2, 3, 4

requires computing the roots of equations of degree 24, which has no closed form in radicals.

Doing it numerically, we get 24 solutions
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sol1 : z3 =20.9071, z4 =1.66835, z5 =7.08198, z6 =−64.2332,

sol2 : z3 =1.4223− 0.318993i, z4 =12.204− 5.48743i, z5 =0.342956− 0.477119i, z6 =51.9097− 32.886i,

sol3 : z3 =1.4223 + 0.318993i, z4 =12.204 + 5.48743i, z5 =0.342956 + 0.477119i, z6 =51.9097 + 32.886i,

sol4 : z3 =27.2316, z4 =1.76178, z5 =13.0497, z6 =−12.5157,

sol5 : z3 =1.34598, z4 =−3.76733, z5 =−1.28282, z6 =−56.7763,

sol6 : z3 =4.92534 + 1.82303i, z4 =2.04236 + 0.47052i, z5 =0.12331 + 0.73366i, z6 =−36.88− 1.74857i,

sol7 : z3 =4.92534− 1.82303i, z4 =2.04236− 0.47052i, z5 =0.12331− 0.73366i, z6 =−36.88 + 1.74857i,

sol8 : z3 =−11.2804, z4 =3.5116, z5 =−6.80042, z6 =−1.26394,

sol9 : z3 =1.19261, z4 =−8.20104, z5 =3.07784, z6 =6.22689,

sol10 : z3 =1.18325 + 1.93745i, z4 =0.29585− 0.48639i, z5 =0.56997+1.11008i, z6 =0.15405−0.39359i,

sol11 : z3 =1.18325− 1.93745i, z4 =0.29585 + 0.48639i, z5 =0.56997−1.11008i, z6 =0.15405+0.39359i,

sol12 : z3 =−4.76521, z4 =−3.05026, z5 =−1.6908, z6 =−0.488528,

sol13 : z3 =0.576445, z4 =−3.05135, z5 =1.14498, z6 =0.712806,

sol14 : z3 =1.78095 + 0.41639i, z4 =2.1103− 0.60663i, z5 =0.52752 + 0.29927i, z6 =2.3283− 1.39061i,

sol15 : z3 =1.78095− 0.41639i, z4 =2.1103 + 0.60663i, z5 =0.52752− 0.29927i, z6 =2.3283 + 1.39061i,

sol16 : z3 =1.86192, z4 =0.877999, z5 =0.795994, z6 =0.601979,

sol17 : z3 =1.65547, z4 =1.9848, z5 =0.493798, z6 =2.31186,

sol18 : z3 =0.327576, z4 =−0.0855936, z5 =0.212916, z6 =−0.0559545,

sol19 : z3 =0.307828, z4 =0.645287, z5 =0.0420044, z6 =0.46483

sol20 : z3 =0.174313, z4 =0.120642, z5 =0.0855984, z6 =0.0445606,

sol21 : z3 =0.031819, z4 =0.15022, z5 =0.00455376, z6 =0.0545382,

sol22 : z3 =0.0191033, z4 =0.0765079, z5 =0.0145344, z6 =0.00921803,

sol23 : z3 =−0.100486, z4 =−0.0950558, z5 =−0.00857861, z6 =−0.0892275,

sol24 : z3 =−0.0162083, z4 =0.0167369, z5 =0.00970032, z6 = −0.0265855,

and the integrand summing over all solutions is given by

24∑
soli, i=1

P (z3, z4, z5, z6)

Q(z3, z4, z5, z6)
= 1.99605× 10−6 . (4.91)

Let us now turn to the companion matrix method. The monomial basis over GB(I) is

given by 24 elements

B =
{

1, z6, z
2
6 , z

3
6 , z

4
6 , z

5
6 , z

6
6 , z

7
6 , z

8
6 , z

9
6 , z

10
6 , z

11
6 , z

12
6 ,

z13
6 , z

14
6 , z

15
6 , z

16
6 , z

17
6 , z

18
6 , z

19
6 , z

20
6 , z

21
6 , z

22
6 , z

23
6

}
. (4.92)

Accordingly, by polynomial reduction of ziB, i = 3, 4, 5, 6 over GB(I), we can get the

companion matrices Tzi , i = 3, 4, 5, 6, which are 24× 24 matrix and satisfying TziB = ziB.

In order to compute A7, we can proceed as usual by computing Tr(P |zi→TziQ|
−1
zi→Tzi

), and

the result is

Tr(P ′Q′−1) =
19260317055974762778118

9649229470008137021319652355
≈ 1.99605× 10−6 , (4.93)
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which agrees with the numeric result given by summing over all solutions of scattering

equations. Again we see that, since the computation only involves basic manipulations on

matrix, we are able to get the closed form result, and show that the final result is rational

functions of Mandelstam variables.

The companion matrices are simultaneously diagonalizable. We can choose Tz6 and

compute its eigenvectors, since Tz6 is the simplest companion matrix by definition. Such

computation involves finding the roots of equations of degree 24, which prohibits analytic

solution. Now, Tz6 has 24 column eigenvectors ui, i = 1, . . . , 24, and from them we can

define the transformation matrix U = (u1, . . . , u24)24×24. Then T dzi = U−1TziU, i = 3, 4, 5, 6

are all diagonal matrices, explicitly given as

diag(T d
z3) = {20.9071 , 1.42230 + 0.31899i , 1.42230− 0.31899i , 1.345982 , 4.92534− 1.82303i ,

4.92534 + 1.82303i , 27.2316 , 1.192609 , 1.78095− 0.41639i , 1.78095 + 0.41639i ,

1.65547 , − 11.28035 , 0.576445 , 1.86192 , − 4.76521 , 0.307828 ,

1.18325− 1.93745i , 1.18325 + 1.93745i , − 0.1004864 , 0.327576 , 0.0318190 ,

0.174313 , − 0.0162082 , 0.0191033} ,

diag(T d
z4) = {1.66835 , 12.20402 + 5.48743i , 12.20402− 5.48743i , − 3.76733 , 2.04236− 0.47052i ,

2.04236 + 0.47052i , 1.76178 , − 8.20104 , 2.11030 + 0.60663i , 2.11030− 0.60663i ,

1.98480 , 3.51160 , − 3.05135 , 0.877999 , − 3.05026 , 0.645287 ,

0.295854 + 0.486386i , 0.295854− 0.486386i , − 0.0950558 , − 0.0855936 , 0.150220 ,

0.1206420 , 0.0167369 , 0.0765079} ,

diag(T d
z5) = {7.08198 , 0.342956 + 0.477119i , 0.342956− 0.477119i , − 1.282815 , 0.123310− 0.733658i ,

0.123310 + 0.733658i , 13.04970 , 3.07784 , 0.527517− 0.299273i , 0.527517 + 0.299273i ,

0.493798 , − 6.80042 , 1.144984 , 0.795994 , − 1.69080 , 0.0420044 , 0.569967− 1.110081i ,

0.569967 + 1.110081i , − 0.00857861 , 0.212916 , 0.00455376 , 0.0855984 , 0.00970033 ,

0.0145344} ,

and

diag(T d
z6) = {−64.2332 , 51.9097 + 32.8860i , 51.9097− 32.8860i , − 56.7763 , − 36.8800 + 1.7486i ,

−36.8800− 1.7486i , − 12.51570 , 6.22689 , 2.32830 + 1.39061i , 2.32830− 1.39061i ,

2.31186 , − 1.263937 , 0.712806 , 0.601979 , − 0.488528 , 0.464830 , 0.154052 + 0.393588i ,

0.154052− 0.393588i , − 0.0892275 , − 0.0559545 , 0.0545382 , 0.0445606 , − 0.0265855 ,

0.00921802} .

It can be checked directly that, each set of diagonal elements {(Tz3)i,i, (Tz4)i,i,

(Tz5)i,i, (Tz6)i,i} corresponds to a set of solution {zsolj3 , z
solj
4 , z

solj
5 , z

solj
6 } of scattering equa-

tions. Thus each diagonal element of matrix P ′(T dzi)Q
′−1(T dzi) is identical to the integrand

P/Q evaluated at one solution of scattering equations, and the equivalence between results

of these two methods is obvious.

With the arithmetic result, it is possible to determine the terms appearing in amplitude

by setting appropriate kinematics. In fact, in this example, we know that the result should

– 27 –



J
H
E
P
1
2
(
2
0
1
5
)
0
5
6

be the sum

A7 =
∑
ı,ıi

cı

sı1sı2sı3sı4

, (4.94)

where naively the summation is over all possible products of 4 physical poles sıi , i.e.,(
14
4

)
= 1001 terms with cı, ı = 1, . . . 1001, being either zero or one. By choosing 1001

different group of kinematics for physical poles, we get 1001 linear equations of (4.94), and

solving them gives the cı.

Indeed, the number of terms grows very fast with n in (4.94). The number of indepen-

dent poles is n′ = (n−1)(n−2)
2 − 1 for massless theory, while the number of possible terms

in the expansion is
(
n′

n−3

)
. For n = 8, the number is 15504, and for n = 9 the number is

296010. So it is not very doable when n is large. However, for φ3 theory, the number of

color-ordered diagram is much smaller, and the counting is 2n−2(2n−5)!!
(n−1)! . So for n = 7, the

possible terms appearing in (4.94) is 42 (an auspicious number). For n = 8, the number is

132, and for n = 9, the number is 429, etc. If we restrict to the 42 possible terms in (4.94),

then it is possible to compute the coefficients cı by choosing one set of kinematics.

One can let each physical pole be assigned a random prime number, and compute

Tr(P ′Q′−1) and then let Mathematica go through all 242 possibilities of cı’s to find the

summation
∑42

ı=1
cı

sı1sı2sı3sı4
= Tr(P ′Q′−1). If the prime numbers in kinematic variables are

distributed randomly in a very large scale, e.g., primes between 2 to 10000, then usually

we can find one unique solution for cı in the spirit of Egyptian fractions. This enables us

to do one computation and fix all coefficients.

For example, let us compute

A′7 =
∑
sol

z2
12z

2
27z

2
71

|Φ|127
127

1

z12z23z34z45z56z67z71z12z24z45z57z76z63z31
. (4.95)

With the kinematics shown in (4.90), we find the unique decomposition

Tr(P ′Q′−1) =
284

1037296765
=

1

5× 61× 101× 151
+

1

5× 101× 151× 233
, (4.96)

which indicates that

A′7 =
1

s12s45s67s123
+

1

s12s67s123s567
, (4.97)

and agrees with the result given by CHY mapping rules [30, 31].

There is a way to directly determine whether a certain term 1
sı1sı2sı3sı4

is present in

the result or not, by setting the kinematics sı1 = a, sı2 = a2, sı3 = a4, sı4 = a8, and others

random primes not equaling to a. If this term exists, then the denominator has a factor

a15. Again in the A′7 example, if we instead set s12 = 5, s45 = 52, s67 = 54, s123 = 58, then

the result is 248
515×223

, thus 1
sı1sı2sı3sı4

is a term in A′7. However, if we set s12 = 5, s56 = 52,

s67 = 54, s123 = 58, then the result is 284
513×61×223

. This indicates that 1
s12s56s67s123

is not

a term in A′7, while the 513 factor indicates that possible terms involving 1
s12s67s123

must

exist, which provides further information for detecting other existing terms. By this way,

we can check all possible terms by setting kinematics for each one.
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The number of solutions for scattering equations grows as (n−3)!, while the companion

matrix grows as (n − 3)! × (n − 3)!. When n = 8, we need to invert the matrix Q′120×120,

and at n = 9, the matrix Q′720×720, etc. This sets the limitation on the computation of

higher n.

5 Conclusions and outlook

In this paper, motivated by the explanation of equivalence of different integrands in the

CHY setup, we propose a new method using companion matrices, borrowed from the study

of zero-dimensional ideals in computational algebraic geometry, to evaluate the integrand.

One advantage of the method is that the rationality of final integral is obvious. Thus

although our method may not be as efficient as the one proposed in [30, 31, 36], it does

give a new angle to study the important problem of scattering amplitudes.

As shown in the plethora of examples, when the number of external legs grows, the

analytic expression of companion matrix becomes harder. In fact, when n ≥ 6, the best

way to do it is by assigning the kinematic variables to random prime numbers in order

to reconstruct the analytic result. The salient feature of our method is that it is purely

linear-algebraic, involving nothing more than finding the inverse and trace of matrices. The

linearity of the trace, for example, was demonstrated to immediately lead to non-trivial

identities in the amplitudes.

Now, since the physical problem is very symmetric as can be seen by the polynomials

given in (2.15) and (2.16), one is confronted with an immediate mathematical challenge. If

we could analytically find, say by induction, the Gröbner basis and subsequent monomial

basis for the polynomial form of the scattering equations in some appropriate lexicographic

ordering, then one would find a recursive way to construct the companion matrix explic-

itly, much like the recursive construction of tree-level amplitude by using BCFW defor-

mation [16, 17]. Working out this construction is hard but worthwhile, as it would give

explicit analytic results for the amplitudes and provide a deeper understanding of the CHY

formalism.
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