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Strada Costiera 11, 34151 Trieste, Italy
eINFN — Sezione di Trieste,

Via Valerio 2, 34127 Trieste, Italy
f ICTP,

Strada Costiera 11, 34151 Trieste, Italy

E-mail: andreas.braun@physics.ox.ac.uk,

markus.rummel@physics.ox.ac.uk, sumitomo@post.kek.jp,

roberto.valandro@ts.infn.it

Abstract: In [1] a mechanism to fix the closed string moduli in a de Sitter minimum

was proposed: a D-term potential generates a linear relation between the volumes of two

rigid divisors which in turn produces at lower energies a race-track potential with de Sitter

minima at exponentially large volume. In this paper, we systematically search for imple-

mentations of this mechanism among all toric Calabi-Yau hypersurfaces with h1,1 ≤ 4 from

the Kreuzer-Skarke list. For these, topological data can be computed explicitly allowing

us to find the subset of three-folds which have two rigid toric divisors that do not intersect

each other and that are orthogonal to h1,1 − 2 independent four-cycles. These manifolds

allow to find D7-brane configurations compatible with the de Sitter uplift mechanism and

we find an abundance of consistent choices of D7-brane fluxes inducing D-terms leading

to a de Sitter minimum. Finally, we work out a couple of models in detail, checking the

global consistency conditions and computing the value of the potential at the minimum.
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1 Introduction

Recent observations strongly confirmed the existence of Dark Energy, necessary for the

present accelerated expansion of the universe [2–5]. Among several possibilities, a tiny

positive cosmological constant is the prime candidate explaining the observational data.

As a candidate for unifying particle physics and quantum gravity, string theory should be

able to accommodate such a possibility.

In string theory, flux compactifications generate a potential stabilizing moduli fields [6,

7] and the cosmological constant is obtained as the minimal value of this potential. As there

are many consistent choices of quantized fluxes for a chosen compactification manifold, we

have a huge number of minima, resulting in the string theory landscape (for a review

see [8–13]). A positive cosmological constant is challenging to realize in this landscape

while minima with negative cosmological constants seem ubiquitous. Given a vacuum

with negative cosmological constant, we may ask if there is a mechanism to uplift the

corresponding minimum of the potential to a de-Sitter (dS) solution, while keeping the

stability of moduli fields.

In the context of type IIB string theory, where moduli stabilisation has been extensively

studied in the last fifteen years, several possibilities have been proposed to uplift the minima

of the potential: anti-D3-brane uplift (KKLT) [14–16], non-SUSY stabilization of complex

structure moduli [17], Kähler uplifting scenario [18–22], negative curvature [23], D-term

uplift [24–27], and dilaton-dependent non-perturbative effects [28]. These mechanisms

consist in introducing new ingredients in the compactification, that modify the moduli

potential by a positive definite contribution. In many of them the uplift potential needs

to be tuned (by either warping, tuning of other fluxes, or coefficients accompanied by

loop corrections) in order not to generate a runaway potential when added to the moduli

stabilizing term. Once the uplift term is added to the scalar potential, one minimizes the

new potential and finds a dS minimum. Most of these mechanisms work at the level of the

effective field theory (EFT) and so far have no intrinsic ten-dimensional (10D) description.

Moreover they are based on quantum corrections that are not completely under control.

This led many authors to consider also classical dS solutions realized at the level of the 10D

theory [29–41]. The difficulty in finding these solutions, compared to the 4D ones, gave

rise to some criticism on the 4D EFT approach and it opened the debate on the validity

of KKLT anti-D3-brane uplift mechanism [42–44] (see [45–54] for recent development). It

is certainly an important issue to understand the 4D EFT uplift mechanism from a 10D

point of view, in order to be sure that they can be embedded into string theory.

Recently, another uplift mechanism has been proposed in the context of type IIB

orientifold compactifications, studied by use of the 4D EFT language: the D-term generated

racetrack uplift [1]. A D-term generated by magnetized D7-branes forces a relation between

the Kähler moduli and at lower energies induces a racetrack potential. The uplift term

naturally chases after (or balances with) the stabilization potential through the dynamics

without special suppressed coefficients. In the Large Volume Scenario (LVS) [55], the

stabilization potential for the Kähler moduli includes a term proportional to e−a1τ1/V2

where τ1 is the volume of a shrinkable four-cycle D1 in the Calabi-Yau (CY) three-fold,
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generated by a non-perturbative contribution to the superpotential. a1 is a coefficient which

depends on how the non-perturbative effect is generated and V is the overall volume of the

CY. A second term like this is present in case another non-perturbative effect is generated

on a second four-cycle D2. Under the assumption that the contributions from the VEVs

(vacuum expectation values) of matter fields to the D-term potential is fixed to zero by the

open string moduli potential, the vanishing of the FI-term will force its volume τ2 to be

proportional to τ1, such that a2τ2 = βa1τ1 with β a real constant. In the effective potential

we then have a second term that goes like e−βa1τ1/V2. This term contributes effectively to

the uplift when β < 1 in the D-term generated racetrack model. When the value of β is

closer to one, say β ∼ 0.9, the racetrack potential has a better chasing, resulting in almost

no tuning of the flux dependent parameters in the effective potential. The possible values

of β are model dependent: they depend on how the non-perturbative effects are generated,

on the actual flux on the D7-brane and on the topological data of the Calabi-Yau three-

fold used for compactification. Note that the racetrack potential generated by the D-term

constraint has also been applied to construct an inflationary model recently, alleviating the

known concern of dangerous string-loop corrections [56].

In this paper, we will scan over a number of different models and explore which values

for β can be realized and how close we can get to β ∼ 1. We work in a compact setup, where

the global consistency conditions, such as tadpole cancellation, can be analysed in detail.

For other works studying global dS vacua in type IIB compactifications while employing

other mechanisms for the uplift see [57–60]. We will first see what are the topological

conditions a CY threefold must satisfy in order to host the necessary ingredients for the

uplift mechanism to work: the main constraint is finding two rigid, shrinkable divisors

which do not intersect each other and are furthermore orthogonal to h1,1 − 2 linearly

independent divisors.

A natural starting point to study when these constraints can be realized is given by

Calabi-Yau threefolds which are hypersurfaces in toric varieties. Such manifolds can be con-

structed via combinatorial objects called reflexive polytopes [61], and the four-dimensional

polytopes relevant to Calabi-Yau threefolds were famously classified in [62]. In order to

describe the topology of divisors and their intersections, we need slightly more refined data,

which is given by appropriate triangulations of the polytopes found in [62]. The task of

computing all inequivalent triangulations was recently accomplished for small h1,1 by [63],

which serves as the input for our scan. Using their data, we compile a list of CYs with

h1,1 = 3, 4 which fulfil the necessary conditions. We find that roughly 10% of polytopes

have triangulations (often more than one) such that our conditions are met. This list will

be useful for other purposes and is a by-product of our work. In particular, these CYs can

easily have two non-perturbative effects that contribute to the superpotential and on which

one can play to stabilize more than two moduli in the Large Volume Scenario. For each CY

in the list, we consider the two rigid divisors, corresponding to Kähler moduli fields T1, T2;

instantonic D3-branes wrapping these divisors will generate non-perturbative terms in the

superpotential. For a specific class of orientifold involutions and D7-brane configurations,

we scan over fluxes on the D7-branes generating a D-term potential. Correspondingly, we

get a scan over the proportionality factor between τ1 and τ2 and in particular of possible
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values for β. For the classes of models we consider, we can quite easily obtain values of β

close to one.

We consider four classes of models: (a) rank one E3-instantons and four D7 wrapping

the location of O7 plane DO7, (b) rank one E3-instantons and one D7 wrapping four-times

of O7 divisor 4DO7, (c,d) rank two instantons generating non-perturbative effects with

both kinds of D7-brane configurations. When we scan all possible models for h1,1 = 3, 4,

we find that class (a) has a maximal value of β = 2/3 existing only for h1,1 = 4, and

that the other three cases (b,c,d) can have β = 8/9 even at h1,1 = 3. We study three

concrete examples and describe the data of the CY threefold, make a choice for the flux

that maximizes the value of β . 1 and compute the actual values of the stabilized Kähler

moduli, showing that the minimum of the scalar potential sits at a dS minimum. For the

maximal values of β found in our scan, the uplift term is of comparable size with respect

to the moduli stabilizing potential. This implies no special tuning of the parameters of

the effective field theory to obtain dS vacua, contrary to the uplift mechanisms mentioned

above (where a large tuning is already necessary to obtain a de Sitter solution). These

flux dependent parameters need to be tuned in order to generate cancellations that make

the positive cosmological constant sufficiently small. Due to the vast configuration space

of the flux landscape in type IIB compactification, this is conceivable. We conclude that

the D-term generated racetrack uplift model is quite promising and in principle compatible

with a large number of CY compactifications.

In this paper we consider only setups with an orientifold involution where h1,1
− = 0.

As explained in [64], in these cases the flux on the D7-brane necessarily generates a charge

for the instanton. Correspondingly, the prefactor of the non-perturbative superpotential is

proportional to the VEVs of some D7-branes matter fields. Besides having an instanton

zero mode structure that allows for non-zero Grassmanian integration in the instanton path-

integral, one hence needs to have non-zero VEVs for the appearing matter fields in order to

have non-zero contributions to the non-perturbative superpotential. Since we also need that

the contribution of the matter fields to the D-term cancels, two conditions must be satisfied:

the existence of matter fields with opposite chiralities and a (flux dependent) open string

moduli potential that fixes the combination contributing to the D-term potential to zero.

We will assume that there exists a flux configuration that allows the wanted stabilisation.

We comment about this in section 7. Moreover, we compute the number of instanton zero

modes and matter fields (for both chiralities) and check that there is no obstruction to the

generation of the non-perturbative superpotential in the examples studied in the last part

of the paper (this computation is reported in the appendix). This problem can be avoided

when h1,1
− 6= 0 [65], as explained in section 7. In this case, one can have a matter field

independent prefactor of the non-perturbative superpotential. Most of the analysis in the

generic cases does not rely on the particular orientifold involution. Hence we believe that

in constructions with h1,1
− 6= 0, one will have the same abundance of order one values for

β. We leave the analysis of these more generic cases, as well as the analysis of CYs with

higher h1,1, for future work.

This paper is organized as follows. In section 2 we review type IIB orientifold com-

pactifications with D7-branes and the stabilization of geometric moduli. In section 3 we
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present the dS uplift mechanism, listing which conditions the global setup must satisfy to

allow it. In section 4 we explain how to implement the search in the given a list of hypersur-

faces in toric ambient spaces (i.e. triangulations of four-dimensional reflexive polytopes).

In section 5 we present the scan among CYs and D7-brane fluxes, yielding the possible

values of β. In section 6 we present some concrete examples for specific choices of CYs and

fluxes, and work out the details of the corresponding models. In section 7, we summarize

our results and discuss which features can be improved in the near future. Appendix A

contains the computation of the number of zero modes originating from D7-branes and

their intersections (chiral as well as vector like pairs).

2 Type IIB orientifold compactifications

We consider Type IIB string theory compactified on a Calabi-Yau three-fold X3 with an

orientifold involution. The effective four dimensional theory has N = 1 supersymmetry.

The involution is chosen such that the fixed point set is made up of (complex) codimension 1

and codimension 3 objects, i.e. O7-planes and O3-planes. Moreover, it divides the homology

classes of X3 into an even and odd part: accordingly hp,q+(−) denote the dimensions of the

cohomology groups of even (odd) (p,q)-forms.

This compactification has the following set of massless fields coming from the closed

string sector:

• the axio-dilaton S = e−φ + i C0, where φ is the dilaton field and C0 the RR scalar.

• geometric moduli, which are divided into complex structure moduli Uα with α =

1, . . . , h1,2
− (X3) and Kähler moduli Ti = τi + iθi with i = 1, . . . , h1,1

+ , where τi are the

volumes h1,1
+ independent even divisors D+

i and θi are KK zero modes scalars of the

RR four-form potential C4: Ti =
∫
D+
i

1
2J

2 + iC4.

• G-moduli Gk = Ck − iSζk with k = 1, . . . , h1,1
− coming from KK zero mode scalars of

the RR and NSNS two-forms C2 and B2.

• KK zero mode vectors of the RR four-form C4, Apµ with p = 1, . . . , h1,2
+ .

There are also massless modes coming from the open string sector, i.e. from the D-

branes. These are necessarily present in the given setup, as the RR charge of the O-planes

must be cancelled to prevent a tadpole.

2.1 D-brane configuration

In any consistent compactification of type IIB string theory, the total 7-brane charge must

be zero on a compact manifold. This means that the 7-brane charge of the orientifold

7-planes which are considering here must be cancelled by D7-branes, i.e.∑
A

[D7A]− 8[O7] = 0 , (2.1)

where A runs over all the D7-branes (and their orientifold images), [D7A] is the homology

class of the divisor wrapped by the D7-brane D7A and [O7] is the homology class of the
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fixed point locus. Furthermore, the D7-branes must be placed such that there is a double

intersection between the orientifold plane and the D7-brane locus [66, 67]. When the

orientifold involution is realized by ξ 7→ −ξ, these conditions are satisfied if the D7-brane

locus is described by an equation of the form

PD7 ≡ η2 − ξ2χ = 0 . (2.2)

The degrees of the polynomials (corresponding divisor classes) are dictated by the tadpole

cancellation condition (2.1). The orientifold locus ξ = 0 is in the class [O7] = [ξ], and

hence the classes relative to η and χ are [η] = 4[ξ] and [χ] = 6[ξ]. If η and χ are generic

polynomials, the D7-brane locus is connected and hence we have only one orientifold in-

variant D7-brane. To have different branes, η and χ must be restricted in a way that makes

PD7 factorize. The most trivial example is when η ≡ αξ4 and χ ≡ βξ6 with α and β two

different numbers. In this case

PD7 ≡ (α2 − β)ξ8 = 0 with β 6= α2 , (2.3)

and we have four D7-branes plus their four images all on top of the orientifold locus,

realizing an SO(8) gauge group. This will be the simple setup that we consider in the

examples in section 6.1 Another possible simple choice is to take η generic and set χ ≡ ψ2,

so that

PD7 ≡ η2 − ξ2ψ2 = (η − ξ ψ)(η + ξ ψ) = 0 . (2.4)

This describes a D7-brane wrapping the locus η − ξ ψ = 0 and its image at η + ξ ψ. This

is a second possibility that we will explore. In this case, the D7-brane and its image each

wrap a divisor in the homology class 4Dξ = 4[O7].

There is another important consistency conditions that the D7-brane configuration

needs to satisfy. In order to prevent a Freed-Witten anomaly, the pull-back of the field

strength of the B-field, H3 = dB, to the worldvolume of the D7-brane must be zero (if

there are no branes ending on other branes), i.e.

i∗H3 = 0 , (2.5)

where i∗ is the pull-back map from the target space to the D7-brane worldvolume. This

condition is obviously realized when the D7-brane worldvolume has no closed three-forms,

or in other words when h1,0(D7) = 0. In the examples we provide in section 6 we will make

sure to exclusively work with such branes.

A D7-brane may also support a non-trivial gauge bundle. The corresponding field

strength F (called also the gauge flux) must satisfy a proper quantization condition in

order to cancel a second Freed-Witten anomaly:

F +
c1(D)

2
= F − D

2
∈ H2(D,Z) , (2.6)

1If one of the non-perturbative effects needs to be generated via D7-brane gaugino condensation (that

could be necessary to make the mechanism work) this additional D7 brane stack has to be consistent with

tadpole cancellation as well.
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where we have used that on a Calabi-Yau manifold the first Chern class of any divisor

is equal to minus the first Chern class of its normal bundle (c1(D) = −c1(ND) = −D).

When D is not spin c1(D)
2 is half-integral, so that F must be half-integral as well (and in

particular non-vanishing). The gauge flux F by itself is not invariant under the shift of the

NS-NS two-form potential, the B-field. The gauge invariant combination is F ≡ F − i∗B,

where i∗B is the pull-back of B on the brane worldvolume.

RR charges. D7-branes wrapping a compact surface D in X3 supporting a holomorphic

gauge bundle E give rise to RR-charges of lower degrees, i.e. D5 and D3 charges, as well.

These charges are conveniently presented as the Mukai vector, that is the polyform

ΓE = e−BD ∧ ch (E) ∧

√
Td (TD)

Td (ND)
, (2.7)

where we are using the same symbol for the surface D and its Poincaré dual two-form.

The polyform (2.7) appears in the Chern-Simons action of the D7-brane, from which

the charges with respect to the RR potentials can be simply read off. Using the polyform

C =
∑

pCp for all of the RR potentials, the Chern-Simons action is

SCS =

∫
R1,3×D

ι∗C ∧ ΓE . (2.8)

Keeping only the integral of the six-form, one can see that the 2-form in (2.7) measures the

D7-brane charge (it is Poincaré dual to the surface wrapped by the D7-brane), the 4-form

counts the D5-brane charge, and the 6-form counts (minus) the D3-brane charge. In partic-

ular, for an orientifold invariant D7-brane configuration in an orientifold compactification

with h1,1
− (X3) = 0, the total D5-charge will automatically cancel.

For the D3-charge of a single D7-brane, one obtains from (2.7):

QD7
D3 = −

∫
X3

ΓE |6−form = −χ(D)

24
− 1

2

∫
D
F ∧ F , (2.9)

where F is the gauge invariant combination F − i∗B and F = c1(E) + c1(D)
2 . One can see

that this is properly quantized when E is a well defined line bundle (we are considering a

single D7-brane), i.e. c1(E) is an integral two-form. Note that the Euler characteristic of a

divisor D of a Calabi-Yau threefold can be easily computed as χ(D) =
∫
X3

(D3+D∧c2(X3))

by adjunction.

There is an analogous expression for the charges induced by the O7-plane wrapping Dξ.

Its Mukai vector is simply given by

ΓO7 = −8Dξ +
χ(Dξ)

6
, (2.10)

from which the D7-brane charge and the D3-brane charge of an O7-plane can be read off

analogously. Cancellation of the D7-brane tadpole gives rise to the relation (2.1).

Let us now consider a configuration with one O7-plane and four D7-branes plus their

images wrapping the same divisor Dξ. We choose a diagonal gauge flux along the four
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D7-branes (i.e. each D7-brane support the same line bundle) and the proper flux on their

images to make the configuration invariant (i.e. F ′ = −σ∗F). Then the total D3-charge is

given by

QO7+4D7
D3 = −

χ(Dξ)

2
− 4

∫
Dξ

F ∧ F . (2.11)

For the configuration (2.4), where we have one D7-brane wrapping a divisor in the

class 4Dξ plus its image, the D3-charge contribution is

QO7+1D7
D3 = −

χ(Dξ)

6
−
χ(4Dξ)

12
−
∫

4Dξ

F ∧ F , (2.12)

where F denotes the flux on the D7-brane and −F the flux on its orientifold image (we

are assuming h1,1
− (X3) = 0). Notice that the geometric contribution is now larger than the

case with four branes wrapping Dξ, as χ(nD) goes roughly like n3χ(D).

Finally, there is also a contribution to the D3-brane charge coming from O3-planes,

i.e. fixed points of the orientifold involution. Every such fixed point contributes −1/2 to

the total D3-charge.

A consistent D-brane background also needs to have total zero K-theoretic torsion

charges (that is not captured by (2.7)). In the setup that we will consider, we check that

global SU(2) Witten anomaly are cancelled in the worldvolume of every invariant Sp(1)

probe brane transverse to the O-plane, which is an equivalent condition [68]. This anomaly

is cancelled if each intersection of the probe branes with the D7-branes in the setup support

an even number of fields in the fundamental representation of the probe group. For the

simple configurations that we will consider in this paper, this always happens.2

Zero modes. The constructions we are interested in contain brane configurations made

up of D7-branes and D3-branes wrapping four-cycles of the compact Calabi-Yau three-fold

X3. The D3-branes are point-like in the non-compact space-time directions and are called

E3-instantons (‘E’ stays for Euclidean).

There are massless open strings living at each intersection of D7-branes with E3-branes.

These are the zero modes of the stringy instanton background (the D7-branes are seen as the

flavour group of the zero modes). Having control over the instanton fermionic zero modes

is important to understand whether the E3-brane will contribute to the non-perturbative

superpotential. The relevant E3-branes will wrap rigid divisors with h1,0 = 0, so that they

have the minimal number of neutral zero modes, i.e. two states. Furthermore, E3-branes

will generally intersect some D7-branes (to allow the uplift mechanism) on a curve C. At

such intersections, there are fermionic zero modes in the bifundamental representation

(w.r.t. the gauge groups on the E3- and on the D7-brane stacks). If we have a single

E3-brane with flux FE3 = c1(EE3), EE3 = EE3 ⊗ K−1/2
E3 as well as nD D7-branes with a

diagonal flux FD = c1(ED), ED = ED⊗K−1/2
D , the zero modes are counted by the following

2Either we consider an even number of D7-branes (that realize a even rank flavour group) or they will

wrap an even cycle, making the number of chiral fields even.
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extension groups

Ext1 (i∗EE3, i∗ED) = H1
(
C, E∨E3 ⊗ ED ⊗K

1/2
C

)
, (2.13)

Ext2 (i∗EE3, i∗ED) = H0
(
C, E∨E3 ⊗ ED ⊗K

1/2
C

)
, (2.14)

where KC = DE3+DD is the canonical bundle of the intersection curve. The states counted

by Ext1 are in the fundamental representation nD of the D7-gauge group, while the ones

counted by Ext2 are in anti-fundamental representation n̄D. The difference between their

numbers is given by the chiral index

ID7−E3 = dim Ext2 (i∗EE3, i∗ED)− dim Ext1 (i∗EE3, i∗ED) = χ
(
C, E∨E3 ⊗ ED ⊗K

1/2
C

)
=

∫
C
FD − FE3 =

∫
C
FD −FE3 , (2.15)

where χ
(
C, E∨E3 ⊗ ED ⊗K

1/2
C

)
is the holomorphic twisted Euler characteristic. In the sec-

ond line we have used the Hirzebruch-Riemann-Roch theorem.3 In the models in section 6,

we will compute the dimension of both groups in (2.13), because we need to know the

number of all the zero modes.

Massless open string states living on the worldvolume of a D7-brane or intersections of

D7-branes are seen at low energies as massless four-dimensional fields. Let us first discuss

the case of a D7-brane and its image, described by (2.4). In this case the computation of

the zero modes is complicated by the presence of the O7-plane. Luckily, this situation has

been studied in many cases in the literature [66, 69–71]. One can describe this system by

a tachyon matrix4

T : [FD]−1[Dξ]
−2 ⊕ [FD]−1[Dξ]

2 → [FD] [Dξ]
2 ⊕ [FD] [Dξ]

−2 , (2.16)

with

T =

(
0 −η − ξψ

η − ξψ 0

)
. (2.17)

The two branes intersect in two loci: C = {η = ψ = 0} and C0 = {η = ξ = 0}. Only the first

curve produces charged fields (in the symmetric representation of U(1)), while the second

curve is empty (the antisymmetric representation of U(1) is trivial). The zero modes are

the deformations of this matrix, up to linearised gauge transformations [66]. The diagonal

terms (which must be proportional to ξ to make the Tachyon matrix orientifold invariant)

give the states localized on the curve C = {η = ψ = 0}: δT11 = ξδρ are states of charge

+2, while δT22 = ξδτ have charge −2. The matrix δT is well defined if [δρ] = [F ]2[Dξ]
3

and [δτ ] = [F ]−2[Dξ]
3 (where the subtraction of [Dξ] has been taken into account). Hence

the numbers of these states are counted respectively by

H0
(
C, [FD]2 ⊗ [Dξ]

3
)

and H0
(
C, [FD]−2 ⊗ [Dξ]

3
)
, (2.18)

3The theorem says that χ(M,E) =
∫
M

ch(E) Td(M), where χ(M,E) ≡
∑
n(−1)nhn(M,E), M is a

manifold of any dimension and E is a holomorphic bundle defined over the manifold.
4This tachyon is the field which makes a D9− D̄9 system condense to the 7-brane configuration we are

interested in, see [66] for the details.
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and their difference is given by the index

ID7D7′ =
1

2

∫
X3

D2
D(FD −F ′D) +DDξFD = 12

∫
X3

Dξ ∧Dξ ∧ FD =

∫
C

2FD , (2.19)

where we have used D = 4Dξ.

Let us now consider a case where we have two stacks of D7-branes wrapping the same

divisor D, one supporting an overall line bundle Ea = Ea ⊗K−1/2
D and the other the line

bundle Eb = Eb⊗K
−1/2
D . Then the massless spectrum is counted by Extn(i∗Ea, i∗Eb) with

n = 0, . . . , 3, where

Ext0 (i∗Ea, i∗Eb) = H0
(
D,Ea ⊗ E∨b

)
, (2.20)

Ext1 (i∗Ea, i∗Eb) = H1
(
D,Ea ⊗ E∨b

)
+H0

(
D,Ea ⊗ E∨b ⊗ND

)
, (2.21)

Ext2 (i∗Ea, i∗Eb) = H2
(
D,Ea ⊗ E∨b

)
+H1

(
D,Ea ⊗ E∨b ⊗ND

)
, (2.22)

Ext3 (i∗Ea, i∗Eb) = H2
(
D,Ea ⊗ E∨b ⊗ND

)
. (2.23)

One can relate some of the cohomology groups by using Serre duality,

H i (D,Ea ⊗ E∨b ⊗ND) = H2−i (D,E∨a ⊗ Eb). The states counted by the exten-

sion groups with n = 0 and n = 3 are ghosts that need to be absent for the

consistency of the D-brane configuration [72, 73]. These groups are empty when

h0 (D,Ea ⊗ E∨b ) = h0 (D,E∨a ⊗ Eb) = 0. As shown in [73], this is always true if there

exists a value of the Kähler form J inside the Kähler cone, for which the bundle choice is

supersymmetric. The states corresponding to n = 2 are bifundamentals in the (n̄a,nb)

representation, while those with n = 1 are in the conjugate representation. The difference

between their numbers is given by the chiral index

Iab = dim Ext2 (i∗Ea, i∗Eb)− dim Ext1 (i∗Ea, i∗Eb) (2.24)

= χ
(
D,Ea ⊗ E∨b

)
− χ

(
D,Ea ⊗ E∨b ⊗ND

)
(2.25)

=

∫
X3

D ∧D ∧ (Fb − Fa) =

∫
X3

D ∧D ∧ (Fb −Fa) . (2.26)

The case we are interested in is where all D7-branes are on top of the orientifold brane, so

that the two stacks are the orientifold images of one another. This gives rise to the relation

Eb = σ∗E∨a between the bundles on their worldvolumes.

2.2 Moduli stabilization

Type IIB string theory compactified on a CY orientifold with a given configuration of D-

branes has a plethora of massless scalars in the low energy effective theory, the moduli of

the compactification. These scalars need to be stabilized. We hence must introduce further

ingredients to make this happen, i.e. study a slightly more complicated background. This

problem has been addressed in the last fifteen years: the complex structure moduli and the

axio-dilaton are stabilized at tree level by non-zero expectation values for the NSNS and

RR three-form field strengths H3 = dB2 and F3 = dC2. At subleading order, the Kähler
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moduli are fixed by non-perturbative corrections to the superpotential and perturbative

corrections to the Kähler potential. There are two main scenarios in which this can happen.

In the case of KKLT vacua [15] the non-perturbative effects are enough to stabilise the

Kähler moduli. On the other hand, if one uses a combination of both corrections to the

tree level potential, that leads to the Large Volume Scenario (LVS) [18, 55] where the

volume modulus is stabilized at exponentially large values. In presence of magnetized D7-

branes, some combination of the Kähler moduli can be stabilised already at tree-level by

a D-term potential.

Effective potential. In N = 1 supergravity, the scalar potential is a sum of the F-term

and the D-term potentials.

The F-term potential is completely determined by the Kähler potential K and the

superpotential W :

VF = eK
(
KAB̄DAWDBW − 3|W |2

)
, (2.27)

where DAW = ∂AW +KAW and KA,... are the derivatives of K with respect to the scalars

φA, . . .. In our case, A runs over the complex structure moduli Uα α = 1, . . . , h1,2
− , the axio-

dilaton S and the complexified Kähler moduli Ti i = 1, . . . , h1,1
+ (we neglect the moduli Gk

as we only consider models where h1,1
− = 0).

In Type IIB orientifold compactifications, the Kähler potential K is

K = −2 ln

(
V +

ξ̂

2

)
− ln

(
S + S̄

)
− ln

(
i

∫
X3

Ω ∧ Ω̄

)
. (2.28)

Here, S is the axio-dilaton, Ω is the holomorphic (3,0)-form on the CY three-fold X3, which

depends on the complex structure moduli Uα, and V = 1
6

∫
X3
J3 is the volume of X3, which

encodes the Kähler moduli Ti. In the Kähler potential of the Kähler moduli, we have also

included the leading order α′ corrections to the Kähler moduli, coming from compactifying

the α′3R4 term in the ten-dimensional effective theory. This produces a constant shift

inside the log, where

ξ̂ = −ζ(3)χ(X3)

4
√

2(2π)3
(S + S̄)3/2 , (2.29)

with χ(X3) the Euler characteristic of the CY three-fold and ζ(3) ' 1.202. Recently it

has been claimed that the constant ξ̂ is modified if one includes also the proper N = 1

contribution coming from the O7/D7 sector [74]. This modification boils down to replacing

χ(X3) 7→ χ(X3) + 2
∫
X3
D3
ξ in (2.29).5

In Type IIB flux compactifications, there is a tree level superpotential W tree generated

by the three-form fluxes H3 and F3; this is the famous Gukov-Vafa-Witten superpoten-

5For the Large Volume Scenario to take place, one needs ξ̂ > 0 that without the new term means

χ(X3) < 0. The second term could spoil this condition on χ(X3) if
∫
D3
ξ > 0. This is actually positive in

phenomenologically interesting models, as one usually chooses Dξ to be a large degree divisor (to produce

a large negative D3-charge that would give large tunability on the flux choice) which hence has many

effective representatives: this means that D3
ξ ≥ 0. Luckily in all the explicit LVS-type models studied in

the literature [57–60, 75, 76] and in the examples presented here, this term is not large enough to turn

ξ̂ < 0.
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tial [77]

W tree =

∫
X3

(F3 − i S H3) ∧ Ω . (2.30)

Furthermore, the superpotential can get subleading contributions at the non-perturbative

level. These terms can be generated by E3-branes wrapping a divisor in X3, or by gaugino

condensation on some non-Abelian stacks of D7-branes [15, 78]:

W np =
∑
j

Aje
−ajTj . (2.31)

The prefactor Aj depends generically on the complex structure moduli and the matter fields

present in the model; the coefficient aj depends on the nature of the non-perturbative effect

(for a rank-one E3-brane instanton, aj = 2π). The total superpotential in (2.27) is the

sum of the two terms: W = W tree +W np.

When some D7-branes are present in the background, a D-term potential is generated.

In the case of a U(1) gauge field coming from D7-branes wrapping the divisor D in X3

(e.g. a single D7-brane of the diagonal U(1) of a U(N) stack) it is given by [79]:

VD =
1

Re (fD)

(∑
j

cDjK̂jφj − ζD
)2

, (2.32)

where φj are matter fields with charges cDj under the U(1) gauge symmetry,

ζD =
1

V

∫
DD

FD ∧ J , (2.33)

is the FI-term, which can be generated by the gauge flux FD, and

Re (fD) =
1

2

∫
DD

J ∧ J − 1

2gs

∫
DD

FD ∧ FD , (2.34)

is the gauge kinetic function.

We consider only vacua where the volume is stabilized at extremely large values (&
106`6s). We can hence expand the scalar potential in powers of 1

V and write it as

V = V tree
F + VD + V sub−lead

F . (2.35)

In a large volume expansion, one can fix the moduli order by order.

Complex structure moduli and axio-dilaton. At leading order in the 1/V expansion,

the potential is given by (2.27), where K is (2.28) with ξ̂ → 0 and W = W tree (2.30). The

tree-level superpotential depends on the integral of the three-forms H3 and F3 over a basis

of three-cycles of X3. Because of flux quantization, these are discretely tunable parameters

in the effective four-dimensional theory. They must satisfy the constraint coming from the

tadpole cancellation condition: in fact, they induce a (typically positive) D3-charge that

needs to be cancelled by (negative) contributions coming from D7-branes and O-planes:

1

(2π)4α′2

∫
F3 ∧H3 + Qloc

D3 = 0 . (2.36)
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Because of the no-scale property of the tree-level Kähler potential, the resulting po-

tential is positive definite. Its only dependence on the Kähler moduli is a prefactor that

goes like 1/V2. It is stabilized to zero value when DUαW = DSW = 0 [6]. The com-

plex structure moduli and the axio-dilaton (in particular gs) are fixed to three-form flux

valued functions. At this level, the Kähler moduli are flat directions. In the minimum,

the tree-level superpotential is 〈W tree〉 = W0, where W0 is a function depending on the

flux quanta.6

Kähler moduli: D-term. The D-term potential (2.32) usually appears at 1/V2 order

as well. This is due to the fact that typically ζD ∼ V−2/3 and Re (fD) ∼ V2/3. It is also

positive definite and is stabilized at zero value. This forces a relation between the VEV of

the matter fields φj and the FI-term ζD. If the matter field contribution is stabilized at

zero, the D-term condition becomes

ζD = 0 ⇒
∫
D
J ∧ FD = 0 . (2.37)

If we expand the Kähler form in a basis of divisors {Di}, J =
∑

i tiDi, vanishing of the

D-term is a linear equation on the coefficients of the Kähler form ti. By inverting

Re Ti = τi = 1
2

∫
Di

J2 = 1
2κijkt

jtk , (2.38)

one obtains relations among the Kähler moduli.

In the models we will consider in this paper, the FI-term will go as V−1 instead of

V−2/3, while Re(fD) ∼ V2/3. Hence VD appears at order 1/V8/3, which is subleading with

respect to V tree
F but still leading with respect to V sub−lead

F if the volume is very large.

Kähler moduli: F-term. In the Large Volume Scenario, perturbative corrections to the

Kähler potential and non-perturbative corrections to the superpotential, generate a scalar

potential for the Kähler moduli (that are left unfixed by the leading terms) at order 1/V3.

Considering one non-perturbative object wrapping the divisor Ds, the scalar potential

looks like

V sub−lead
F ∼

(
Ae−2aτ

V
− Be−aτW0

V2
+
C|W0|2

V3

)
. (2.39)

This potential is minimized when

τs ∼ 1/gs and V ∼W0 e
asτs . (2.40)

6When D7-branes are present, there are open string moduli that describe the deformation of the D7-

brane loci. Furthermore, there are gauge fluxes, which, if not of pull-back type, can stabilize some of the

open string moduli [80, 81]. The proper language to describe this situation is F-theory: here, the complex

structure moduli of X3 and the open string moduli are both encoded in the holomorphic (4,0)-form of the

Calabi-Yau four-fold, while the three form fluxes and the gauge fluxes are described by the periods of a

four-form flux G4. The GVW superpotential in this case is W tree =
∫
X4
G4 ∧Ω4. One can make analogous

consideration as above and see that the tree-level potential is again stabilised at zero value, keeping the

Kähler moduli as flat directions. W0 will now depend on the gauge fluxes as well.
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For small string coupling and W0 of order one, the volume V is stabilized at an expo-

nentially large value. If there are Kähler moduli that are left unfixed by this potential,

one needs to consider sub-leading terms (like gs-corrections to the Kähler potential). The

minimum of the potential is anti-de Sitter with broken supersymmetry.7 In this case, one

needs to introduce new ingredients or go to less generic situations to end up with a de

Sitter minimum.

3 De Sitter vacua via a D-term generated racetrack

In this section, we review the setup studied in [1], where a new mechanism for de Sitter

uplift in Type IIB string vacua was introduced.

The basic ingredients are a couple of non-perturbative contributions to the superpo-

tential (like the ones in (2.31)) and a D-term potential that depends on the volumes of both

four cycles wrapped by the non-perturbative objects. At leading order in 1/V the D-term

vanishes, forcing the two volumes to be proportional to each other. At the next order in

1/V, the potential is given by the F-term of the Kähler moduli. The two non-perturbative

contributions now generate a racetrack model that allows to have a de Sitter minima.

Let us see how this mechanism works in more detail.

3.1 E3-instantons and non-perturbative superpotential

The starting point is the presence in the superpotential of two non-perturbative contribu-

tions of the same order of magnitude :

W = W0 +A1e
−a1T1 +A2e

−a2T2 . (3.1)

According to what we said in section 2, these two terms will arise from two divisors D1 and

D2 wrapped by E3 instantons, or a stack of D7-branes supporting gaugino condensation.

In this paper we will restrict ourselves to study the contributions of the first type of

non-perturbative contributions, i.e. E3 instantons wrapping orientifold invariant divisors.

We furthermore require that D1 and D2 do not intersect each other. These instantons

contribute to the superpotential (3.1) if the zero mode structure is constrained as follow:

there are only two neutral zero modes — this happens when the wrapped divisor is rigid

and has h1,0 = 0 — and the path integral on the charged ones is non zero. This last

condition can be satisfied if the VEV of some fields is non-zero, as we will explain later.

Another consistency condition that the E3 instantons have to satisfy is Freed-Witten

anomaly cancellation. First they must satisfy (2.5), which is realized when h1,0(Di) = 0.

Moreover, the gauge flux Fi on the E3 brane wrapping the divisor Di is quantized according

to (2.6). Hence, when the divisor Di is non-spin, the gauge flux will always be different

from zero.

Let us consider a rank one O(1) instanton, i.e. one single D3-brane wrapping the divisor

Di. Under the orientifold involution σ, the gauge invariant field strength Fi = Fi − i∗B
7In LVS, Ms ∼ Mp/V1/2 � MKK ∼ Mp/V2/3 and both are much larger than the gravitino mass

m3/2 ∼ Mp/V. Most moduli masses scale like the gravitino mass, except for the overall volume modulus

itself which has a mass of order mV ∼Mp/V3/2 � m3/2 and its axion partner which is essentially massless.
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transforms as Fi 7→ −σFi. If the involution is such that h1,1
− = 0, we have that σFi = Fi

and the E3-brane is orientifold invariant only if Fi = 0. Hence, the non-perturbative

effect survives the orientifold projection if Fi = 0. When i∗B = 0 and Di is non-spin,

Fi is always non-zero and then the E3 instanton is projected out. The E3 instanton is

invariant when the background B-field is such that Fi can be zero, i.e. i∗B = Fi. The

choice B = −D1/2−D2/2 will always allow to put Fi = 0 when D1 ∩D2 = 0.

One can have invariant E3 instantons wrapping non-spin divisor even when B = 0.

This is possible if we give up having rank one instantons, as introduced in [82]. One E3

instanton is a stack of D3-branes wrapping the divisor Di in the CY X3. As for the D7-

branes, a vector bundle can live on such a stack. We take Di to be an invariant divisor

transverse to the O7-plane. Hence, an E3 instanton with vector bundle E is orientifold

invariant if

σ∗E∨ = E . (3.2)

When E is a line bundle (rank one instanton), this condition implies c1(E) = F = 0, which

violates the Freed-Witten flux quantization for non-spin divisors. On the other hand, if

E = L1 ⊕ L2, i.e. it is a rank two vector bundle that is a sum of two line bundles, the

condition (3.2) boils down to requiring L2 = L−1
1 . Hence this stack is made up of two

branes, one is the image of the other, and c1(Li) are the gauge fluxes on the branes, that

can be non-zero without violating Freed-Witten anomaly cancellation.

The classical action for an E3 instanton wrapping the divisor D is SE3 =

2π·rk(E)·vol(D). Hence, while in (3.1) ai = 2π for a rank one E3-brane, for rank two

instantons we have ai = 4π. If one divisor allows a rank one instanton, its contribution to

the non-perturbative superpotential will always be dominant with respect to higher rank

instantons; if it is not allowed, the leading contribution will be given by the rank two

E3-brane (if non-zero).

Charged zero modes. An important constraint one has to take into account is the

general conflict between non-vanishing non-perturbative effects and fermionic zero modes

at brane intersections [64] generically generated by gauge fluxes. In our situation, we have

some D7-branes that, as we discuss soon, will necessary intersect the E3 instantons and

support a non-trivial flux (for the uplift mechanism to work). The effective superpotential

generated by a E3 instanton is given by [78] (see also [83])

A ∼
∫
dη1 . . . dηne

−Sinst , (3.3)

where Sinst is the instanton effective action for n fermions ηi. Their multiplicity is given

by n = nD×nf , where nD is dimension of the representation of the D7-brane gauge group

where the fermion lives (the number of D7-branes wrapping the divisor DD) and nf the

number of solutions of the Dirac equation in the given representation. Sinst includes all pos-

sible gauge invariant interaction terms between the ηi and the scalar fields φ living on the

D7-branes. Let us discuss with the case of one scalar field φ and an even or odd number n of

fermions ηi. The instanton action contains gauge invariant terms Sinst ⊃
∑n

i,j=1 gijηiφηj ,

with coupling constants gij . The integral in (3.3) can be evaluated for an even n: one
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expands the exponential and keeps only terms that saturate the Grassmanian integration.

On the other hand, for odd n the contribution to the superpotential is zero [84–87].

In the simple cases that we will consider, n will always be even, because either nD or

nf will be even. When we saturate the O7-plane charge by a stack of four D7-branes (plus

their images), nD = 4. When the tadpole is cancelled by one brane (and its image), this

brane wraps an even divisor ([D7] = 4[O7]) and nf turns out to be even. In these cases,

the non-perturbative effects on D1 and D2 are never trivially zero but are proportional to

a positive power of the scalar fields. Of course we need to check that the matter fields on

the D7-branes have the right charges to produce the needed interaction terms. Finally, it is

necessary for the non-perturbative effects not to vanish that the stabilization of the matter

fields leads to non-zero VEVs 〈φ〉 6= 0.8 This is a strong assumption on the constructions

presented in this paper. It could be made mild by considering a more involved setup, as we

will discuss in section 7. This modification would not change the salient features regarding

the dS uplift mechanism studied in this paper, while it would complicate the details. We

hence leave these setups for a future work.

3.2 D-term potential from D7-branes

The other necessary ingredient is a stack of magnetized D7-branes generating a D-term

potential. We will call the divisor wrapped by such D7-branes DD and the gauge invariant

worldvolume flux FD ≡ FD − i∗B.

The FI-term (2.33) is proportional to a linear combination of the Kähler moduli ti,

where the ti’s are the coefficients of the Kähler form expansion in terms of a basis of two

forms. We will take the independent rigid divisors D1 and D2 among the basis elements:

J = t1D1 + t2D2 +

h1,1∑
a=3

taDa , (3.4)

where we use the same symbols for the divisors and the Poincaré dual two forms. We will

furthermore restricts to CYs for which it is be possible to find a basis of integral four-cycles

such that Da are orthogonal to both D1 and D2 (this will in general not be an integral

basis for H1,1(X3,Z)). This means that the intersection form will have the form

I3 = κ1D
3
1 + κ2D

3
2 + κabcDaDbDc , (3.5)

where a, b, c 6= 1, 2.

In order for the mechanism to work, we will choose FD such that only t1 and t2 appear

in the linear combination
∫
DD
FD ∧ J . In the chosen setup, t1 and t2 measure the sizes

of D1 and D2 (which are wrapped by the E3 instantons). Under the assumption that the

non-zero matter fields VEVs are such that the first term in the D-term potential (2.32) is

zero, then the D-term condition (at leading order in 1/V expansion) becomes

ζD = 0 . (3.6)

8These are hidden sector fields so there are no constraints for standard model fields to obtain a VEV.
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Expanding the divisor DD and the flux in the following way9

DD = d1D1 + d2D2 +
∑
a

daDa and FD = f1D1 + f2D2 , (3.7)

with non-zero flux quanta f1, f2. Eq. (3.6) implies

κ1d1f1t1 = κ2d2f2t2 ⇒ τ2 =
κ1

κ2

(
d1f1

d2f2

)2

τ1 ≡ c τ1 , (3.8)

where we used τi = Re Ti = 1
2

∫
Di
J ∧ J and J = t1D1 + t2D2 + taDa. It is essential

for (3.8) to occur that DD non-trivially intersects D1 and D2. The important constraint is

that FD has zero coefficients with respect to the Da’s: this is not automatically possible,

as Freed-Witten flux quantisation may imply to have these components different from zero.

Only if both conditions are fulfilled then ζD = 0 constrains the two volumes τ1 and τ2 to

be proportional to each other. This relation is what allows the uplift mechanism discussed

in the next section.

3.3 F-term potential

We present a simplified model with h1,1 = 3, constructed by compactifying Type IIB string

theory on a Calabi-Yau three-fold with three Kähler moduli. The Kähler potential of the

Kähler moduli space is (see also section 2):

K = −2 ln

(
V +

ξ̂

2

)
. (3.9)

If the intersection form is (3.5), the volume of the three-moduli Calabi-Yau can be written

in the Swiss-Cheese form:

V =
1

6

(
κbt

3
b + κ1t

3
1 + κ2t

3
2

)
= γb(Tb + T̄b)

3/2 − γ1(T1 + T̄1)3/2 − γ2(T2 + T̄2)3/2 , (3.10)

with one big four-cycle Db with volume Re Tb = τb and two small cycles with volumes

Re T1,2 = τ1,2. We used the relation between ti and τi:

ti = ±
√

2τi
κi

with γi =
1

6
√
κi
. (3.11)

The Kähler cone condition unambiguously tells us which sign to use in the first equation

of (3.11). In particular, for one big cycle tb and h1,1 − 1 small cycles ti one has tb > 0

and ti < 0.

In the following we set γb = γ1 = γ2 = 1 for simplicity. The F-term potential given

by (3.9) and (3.1) is the O(V−3) subleading F-term potential (2.39). In the model we are

9The two-form FD belongs to H2(DD). In this paper we will only consider two-forms that are pulled

back from two-forms of the Calabi-Yau X3; for this reason we will omit the pull-back symbol i∗ in the

expression for the gauge flux, which otherwise should be written as FD = f1i
∗D1 + f2i

∗D2.
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presenting here, it is given by10

V ∼ 3W 2
0 ξ̂

4V3
+

4W0

V2

(
2∑
i=1

aiAiτie
−aiτi cos(aiθi)

)
+

2
√

2

3V

(
2∑
i=1

a2
iA

2
i τ

1/2
i e−2aiτi

)
. (3.12)

This potential includes the solutions of the Large Volume Scenario (LVS) [55], where V ∼
eaiτi , realizing an exponentially large volume.

At leading order the D-term potential stabilizes τ2 = c τ1, so that the resulting potential

is a function of τs ≡ (τ1 + τ2/c)/2 = τ1, while the orthogonal direction τz = (τ1− τ2/c)/2 is

heavy and can be integrated out. For simplicity of presentation, we make the redefinitions:

xs = a1τs, ys = a1θs =
a1

2

(
θ1 +

θ2

c

)
Vx = Va3/2

1 , ci =
Ai
W0

, ξ̂x = ξ̂a
3/2
1 , (3.13)

and

β = c
a2

a1
. (3.14)

Then the effective potential at order O(V−3) becomes11

V̂ ≡
(
a3

1

W 2
0

)
V ∼ 3ξ̂x

4V3
x

+
4c1xs
V2
x

e−xs cos ys +
2
√

2c2
1x

1/2
s

3Vx
e−2xs

+
4βc2xs
V2
x

e−βxs cos(βys) +
2
√

2β2c2
2x

1/2
s

3Vx
e−2βxs .

(3.15)

The potential (3.15) is the starting point for the uplift mechanism for dS vacua that

has been proposed in [1]. Roughly speaking, the first line of the potential (3.15) is nothing

but the potential for LVS (that would produce and AdS minimum), while the second line

plays a role of the uplifting term. In practice, one stabilizes the potential (3.15) and finds

a dS minimum by gradually increasing c2 > 0, while keeping c1 < 0.

We obtain a Minkowski vacuum when ∂Vx,xs V̂ = 0, V̂ = 0, which happens for

ξ̂x ∼ 4
√

2x2
s, c1 ∼ −

3
√
xs√

2Vx
exs , c2 ∼

9

4
√

2xsVxβ(1− β)
eβxs , (3.16)

where we have used an approximation of large xs and small c2, and ys is stabilized at zero.

Plugging the conditions in the Hessian, we obtain

∂2
Vx V̂ |ext ∼

6
√

2x
3/2
s

V5
x

, det
(
∂i∂j V̂

)
|ext ∼

54(1− β)x2
s

V8
x

, ∂2
ys V̂ |ext ∼

6
√

2x
3/2
s

V3
x

, (3.17)

where i, j = Vx, xs and ∂i∂ys V̂ |ext = 0. According to Sylvester’s criterion, the stability is

ensured when these three quantities are defined positively, suggesting β < 1. Increasing

(slightly) the values of c2, one obtains a (tiny) dS minimum.

10Im Tb will eventually be stabilized by non-perturbative effects that are omitted in (3.9) since they are

exponentially suppressed by the CY volume and hence negligible.
11The imaginary mode of Z = τz + iθz is eaten by the U(1) gauge boson that becomes massive through

the Stückelberg mechanism. Hence it is integrated out together with its partner τz.
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This mechanism does not work if we start with a CY with two Kähler moduli τb and

τs and a racetrack superpotential W = W0 +A1e
−a1Ts +A2e

−a2Ts . In this case there would

appear a cross term proportional to c1, c2 in the potential. Repeating the same analysis as

above and requiring a Minkowski minimum, one runs into a contradiction. This is related

to the fact that the cross-term contributes negatively to the potential, disturbing the uplift:

making the uplift term larger to overcome this negativity destabilizes the vacuum. Due to

the absence of this dangerous cross-term, the uplift mechanism works well in the D-term

generated racetrack model.

3.4 Summary of conditions for de Sitter vacua

Let us summarize what are the conditions for the dS uplift to work.

• We need a Calabi-Yau three-fold with two rigid divisors D1 and D2 (with h1,0 = 0)

that support non-perturbative effects generating the non-perturbative superpoten-

tial (3.1). We restrict to the case when these two divisors do not intersect each other.

In particular we also require them to be part of a basis of divisors with intersection

form (3.5).

• The second ingredient is the presence of D7-branes with a non-trivial gauge flux.

We require the D7-brane divisor DD to intersect the two rigid divisors D1 and D2.

The flux FD will generate an FI-term in the D-term potential that depends on the

volumes of the two rigid divisors. Under the assumption that the contribution to the

D-term from the open string moduli is zero, the D-term condition boils down into a

linear relation between the two volumes.

• The flux FD should be chosen not to be too large, in order to still satisfy the D3-

tadpole cancellation condition, and such that

β ≡ ca2

a1
6= 1 , (3.18)

where c depends on the flux quanta and the divisor choice, see (3.8). The uplift term

is identified to be the term of e−a2t2 when β < 1, while e−a1t1 for β > 1. When the

two non-perturbative terms in the superpotential are generated by E3 instantons, we

have ai = 2π.

If c = 1, we may still get de Sitter uplift if at least one of the non-perturbative effects is

generated by D7-brane gaugino condensation for which ai = 2π/Ni where Ni is the Coxeter

number of the corresponding gauge group. It is also possible to realize the scenario in a

more general setup, but this gives rise to further constraints. For instance, if the two

small cycles intersect, their intersection numbers have to fulfil certain requirements for

non-vanishing non-perturbative effects (see appendix of [1]). One could also consider non-

rigid divisors that can generate a non-zero non-perturbative superpotential if they support

a proper flux that lifts the exceeding zero modes [80, 81].
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4 Searching for toric divisors

In this section we explain how to efficiently find Calabi-Yau threefolds X3 for which there

exist two divisors D1 and D2 which are rigid (i.e. h2,0(D1) = h2,0(D2) = 0), irreducible

and for which the intersection form can be written as

κ1D
3
1 + κ2D

3
2 +

∑
a,b,c 6=1,2

κabcDaDbDc , (4.1)

for a basis of H1,1(X3) formed by D1, D2 and {Da}. Furthermore, we are going to demand

that the Kähler cone is such that (3.11) can be fulfilled, i.e. D1 and D2 are two ‘small’ cycles.

In order to have a large set of examples while keeping technical control we restrict

ourselves to Calabi-Yau threefolds which are hypersurfaces in toric varieties and divisors

D1, D2 which descend from toric divisors. A toric hypersurface Calabi-Yau threefold is

constructed from a pair or four-dimensional reflexive polytopes ∆◦ and ∆ as well as an

appropriate triangulation of ∆◦. A polytope ∆ ⊂ R4 with vertices on a lattice (which we

can take to simply be Z4 ⊂ R4) is called reflexive if its polar dual, defined by

〈∆,∆◦〉 ≥ −1 , (4.2)

is a lattice polytope as well. In this case there is a one-to-one relationship between k-

dimensional faces Θ◦[k] of ∆◦ and (3 − k)-dimensional faces of Θ[3−k] of ∆. This data

defines the Calabi-Yau as follows: from the triangulation, one can construct a fan Σ over

the faces of the polytope ∆◦ which gives rise to a four-dimensional toric variety P4
Σ. The

lattice points on ∆ determine the complete linear system of −KP4
Σ

and hence a Calabi-

Yau threefold hypersurface X3. For Calabi-Yau threefolds, i.e. four-dimensional polytopes,

there always exists a triangulation resulting in a smooth Calabi-Yau threefold X3 [61].

Crude topological invariants such as the Hodge numbers only depend on the dual pair of

polytopes and not on the details of the triangulation. In particular,

h1,1(X3) = `(∆◦)− 5−
∑
Θ◦[3]

`∗(Θ◦[3]) +
∑

(Θ◦[2],Θ[1])

`∗(Θ◦[2])`∗(Θ[1])

h2,1(X3) = `(∆)− 5−
∑
Θ[3]

`∗(Θ[3]) +
∑

(Θ[2],Θ◦[1])

`∗(Θ[2])`∗(Θ◦[1]) .
(4.3)

Here, `∗ counts interior lattice points of a face and `(∆) counts all lattice points on the

polytope ∆.12

The more refined data needed here, such as the intersection form and the Kähler cone,

is not determined by the polytopes alone, but depends on the triangulation. While all four-

dimensional reflexive polytopes have been famously classified in [62], all possible triangula-

tions are not known for each polytope. Recently, [63] have determined all triangulations for

all reflexive polytopes which give rise to Calabi-Yau threefolds with h1,1(X3) ≤ 6. Using

their results, it is possible to completely answer for which toric hypersurface Calabi-Yau

12In this construction, mirror symmetry is realized by swapping the roles played by the pair of dual

polytopes ∆↔ ∆◦.
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threefolds (of h1,1(X3) ≤ 6) the intersection form can be written as (4.1), if we restrict to

the cases where the two small divisors D1 and D2 of X3 descend from toric divisors of the

ambient space P4
Σ.

4.1 Hodge numbers and geometry of toric divisors

The reason we have singled out toric divisors is that they are both easy to enumerate and

to analyse. The fan Σ of the ambient toric variety containing X3 is constructed from a

triangulation of ∆◦, so that every lattice point νi on ∆◦ generates a ray in Σ(1) and hence

corresponds to a homogeneous coordinate zi and a toric divisor Ti of P4
Σ. Toric divisors on

P4
Σ give rise to divisors on X3 by restriction, or equivalently, by the pullback i∗ associated

with the embedding i : X3 7→ P4
Σ. The Hodge numbers hp,0 of a divisor Di = i∗Ti only

depend only on the location of the point νi in the polytope ∆◦ [61, 88]:

• If νi is a vertex of ∆∗, Di is always an irreducible divisor on X3. The hodge number

h2,0(Di) is given by `∗(Θ[3]), where Θ[3] is the dual face (on ∆) to νi = Θ◦[0]. The

hodge number h1,0(Di) always vanishes in this case.

• If νi is inside a one-dimensional face Θ◦[1] of ∆◦, Di is always irreducible and

h2,0(Di) = 0. The Hodge number h1,0(Di) is given by `∗(Θ[2]), where Θ[2] is the

dual face to Θ◦[1].

• If νi is inside a two-dimensional face Θ◦[2] of ∆◦, Di is always rigid, h2,0(Di) = 0, and

has h1,0(Di) = 0, but it is reducible in general. Its number of irreducible components

is given by `∗(Θ[1]), where Θ[1] is the dual face to Θ◦[2]. For this reason, the divisors

{Di} do not generate all of h1,1(X3) and the combinatorial equation (4.3) contains

the ‘correction term’ ∑
(Θ◦[2],Θ[1])

`∗(Θ◦[2])`∗(Θ[1]) .

• If νi is inside a three-dimensional face of ∆◦, Ti does not intersect the Calabi-Yau

hypersurface at all, i.e. there is no associated Di. This is the reason for the subtrac-

tion of ∑
Θ◦[3]

`∗(Θ◦[3]) ,

in (4.3). Furthermore, such points can be omitted in a triangulation of ∆◦, as done

in [63].

The remaining Hodge number h1,1 depends on the triangulation chosen.

Hence we can summarize the condition for a toric divisor to restrict to a divisor D on

X3 which is irreducible and has h1,0(Di) = h2,0(Di) = 0 by13

`∗(Θ) = 0 , (4.4)

13Finally, let us comment on the condition for rigidity of divisors inside a Calabi-Yau threefold. If a

divisors Di is such that h2,0(Di) = 0, there can be no global sections in its canonical bundle. By adjunction,

and because X3 is a Calabi-Yau manifold, we have the relation KD = ND⊂X3 between bundles on D. Hence

there can also not be any global holomorphic section of the normal bundle of D inside X3, i.e. the divisor

is rigid.
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where Θ is the dual to the face containing νi. We only need to consider lattice points on

the 2-skeleton of ∆◦, as points interior to three-dimensional faces of ∆◦ give rise to toric

divisors which do not meet X3.

4.2 Intersection ring

The intersection ring (Chow ring) of the ambient space P4
Σ can be easily read off from

the fan (or from the triangulation of ∆◦). two divisors (or, more generally, codimension p

algebraic subvarieties) intersect iff they share a common cone in Σ. More concretely, four

divisors Ti intersect in a point iff they span a cone of volume one14 in Σ.

As we have discussed already, the second cohomology of the Calabi-Yau threefold is not

generated by the Ti alone, as some of these divisors Di are reducible and the components

give rise to a different classes in H1,1(X3) in general. Performing computations on the

ambient space P4
Σ hence only gives us access to part of the intersection ring of the Calabi-

Yau hypersurface X3. The cup product between a cycle Di descending from the ambient

space (in the image of i∗) and a cycle Da intrinsic to X3 (in the cokernel of i∗) is [89]

Di ·Da = i∗Ti ·Da = i∗PD(Ti · i∗Da) = 0 . (4.5)

More explicitly, this can described as follows: if a toric divisor Ti becomes reducible on the

Calabi-Yau threefold X3 we can write

Di =
∑
µ

Dµ
i , (4.6)

where Dµ
i are its irreducible components. Only the sum above lifts to a divisor of the

ambient space and the linear combinations

{Dµ
i −D

ν
i ∀i, µ, ν} , (4.7)

which generate the cokernel of i∗, are orthogonal to all divisors Dk descending from P4
Σ.

Hence the intersection form will split into a piece descending from the toric ambi-

ent space and an intrinsic piece generated by (4.7). Asking weather we can achieve the

form (4.1) for two given toric divisors D1 and D2, we can hence safely focus on divisors Di

descending from the ambient space.

4.3 Orthogonality

We can now address the central problem and ask when, for two irreducible and rigid divisors

D1 = i∗T1 and D2 = i∗T2, we can achieve the form (4.1). As argued in the section above,

we can restrict H1,1(X3) to divisors descending from the ambient space P4
Σ. We denote the

subspace of H1,1(X3) in the image of i∗ by H1,1
T (X3).

In order to simplify things, we first show that (4.1) is equivalent to the statement that

D1 ·Di = 0 ∀i 6= 1 and D2 ·Di = 0 ∀i 6= 2 , (4.8)

14If the cone has volume A, the intersection number is 1/A.
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as an equation in (co)homology. Clearly (4.1) follows from this, so the nontrivial statement

is the converse. To see this, let us assume that (4.1) holds for a basis of H1,1(X3) and there

is an i such that D1 · Di 6= 0 in cohomology. By Poincaré duality, there must then be a

cycle D1i such that

D1i ·D1 ·Di = 1 . (4.9)

As we have started out with a basis, we can also expand D1i =
∑

k akDk. The above

now says that there must be an k such that t11k or t1ki is non-zero (or both). This is a

contradiction, and we are done after repeating the same argument for D2.

The above greatly simplifies matters, as it gives us a way to show if we can reach a

basis in which (4.1) holds in a constructive fashion. We simply have to find enough linear

combinations of toric divisors orthogonal to both D1 and D2 to form a basis of H1,1
T (X3).

If this can be done, we have reached a basis realizing (4.1). If this is not possible, then

there is no such basis for the specific choice of D1 and D2 made.

4.4 Computations in practice

The above discussion can be straightforwardly cast into a practical algorithm to find all

solutions to (4.1) for pairs of toric divisors D1 and D2 and toric Calabi-Yau hypersurfaces

X3. The necessary computations can be conveniently carried out using the routines dealing

with polytopes and toric geometry included in the ever-helpful sage [90].

As our starting point, we assume that we are given a dual pair of reflexive polytopes

∆ and ∆◦ as well as a triangulation of ∆◦. In practice, we taken this data from the tables

available online described in [63].

• From the list of toric divisors {Ti} ' Σ(1), determine the set {TIR} divisors which

are irreducible and have h1,0(Di) = h2,0(Di) = 0 by using (4.4).

• For each pair of toric divisors D1 and D2 in {TIR}

– Check D1 ·D2 = 0.

– Check if we can find enough linear combinations orthogonal to D1 and D2 such

that we can form a basis of H1,1(X3,R). If this is possible, we have reached the

form (4.1).

– Check that the Kähler cone is such that D1 and D2 are small, that for the chosen

intersection form means κ1t1 < 0 and κ2t2 < 0.

– If all these checks are successful, we can compile a list of toric divisors DD

which are irreducible and intersect both D1 and D2 in order to be wrapped by a

magnetized D7-brane. Again, these are not the only interesting candidates for

DD, but can be most easily described.

5 Uplift mechanism for Calabi-Yau hypersurfaces in toric varieties: scan

over geometries and fluxes

In the previous section we have outlined how to find Calabi-Yau manifolds with a topology

suitable for the wanted dS uplift mechanism for the case of hypersurfaces in toric varieties.
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Using the database of triangulations of polytopes leading to Calabi-Yau manifolds with

small h1,1 worked out by [63], we made a scan for h1,1(CY ) up to 4, and counted the

manifolds that allow our geometric conditions to be satisfied. In particular, we first consider

all Calabi-Yau manifolds that allow an intersection form like (3.5) with D1 and D2 two

rigid divisors. We then look for (irreducible) toric divisors Dtoric
i = {zi = 0} that intersect

the two rigid divisors D1 and D2. For each of them we construct a different model, with

the D7-brane divisor DD wrapping it a number of times. For the ones with larger Euler

characteristic the negative D3-charge is maximized (see (2.9)), allowing a bigger choice of

fluxes that saturate the D3-tadpole cancellation condition. We find that the geometric

criteria for realizing the D-term generated racetrack scenario are fulfilled by roughly a

subset of 15% in the case of h1,1 = 3 and 24% in the case of h1,1 = 4.

The orientifold involution will be chosen such that the fixed point divisor Dξ = {ξ = 0}
is proportional to DD. The D7-tadpole will be cancelled by taking either four D7-branes

(plus their for image branes) on top of the O7-locus, or one D7-brane (plus its image brane)

wrapping divisors in the class DD = 4Dξ.
15 Furthermore, we can have the leading non-

perturbative contribution to the superpotential to be rank-one ED3-instantons or rank-two

instantons (by forbidding rank-one instantons). This gives us a total of four possible setups

that we discuss separately in the following.

5.1 Four D7 branes and rank-one instantons

By taking four D7-branes (plus their four images) on top of the O7-plane locus, we get

an D7-brane stack supporting the gauge group SO(8) on the divisor DD = Dξ. In order

to realize explicit models of the D-term generated racetrack, we need to specify the gauge

flux FD living on the worldvolume of the D7-branes. We take the same flux on all the

four D7-branes (and −FD on their orientifold images). The tadpole cancellation condition

can then be saturated by three-form fluxes and D3-branes if QO7+4D7
D3 − 1

2nO3 < 0, where

QO7+4D7
D3 is given in (2.11) (with Dξ = DD and F = FD). Using the assumed form of DD

and FD in (3.7), we have the condition:

χ(DD)

2
+ 4

(
d1κ1f

2
1 + d2κ2f

2
2

)
> 0 , (5.1)

where the first contribution is positive, while the second is negative definite (when ζD = 0).

We see that choosing DD with large χ(DD) is beneficial in terms of a large flux choice f1

and f2 as well as possible F3 and H3 fluxes which are necessary for complex structure

moduli stabilization. For the models that pass the criteria outlined in the previous section,

we find either two or three possible choices for DD.

The gauge flux is given as FD = FD − i∗B. FD must be quantized according to (2.6).

Let us consider an integral basis of H1,1(X3,Z), {Dint
i } with i = 1, . . . , h1,1(X3).16 Hence

15In this way, we avoid the presence of several D7-brane stacks, that would be difficult to control. They

will typically intersect the divisors D1, D2 and DD and spoil the mechanism.
16All elements in the integral cohomology are linear combination of the integral basis elements with

integral coefficients.
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h1,1 #polytopes #polytopes where geometric #polytopes where geometric conditions are

conditions are met met and suitable fluxes can be found

3 244 39 10

4 1197 285 87

Table 1. Four D7 branes and rank-one instanton: number of polytopes where the D-term generated

racetrack uplift can be applied.

the gauge flux

FD =
h1,1∑
i=1

FiD
int
i +

c1(D)

2
, with Fi ∈ Z , (5.2)

is properly quantized. On the E3 instantons wrapping the divisors D1 and D2 we choose

the flux to be Fi = −c1(Di)/2 = Di/2 . The globally defined background B-field can be

also expanded in the integral basis with integral or half-integral coefficients:

B =

h1,1∑
i=1

BiD
int
i , with Bi ∈ Z/2 . (5.3)

In order to have invariant rank-one instantons (we are assuming that the Di are odd

cycles), the B-field must make F1 and F2 vanish. This happens in our setup when

B =
D1

2
+
D2

2
+
∑
a 6=1,2

BaDa , (5.4)

where we used the basis with D1, D2 and orthogonal divisors Da. The coefficients Ba must

be chosen such that B cancels possible coefficients of FD along Da that may be enforced by

Freed-Witten anomaly cancellation. Only if this is possible, we will have FD = f1D1+f2D2.

This condition is given in term of the diagonal basis {D1, D2, Da}, which does not coincide

generically with the integral basis {Dint
i }. Hence, the Ba are not necessarily in Z/2. Luckily,

in our setup (hypersurfaces in toric ambient spaces) the relation between the two bases is

easy to find. Using the basis transformation, we can then determine what are the allowed

values of f1 and f2 and if it is possible to set to zero all the other coefficients fa for a > 2.

We supplement the scan over CY manifolds by a scan over all possible fluxes Fi and

B-field coefficients Bi that fulfil the conditions outlined above. The results are summarized

in table 1. The first column contains the number of polytopes for a given h1,1, while the

second column contains the number of polytopes where the geometric conditions of the

simplest incarnation of the D-term generated racetrack scenario can be met, i.e. two non-

intersecting rigid divisors and at least one irreducible divisor that intersects the two. Then,

we scan over all possible fluxes allowed by the D3 tadpole (5.1). The polytopes for which

one can find a gauge flux FD such that c 6= 1 and IAD 6= 0 is listed in the third column

of table 1. Furthermore, the values of β we find in our scan are listed in figure 1. The

closest values of β that we find in our scan for this setup are β = 2/3, 1/2, 4/9, 9/25, 1/3.

For values closer to one we consider different setups in the following.
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Figure 1. Four D7 branes and rank-one instanton: on the left, we show the distribution of βmax,

i.e. the maximal value of β for each polytope that we find in our scan. On the right we show all

possible values of β and their relative distribution in our scan.

h1,1 #polytopes #polytopes where geometric #polytopes where geometric conditions are

conditions are met met and suitable fluxes can be found

3 244 39 32

4 1197 285 191

Table 2. One D7 brane and rank-one instanton: number of polytopes where the D-term generated

racetrack uplift can be applied.

5.2 One D7 brane and rank-one instantons

Alternatively, we can take the same orientifold involution as in the previous subsection,

but wrap one D7 brane on the divisor 4DD instead. As a consequence, FD is an integral

form. In practice, this allows to have milder constraints on the flux quanta. Furthermore,

the D3 tadpole cancellation condition changes from (5.1) to

χ(DD)

6
+
χ(4DD)

12
+ 4

(
d1κ1f

2
1 + d2κ2f

2
2

)
> 0 , (5.5)

effectively replacing χ(DD)/2 by χ(DD)/6 + χ(4DD)/12 � χ(DD)/2. Hence, the D3

tadpole condition becomes less restrictive, i.e. more values of f1 and f2 can be considered

than in subsection 5.1.

The results are presented in table 2 and figure 2. Clearly a larger fraction of polytopes

can accommodate a D-term generated racetrack scenario compared to section 5.1. Fur-

thermore, there is a large variety in values of β and many models with β . 1 can be found.

The values closest to one we find in our scan are 49/50, 121/128, 225/242, 8/9, 169/200.

5.3 Four D7 brane and rank-two instantons

Here, we choose the same D7 brane setup as in section 5.1 but a different B-field. A

priori there are rank one instantons contributing to the superpotential originating from

D1 and D2. However, if we choose the B-field along D2 to be zero and one-half along

D1 this prevents rank-one instantons on D2 while still allowing rank-one instantons on
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Figure 2. One D7 brane and rank-one instanton: on the left, we show the distribution of βmax,

i.e. the maximal value of β for each polytope that we find in our scan. On the right we show all

possible values of β and their relative distribution in our scan.

h1,1 #polytopes #polytopes where geometric #polytopes where geometric conditions are

conditions are met met and suitable fluxes can be found

3 244 39 31

4 1197 285 246

Table 3. Four D7 branes and rank-two instanton: number of polytopes where the D-term generated

racetrack uplift can be applied.

D1 [82]. Hence, the leading contribution to the non-perturbative superpotential from D2

are rank-two instantons and

β = c
a2

a1
= 2c . (5.6)

Thus, we have to look for values of c . 1/2 in order to realize β . 1 in our scan. On

the other hand, when we choose B = 1
2D2 we forbid rank-one instantons on D1 such that

rank-two instantons on D1 and rank-one instantons on D2 are the leading contributions to

the superpotential. In this case, we are looking for c . 2 since β = c/2.

The results are presented in table 3 and figure 3. The proportion of models that

work are somewhat better than those in section 5.1 but not as good as in 5.2. This is

understandable since the most restricting constraint is, as in section 5.1, the vanishing of

FD along any other components than D1 and D2. The closest values to one of β in this

scenario are 8/9, 25/32, 2/3, 32/49, 16/25.

5.4 One D7 brane and rank-two instantons

Finally, we can combine the scenarios of 5.2 and 5.3. We consider one D7 brane wrapping

the divisor 4DD and a B-field that forbids rank-one instantons on D1 or D2. The results

are presented in table 4 and figure 4. We find a similar abundance of working β values as in

section 5.2. The values closest to one for β are 49/50, 121/128, 8/9, 225/256, 196/225. This

scenario combines the advantages of a possible flux choice for most of the polytopes that

allow the geometric conditions of the D-term generated racetrack observed in section 5.3,

and a large variety in β values, section 5.2.

– 27 –



J
H
E
P
1
2
(
2
0
1
5
)
0
3
3

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

300

350

βmax

0.0 0.2 0.4 0.6 0.8 1.0
0

500

1000

1500

2000

2500

3000

3500

β

Figure 3. Four D7 branes and rank-two instanton: on the left, we show the distribution of βmax,

i.e. the maximal value of β for each polytope that we find in our scan. On the right we show all

possible values of β and their relative distribution in our scan.

h1,1 #polytopes #polytopes where geometric #polytopes where geometric conditions are

conditions are met met and suitable fluxes can be found

3 244 39 36

4 1197 285 230

Table 4. One D7 branes and rank-two instanton: number of polytopes where the D-term generated

racetrack uplift can be applied.

0.0 0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

500

βmax

0.0 0.2 0.4 0.6 0.8 1.0
0

5000

10000

15000

20000

β

Figure 4. One D7 brane and rank-two instanton: on the left, we show the distribution of βmax,

i.e. the maximal value of β for each polytope that we find in our scan. On the right we show all

possible values of β and their relative distribution in our scan.

6 Concrete CY compactifications with D-term generated racetrack uplift

In this section we choose in the list of the models selected by the scan and work out the

details of the geometry, the D-brane configurations and the scalar potential, showing how

the mechanism works in concrete examples. We start from the simplest example, i.e. two

rank one E3-branes wrapping D1 and D2 and an SO(8) stack wrapping the fixed point

locus (i.e. DD = [O7]). Scanning among such simple models, we do not find values of

β close to one. The biggest at h1,1 = 3 we find is β = 1/2. This of course will require

some tuning on the prefactor A2 in the non-perturbative superpotential, to make the two
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contribution roughly of the same order. In the second and in the third models that we

present, we show how to construct a slightly more refined model that allows β close to one.

6.1 Example 1: rank one E3-instantons and SO(8) stack

Geometric data. We choose ‘geometry ID # 257’ from [63] as an example. This can

be represented as a CY hypersurface in the toric ambient space described by the following

weight system

z0 z1 z2 z3 z4 z5 z6 eqX3

1 1 0 0 1 1 4 8

0 0 1 1 0 1 3 6

0 0 1 0 1 0 2 4

(6.1)

and the Stanley-Reisner ideal17

SR = {z2z3, z3z5, z2z4z6, z0z1z5, z0z1z4z6} . (6.2)

The Calabi-Yau three-fold X3 is determined by the zero locus of the polynomial eqX3 , whose

degrees are specified in the last column in (6.1). This CY has h1,1 = 3 and h1,2 = 103 (so

that χ(X3) = −200).

The two rigid divisors with h1,0 = 0 D1 and D2 that will be wrapped by the E3-branes

are the toric divisors Dz3 and Dz2 respectively. The third divisor completing them to a

diagonal basis is Db = 2Dz3 +Dz4 . The intersection form is

I3 = D3
1 + 2D3

2 + 2D3
b . (6.3)

The Kähler form J can be expanded in the diagonal basis as J = tbDb + t1D1 + t2D2.

The volume form is then given by

V =
1

6

∫
X3

J ∧ J ∧ J =
1

6

(
2t3b + t31 + 2t32

)
=

1

3
τ

3/2
b −

√
2

3
τ

3/2
1 − 1

3
τ

3/2
2 , (6.4)

where τi = 1
2

∫
Di
J ∧ J . The Kähler cone condition for the CY three-fold is given as18

2tb + t1 + 2t2 > 0 , t1 < 0 , t2 < 0 . (6.5)

The toric divisors that intersect both D1 and D2 are Dz0 , Dz1 and Dz6 ; the first two

have χ(Dz0) = χ(Dz1) = 25, while the third has χ(Dz6) = 215. We choose the orientifold

involution to be

z6 7→ −z6 . (6.6)

The orientifold invariant equation defining the Calabi-Yau X3 is then:

z2
6 = h8,6,4(z0, . . . , z5) . (6.7)

17This Stanley-Reisner ideal originates from a specific triangulation of the relevant polytope. The other

triangulations gives rise to other patches of the Kähler cone of the CY hypersurface.
18This has been obtained by joining the Kähler cones of different triangulations of the ambient space that

lead to the same Calabi-Yau topology.
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D-brane setup. The O7-plane is located at the codimension one fixed point locus

of (6.6), i.e. at z6 = 0, and has large negative D3-charge. In terms of the diagonal basis

DD ≡ Dz6 = 4Db − 3D1 − 2D2 . (6.8)

There are also fixed points: looking at the scaling relations, one can work out that they

are located at z0 = z1 = z3 = 0, z2 = z3 = z5 = 0 and z3 = z4 = z5 = 0. The first

locus counts one point in the CY X3, while the other two are empty (this is obtained by

expressing the loci as the intersection of the three respective toric divisors and computing

such intersection by using (6.3)). Hence we have found one O3-plane.

To cancel the D7-tadpole introduced by the O7-plane, we put four D7-branes plus

their four orientifold images on top of the O7-plane on the divisor DD = Dz6 . Moreover,

there will be E3-instantons wrapping the rigid divisors D1 = Dz3 and D2 = Dz2 . The

choice of B-field that allows to have rank one invariant instantons and D7-brane flux with

no components along Db is

B =
D1

2
+
D2

2
. (6.9)

This allows zero flux on the E3-instantons, F1 = F2 = 0 and the following flux on the

D7-brane19

FD = D1 −
3

2
D2 . (6.10)

This flux breaks the SO(8) gauge group to U(4) (actually the diagonal U(1) gets a mass

by the Stückelberg mechanism, but remains at low energy as a global symmetry). The

D3-charge given by the D7-branes, the O7-plane and the O3-plane is

QD3 = −NO3

2
− χ(DD)

2
− 4

∫
DD

FD ∧ FD = −1

2
− 215

2
+ 48 = −60 . (6.11)

We now compute the open string spectrum in this setup. First of all we compute how

many instanton zero modes we have. They will be in the fundamental representation of the

unbroken U(4) gauge group on the D7-brane stack. We also keep track of the Z2 charge

on the invariant E3-brane. The actual calculations are reported in appendix A and uses

the formulae (2.13). Here we present the results. The number of fermion zero modes of

the instanton wrapping D1, localized on the curve CE1 = D1 ∩DD are

NE31

4̄−1,+
= dimH1(CE1, [FD]⊗ [D1]1/2 ⊗ [DD]1/2) = 4 (6.12)

NE31
4+1,− = dimH0(CE1, [FD]⊗ [D1]1/2 ⊗ [DD]1/2) = 1 , (6.13)

with a chiral index ID7E3 =
∫
Dz6∩D1

FD = −3. We use the symbol [FD] for the line bundle

with first Chern class equal to FD.20 As explained in appendix A, H0(C,L) is computed

by counting holomorphic sections of the line bundle L on C (i.e. in this case polynomials

19DD = Dz6 is equal to D1 = Dz3 mod an even four-cycle. Hence FD is integral up to D1
2

and the flux

FD = FD −B is then integral up to D2
2

.
20It may appear strange to use of the gauge invariant combination FD = FD − i∗B, as the B field should

not contribute to the matter multiplicity. In fact, here FD = (FD − i∗B)− (FE3 − i∗B) = FD − FE3.
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of given degree). By Serre duality, H1(C,L) = H0(C,L−1NC), and we compute it again by

counting holomorphic sections (of a different line bundle).

The same kind of computations lead to the following numbers for the charged zero

modes of the E3-instanton wrapping D2:

NE32

4̄−1,+
= dimH1(CE2, [FD]⊗ [D2]1/2 ⊗ [DD]1/2) = 0 (6.14)

NE32
4+1,− = dimH0(CE2, [FD]⊗ [D2]1/2 ⊗ [DD]1/2) = 6 , (6.15)

where now CE2 = D2 ∩DD. The chiral index is ID7E3 =
∫
Dz6∩D1

FD = 6.

The gauge flux FD generates also a chiral spectrum on the worldvolume of the D7-

branes. The states are in the antisymmetric representation of U(4) and in its conjugate

representation. Their numbers are

ND
6+2

= dimH1(DD, [FD]2) + dimH0(DD, [F ]2 ⊗ [DD]) ≥ 9 (6.16)

ND
6̄−2

= dimH0(DD, [F ]−2 ⊗ [DD]) + dimH1(DD, [F ]2 ⊗ [DD]) ≥ 15 , (6.17)

with a chiral index ID7D7′ = 2
∫
X3
D2
z6FD = −6. We have used Serre duality to relate the

second cohomology group to the zero cohomology (allowing us to count again holomorphic

sections). In this case, we cannot give a definite number for the dimensions of the extension

groups. This happens because we cannot simply count the holomorphic section on DD by

counting the holomorphic sections on the Calabi-Yau that do not vanish identically on DD

(see appendix A). Anyway, we are able to prove that both numbers are different from zero,

which is the result we need out of this computation.

From this spectrum we see that the non-perturbative superpotential is not obstructed.

In Sinst there will be terms like η4+1,− · φ6̄−2,0 · η4+1,− and η4̄−1,+ · φ6+2,0 · η4̄−1,+ that are

gauge invariant and are proper bilinears of the zero modes to get a non-zero contribu-

tion after integration on the Grassmann variables (remember that 6 is the antisymmetric

representation and that the second sign is relative to a Z2 charge).

De Sitter minimum. The flux (6.10) generates the following FI-term:

ζD =
1

V

∫
DD

J ∧ FD ∝ t1 − 2t2 . (6.18)

Requiring ζD = 0 implies

τ2 = t22 =
1

4
t21 =

1

2
τ1 ⇒ c =

1

2
. (6.19)

Since a1 = a2 in this example, we have

β = c
a2

a1
=

1

2
. (6.20)

We are now ready to calculate the LVS AdS minimum and D-term generated racetrack

uplift minimum. We choose (i.e. we assume that after stabilising the complex structure
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moduli and the dilaton the effective action parameters are fixed at the following values for

some choice of flux quanta)

W0 = 1 , ξ̂ = 6 , A1 = −3 . (6.21)

The chosen value of ξ̂ corresponds to a given value for gs. If we use the most conservative

formula, i.e. (2.29), we obtain gs ∼ 0.19, where we have used χ(X3) = −200. On the other

hand, correcting this formula according to [74], i.e. using χ+ 2
∫
D3
ξ instead of χ in (2.29),

one obtains gs ∼ 0.05, where in our model Dξ = Dz6 and D3
z6 = 85.

If A2 is zero (this can happen if some matter field appearing in the prefactor is fixed

to zero VEV), one finds a standard AdS LVS minimum. If A2 is non zero, the D-term

generated racetrack mechanism takes place. Since we have a value for β that is not close

to one, we would need to use the flux parameters to have a small values for A2. We take

A2 = 2.7 · 10−6; then the D-term generated racetrack de Sitter vacuum is found at

〈V〉 ∼ 4.9 · 108 , 〈τs〉 ∼ 3.7 , 〈V 〉 ∼ 6.2 · 10−29 . (6.22)

Note that even though A2 is chosen rather small, it is generally the leading instanton

contribution to the superpotential. Higher rank instantons wrapping the small cycles would

have prefactors (in absence of tuning for them as well) A1ne
−na1τs ∼ A1ne

−12n that are

quite suppressed for n ≥ 2 (the suppression factor is bigger than the one coming from the

chosen A2). Furthermore, any other instanton effects will have to involve the big cycle τb
and are hence completely negligible for the obtained value of the volume.

6.2 Example 2: rank one E3-instantons and brane/image-brane

This example is just a simple modification of the previous one. We keep the same CY

three-fold (6.1) and E3-instantons, but change the D7-brane configuration.

D-brane setup. We keep the orientifold involution z6 7→ −z6 and so we have again one

O7-plane on the locus {z6 = 0} and one O3-plane at z0 = z1 = z3 = 0. To saturate the

D7-brane tadpole we chose a set of one brane wrapping a divisor in the class 4Dz6 and

its image:

D7 : η + z6ψ and D7′ : η − z6ψ (6.23)

with e.g.

η ≡ P12(z0, z1)z8
2z

4
5 + P8(z0, z1)z12

3 z
8
4 + P4(z0, z1)z4

2z
4
4z

8
5 , (6.24)

ψ ≡ P9(z0, z1)z6
2z

3
5 + P6(z0, z1)z9

3z
6
4 + P3(z0, z1)z3

2z
3
4z

6
5 , (6.25)

that realize a connected locus for the D7-brane. Pk(z0, z1) are homogeneous polynomials

of degree k in z0, z1. We see that [η] is in the class 4Dz6 and [ψ] in 3Dz6 .

The divisor wrapped by the D7-brane is even and the gauge flux FD is an integral two

form. The B-field remains B = D1
2 + D2

2 in order to allow rank one E3-instantons on the

two rigid divisors. Hence, we can take the gauge invariant flux on the D7-brane as

FD =
D1

2
− D2

2
. (6.26)
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The D3-charge induced by the D7-branes now changes, according to (2.12):

QD3 = −NO3

2
− χ(Dz6)

6
− χ(4Dz6)

12
− 4

∫
Dz6

FD ∧ FD

= −1

2
− 215

6
− 1490

3
+ 7 = −526 . (6.27)

We now compute the open string spectrum. In this example, all the states of interest

live on curves. While in the previous example, we were able to compute the actual number

of states for each curve, here we cannot. The reason is that the curves cannot be written as

hypersurfaces in a toric two-dimensional space.21 We then compute only the index for the

intersection of the D7-brane with the E3-brane and give a positive lower bound for both

chiralities of the states at the intersection of the D7-brane with its image.

We start from the instanton zero modes. They will be charged under the U(1) sym-

metry living on the D7-brane. The difference of the numbers of fermion zero modes of the

instanton wrapping D1, localized on the curve CE1 = D1 ∩DD is

NE31
+1,− −N

E31
−1,+ = ID7E31 =

∫
DD∩D1

FD = −6 . (6.28)

The same kind of computations leads to the following difference of the numbers for the

charged zero modes of the E3-instanton wrapping D2:

NE32
+1,− −N

E32
−1,+ = ID7E32 =

∫
DD∩D2

FD = 8 . (6.29)

The gauge flux FD generates also a chiral spectrum at the intersection of the D7-brane

with its image. This curve is given by C = {η = ψ = 0}. The states have charge ±2 with

respect to the D7-brane U(1) group. As explained in appendix A, we can give lower bound

for their numbers:

ND
−2 = dimH0(C, [FD]−2 ⊗ [Dz6 ]3) ≥ 295 (6.30)

ND
+2 = dimH0(C, [FD]2 ⊗ [Dz6 ]3) ≥ 301 . (6.31)

Their chiral index is ID7D7′ = 12
∫
X3
D2
z6FD = 6. Hence we have fields of both charges

under the U(1) of the D7-brane.

Also in this example, the non-perturbative superpotential is not obstructed. First of

all, we have fields φ with both charges, and fields that are neutral: they are counted by

h0,2(Dz6) = 24. It is also important that the difference of the instanton zero modes is an

even number, because then also the sum is even as well. This allows Sinst to have terms

like η+1,− ·φ−2,0 · η+1,−, η−1,+ ·φ+2,0 · η−1,+ and η−1,+ ·φ0,0 · η+1,− that are gauge invariant

and are proper bilinears of the zero modes to get a non-zero contribution after integration

on the Grassmann variables.

21Furthermore, the curves are intersections of a high degree divisor, DD with another divisor. This divisor

also supports fluxes that are not of pull-back type (whose non-trivial Poincaré dual two cycles in DD are

trivial in the Calabi-Yau X3) and that can change the number of vector-like pairs.
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De Sitter minimum. The flux (6.26) generates the following FI-term:

ξD =
1

V

∫
DD

J ∧ FD ∝ −4t1 + 3t2 . (6.32)

Requiring ξD = 0 implies

τ2 = t22 =
16

9
t21 =

8

9
τ1 ⇒ c′ =

8

9
, (6.33)

where we called c′ = 1/c: this makes the role of D1 and D2 exchange for this example.

Since a1 = a2 in this example, we have

β = c′
a1

a2
=

8

9
. (6.34)

We notice that now β has a value close to one.

We keep the same choice for W0, ξ̂, A1 as in (6.21) and we take A2 = 0.02407. We then

obtain

〈V〉 ∼ 6.0 · 1010 , 〈τs〉 ∼ 4.5 , 〈V 〉 ∼ 4.2 · 10−36 . (6.35)

6.3 Example 3: rank two E3-instanton

In this second example, we take a CY that would allow only c = 1/2 or smaller when taking

rank one instantons and we choose the B-field to have only rank two instantons on one of

the two rigid divisors. This changes the ratio a1
a2

, making β closer to one.

Geometric data. We choose the ‘geometry ID # 258’ from [63]. This CY X3 is a

hypersurface in the toric ambient space defined by

z0 z1 z2 z3 z4 z5 z6 eqX3

0 1 1 2 0 3 7 14

0 0 1 1 1 1 4 8

1 0 0 0 0 1 2 4

(6.36)

and the Stanley-Reisner ideal

SR = {z0z4, z2z4, z0z5z6, z1z2z3, z1z3z5z6} . (6.37)

The Calabi-Yau three-fold is determined by the zero locus of the polynomial eqX3 , whose

degrees are in the last column in (6.36). As the CY considered previously, it has h1,1 = 3

and h1,2 = 103 (with χ(X3) = −200). Computing e.g. the intersection numbers for the

generators of H2(X3,Z) one sees that this is a topologically different CY manifold from

the one considered before, ‘geometry ID # 257’ from [63].

The two rigid divisors with h1,0 = 0 D1 and D2 that will be wrapped by the E3-branes

are the toric divisors Dz0 and Dz4 respectively. The third divisor completing them to a

diagonal basis is Db = 2Dz4 +Dz5 . The intersection form is

I3 = 9D3
1 +D3

2 + 9D3
b . (6.38)
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The Kähler form J can be expanded in the diagonal basis as J = tbDb + t1D1 + t2D2.

The volume form is then given by

V =
1

6

∫
X3

J ∧ J ∧ J =
1

6

(
9t3b + 9t31 + t32

)
=

1

9
√

2

(
τ

3/2
b − τ3/2

1 − 3τ
3/2
2

)
, (6.39)

where τi = 1
2

∫
Di
J ∧ J . The Kähler cone condition is given by

tb > 0 , t1 < 0 , t2 < 0 . (6.40)

The toric divisors that intersect both D1 and D2 are Dz1 , Dz3 and Dz6 ; the first two

have χ(Dz0) = 13 and χ(Dz1) = 37, while the third has χ(Dz6) = 213. We choose the

orientifold involution to be

z6 7→ −z6 . (6.41)

The orientifold invariant equation defining the Calabi-Yau X3 is then:

z2
6 = h14,8,4(z0, . . . , z5) . (6.42)

D-brane setup. The O7-plane corresponding to (6.42) is located at z6 = 0 and has large

negative D3-charge. In terms of the diagonal basis

DD ≡ Dz6 =
7

3
Db −

1

3
D1 − 3D2 . (6.43)

There are also fixed points: they are located at z0 = z1 = z2 = 0, z1 = z2 = z5 = 0 and

z1 = z3 = z4 = 0. Each locus is made up of one point in the CY X3. Hence we have found

three O3-planes.

To cancel the D7-tadpole introduced by the O7-plane, we put four D7-branes plus

their four images on top of the O7-plane on the divisor DD = Dz6 . Moreover, there will be

E3-instantons wrapping the rigid divisors D1 = Dz0 and D2 = Dz4 . We choose the B-field

in such a way that it allows rank one E3 instantons only on D1, while preventing it on D2

(as explained in section 3.1) and that allows to cancel the components of FD along Db by

a proper choice of FD (that satisfies Freed-Witten anomaly cancellation):

B =
D1

2
+
Db

2
. (6.44)

Then we can have F1 = 0 on the E3-brane wrapping D1 and we can choose22

FD = D1 −
D2

2
. (6.45)

The second E3-instanton will have flux F2 = D2
2 on one brane of the stack and −F2

on the image brane.

22The D7-brane divisor DD is equal to Deven + D1 + D2 + Db where Deven = 4Dz1 is an even divisor

class. Hence FD = F int + D1
2

+ D2
2

+ Db
2

and with the chosen B-field the gauge invariant flux FD must have

an half-integral component along D2.
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The D3-charge given by the D7-branes, the O7-plane and the O3-plane is

QD3 = −NO3

2
− χ(DD)

2
− 4

∫
DD

FD ∧ FD = −3

2
− 213

2
+ 15 = −93 . (6.46)

We now compute the open string spectrum in this setup. As in Example 1, the instan-

ton zero modes are in the fundamental representation of the unbroken U(4) gauge group

on the D7-brane stack. The actual calculations are reported in appendix A. As regard

the rank one E3 instanton wrapping D1, the computation is similar to Example 1 and the

results are:

NE31

4̄−1,+
= dimH1(CE1, [FD]⊗ [D1]1/2 ⊗ [DD]1/2) = 3 (6.47)

NE31
4+1,− = dimH0(CE1, [FD]⊗ [D1]1/2 ⊗ [DD]1/2) = 0 , (6.48)

with a chiral index ID7E3 =
∫
Dz6∩D1

FD = −3. In fact, this curve is a sphere.

For the rank two instanton, the situation is a bit different. The flux on the instanton

keeps the gauge group SO(2) = U(1). There will be four type of states, relative to charges

(±,±) with respect to the D7-brane and E3-brane groups. We split into pairs of conjugate

representations:

NE32

4̄−1,+1
= dimH1(CE2, [FD]⊗ [F2]−1 ⊗ [D2]1/2 ⊗ [DD]1/2) = 0 (6.49)

NE32
4+1,−1 = dimH0(CE2, [FD]⊗ [F2]−1 ⊗ [D2]1/2 ⊗ [DD]1/2) = 3 , (6.50)

with chiral index ID7E3 =
∫
Dz6∩D1

FD −F2 = 3 and

NE32

4̄−1,−1
= dimH1(CE2, [FD]⊗ [F2]⊗ [D2]1/2 ⊗ [DD]1/2) = 2 (6.51)

NE32
4+1,+1 = dimH0(CE2, [FD]⊗ [F2]⊗ [D2]1/2 ⊗ [DD]1/2) = 2 , (6.52)

with chiral index ID7E3 =
∫
Dz6∩D1

FD + F2 = 0.

The gauge flux FD generates a chiral spectrum on the worldvolume of the D7-branes.

The states are in the antisymmetric representation of U(4) and in its conjugate represen-

tation. Their numbers are

ND
6+2

= dimH1(DD, [FD]2) + dimH0(DD, [F ]2 ⊗ [DD]) ≥ 18 (6.53)

ND
6̄−2

= dimH0(DD, [F ]−2 ⊗ [DD]) + dimH1(DD, [F ]2 ⊗ [DD]) ≥ 25 , (6.54)

with a chiral index ID7D7′ = 2
∫
X3
D2
z6FD = −7.

As for Example 1, these results mean that the non-perturbative superpotential is not

obstructed.

De Sitter minimum. The flux (6.45) generates the following FI-term:

ξD =
1

V

∫
DD

J ∧ FD ∝ 2t1 − t2 . (6.55)

Requiring ξD = 0 implies

τ2 =
t22
2

= 2t21 =
4

9
τ1 ⇒ c =

4

9
. (6.56)
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In this case it is no more true that a1 and a2 are the same, but a2 = 2a1. Hence

β = c
a2

a1
=

8

9
. (6.57)

We have seen another way to get a β close to one.

We are now ready to calculate the LVS AdS minimum and D-term generated racetrack

uplift minimum. We choose

W0 = 1 , ξ̂ = 1.6 , A1 = −20 . (6.58)

Taking the most conservative formula (2.29), one obtains gs ∼ 0.45 that is quite large; this

would raise doubts to the trustability of the perturbative gs expansion. On the other hand,

if one believes to the new correction found in [74] one obtains a more acceptable value:

gs ∼ 0.12 (where we used D3
ξ = D3

z6 = 87).

If we take A2 = 0.0539, the D-term generated racetrack mechanism takes place with

the following results:

〈V〉 ∼ 9.5 · 1012 , 〈τs〉 ∼ 5.8 , 〈V 〉 ∼ 7.4 · 10−43 . (6.59)

7 Summary and conclusion

In [1] a new mechanism for obtaining de Sitter minima in the Type IIB landscape was

proposed. In this paper we implemented this proposal in a more detailed setup. We

considered Calabi-Yau hypersurfaces in toric varieties from the Kreuzer-Skarke list [62]

and employed the results of [63] concerning triangulations of polyhedra for small h1,1.

This allows to be very explicit in the topology of the three-fold and of its divisors. We

revisited the necessary conditions for this mechanism and we found a simple setup of branes

where they could be realized. First, we need to have a Calabi-Yau with two rigid divisors

that do not intersect each other and that can be completed to a basis of divisors that

do not intersect them. We implemented a scan in the Kreuzer-Skarke list for h1,1 ≤ 4

that produced a reduced list of CYs that satisfy this condition. We chose to work with

orientifold involutions with h1,1
− = 0 that are realized by inverting the sign of one toric

coordinate. The scan on toric hypersurfaces also gives candidates for such coordinates,

such that the corresponding orientifold planes intersect the two rigid divisors and have a

large Euler number. This allows to satisfy the D7-brane tadpole with D7-branes suitable

to generate the wanted FI-term, and at the same time to generate a large (negative) D3-

charge necessary for the large tunability of fluxes. This reduced list is a nice result by

itself. Finding rigid (orientifold invariant) divisors that appear as ‘small cycles’ in the

volume form of the CY is a typical challenge for moduli stabilization. In particular in the

LVS, in absence of a tuned D-term that fixes the two sizes to be of comparable sizes, the two

non-perturbative contribution could generate a hierarchy between the corresponding Kähler

moduli, making one of them much lighter than the other. This situation is particularly

interesting for inflation, as the lightest modulus could play the role of the inflaton.

Starting from the reduced list of CYs and the candidate divisors for the D7-branes, we

scanned over gauge flux and B-field choices that fulfil the D3-tadpole cancellation condition
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and that allow Freed-Witten anomaly cancellation. We considered simple situations, where

the non-perturbative effects were generated by rank-one and rank-two E3-branes and the

D-term was generated by four D7-branes on top of the O7-plane or by a single D7-brane

in the class 4[O7]. For each choice of flux, we computed the proportionality factor β

between the exponents of the non-perturbative superpotential terms. We found several

models where this factor is close to one, allowing the realization of the dS uplift mechanism

introduced in [1].

To show how the setup can be constructed in the simple configurations we chose, we

worked out the details for a couple of models. We computed the topology of the CY

manifold and of its relevant divisors, we made a simple choice of flux and B-field, we

computed the D3-charge checking that it can be cancelled and we studied the zero mode

structure to be sure that the non-perturbative superpotential is not trivially zero. We

finally stabilized the Kähler moduli explicitly and found a dS minimum of the potential.

The setup studied is based on assuming the existence of a (so far unknown) open string

moduli potential that fixes the matter field contribution to the D-term potential to zero,

while keeping some VEV of them different from zero. This is a strong assumption that

may or may not be realized for an explicit open string moduli stabilization. This open

string potential will be at order M4
s ∼ M4

p /V2 and it would depend on three-form as well

as on gauge fluxes, i.e. it is in principle tunable by going around in the landscape of flux

vacua. One could fix the right combination of fields to zero if, for example, the open string

moduli potential added a positive definite term to the scalar potential proportional to that

combination. Since at leading order the potential would be the sum of positive definite

pieces, its minimization would force also the new term to be zero. Of course the existence

of such a term depends on the details of the model and in principle could also be absent

in some cases.

A simpler situation to realize (by a proper tuning of the open string moduli potential)

would be that the VEVs are all fixed to zero; but this would destroy the non-perturbative

superpotential if these VEVs appear as a proportionality factor in front of the exponential,

as realized in our examples. This problem (that is due to poor control on open string moduli

stabilization) can be solved by making the setup more complicated, e.g. by choosing an

orientifold projection with h1,1 6= 0 [65]. In this case one can turn on an odd flux on the

instantonic D3-brane that can compensate the flux on the D7-brane at the intersection,

without touching the D-term constraint on the Kähler moduli. This would eliminate the

matter field VEVs in the prefactor of the non-perturbative superpotential and allow to

fix them at zero value. This setup would keep the features of the D-brane configurations

necessary for the uplift mechanism realization, while making the setup more complicated.23

23Another way to solve this problem, with the price of complicating the setup, is to consider E3 instantons

wrapping non-rigid divisors with the form DE31 = D1 + e1D2 and DE32 = D1 + e2D3 with respect to three

small divisors D1,2,3 (we then need h1,1(CY ) ≥ 4). The neutral zero modes will be lifted by a suitable

(trivial) flux [80]. The FI-term may be given by ζD ∝ t1− t2/e1− t3/e2 with J = t1D1 + t2D2 + t3D3 + · · · .
Now the chiral indexes become ID7E31 = ID7E32 = 0 while keeping the D-term constraint between τ1,2,3. In

this scenario, the two instantons generate the racetrack potential for uplift if the remaining modulus, say

τ3, is stabilized in the other ways, e.g. by string loop corrections.
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In this paper we chose to live with the strong assumption and leave the more involved setup

for the future, as we were interested to show the abundance of models with the required

β . 1. In the next step, we will try to implement the mechanism in explicit models with

h1,1
− 6= 0 and with a visible sector. This will require extending the CY scan to larger h1,1.
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A Matter and instanton zero modes

In this appendix, we report the calculations of the zero modes living on the branes or at

their intersections. As explained in section 2.1, what we will do is computing the number

of holomorphic sections of a given line bundle on the surface wrapped by the brane or on

the intersection curve. Since this is not possible directly, we will estimate this number by

relating it to the number of sections of the corresponding line bundle on some toric ambient

space. Due to the structure of the toric spaces, it is easy to make the last computation:

one simply need to count monomials of a given degree. Most of the time we will be able to

relate the cohomology on the divisor D ⊂ X3 or on the curve C ⊂ X3 to the cohomology

on the CY X3. To compute holomorphic sections of a line bundle L on X3 is easy in cases

we considered, i.e. when the divisors on X3 descend all from the ambient space X4. First

of all the line bundle L extends to X4 (in this case, there is a one to one correspondence

between line bundles on X3 and X4). Second, the holomorphic section of L on the CY

are the holomorphic section of L on X4 up to sections that vanish identically on X3. In

practise, the short exact sequence

0→ OX4(L−X3)→ OX4(L)→ OX3(L)→ 0 , (A.1)

where L = [L], produces a long exact sequence at the level of the cohomology groups

0→ H0(X4,OX4(L−X3))→ H0(X4,OX4(L))→ H0(X3,OX3(L))→
→ H1(X4,OX4(L−X3))→ . . . .

We are simply saying that in the cases we are considering (when the divisors on X3 is always

the intersection of the CY equation and a divisor on X4) H1(X4,OX4(L − X3)) = 0, i.e.

there are no non-holomorphic sections on X4 that restric to holomorphic sections on X3.
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A.1 States localized on surfaces

This case is relevant for the states localized on the divisor DD, where the four D7-branes

and their images live. As mentioned at the end of section 2.1, they are counted by Ext1

and Ext2 in (2.20). By using the Hirzebruch-Riemann-Roch theorem, Serre duality and

the vanishing of h0 (D,Ea ⊗ E∨b ) and h2 (D,Ea ⊗ E∨b ⊗ND) we can replace the dimension

of the first cohomology group by

h1
(
D,Ea ⊗ E∨b

)
= h0

(
D,E∨a ⊗ Eb ⊗ND

)
− χ

(
D,Ea ⊗ E∨b

)
, (A.2)

h1
(
D,Ea ⊗ E∨b ⊗ND

)
= h0

(
D,Ea ⊗ E∨b ⊗ND

)
− χ

(
D,Ea ⊗ E∨b ⊗ND

)
. (A.3)

Using these relations, we can express the dimensions of the relevant extension groups as

dim Ext1 (i∗Ea, i∗Eb) = h0
(
D,Ea ⊗ E∨b ⊗ND

)
+h0

(
D,E∨a ⊗ Eb ⊗ND

)
− χ

(
D,Ea ⊗ E∨b

)
, (A.4)

dim Ext2 (i∗Ea, i∗Eb) = h0
(
D,Ea ⊗ E∨b ⊗ND

)
+h0

(
D,E∨a ⊗ Eb ⊗ND

)
− χ

(
D,Ea ⊗ E∨b ⊗ND

)
.

Manifestly their difference gives the index Iab.

One can use these relations to compute the dimensions of the two groups separately.

Holomorphic Euler characteristics are easy to compute, thanks to the index theorem

χ(D,E) =
∫
D ch(E) Td(D). If one is able to count holomorphic sections of the given

line bundles, then the formulae (A.4) give the wanted result.

In case it is not possible to count all of the holomorphic sections, these formulae are still

useful to understand what is relevant for us, i.e. knowing if both dimensions are different

from zero. In fact, only in this case the non-perturbative superpotential has chances to be

generated. We just need to use the fact that hi ≥ 0 and compute the holomorphic Euler

characteristic. Remember that in the studied cases D = DD, Ea = [FD] and Eb = [FD]−1.

Example 3. In example 3, we have χ(DD, [FD]2[DD]) = 14 > 0 and χ(DD, [FD]2) =

21 > 0. Hence, equations (A.2) tell us that both h0 > 0 as well, and one can use this to

prove that dimExti > 0 for both i = 1 and i = 2. In fact, these dimensions are the sum of

two positive terms and one of these is always one of the two h0 that we have just proven

to be positive. Plugging the values for χ into (A.2), we estimate h0(DD, [FD]−2[DD]) ≥ 21

and h0(DD, [FD]2[DD]) ≥ 14.

If we were able to prove that the long exact sequence is truncated to the short one,

as for X3 ⊂ X4, then we would be able to compute the exact number for the dimensions

of the Ext groups, by calculating the number of holomorphic sections of the same line

bundle on X3 (mod the sections that identically vanish on DD, that in the present example

are absent). Luckily, we can show that this computation gives a subset of the wanted

holomorphic sections. For our purposes, we only need to prove that these subsets are non-

empty. These sections, for [FD]2[DD] on DD, are counted by the polynomials of degree

(7, 3, 4) (i.e. sections of [FD]2[DD] on X4), whose number is 18. Hence, we actually have

h0(DD, [FD]2[DD]) ≥ 18, and since the index is 7, we improve also the other bound:

h0(DD, [FD]−2[DD]) ≥ 25.
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Example 1. In the Example 1, this does not happen, unfortunately. Only

χ(DD, [FD]2[DD]) = 4 > 0, that implies h0(DD, [FD]−2[DD]) > 4, while χ(DD, [FD]2) =

−2 < 0. Here we can use the subset of the holomorphic sections of the line bundle

[FD]−2[DD] that are counted by the polynomials of degree (4, 4, 5), whose number is 13.

Therefore h1([F ]2) = −χ([F ]2) + h0(DD, [FD]−2[DD]) ≥ 9 > 0. Hence, we conclude again

that dimExti > 0 for both i = 1 and i = 2. In particular we have dimExt1 ≥ 9 and

dimExt1 ≥ 15.

Bound from sections on the CY. The previous considerations were based on the

assumption that counting the elements of H0(X3,O(L)) gave a lower bound for number of

the elements of H0(DD,O(L)). We now prove this.

Consider the short exact sequence

0→ OX3(L−DD)→ OX3(L)→ ODD(L)→ 0 , (A.5)

where L = ±2FD +DD. Its associated long exact sequence of cohomology groups is

0→ H0(X3,OX3(L−DD))→ H0(X3,OX3(L))→ H0(DD,ODD(L))→
→ H1(X3,OX3(L−DD))→ . . . .

The point is that in all our cases, H0(X3,OX3(L−DD)) = 0. Hence, the map

H0(X3,OX3(L))→ H0(DD,ODD(L)) , (A.6)

is injective, implying that h0(X3,OX3(L)) ≤ h0(DD,ODD(L)).

A.2 States localized on curves

This is the case for charged instanton zero modes living at the intersection E3 ∩ D7 and

matter fields localized at the intersection of the brane and its image D7 ∩D7′.

The number of states of both chiralities are counted by the first and the second coho-

mology groups, see (2.13) for the intersection E3 ∩D7. By Serre duality, the dimension of

H1(C,L ⊗K1/2
C ) is equal to h0(C,L−1 ⊗K1/2

C ) (where L is a line bundle). Hence we just

need to count holomorphic sections of some line bundle on the curve.

If we can write the curve as a hypersurface in a two-dimensional toric space, we will

show that we can get exact results for the number of zero modes of both chiralities. This

happens for the intersections between the E3-branes and the D7-brane stack in Examples

1 and 3. In the Example 2, this is not possible. We will then compute a subset of the

holomorphic sections of the given line bundle, which gives a lower bound for the vector like

pairs.

Example 1 — CD7∩E2. We start with the curves at the intersection of the D7-brane

stack on DD = Dz6 and the E3-brane wrapping the divisor D2 = Dz2 . This matter curve

is given by setting z6 = z2 = 0 intersected with the equation defining the CY three-fold.

Looking at the SR-ideal, we see that we can set z3 = 1 and z4 = 1. This fixes two of the
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scaling relations. We are left with describing the curve by an equation in a two-dimensional

toric space X2:

z0 z1 z5 eqC

1 1 1 4
(A.7)

This is a genus g = 3 curve, defined by a homogeneous equation of degree 4 in CP2.

We want to count the holomorphic sections of the line bundles O(Li)C , where L1 =
DD
2 + D2

2 +FD and L2 = DD
2 + D2

2 −FD. To do this, we start from the exact sequence (it

is the structure sequence of C twisted by the line bundle O(Li))

0→ OX2(Li − C)→ OX2(Li)→ OC(Li)→ 0 , (A.8)

where O(Li)X2 are line bundles defined on the ambient space, i.e. on CP2. From this short

exact sequence, we can construct a long exact sequence of cohomology groups:

0→ H0(X2,OX2(Li − C))→ H0(X2,OX2(Li))→ H0(C,OC(Li))→
→ H1(X2,OX2(Li − C))→ H1(X2,OX2(Li))→ H1(C,OC(Li))→
→ H2(X2,OX2(Li − C))→ H2(X2,OX2(Li))→ 0 .

If we show that H1(X2,OX2(Li−C)) = 0, then the exact sequence stops there and we have

h0(C,OC(Li)) = h0(X2,OX2(Li))− h0(X2,OX2(Li − C)) . (A.9)

In our case this actually happens, as we show below. Plugging in the values for the explicit

examples, i.e. L1 = 2H, L2 = −H and C = 4H, we have

h0(C, [DD]1/2[D2]1/2[F ]) = h0(C,OC(2H)) = 6− 0 = 6 , (A.10)

h0(C, [DD]1/2[D2]1/2[F ]−1) = h0(C,OC(−H)) = 0− 0 = 0 , (A.11)

where we have used the fact that the number of holomorphic sections of O(nH) on CP2 is

counted by the homogeneous polynomials of degree n. In particular, when n = 2 we have

6 polynomials, while when n is negative we have none.

We finish by proving that H1(X2,OX2(Li − C)) = 0. To do this, we again use

the Hirzebruch-Riemann-Roch theorem for a two-fold, i.e. h0(L) − h1(L) + h2(L) =∫
X2

ch(L)Td(X2). In our case h0(X2,OX2(L1 − C)) = h0(X2,O(−2H)) = 0 and

h0(X2,OX2(L2 − C)) = h0(X2,O(−5H)) = 0. By Serre duality h2(X2,OX2(L1 −
C)) = h0(X2,OX2(−L1 + C)KX2) = h0(X2,O(−H)) = 0 and h2(X2,OX2(L2 − C)) =

h0(X2,OX2(−L2 + C)KX2) = h0(X2,O(2H)) = 6. The two indices are

IL1 =

∫
X2

eL1−CTd(X2) =

∫
CP2

e−2H
(
1 + 3

2H +H2
)

= 0 , (A.12)

IL2 =

∫
X2

eL2−CTd(X2) =

∫
CP2

e−5H
(
1 + 3

2H +H2
)

= 6 . (A.13)

This implies that both first homology groups are empty.
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Example 1 — CD7∩E1. This matter curve is given by setting z6 = z3 = 0 intersected

with the equation defining the CY three-fold. Looking at the SR-ideal, we see that we can

set z2 = 1 and z5 = 1. This fixes two of the scaling relations. We are left with describing

the curve by an equation in a two-dimensional toric space:

z0 z1 z4 eqC

1 1 2 6
(A.14)

First of all, a computation like (A.12) shows that the cohomology groups H1(X2,OX2(Li−
C)) are zero also in this case. Here the computation of the index is trickier to do than

before, because the ambient space X2 is singular (the curve generically does not touch

the singularity). In any case, we can resolve the two-dimensional toric space and do the

computation on the resolved space.

As before, then, we just need to count holomorphic sections. This can be done already

in the singular space. Here L1 = 0, L2 = 2H while C = 6H. The first line bundle is trivial

and has just one section (the constant), while the sections of the second line bundle are

counted by the polynomials of degree 2, whose number is 4. Hence,

h0(C, [DD]1/2[D2]1/2[F ]) = h0(C,OC(0)) = 0− 0 = 0 , (A.15)

h0(C, [DD]1/2[D2]1/2[F ]−1) = h0(C,OC(2H)) = 4− 0 = 4 . (A.16)

Example 3 — CD7∩E1. This matter curve is given by z6 = z0 = 0 intersected with the

equation defining the CY three-fold. The SR-ideal allows setting z4 = 1 and z5 = 1. We

are left with describing the curve by an equation in a two-dimensional toric space:

z1 z2 z3 eqC

1 1 2 2
(A.17)

We see that the equation eliminates z3. We are then left with a CP1 with coordinates

[z1, z2]. This makes it very easy to count the holomorphic sections. The line bundle

restricts to L1 = −4H, L2 = 2H. Hence,

h0(C, [DD]1/2[D1]1/2[FD]) = 0 , (A.18)

h0(C, [DD]1/2[D1]1/2[FD]−1) = 3 . (A.19)

Example 3 — CD7∩E2. Here we have four line bundles of interest, i.e. L1 = DD
2 + D2

2 +

FD−F2, L2 = DD
2 + D2

2 −FD+F2, L3 = DD
2 + D2

2 +FD+F2 and L4 = DD
2 + D2

2 −FD−F2.

The intersection curve is at z4 = z6 = 0, which allows us to fix z0 = 1 and z2 = 1.

This curves has the same definition as (A.14). The four line bundles restrict to 2H, 0, H

and H. This gives respectively 4, 1, 2 and 2 zero modes.

Example 2 — C. Consider the matter living at the intersection of the brane wrapping η+

z6ψ = 0 with its image η− z6ψ = 0. The intersection curve is defined by the equations η =

ψ = 0 in the CY three-fold X3. The states are counted by the cohomology groups (2.18),

i.e. H0(C,OC(L) with L = 3Dz6 ± 2FD. Again a lower bound for these numbers is given
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by H0(X3,OX3(L), as proven below. In Example 2, the sections of OX3(L) are counted

by polynomials of degree (12, 9, 5) for L = 3Dz6 + 2FD and by polynomials of degree

(12, 9, 7) for L = 3Dz6 − 2FD. Their number is 301 and 295, respectively (remember

that for consistency of the Tachyon profile in an orientifold background, we have to count

the number of even sections; moreover we have to subtract the number of sections that

identically vanish on X3).

Bound from sections on the CY. Remember that C = Dη ∩ Dψ and c1(NC/X3
) =

Dη +Dψ (= 7Dz6). We start from the short exact sequence

0→ OX3(L−Dη)→ OX3(L)→ ODη(L)→ 0 . (A.20)

Its associated long exact sequence of cohomology groups is

0→ H0(X3,OX3(L−Dη))→ H0(X3,OX3(L))→ H0(Dη,ODη(L))→
→ H1(X3,OX3(L−Dη))→ . . . .

In our cases H0(X3,OX3(L−Dη)) = 0, hence h0(X3,OX3(L)) ≤ h0(Dη,ODη(L)) because

of injectivity of the map. We now write the short exact sequence for C the divisor Dψ in Dη:

0→ ODη(L−Dψ)→ ODη(L)→ ODψ(L)→ 0 , (A.21)

Its associated long exact sequence of cohomology groups is

0→ H0(Dη,ODη(L−Dψ))→ H0(Dη,ODη(L))→ H0(C,OC(L))→
→ H1(Dη,ODη(L−Dψ))→ . . . .

Luckily H0(Dη,ODη(L−Dψ)) = 0, as we prove below. Hence,

h0(C,OC(L)) ≥ h0(Dη,ODη(L)) ≥ h0(X3,OX3(L)) . (A.22)

We finish by proving H0(Dη,ODη(L−Dψ)) = 0. By the same steps as above, we write

the long exact sequence

0→ H0(X3,OX3(L−Dψ −Dη))→ H0(X3,ODη(L−D1))→ H0(Dη,OC(L−Dψ))→
→ H1(X3,OX3(L−Dψ −Dη))→ . . . .

We have H0(X3,ODη(L−D1)) = 0 (by counting holomorphic sections on X3). Moreover

(using Serre duality) H1(X3,OX3(L − Dψ − Dη)) = H2(X3,OX3(−L + Dψ + Dη)) = 0,

because the divisor −L + Dψ + Dη is ample in X3 (this can be checked, by seeing that it

lies inside the Kähler cone, for Example 1). This implies H0(Dη,ODη(L − Dψ)) = 0 as

we wanted.
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