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1 Introduction

The consistent Kaluza-Klein truncation of higher-dimensional (super)gravity to lower-

dimensional theories is an old and generically difficult problem due to the highly non-linear

gravitational field equations [1]. Typically, consistent truncations require very particular

backgrounds together with very particular matter couplings of the higher-dimensional the-

ory, see e.g. [2–4]. Recent progress has come from the realisation of non-toroidal geometric

compactifications via generalised Scherk-Schwarz-type compactifications on an extended

spacetime within duality covariant formulations of the higher-dimensional supergravity

theories [5–12]. In this language, finding consistent Kaluza-Klein reduction Ansätze trans-

lates into the search for Scherk-Schwarz twist matrices satisfying a number of differential

consistency equations in the physical coordinates. Most recently, this has been used to

work out the full Kaluza-Klein reduction for the AdS5 × S5 reduction of IIB supergravity

in the framework of exceptional field theory [13].

In this paper we use this framework to study consistent truncations from IIA and IIB

supergravity down to seven dimensional gauged supergravities. Specifically, we establish

a duality relating consistent IIA and IIB truncations for certain gaugings of maximal 7-

dimensional supergravity. We then employ this duality to derive new consistent truncations

of type IIB theory on the three sphere S3, as well as on hyperboloids Hp,q, which lead to
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compact SO(4), non-compact SO(p, q) and non-semisimple CSO(p, q, r) gaugings, respec-

tively. Finally, we discuss new uplifts to type IIA/IIB of gauged supergravities involving

gauging of the trombone scaling symmetry. In this final set of gaugings, we find that some

can only be obtained by non-geometric compactifications,1 in a set-up reminiscent of that

recently discussed in [14].

Let us get more specific about the 7-dimensional theories discussed in this paper.

In general, the fluxes in half-maximal supergravity are parametrized by an antisymmetric

tensor XABC of the T-duality group SO(d, d) [15], which encodes the T-duality chain of [16]

XABC : Habc −→ fab
c −→ Qa

bc −→ Rabc , (1.1)

as well as two SO(d, d) vectors XA and fA, [17], the latter of which encodes the trombone

gaugings. Because the trombone symmetry is an on-shell symmetry, theories with non-zero

fA can only be defined at the level of the equations of motion [18]. For d = 3, i.e. reduction

to seven dimensions, XABC splits into two irreducible representations

20 −→ 10+ 10′ ,

XABC = ΓABC
αβMαβ + ΓABC αβM̃

αβ , (1.2)

with the SO(3, 3) Γ-matrices (or ’t Hooft symbols, see for example appendix B of [19]),

and symmetric matrices Mαβ , M̃αβ . Here the indices α, β = 1, . . . 4 are fundamental

SL(4) ≃ Spin(3, 3) spinor indices. Similarly, the vectors can be written in terms of the 6

of SL(4) as

XA =
1

2
ΓA

αβξαβ , fA =
1

2
ΓA

αβταβ . (1.3)

For simplicity’s sake we will take XA = fA = 0 for the following discussion although we

will reintroduce them later on.

Depending on the choice of Mαβ , M̃
αβ , there are various one-parameter families of

seven-dimensional gaugings most of which are of locally non-geometric origin [19]. A dis-

tinguished role is played by the theories satisfying the condition

MαβM̃
αβ = 0 . (1.4)

First, these can be consistently embedded into the maximal theory and second the subset

where eitherMαβ or M̃αβ is non-degenerate allow for a geometric uplift to the type-I theory

in ten dimensions as compactifications on the sphere S3 and hyperboloids Hp,q. For the

sphere case, the reduction formulas have been worked out in [4] and later explained in the

context of generalized geometry/double field theory [9, 19, 20]. The duality

Mαβ ←→ M̃αβ , (1.5)

is a symmetry of the quadratic constraints ensuring consistency of the gauging, as a mani-

festation of a particular triple T-duality [19, 21], generated by an element of O(3, 3) rather

than SO(3, 3).

1Here we refer to global non-geometry, where the structure group of the manifold is not contained within

the geometric subgroup of the U-duality group.
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In this paper, we will study the embedding of these structures in the maximal the-

ory with U-duality group SL(5). The above representations are embedded into U-duality

representations according to

SO(3, 3) ⊂ SL(5) ,

10 ⊂ 15 ,

10′ ⊂ 40′ . (1.6)

Now the duality (1.5) is no longer a symmetry of one and the same theory. Instead, the dif-

ferent embeddings (1.6) into the representations of the U-duality group induce inequivalent

maximal seven-dimensional theories with gauge groups CSO(p, q, 1) for the IIA background

and SO(p, q) for the IIB background, respectively [22]. These theories only coincide after

truncation to the half-maximal sector. The IIA uplift has been given in [11] via a general-

ized Scherk-Schwarz Ansatz in an exceptional space in the framework of exceptional field

theory [23]. Here we realise the duality (1.5) as an outer automorphism of SL(4) acting

on the Scherk-Schwarz twist matrices, and thereby derive the full IIB reduction Ansatz.

In particular, the duality exchanges the IIA and their dual IIB coordinates within the 10

coordinates of the exceptional space [24, 25]

10 −→ 3IIA + 3′IIB + 3+ 1 . (1.7)

We will also show how the triple T-duality acting on the 6’s [19]

ξαβ ←→ ξαβ =
1

2
ǫαβγδξγδ , ταβ ←→ ταβ =

1

2
ǫαβγδτγδ , (1.8)

is realised in the maximal theory.

The paper is organized as follows. In section 2 we briefly review the pertinent struc-

tures of the relevant exceptional field theory and its generalized Scherk-Schwarz reduction

ansatz. In section 3 we realize the duality (1.5) on the Scherk-Schwarz twist matrix, re-

lating consistent IIA/IIB truncations. As an application we work out the full truncation

Ansätze for the internal sectors of the IIA and IIB reductions. In particular, this estab-

lishes the consistency of the S3 reduction of the IIB theory. Finally, in section 5 we extend

the analysis to the construction of more general twist matrices and obtain new uplifts of

various maximal supergravities including those in which the trombone scaling symmetry is

gauged.

2 EFT and 7-dimensional maximal gauged SUGRA

Our key tool for the study of consistent truncations is the ‘exceptional field theory’

(EFT) [23, 26–28] with its associated extended geometry, see [24, 29, 30]. This is the du-

ality covariant formulation of higher-dimensional supergravity which renders manifest the

exceptional symmetry groups that are known to appear under dimensional reduction [31].

The formulation of interest for studying reductions to maximal seven-dimensional super-

gravity, is the SL(5) exceptional field theory. Apart from metric and scalars, it carries 10
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vectors Aµ
ab, as well as 5 two-forms Bµν a and 5 three-forms Cµνρa, all fields depending on

7 external and 10 internal coordinates {xµ, Y ab}, µ = 0, . . . , 6; a = 1, . . . , 5 with all fields

subject to the section constraint [32]

∂[ab ⊗ ∂cd] ≡ 0 . (2.1)

Three-forms enter the Lagrangian only under internal derivatives as ∂abCµνρb. While the full

SL(5) exceptional field theory has not yet been worked out (see [33–35] for EFTs in higher

dimensions), its scalar sector has been given and studied in [24, 36, 37]. The 14 scalar fields

parametrize a unit-determinant symmetric 5×5 matrixMab, i.e. form the coordinates of the

coset space SL(5)/ SO(5) . W.r.t. the generalized space, SL(5) generalized diffeomorphisms

act according to

δV a = Λbc∂bcV
a + 2∂bcΛ

abV c +
2

5
∂bcΛ

bc V a ,

δVa = Λbc∂bcVa − 2∂abΛ
bcVc −

2

5
∂bcΛ

bc Va , (2.2)

on weight zero tensors in the fundamental representations of SL(5). The section con-

straint (2.1) admits two solutions [25]. Breaking the U-duality group SL(5) down to the

geometric SL(3), the internal coordinates decompose into

Y ab −→ {Y αβ , Y α5} −→ {Y m4, Y mn, Y m5, Y 45} , α = 1, . . . , 4 ; m = 1, 2, 3 , (2.3)

cf. (1.7), and it is easy to see that the section constraint (2.1) is satisfied by restricting the

coordinate dependence of all fields onto






ym ≡ Y m4 (IIA)

ỹm ≡ 1
2 εmnpY

np (IIB)
, (2.4)

respectively. Depending on the higher-dimensional origin, it is convenient to parametrize

the scalar matrix Mab in a IIA or IIB basis according to

Mab
IIA =

(

eϕ/2 g2/5gmn+e−ϕ/2g−3/5 BmBn e−ϕ/2g−3/5 Bm −g2/5gmkeϕ/2 Ck+e−ϕ/2g−3/5 CBm

e−ϕ/2g−3/5 Bm e−ϕ/2g−3/5 e−ϕ/2g−3/5 C

−g2/5gmkeϕ/2Ck+e−ϕ/2g−3/5 CBm e−ϕ/2 g−3/5 C e−ϕ/2g−3/5 C2+g2/5(e−ϕ+eϕ/2gklCkCl)

)

,

Mab
IIB =

(

g−3/5gmn −g−3/5gmnCv
n

−g−3/5gnk Cu
k g−3/5Cu

mgmnCv
n + g2/5Huv

)

, (2.5)

where for IIA gmn is the metric, Cm is the Ramond-Ramond one-form, Bm = 1
2ǫ

mnpBnp

is the dualised Kalb-Ramond two-form, C = 1
3!ǫ

mnpCmnp is the dualised Ramond-Ramond

three-form and ϕ is the dilaton. For IIB, we follow the conventions of [25] so that all four-

dimensional indices are placed “upside-down”. Thus, gmn represents the metric, Cm
u =

(Bm, Cm) = 1
2ǫmnp (B

np, Cnp) represents the SL(2) doublet formed from the Kalb-Ramond

and Ramond-Ramond two-forms and Huv is the SL(2) matrix parameterised by the dilaton

ϕ and Ramond-Ramond scalar C0 as follows

Huv =





eϕ −C0e
ϕ

−C0e
ϕ eϕ (C0)

2 + e−ϕ



 . (2.6)

Throughout the paper the metric will be given in Einstein frame, unless otherwise specified.
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The EFT formulation of supergravity is a powerful tool for the study of consistent

truncations, since a number of geometrically non-trivial reductions can be reformulated

as generalized Scherk-Schwarz reductions on the extended space [5–11, 19, 38]. In the

reduction Ansatz, all dependence on the internal coordinates is carried by an SL(5) valued

twist matrix Ua
ā(Y ) with the scalar fields reducing according to

Mab(x, Y ) = Ua
ā(Y )Ub

b̄(Y )Māb̄(x) , (2.7)

and the remaining EFT fields factorizing as [11]

Gµν(x, Y ) = ρ−2(Y )Gµν(x) ,

Aµ
ab(x, Y ) = ρ−1(Y )Aµ

āb̄(x)Uāb̄
ab(Y ) ,

Bµν a(x, Y ) = ρ−2(Y )Bµν ā(x)Ua
ā(Y ) ,

Cµνρa(x, Y ) = ρ−3(Y )Cµνρ
ā(x)Uā

a(Y ) , (2.8)

with a scalar function ρ(Y ) . The 7-dimensional metric of the full 10-dimensional type II

theory, gµν , is related to Gµν above by

gµν(x, Y ) = |g|−1/5Gµν(x, Y ) , (2.9)

where |g| here is the determinant of the metric in the internal directions and Gµν(x) is the

metric of the 7-dimensional gauged SUGRA. Consistency of the reduction Ansatz translates

into the set of differential equations [7] (we use the conventions of [11])

∂abU(ā
aUb̄)

b !
= − ρSāb̄ ,

ǫabcef
(

Uef
āb̄ ∂abUc

c̄ − Uef
[āb̄ ∂abUc

c̄]
)

!
= 2ρZ āb̄,c̄ ,

∂cdUāb̄
cd − 6 ρ−1 Uāb̄

cd ∂cdρ
!
= −2ρ τāb̄ , (2.10)

for the twist matrices, with Uab
āb̄ ≡ U[a

āUb]
b̄, and constant tensors Sāb̄, Z

āb̄,c̄, τāb̄ trans-

forming in the 15, 40′, and 10, of SL(5), respectively. These tensors form the torsion

of the Weitzenböck connection of EFT [9, 29, 37, 39] and correspond to the embedding

tensors of maximal D = 7 supergravity, which describe the allowed gaugings of the seven-

dimensional theory [22]. The quadratic constraints which these tensors need to satisfy for

consistency are a direct consequence of their definition by (2.10) together with the section

constraint (2.1) and ensure that the gauge group closes. For later convenience, we spell

out these equations

Sād̄Z
d̄(b̄,c̄) − 1

4
ǫād̄ēf̄ ḡZ

d̄ē,b̄Z f̄ ḡ,c̄ +
1

3
τād̄Z

d̄(b̄,c̄) = −1

9
δā

(b̄ ǫc̄)d̄ēf̄ ḡτd̄ēτf̄ ḡ ,

Sād̄Z
b̄c̄,d̄ +

1

6
ǫb̄c̄d̄ēf̄ τēf̄Sād̄ = −1

4
δā

[b̄ ǫc̄]d̄ēf̄ ḡτd̄ēτf̄ ḡ ,

Sād̄Z
b̄c̄,d̄ +

1

3
τād̄Z

b̄c̄,d̄ = −2

9
δā

[b̄ ǫc̄]d̄ēf̄ ḡτd̄ēτf̄ ḡ .

(2.11)

In particular, these identities imply that

W āb̄,c̄Xāb̄ = 0 , (2.12)
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where

W āb̄,c̄ = −Z āb̄,c̄ +
1

3
ǫāb̄c̄d̄ēτd̄ē , (2.13)

is the “intertwining tensor” coupling two-forms to the vector field strengths [40] whose rank

encodes the number of massive two-forms in the theory. The Xāb̄ are the gauge generators

evaluated in the vector representation, which take the form

(Xāb̄)c̄
d̄ = τāb̄,c̄

d̄ =
1

2
ǫāb̄c̄ēf̄Z

ēf̄ ,d̄ + 2δd̄[āSb̄]c̄ +
1

3
δd̄c̄ τāb̄ +

2

3
δd̄[āτb̄]c̄ , (2.14)

in terms of the embedding tensors (2.10). With τāb̄ = 0, the corresponding theories are the

conventional gaugings ofD = 7 supergravity constructed in [22]. In particular, the gaugings

triggered by Sāb̄ correspond to CSO(p, q, 5− p− q) gauge groups. The corresponding twist

matrices for their D = 11 embedding have been provided in [11]. The gaugings triggered by

Z āb̄,c̄ contain theories with gauge groups CSO(p, q, 4− p− q)× (U(1))4−p−q and IIB origin.

We will construct the corresponding twist matrices in this paper. A non-vanishing τāb̄
corresponds to a gauging of the trombone scaling symmetry of the D = 7 theory, resulting

in a theory that can be defined on the level of the equations of motion but does not admit

an action [18] while still allowing for an uplift to the IIA/IIB equations of motion.

3 Dualising IIA/IIB truncations

In the above we have reviewed how consistent truncations of the IIA/IIB theory are encoded

in Scherk-Schwarz twist matrices on the extended space (1.7) satisfying the consistency

conditions (2.10) and the section constraint (2.1). In this section, we will first realize the

duality (1.5) on the twist matrices and the coordinates of extended space in order to map

consistent IIA truncations into consistent IIB truncations. In particular, this will provide

the full non-linear reduction Ansätze for the reduction of the IIB theory on S3 and the

hyperboloids Hp,q.

At the level of the effective seven-dimensional theories this duality is realized on the

embedding tensors that define the maximal gaugings. Decomposing the embedding tensors

under the T-duality group as SL(5) −→ SL(4) ∼ Spin(3, 3) we find

15 −→ 10⊕ 4⊕ 1 ,

40′ −→ 20′ ⊕ 10′ ⊕ 6⊕ 4′ ,

10 −→ 6⊕ 4 .

(3.1)

We will now discuss the O(3, 3) transformation (1.5) that exchanges the 10 ←→ 10′ and

maps the two 6’s into themselves. We will show that it corresponds to a duality between

IIA and IIB truncations. This transformation extends SL(4) ∼ Spin(3, 3) to Pin(3, 3),

acting on SL(4) as the outer automorphism.

3.1 Duality as an outer automorphism

In order to consider type II truncations, we first perform a dimensional reduction of the

exceptional space (1.7). In terms of SL(4) irreducible representations, the coordinates

– 6 –
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decompose as Y ab −→
(

Y αβ , Y α5
)

, where α = 1, . . . 4, cf. (2.3). We assume no dependence

on the Y α5, i.e. reduce the exceptional space to the doubled space of DFT [41, 43–45],

see [46]. Depending on the choice of the physical coordinates among the remaining Y αβ ,

the theory is of IIA or IIB origin according to (2.4). Let us also introduce the notation

Yαβ =
1

2
ǫαβγδY

γδ , ∂αβ =
1

2
ǫαβγδ∂γδ , (3.2)

where ǫαβγδ is the 4-dimensional totally-antisymmetric symbol. The flip between IIA and

IIB coordinates in (1.7) is then realized as

Yαβ ←→ Y αβ . (3.3)

We start from the following GL(4) Ansatz for the SL(5) Scherk-Schwarz twist matrix

Ua
ā =





ω−1/2 Vα
ᾱ 0

0 ω2



 , (3.4)

with Vα
ᾱ ∈ SL(4). It follows from (2.10) that this Ansatz can only produce gaugings in

the 10’s and 6’s according to the decomposition of (3.1). The corresponding embedding

tensors are given in terms of the twist by

Sᾱβ̄ = Mᾱβ̄ ≡ ρ−1ωV(ᾱ
α∂|αβ|Vβ̄)

β , Z 5̄(ᾱ,β̄) = M̃ ᾱβ̄ ≡ ρ−1ωVα
(ᾱ∂|αβ|Vβ

β̄) ,

2τᾱβ̄ = −ρ−1ω
(

∂αβVᾱβ̄
αβ − 5Vᾱβ̄

αβ∂αβ lnω + 6Vᾱβ̄
αβ∂αβ ln

(

ρ−1ω
)

)

,

6Z 5̄[ᾱ,β̄] = 2ξᾱβ̄ ≡ ρ−1ω
(

∂αβVαβ
ᾱβ̄ − 5Vαβ

ᾱβ̄∂αβ lnω
)

,

(3.5)

where we use Vαβ
ᾱβ̄ = V[α

ᾱVβ]
β̄. The explicit form of these equations shows that combining

the flip (3.3) with the Z2 outer automorphism of SL(4)

Vα
ᾱ ←→

(

V −T
)

ᾱ
α , (3.6)

induces the duality (1.5) on the embedding tensor. Concretely this takes

Mᾱβ̄ ←→ M̃ ᾱβ̄ , τᾱβ̄ ←→ τ ᾱβ̄ , ξᾱβ̄ ←→ ξᾱβ̄ , (3.7)

where τ ᾱβ̄ = 1
2ǫ

ᾱβ̄γ̄δ̄τγ̄δ̄ and ξᾱβ̄ = 1
2ǫᾱβ̄γ̄δ̄ξ

γ̄δ̄. Additionally, the dualisation of the coordi-

nates (3.3) exchanges IIA and IIB sections so that this duality relates IIA and IIB trun-

cations. The NS-NS sector remains invariant under the duality since in the half-maximal

theory both 10 and 10′ lie in the same O(3, 3) orbit [19]. Within the maximal theory the

duality (1.5) relates consistent truncations of the maximal theories, which in general have

different gauge groups, vacua, and fluctuations.

The gaugings above are the only ones that survive the Z2 projection to the half-

maximal theory [19]. In section 4, we will also discuss gaugings which do not survive the

Z2 projection (these are the 20′, 4’s and 1) and we will show that the duality above does

not, in general, hold for these cases.
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3.2 Example: IIA and IIB on S
3 and H

p,q

Before discussing the duality further, let us apply it to work out the consistent truncation

of IIB SUGRA on S3 and on warped Hp,q manifolds. According to the above discussion,

these are dual to the consistent truncations of IIA on these manifolds and yield a gauging

in the 10′ ⊂ 40′ with gauge group CSO(p, q, r)×U(1)r where p+ q + r = 4.

Let us begin by reading off ω and Vα
ᾱ from the IIA twist matrices for CSO(p, q, r)

gaugings given in [11]. Here and throughout this paper we will order the rows and columns

of Vα
ᾱ as (i, 4, x) with i, j,= 1, . . . , 4− r and x, y = 5− r, . . . , 3. The twist is

Vα
ᾱ =













(1− v)1/4 δi
ı̄ − (1− v)−1/4 ηijy

j 0

− (1− v)−1/4Kηı̄̄ȳ (1− v)−3/4 (1 +Ku) 0

0 0 (1− v)1/4 Ir













, ω = (1− v)1/10 ,

(3.8)

with u = δijy
iyj , v = ηijy

iyj , and the matrix ηij being the SO(p − 1, q) invariant di-

agonal matrix. Moreover, yi = Y i4 and we make no distinction between un/barred and

upper/lower indices on the IIA coordinates ym. From (3.5), we further see that setting

ρ = ω induces vanishing trombone parameter τāb̄ as required for these gaugings. Together,

the twist matrix then induces the gauging

Mı̄̄ = ηı̄̄ , M4̄4̄ = 1 , Mx̄ȳ = 0 . (3.9)

The function K(u, v) appearing in the twist satisfies the differential equation

2 (1− v) (u ∂vK + v ∂uK) = ((1 + q − p) (1− v)− u)K − 1 , (3.10)

with u = δijy
iyj . This can be solved analytically for all allowed values p, q. The internal

space corresponding to these truncations are warped hyperboloids Hp,q together with r flat

directions [11].

We now apply the duality (3.3), (3.6), to obtain the IIB truncations on Hp,q which

give rise to the CSO(p, q, r) gaugings in the 10′ ⊂ 40′ such that

M̃ ı̄̄ = ηı̄̄ , M̃ 4̄4̄ = 1 , M̃ x̄ȳ = 0 , (3.11)

cf. (3.7). The IIB twist matrices are thus

Vα
ᾱ =





(1−ṽ)−1/4(δiı̄+Kηijη
ı̄̄ỹj ỹ̄) (1−ṽ)1/4Kηij ỹ

j 0

(1−ṽ)1/4ηı̄̄ỹ̄ (1−ṽ)3/4 0

0 0 (1−ṽ)−1/4
Ir



 , ω = (1− ṽ)1/10 , (3.12)

with ρ = ω and where now ỹi are IIB coordinates (2.4), ũ = δij ỹiỹj and ṽ = ηij ỹiỹj .

Using (2.7) and the parameterisation (2.5) we can read off the internal space of the com-

pactification. At the origin of the scalar coset, Māb̄(x) = δāb̄, we find the background,
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given by:

d̊s
2
= (1 + ũ− ṽ)−3/4

[(

δij +
ηikỹkη

jlỹl
1− ṽ

)

dỹidỹj + δxydỹxdỹy

]

+ (1 + ũ− ṽ)1/4 ds27 ,

B̊mn = (1− ṽ)−1/2

(

1

1 + ũ− ṽ
+K

)

ǫmnpηpqỹ
q ,

eϕ̊ = (1 + ũ− ṽ)−1/2 .

(3.13)

Here we let m,n = 1, 2, 3 and we denote by B̊mn the Kalb-Ramond form and by ϕ̊ the

dilaton. We recall that following the conventions of [25] and matching the indices of the

IIB coordinates (2.4), the four-dimensional IIB indices are “upside-down” compared to

the usual placement. The internal space here is the a warped product Hp,q × R
r, where

Hp,q is the surface satisfying ηij ỹiỹj + z2 = 1 in R
4−r, with z an additional coordinate.

This coincides with the IIA background for this truncation, see [11]. The Kalb-Ramond

background field strength is given by

F̊mnp = 3∂[mB̊np] =
ǫmnp

(1− ṽ)1/2 (1 + ũ− ṽ)2
(p− q − 2 + (ũ− ṽ) (p− q)) , (3.14)

upon using (3.10).

Using (2.7), we can furthermore determine the full truncation Ansatz for the internal

fields as fluctuations about the background (3.13). To simplify the notation, we will for this

discussion not distinguish between barred and un-barred indices and we will simply refer

to the IIB coordinates as yi, i.e. drop the tilde. Let us start by considering the case where

p+ q = 4. The truncation Ansatz can be elegantly formulated in terms of the harmonics

Yα =
(

ym, (1− v)−1/2
)

, Yα = ηαβYβ , (3.15)

the auxiliary metric

g̃ij = ηij +
ηikykη

jlyj
1− ṽ

, g̃ij = ηij − yiyj , (3.16)

with volume form

ω̃ijk = (1− v)−1/2 ǫijk , (3.17)

and the auxiliary two form

B̃ij = ω̃ijk
(

Kηkly
l + yk

)

=⇒ 3 ∂[iB̃jk] = 2 ω̃ijk , (3.18)

see section 3 of [13] on details of the construction. We note that only for the sphere case,

when ηij = δij , these auxiliary structures coincide with the background (3.13). Further-

more, it will be useful to decompose the scalar fields Mab(x) as

Mab =





κ−1 (mαβ +mα5mβ5) κ3/2mα5

κ3/2mβ5 κ4



 , (3.19)
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with SL(4) matrix mαβ . The truncation formulae for the internal components of all IIB

fields are then read off from (2.5), (2.7) and yield

gij = κ−5/4∆3/5∂iYα∂
jYβm

αβ ,

Huv = ∆2/5





κ−5/2YαYβ (mαβ +mα5mβ5) Yαmα5

Yβmβ5 κ5/2



 ,

Cij,u =
{

B̃ij , 0
}

− 2

5
ω̃ijkg̃kl

{

∆−1∂l∆, −5κ−5/2∆4/5∂lY [αYβ]Yγmα5mβγ

}

,

gµν = κ3/4∆−1/5Gµν(x) ,

(3.20)

in terms of the objects (3.15)–(3.19) and with the function ∆ given by

∆ =
(

YαYβmαβ

)−5/4
. (3.21)

It is straightforward to verify that at the scalar origin Mab(x) = δab, these formulae reduce

to the background (3.13).

Let us now compare this result to the IIA truncation formulae on the dual background.

Define, now in terms of the IIA coordinates, the harmonics

Yα =
(

yi, (1− v)−1/2
)

, Yα = ηαβYβ , (3.22)

the auxiliary metric (as before but now with the reverse position of indices)

g̃ij = ηij +
ηiky

kηjly
l

1− v
, g̃ij = ηij − yiyj , (3.23)

with volume form

ω̃ijk = (1− v)−1/2 ǫijk , (3.24)

and the auxiliary two-form

B̃ij = ω̃ijk

(

Kηklyl + yk
)

=⇒ 3 ∂[iB̃jk] = 2 ω̃ijk . (3.25)

With the same scalar matrix (3.19), the truncation formulae for the internal components

of all IIA fields are again read off from (2.5), (2.7) and yield

gij = κ−5/4∆3/5∂iYα∂jYβmαβ ,

eϕ = κ5/2∆2/5 ,

Ci = κ−5/2∂i (Yαmα5) ,

Bij = B̃ij −
2

5
∆−1ω̃ijkg̃

kl∂l∆ ,

Cijk = −κ−3/2∆4/5ω̃ijkmα5m
αβYβ ,

gµν = κ3/4∆−1/5Gµν(x) ,

(3.26)
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in terms of the above objects and with

∆ =
(

mαβYαYβ

)−5/4
. (3.27)

We can now see that the full reduction formulae of the IIA and IIB truncations coincide

for the NS-NS sector and are related by the same SL(4) outer automorphism we have used

for the twists, extended to the scalar fields (3.19)

mαβ ←→ mαβ , Yα ←→ Yα . (3.28)

Finally, let us also give the reduction formulae when 2 ≤ p + q ≤ 4. To keep the

notation more compact it will now be useful to use the dualised form potentials. For IIB

these are

Cm
u =

1

2
ǫmnpC

np,u , (3.29)

while for IIA they are

Bm =
1

2
ǫmnpBnp , C =

1

3!
ǫmnpCmnp . (3.30)

Let us once again start with the IIB reduction. Recall that our convention is thatm = (i, x)

where ηxy = 0 and ηij 6= 0. Let

Yα =
(

yi, (1− v)1/2, yx

)

, Yα = ηαβYβ ,

∆ =
(

mαβYαYβ
)−5/4

, B̃i =
1

2
ǫijkB̃

jk = (1− v)−1/4 (Kηijy
j + yi

)

,

(3.31)

and g̃ij , g̃
ij as before. Then we obtain the IIB truncation formulae

gmn = κ−5/4∆3/5∂mYα∂
nYβm

αβ ,

Huv = ∆2/5





κ−5/2YαYβmαβ Yαmα5

Yβmβ5 κ5/2





Ci
u =

{

B̃i, 0
}

− 2

5
(1− v)−1/2 g̃ij

{

∆−1∂j∆, −5κ−5/2∆4/5∂jY [αYβ]Yγmα5mβγ

}

,

Cx
u = (1− v)−1/2∆4/5

{

mxαYα, κ−5/2 (mαβmx5 −mα5mxβ)YαYβ
}

,

gµν = κ3/4∆−1/5Gµν(x) .

(3.32)

The corresponding IIA formulae can be given in terms of

Yα =
(

yi, (1− v)1/2 , yx
)

, Yα = ηαβYβ ,

∆ =
(

mαβYαYβ

)−5/4
, B̃i = (1− v)−1/4 (Kηijyj + yi

)

.
(3.33)
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and read

gmn = κ−5/4∆3/5∂mYα∂nYβmαβ ,

eϕ = κ5/2∆2/5 ,

Cm = κ−5/2∂m (Yαmα5) ,

Bi = B̃i − 2

5
(1− v)−1/2∆−1g̃kl∂l∆ ,

Bx = − (1− v)−1/2 κ∆4/5mxαYα ,

C = − (1− v)−1/2 κ−3/2∆4/5mα5m
αβYβ ,

gµν = κ3/4∆−1/5Gµν(x) .

(3.34)

3.3 A no-go theorem on IIA/IIB uplifts

We have just shown that the IIA truncations with gaugings in the 10 ⊂ 15 induce dual IIB

truncations with gaugings in the 10′ ⊂ 40′, according to the embedding (3.1). A natural

question to ask is whether it is possible to obtain the 10 ⊂ 15 gauging by a IIB truncation

— or equivalently the 10′ ⊂ 40′ by a IIA truncation. We will now show that this cannot

be done by analysing the symmetries of the embedding tensor.

In order to use symmetry properties of the embedding tensor, we work in the 10-

dimensional representation with

τāb̄,c̄d̄
ēf̄ = 2 τāb̄,[c̄

[ēδd̄]
f̄ ] , (3.35)

where τāb̄,c̄
d̄ represents the embedding tensor as given in (2.14). The consistency equa-

tions (2.10) in this representation can conveniently be computed in terms of

Eāb̄
ab ≡ ρ−1 U[ā

aUb̄]
b , (3.36)

via the generalized Lie derivative

LEāb̄
Ec̄d̄

ef =
1

2
Eāb̄

ab∂abEc̄d̄
ef +

1

2
Ec̄d̄

ef∂abEāb̄
ab + 2Ec̄d̄

a[e∂abEāb̄
f ]b ≡ −τāb̄,c̄d̄

ēf̄Eēf̄
ef .

(3.37)

We first assume that the twist only depends on IIA coordinates Y m4 and introduce the

following notation

Eāb̄
45 = Rāb̄ , Eāb̄

m4 = Kāb̄
m , Eāb̄

m5 =
1

2
ǫmnpLnp,āb̄ , Eāb̄

mn = ǫmnpTp,āb̄ .

(3.38)

Then the consistency condition (3.37) takes the form

−τāb̄,c̄d̄
ēf̄Kēf̄

m = Lāb̄Kc̄d̄
m ≡ Kāb̄

n∂nKc̄d̄
m −Kc̄d̄

n∂nKāb̄
m ,

−τāb̄,c̄d̄
ēf̄Rēf̄ = Kāb̄

m∂mRc̄d̄ −Kc̄d̄
m∂mRāb̄ ,

−τāb̄,c̄d̄
ēf̄Lmn,ēf̄ = Lāb̄Lmn,c̄d̄ − 3Kāb̄

p∂[pLmn],āb̄ − 2Tc̄d̄[m∂n]Rāb̄ + 2Rc̄d̄∂[mT|āb̄|,n] ,

−τāb̄,c̄d̄
ēf̄Tm,ēf̄ = Lāb̄Tm,c̄d̄ − 2Kc̄d̄

n∂[nTm],āb̄ .

(3.39)
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Here Lāb̄ denotes the standard Lie derivative with diffeomorphism parameter Kāb̄
m acting

on vectors Kāb̄
m and co-vectors Tm,āb̄ and two-forms Lmn,āb̄. Note that in the first two

equations, the right-hand side is antisymmetric under the exchange of [āb̄] ↔ [c̄d̄]. Thus,

we see that certain contractions of the symmetric part of the embedding tensor vanish. Its

symmetric part is given by the intertwining tensor (2.13),

τāb̄,c̄d̄
ēf̄ + τc̄d̄,āb̄

ēf̄ = ǫāb̄c̄d̄ḡW
ēf̄ ,ḡ = −ǫāb̄c̄d̄ḡZ

ēf̄ ,ḡ + 8 δēf̄ ḡh̄
āb̄c̄d̄

τḡh̄ . (3.40)

Thus, a necessary requirement for gaugings to be lifted to IIA is that

3Z b̄c̄,āKb̄c̄
m − ǫāb̄c̄d̄ēτb̄c̄Kd̄ē

m = 0 , 3Z b̄c̄,āRb̄c̄ − ǫāb̄c̄d̄ēτb̄c̄Rd̄ē = 0 . (3.41)

For completeness let us also consider the analogous consistency equations for the IIB

theory. In terms of

Eāb̄
mn = ǫmnpKp,āb̄ , Eāb̄

45 =
1

3!
ǫmnpRāb̄

mnp , Eāb̄
mu = Lāb̄

mu , (3.42)

where u = 4, 5 labels the SL(2) symmetry of IIB, equation (3.37) becomes

−τāb̄,c̄d̄
ēf̄Km,ēf̄ = Lāb̄Km,c̄d̄ = Kn,āb̄∂

nKm,c̄d̄ −Kn,c̄d̄∂
nKm,āb̄ ,

−τāb̄,c̄d̄
ēf̄Rēf̄

mnp = Lāb̄Rc̄d̄
mnp + 6ǫuvLc̄d̄

[m|u|∂nLāb̄
p]v ,

−τāb̄,c̄d̄
ēf̄Lēf̄

mu = Lāb̄Lc̄d̄
mu + 2Kn,c̄d̄∂

[mLāb̄
n]u .

(3.43)

Here Lāb̄ denotes the standard IIB Lie derivative, i.e. with upside-down indices (see for

example [25]), with the diffeomorphism parameter Ki,āb̄. We see that the right-hand side

of the first equation is antisymmetric under the exchange of the pair of indices
[

āb̄
]

↔
[

c̄d̄
]

.

Thus, we find that for a gauging to be of IIB origin, we must have

3Z b̄c̄,āKm,b̄c̄ − ǫāb̄c̄d̄ēτb̄c̄Km,d̄ē = 0 . (3.44)

Let us now return to the question of whether the 10′ ⊂ 40′ can come from IIA. To

differentiate between the IIA and IIB theories we require dependence on all three internal

coordinates and so we consider the case where the gaugings of the 10′ are not degenerate.

Using (3.40) it is easy to show that when M̃ ᾱβ̄ = ηᾱβ̄ is not degenerate, (3.41) can only

be satisfied by a vanishing twist matrix. Thus these gaugings cannot be obtained from a

IIA truncation. In particular, this applies to the SO(4) theory. By the duality established

above, in turn a non-degenerate Mᾱβ̄ = ηᾱβ̄ cannot be obtained from a IIB truncation.

This is interesting in the light of the half-maximal theory, where there is a family of

SO(4) gaugings involving non-degenerate gaugings in bothMᾱβ̄ and M̃ ᾱβ̄ , i.e. in the 10 and

10′ [19]. The result here suggests that such gaugings can only be obtained by violating the

section condition, as the corresponding twist matrix would be required to depend both on

IIA coordinates and their dual IIB ones. Indeed, this has been shown for the half-maximal

theory in [19, 47].
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4 Dualising the 4’s

Recall from (3.1) that the embedding tensor also contains two 4’s and one 4′. Can the

duality discussed above be extended to these gaugings? Let us begin by relaxing the

Ansatz (3.4) in order to have non-zero 4’s. Consider first

Ua
ā =





ω−1/2Vα
ᾱ ω−1/2Aα

0 ω2



 . (4.1)

The consistency equations are then

Mᾱβ̄ = ρ−1ωV(ᾱ
α∂|αβ|Vβ̄)

β , M̃ ᾱβ̄ = ρ−1ωVα
(ᾱ∂|αβ|Vβ

β̄) ,

2τᾱβ̄ = −ρ−1ω
(

∂αβVᾱβ̄
αβ − 5Vᾱβ̄

αβ∂αβ lnω + 6Vᾱβ̄
αβ∂αβ ln

(

ρ−1ω
)

)

,

2ξᾱβ̄ = ρ−1ω
(

∂αβVαβ
ᾱβ̄ − 5Vαβ

ᾱβ̄∂αβ lnω
)

,

Zᾱ5̄,5̄ = ρ−1ωVαβ
ᾱβ̄∂αβAβ̄ +

(

M̃ ᾱβ̄ + ξᾱβ̄
)

Aβ̄ ,

(4.2)

where Aᾱ = Vᾱ
αAα. We see that the equations for the 10’s and 6’s are unchanged but

additionally the 4′ ⊂ 40′ can be gauged. If we instead take the Ansatz

Ua
ā =





ω−1/2Vα
ᾱ 0

ω2Bᾱ ω2



 , (4.3)

we again find the same 10’s and 6’s as in (3.5) but additionally the following can be gauged:

τᾱ5̄ = −1

2
ρ−1ωVᾱβ̄

αβ∂αβB
β̄ −Bβ̄τᾱβ̄ ,

Zᾱβ̄,γ̄ =
1

2
ρ−1ωǫᾱβ̄δ̄ρ̄Vδ̄ρ̄

δρ∂δρB
γ̄− 2

3
ǫᾱβ̄γ̄ρ̄

(

Sρ̄5̄+Bδ̄Mρ̄δ̄

)

+2B[ᾱ
(

M̃ β̄]γ̄+ξβ̄]γ̄
)

−2B[ᾱξβ̄γ̄] ,

Sᾱ5̄ = −1

2
ρ−1ωVᾱβ̄

αβ∂αβB
β̄ −Bβ̄Mᾱβ̄ ,

S5̄5̄ = −Bᾱ
(

2Sᾱ5̄ +Bβ̄Mᾱβ̄

)

.

(4.4)

The SL(4) (co-)vectors Aα and Bα should be exchanged by the outer automorphism of

SL(4) so that

Vα
ᾱ ←→ (Vᾱ

α)−T , ∂αβ ←→ ∂αβ , Aα ←→ Bα . (4.5)

This maps a solution of the equations (4.4) to a solution of (4.2) but not vice versa. Thus,

it is not in general possible to map a twist that gauges the 4′ ⊂ 40′ into a twist gauging

the 4 ⊂ 15, 4 ⊂ 10 and 20′ ⊂ 40′. Furthermore, if we start with a gauging of the 4′ ⊂ 40′

that satisfies the quadratic constraints (2.11) and perform the duality to obtain a gauging

in the 4 ⊂ 15, 4 ⊂ 10 and 20′ ⊂ 40′, then this dual gauging does not in general satisfy the

quadratic constraint. Then the dual gaugings do not define a consistent gauged SUGRA.

We will see an example of this in section 5.2.
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Orbit Mᾱβ̄ M̃ ᾱβ̄ Zᾱ5̄,5̄ ξ2̄3̄ τ1̄4̄

1 diag (η, 1, 0, 0) diag (0, 0, η, 1) 0 0 0

2 diag (1, 0, 0, 0) cosα diag (0, 0, 0, 1) sinα 0 0 0

3 diag (η, η′, 1, 0) 0 (0, 0, 0, 1) 0

4 diag (η, 1, 0, 0) 0 (0, 0, 0, 1) 0 0

5 diag (1, 0, 0, 0) cosα diag (0, 0, 0, 1) sinα (0, 0, 1, 0) 0 0

6 diag (0, 0, 0, 0) diag (0, 0, 0, 0) 0 λ− 1 λ

7 diag (η, 1, 0, 0) 0 0 −a a

8 diag (η, 1, 0, 0) diag (0, 0, η, 1) 0 −a a

9 diag (1, 0, 0, 0) cosα diag (0, 0, 0, 1) sinα 0 −a a

Table 1. Orbits of gaugings for which we will construct uplifts. Each α in the range −π/2 ≤ α ≤ π,

each λ = 1, 1
2 , 0, each η, η′ = ±1 and each a ∈ R labels different inequivalent orbits.

5 Further examples

We will now use our twist Ansätze (3.4), (4.1) and (4.3) and the duality discussed above to

obtain new uplifts of various maximal gauged SUGRAs. This is not an exhaustive list of

solutions to the quadratic constraints, but rather a selection of examples for which uplifts

to type II SUGRA can be constructed nicely with the twist Ansätze we have considered

so far. The gaugings we consider are summarised in table 1. Each value of α in the range

−π/2 ≤ α ≤ π, as well as each λ taking the values λ = 1, 1
2 , 0, each η, η′ = ±1 and

each a ∈ R labels different inequivalent orbits. Note that for orbits 1 and 7–9 we have

indicated that the gaugings in the 4 vanish. This is because any non-zero gaugings in the 4

allowed by the quadratic constraint (2.11) can be removed by an SL(5) transformation and

thus lead to equivalent 7-dimensional theories. Orbits 6–9 involve the trombone gauging

(when λ 6= 0) and thus the 7-dimensional theories they represent do not admit an action

principle. We will see in section 5.5 that in some cases their uplifts are non-geometric,

where the trombone scaling symmetry is used to patch together the solution.

5.1 Orbits 1 and 2

In section 3.3 we showed that non-degenerate gaugings in the 10 descend from IIA and

those in the 10′ descend from IIB. Let us now uplift gaugings which mix the 10 and 10′.

The quadratic constraint is now

M̃ ᾱβ̄Mᾱγ̄ = 0 . (5.1)

The solutions are given by orbits 4–11 of [19].

Orbit 1. This orbit can be represented by the gaugings

Mᾱβ̄ = diag (η, 1, 0, 0) , M̃ ᾱβ̄ = diag (0, 0, η, 1) . (5.2)
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These correspond to an embedding of orbits 6 and 9 (with α = π/4) of [19] into the maximal

theory.

The twist matrices are given by

Vα
ᾱ =



















(1− v)1/4 −ηy1 (1− v)−1/4 0 0

y1 (1− v)−1/4 (1− v)1/4 0 0

0 0 (1− v)3/4 −y1 (1− v)1/4

0 0 (1− v)1/4 ηy1 (1− v)3/4



















,

ω = (1− v)1/10 ,

(5.3)

with ρ = ω and where v = ηy21 and u = y21. From (2.5) we find the internal space in string

frame to be

d̊s
2
= (1− v)−1 dy21 + dy22 + dy23 − 2y1 (η − 1) (1− v)1/2 (1 + u− v)−1 dy2dy3 + ds27 ,

B̊23 = y1 (η − 1) (1− v)1/2 (1 + u− v)−1 , eϕ̊ = (1 + u− v)−1/2 .

(5.4)

Note that when η = 1 the background is the Kaluza-Klein circle encountered in (3.13).

However, the internal space will be different at other points in the scalar moduli space. It

is of course also possible to generate the gaugings

Mᾱβ̄ = diag (0, 0, η, 1) , M̃ ᾱβ̄ = diag (η, 1, 0, 0) , (5.5)

by applying the duality discussed in section 3.1. As before, the internal space remains the

same under the duality.

Orbit 2. These orbits describe an embedding of orbits 11 of [19] into the maximal theory.

The gaugings are

Mᾱβ̄ = diag (0, 1, 0, 0) cosα , M̃ ᾱβ̄ = diag (0, 0, 0, 1) sinα , (5.6)

where −π/2 ≤ α ≤ π gives the range of inequivalent orbits. The twist matrices are given by

Vα
ᾱ =













1 −y1 cosα 0 0

0 1 0 0

0 0 1 −y1 sinα

0 0 0 1













, ω = 1 , (5.7)

where y1 = Y 14 and the internal space is given by

ds2 = dy21 + dy22 + (dy3 − y1 sinα dy2)
2 + ds27 ,

B23 = y1 cosα ,
(5.8)

with all other fields vanishing. The dual gaugings Mᾱβ̄ ←→ M̃ ᾱβ̄ are in this case equivalent

to the gaugings discussed.
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5.2 Orbits 3 and 4

When Mᾱβ̄ and Zᾱ5̄,5̄ are the only non-zero gaugings, the quadratic constraint is

Mᾱβ̄Z
β̄5̄,5̄ = 0 . (5.9)

Thus, Zᾱ5̄,5̄ 6= 0 only when Mᾱβ̄ is degenerate. Let us consider separately the cases where

Mᾱβ̄ has rank 3 and rank 2, corresponding to orbits 3 and 4 in table 1, respectively.

Orbit 3. Take Mı̄̄ = ηı̄̄, M4̄4̄ = 1 and M3̄3̄ = 0, with ı̄, ̄ = 1, 2 and all other elements

vanishing. Then by (5.9) we can only have

Z 3̄5̄,5̄ = c . (5.10)

We could use an SL(5) transformation to set c = 1 but we will not do so here to keep track

of c in the internal space. However, the reader should keep in mind that all values of c 6= 0

correspond to equivalent 7-dimensional theories.

From the no-go theorem (3.41) one finds that this gauging cannot be obtained by a IIA

truncation. It can, however, be lifted to 10-dimensional IIB SUGRA using the Ansatz (4.1)

with the same Vα
ᾱ as in (3.12) with r = 1 and with

A4 = −cy3 (1− v)−1/4 , Ai = A3 = 0 , (5.11)

where y3 = Y 12 is the third IIB coordinate. Recall that the other two coordinate are given

by y1 = Y 14, y2 = Y 24. The background for this truncation is given by

d̊s
2
= ds27 + (1− v)−1

[

δijdyidyj −
(

ηijyidyj
)2

1 + u− v

]

+ (1 + u− v)

[

dy3 + (1− v)−1/2 1 +K (1 + u− v)

1 + u− v
ηijyidyj

]2

,

C̊ij = −cy3 (1− v)−1/2 ǫij .

(5.12)

As before, we use the convention of [25] where IIB indices are placed “upside-down” and C̊ij

labels the Ramond-Ramond two-form. The metric here is the T-dual of the Hp,q solutions

in (3.13). Furthermore, only the two-form depends on c and the NS-NS sector remains

invariant as c is turned on.

Orbit 4. Take M1̄1̄ = η, M4̄4̄ = 1 and all other components vanishing. Then by (5.9) we

can have the gaugings

Z 2̄5̄,5̄ = c , Z 3̄5̄,5̄ = d . (5.13)

One can use an SL(5) transformation to set c = 0 and d = 1 but we will not do so here to

keep track of where the gaugings appear in the internal space. Once again, however, the

reader should remember that different values of c and d (with at least one non-vanishing)

correspond to the same 7-dimensional theory.

– 17 –



J
H
E
P
1
2
(
2
0
1
5
)
0
2
9

We again use the Ansatz (4.1) with Vα
ᾱ as in (3.12) with r = 2 and solve the gauging

of the Zᾱ5̄,5̄ by

A1 = (1− v)−1/4 (cy3 − dy2) , (5.14)

with all other Aα = 0, α 6= 1. The twist now only depends on y1 = Y 14, y2 = Y 24 and

y3 = Y 34 and so gives an uplift to IIA supergravity. From (2.5) the internal space is found

to be

d̊s
2

11 = (1 + u− v)−2/3
[

dy22 + dy23 + (dz + C1dy1)
2
]

+ (1 + u− v)1/3
dy21
1− v

+ (1 + u− v)−2/3 ds27 ,

C̊23z = (1 + u− v)−1 (1− v)1/2 (1− η) y1 ,

C̊1 = (1− v)−1/2 (cy3 − dy2) .

(5.15)

This is the same circle/hyperbola reduction as in (3.13) but with an additional Ramond-

Ramond one-form C̊1 turned on. Similar to orbit 3, only the Ramond-Ramond one-form

depends on c and d.

To conclude the discussion of these orbits, let us consider the dual gaugings. The

duality would give gaugings of the 4 ⊂ 15, 4 ⊂ 10 with

Sᾱ5 = τᾱ5 , (5.16)

as well as possibly the 20′. However, these gaugings violate the quadratic constraint (2.11)

and hence they do not define a consistent gauged SUGRA.

5.3 Orbit 5

For the gaugings Mᾱβ̄ = diag (0, 1, 0, 0) cosα and M̃ ᾱβ̄ = diag (0, 0, 0, 1) sinα the quadratic

constraint allows the 4’s

Zᾱ5̄,5̄ = (d, 0, c, e) . (5.17)

We can use an SL(5) transformation to make two of these vanish and scale the third. Let

us thus take d = e = 0 but keep c 6= 1 in general so that we can see where it ends up in the

internal space. The twist matrix is then given by Ansatz (4.1) with Vα
ᾱ as in (5.7) and

A3̄ = cy1 . (5.18)

The internal space is then given by

d̊s
2
= dy21 + dy22 + (dy3 − y1 sinα dy2)

2 + ds27 ,

B̊23 = y1 cosα ,

C̊2 = −cy21 sinα ,

C̊3 = cy1 .

(5.19)

As for orbits 3 and 4 we find that the parameter c only appears in the Ramond-Ramond

1-form. The dual gaugings would again not satisfy the quadratic constraint (2.11).
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5.4 Orbit 6

To keep our formulae simple we will actually uplift the gaugings

τ1̄4̄ = 3 (λ− 1) , ξ2̄3̄ = 3λ , (5.20)

with inequivalent gaugings for λ = 1, 12 , 0. We can obtain these gaugings easily using

the block-diagonal Ansatz for the twist matrix (3.4) and by choosing the scalars ρ and ω

appropriately.

The twist matrix is given by Vα
ᾱ = δα

ᾱ with scalars ω = (1− y1)
6λ/5 and ρ =

(1− a · y)6λ/5−1. The internal space in string frame is

d̊s
2
= dymdym + (1− a · y)2 ds27 , eϕ̊ = (1− a · y)3λ . (5.21)

We can see that the string-frame metric is independent of λ and the dilaton tunes between

the different gaugings. In particular, when λ = 1 we have a standard 7-dimensional gauged

SUGRA, whereas for the cases λ = 0 and λ = 1/2 the 7-dimensional theory does not have

an action principle, even though it can still be uplifted to 10-dimensional SUGRA. For

each λ the outer automorphism discussed in section 3.1 relates equivalent gaugings.

5.5 Orbits 7–9

The gaugings we consider here involve some of the gaugings encountered previously in

this paper together with both 6’s. These can be uplifted by using almost the same twist

matrices as without the 6’s. In particular we will keep Vα
ᾱ unchanged but change ρ = ω.

Let us write ρ = ω = ω0h, where ω0 is the value of ω where the 6’s vanish. The function

h then has to satisfy

2τᾱβ̄ = −2ξᾱβ̄ = 5Vᾱβ̄
αβ∂αβ lnh . (5.22)

Orbit 7. Let us start with the IIA sphere/hyperboloid case (3.8) where ω0 = (1− v)1/10.

The quadratic constraint (2.11) implies the only gaugings with non-zero ξᾱβ̄ = −τ ᾱβ̄ are

given by

Mᾱβ̄ = diag (η, 1, 0, 0) , τ1̄4̄ = −ξ2̄3̄ = a . (5.23)

For a = 0 these are S1 and H1 reductions. Now, we find

h = exp

(

2a arcsin
(√

ηy1
)

5
√
η

)

. (5.24)

The internal space in string-frame is given by

d̊s
2
=

1

1− v
dy21 +

1

1 + u− v

(

dy22 + dy23
)

+ ds27 ,

B̊23 = (1− v)1/2 (1 + u− v) (η − 1) y1 ,

eϕ̊ = (1 + u− v)−1/2 exp

(

a arcsin
(√

ηy1
)

√
η

)

.

(5.25)
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We see that when η = 1, the internal space is non-geometric because the dilaton is not

globally well-defined. Instead, it is patched by the trombone scaling symmetry of the

equations of motion. This is a reminiscent of the non-geometric construction in [14] albeit

in seven dimensions.

Orbit 8. For the gaugings

Mᾱβ̄ = diag (η, 1, 0, 0) , M̃ ᾱβ̄ = diag (0, 0, η, 1) , τ1̄4̄ = −ξ2̄3̄ = a , (5.26)

with Vα
ᾱ and ω as in (5.3), the consistency condition on h, (5.22), has the same solution

h as in (5.24). We find the internal space in string-frame

d̊s
2
= (1− v)−1 dy21 + dy22 + dy23 + 2y (η − 1) (1− v)1/2 (1 + u− v)−1 dy2dy3 + ds27 ,

B̊23 = (1− v)1/2 (1 + u− v)−1 y (η − 1) ,

eϕ̊ = (1 + u− v)−1/2 exp

(

a arcsin
(√

ηy1
)

√
η

)

.

(5.27)

Orbit 9. For the gaugings

Mᾱβ̄ = diag (0, 1, 0, 0) cosα , M̃ ᾱβ̄ = diag (0, 0, 0, 1) sinα , τ1̄4̄ = −ξ2̄3̄ = a , (5.28)

with Vα
ᾱ and ω0 as in (5.7) we find

h = exp

(

2a

5
y1

)

. (5.29)

The internal space in string-frame is

d̊s
2
= dy21 + dy22 + (dy3 − y1 sinα dy2)

2 + ds27 ,

B̊23 = y1 cosα ,

eϕ̊ = exp (ay1) .

(5.30)

6 Conclusions

In this paper we studied consistent truncations of type IIA and IIB SUGRA to 7-

dimensional maximal gauged SUGRA using exceptional field theory. By using a GL(4)

Ansatz for the twist matrices, we showed that IIA/IIB consistent truncations are related

by the outer automorphism of SL(4) which acts on the irreducible representations of the

embedding tensor as

10 ←→ 10′ , 640 ←→ 640 , 610 ←→ 610 . (6.1)

Here 640 and 610 denote the 6’s coming from the 40′ of SL(5) and from the trombone

gauging, respectively. We also showed that this duality between IIA and IIB consistent

truncations always exists when the embedding tensor has vanishing components in the
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4′ of SL(4). Otherwise, the dual gaugings will in general not satisfy the quadratic con-

straints (2.11).

We used this duality to prove the consistent truncation of IIB on S3 and Hp,q by con-

structing twist matrices that give rise to the relevant CSO(p, q, r) gaugings with embedding

tensor in the 40′. The twist matrices are dual to those describing the IIA uplift of gaugings

in the 15 [11]. Using the dictionary between EFT and IIA/IIB fields, we used the twist

matrices to derive the full truncation Ansätze for the internal sectors of the IIA and IIB

reductions. They were shown to coincide in the NS-NS sector. This is a general feature

of the duality: it relates truncations with the same NS-NS sector. Finally, from the form

of the consistency equations we derived some no-go theorems showing that non-degenerate

gaugings with IIA origin cannot also be uplifted to IIB and vice versa.

In the second part of this paper we further generalised the twist matrices of [11] to

uplift other gaugings of 7-dimensional maximal gauged SUGRA to type II SUGRA. These

examples include gaugings of the 15 and 40′ simultaneously, and of the trombone, where

the gauged SUGRA does not admit a Lagrangian. In the latter case, the internal space

of the truncation is only well-defined up to the R
+ scaling symmetry of the equations of

motion. Among the direct applications of these uplift formulas is the higher-dimensional

embedding of the vacua found in the lower-dimensional theories, such as [48].

The twist matrices used throughout this paper are defined in local patches. For the

truncation to be consistent, these twist matrices must yield a generalised parallelisation [9].

To show this we would have to patch our twist matrices to obtain globally well-defined

vector fields. A patching prescription for exceptional field theory is still lacking, although

it is known for double field theory [49–52]. Whatever this covariant patching prescription

will be, it should consist of the global SL(5)×R
+ symmetries of the 7-dimensional SUGRA.

We can thus argue that our twist matrices are well-defined by checking that the internal

space they define is well-defined up to SL(5)×R
+ dualities. This is indeed the case for all

the examples given here.

The duality established in this paper exchanges IIA and IIB consistent truncations,

by relating different irreducible representations of the embedding tensor of 7-dimensional

gauged supergravity according to the embedding (3.1). Similar dualities are expected to

arise in all dimensions. In contrast to the 7-dimensional case, for all other dimensions the

embedding tensor XABC of the half-maximal theory sits in an irreducible representation of

SO(d, d), thus in a single irreducible representation of the Ed+1(d+1) duality group of the

maximal theory. It is thus less clear if the resulting gaugings sit in different orbits of the

duality group according to their IIA/IIB origin, i.e. if IIA and IIB reductions give rise to

inequivalent lower-dimensional theories. A natural starting point for further investigation

are 3-dimensional maximal gauged SUGRAs. These are known to have two inequivalent

SO(8) gaugings, expected to arise from S7 reductions of IIA/IIB [53]. Indeed, the full

EFT has been constructed for this case [54] so that the full reduction Ansätze of the

S7 truncations could then also be derived. It would also be interesting to cast into this

framework consistent truncations of the massive IIA theory such as [55] which would require

a (modest) dependence of the twist matrices on one of the non-physical coordinates, cf. [56].

Finally, it would be interesting to try and find a systematic procedure for the construc-

tion of the twist matrices for all possible allowed gaugings of the quadratic constraint (2.11).
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An interesting proposal for the case of half-maximal gauged SUGRA appeared in [20]. How-

ever, the resulting twist matrices are not O(d, d)-valued so that it is not immediately clear

how to find the associated reduction Ansätze.
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