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1 Introduction

The consistent Kaluza-Klein truncation of higher-dimensional (super)gravity to lower-
dimensional theories is an old and generically difficult problem due to the highly non-linear
gravitational field equations [1]. Typically, consistent truncations require very particular
backgrounds together with very particular matter couplings of the higher-dimensional the-
ory, see e.g. [2-4]. Recent progress has come from the realisation of non-toroidal geometric
compactifications via generalised Scherk-Schwarz-type compactifications on an extended
spacetime within duality covariant formulations of the higher-dimensional supergravity
theories [5-12]. In this language, finding consistent Kaluza-Klein reduction Ansétze trans-
lates into the search for Scherk-Schwarz twist matrices satisfying a number of differential
consistency equations in the physical coordinates. Most recently, this has been used to
work out the full Kaluza-Klein reduction for the AdSs x S° reduction of IIB supergravity
in the framework of exceptional field theory [13].

In this paper we use this framework to study consistent truncations from ITA and IIB
supergravity down to seven dimensional gauged supergravities. Specifically, we establish
a duality relating consistent ITA and IIB truncations for certain gaugings of maximal 7-
dimensional supergravity. We then employ this duality to derive new consistent truncations
of type IIB theory on the three sphere S3, as well as on hyperboloids H?, which lead to



compact SO(4), non-compact SO(p, q) and non-semisimple CSO(p, ¢, r) gaugings, respec-
tively. Finally, we discuss new uplifts to type IIA /IIB of gauged supergravities involving
gauging of the trombone scaling symmetry. In this final set of gaugings, we find that some

can only be obtained by non-geometric compactifications,’

in a set-up reminiscent of that
recently discussed in [14].

Let us get more specific about the 7-dimensional theories discussed in this paper.
In general, the fluxes in half-maximal supergravity are parametrized by an antisymmetric

tensor X 4pc of the T-duality group SO(d, d) [15], which encodes the T-duality chain of [16]
Xapc © Hape — fap® — Qabc — Robe ) (11)

as well as two SO(d, d) vectors X 4 and fa, [17], the latter of which encodes the trombone
gaugings. Because the trombone symmetry is an on-shell symmetry, theories with non-zero
fa can only be defined at the level of the equations of motion [18]. For d = 3, i.e. reduction
to seven dimensions, X 4p¢ splits into two irreducible representations

20 — 10 + 10,
Xape = Tapc™Mas +TapcasM®? (1.2)

with the SO(3,3) I'-matrices (or 't Hooft symbols, see for example appendix B of [19]),
and symmetric matrices Mg, M%5. Here the indices a, 3 = 1,...4 are fundamental
SL(4) ~ Spin(3, 3) spinor indices. Similarly, the vectors can be written in terms of the 6
of SL(4) as

1 1
Xa=-Ta%e,p, fa==Ta%7,.5. (1.3)

2 2
For simplicity’s sake we will take X4 = f4 = 0 for the following discussion although we
will reintroduce them later on.
Depending on the choice of Mg, MoP , there are various one-parameter families of
seven-dimensional gaugings most of which are of locally non-geometric origin [19]. A dis-
tinguished role is played by the theories satisfying the condition

MosM* =0 . (1.4)

First, these can be consistently embedded into the maximal theory and second the subset
where either M,z or M is non-degenerate allow for a geometric uplift to the type-I theory
in ten dimensions as compactifications on the sphere S3 and hyperboloids H?. For the
sphere case, the reduction formulas have been worked out in [4] and later explained in the
context of generalized geometry/double field theory [9, 19, 20]. The duality

Mg +— M| (1.5)

is a symmetry of the quadratic constraints ensuring consistency of the gauging, as a mani-
festation of a particular triple T-duality [19, 21], generated by an element of O(3, 3) rather
than SO(3, 3).

'Here we refer to global non-geometry, where the structure group of the manifold is not contained within
the geometric subgroup of the U-duality group.



In this paper, we will study the embedding of these structures in the maximal the-
ory with U-duality group SL(5). The above representations are embedded into U-duality
representations according to

SO(3,3) € SL(5) ,
10 C 15,
10’ C 40’ . (1.6)

Now the duality (1.5) is no longer a symmetry of one and the same theory. Instead, the dif-
ferent embeddings (1.6) into the representations of the U-duality group induce inequivalent
maximal seven-dimensional theories with gauge groups CSO(p, ¢, 1) for the ITA background
and SO(p, q) for the IIB background, respectively [22]. These theories only coincide after
truncation to the half-maximal sector. The ITA uplift has been given in [11] via a general-
ized Scherk-Schwarz Ansatz in an exceptional space in the framework of exceptional field
theory [23]. Here we realise the duality (1.5) as an outer automorphism of SL(4) acting
on the Scherk-Schwarz twist matrices, and thereby derive the full IIB reduction Ansatz.
In particular, the duality exchanges the ITA and their dual IIB coordinates within the 10
coordinates of the exceptional space [24, 25]

10 — 3pa +3' B +3+1. (1.7)

We will also show how the triple T-duality acting on the 6’s [19]
af 1 aBrys afB 1 aBys
fap «— £ = 5¢ &6 5 Tap 70 =57 g, (1.8)

is realised in the maximal theory.

The paper is organized as follows. In section 2 we briefly review the pertinent struc-
tures of the relevant exceptional field theory and its generalized Scherk-Schwarz reduction
ansatz. In section 3 we realize the duality (1.5) on the Scherk-Schwarz twist matrix, re-
lating consistent ITA /IIB truncations. As an application we work out the full truncation
Ansétze for the internal sectors of the IIA and IIB reductions. In particular, this estab-
lishes the consistency of the S® reduction of the IIB theory. Finally, in section 5 we extend
the analysis to the construction of more general twist matrices and obtain new uplifts of
various maximal supergravities including those in which the trombone scaling symmetry is
gauged.

2 EFT and 7-dimensional maximal gauged SUGRA

Our key tool for the study of consistent truncations is the ‘exceptional field theory’
(EFT) [23, 26-28] with its associated extended geometry, see [24, 29, 30]. This is the du-
ality covariant formulation of higher-dimensional supergravity which renders manifest the
exceptional symmetry groups that are known to appear under dimensional reduction [31].
The formulation of interest for studying reductions to maximal seven-dimensional super-
gravity, is the SL(5) exceptional field theory. Apart from metric and scalars, it carries 10



vectors Au“b, as well as 5 two-forms B,,, , and 5 three-forms C,,,,,%, all fields depending on
7 external and 10 internal coordinates {z*, Y}, u=0,...,6; a = 1,...,5 with all fields
subject to the section constraint [32]

Oab @ Do) = 0 . (2.1)

Three-forms enter the Lagrangian only under internal derivatives as 8abCpr. While the full
SL(5) exceptional field theory has not yet been worked out (see [33-35] for EFTs in higher
dimensions), its scalar sector has been given and studied in [24, 36, 37]. The 14 scalar fields
parametrize a unit-determinant symmetric 5x5 matrix M@ i.e. form the coordinates of the
coset space SL(5)/SO(5) . W.r.t. the generalized space, SL(5) generalized diffeomorphisms
act according to

2
SV = A9,V + 20, AV + - O NV

2
8V = A0,V — 20,5 AV, — s Ope AV, | (2.2)

on weight zero tensors in the fundamental representations of SL(5). The section con-
straint (2.1) admits two solutions [25]. Breaking the U-duality group SL(5) down to the
geometric SL(3), the internal coordinates decompose into

vy s {yeB yesy — {ymd ymn yms y s a=1,....,4; m=1,23, (2.3)

cf. (1.7), and it is easy to see that the section constraint (2.1) is satisfied by restricting the
coordinate dependence of all fields onto

ym = ym (ITA)

t , (24)
Um = 5 EmnpY P (IIB)

respectively. Depending on the higher-dimensional origin, it is convenient to parametrize
the scalar matrix M® in a ITA or IIB basis according to
/2 g2/5gmn | o—¢/20=3/5 pmpn  o—¢/2=3/5 gm  _2/5gmkee/2 0y 4e—0/2¢—3/5 0 gm
M?IbA — ( e—¥/2g=3/5 gm e—¥/2g=3/5 e—¥/2g=3/5C > ,
— /B gmkee 20y 4e=0/2g=3/5 OB™ ¢=9/2 g=3/5 0 e=¢/2g=3/5 024 g2/5 (=¥ v/ 2gklCyLCy)

Mab B 973/5gmn _g73/5gmn Cvn (2 5)
1B — _9—3/5gnk cYy, 9—3/5Cumgmncvn + g2/5 Huv ) :

where for IIA ¢, is the metric, C,, is the Ramond-Ramond one-form, B™ = %em"anp
is the dualised Kalb-Ramond two-form, C = %em”pCmnp is the dualised Ramond-Ramond
three-form and ¢ is the dilaton. For IIB, we follow the conventions of [25] so that all four-
dimensional indices are placed “upside-down”. Thus, g"™" represents the metric, C,* =
(Bm, Cm) = 3€mnp (B"™, C™) represents the SL(2) doublet formed from the Kalb-Ramond
and Ramond-Ramond two-forms and H"" is the SL(2) matrix parameterised by the dilaton
¢ and Ramond-Ramond scalar C as follows
e¥ —Cpe?

H" = N . (2.6)
—Cpe? e? (Cy)" + e %

Throughout the paper the metric will be given in Einstein frame, unless otherwise specified.



The EFT formulation of supergravity is a powerful tool for the study of consistent
truncations, since a number of geometrically non-trivial reductions can be reformulated
as generalized Scherk-Schwarz reductions on the extended space [5-11, 19, 38]. In the
reduction Ansatz, all dependence on the internal coordinates is carried by an SL(5) valued
twist matrix U,*(Y) with the scalar fields reducing according to

Map(2,Y) = UA(Y) UL (Y) Mg () (2.7)

and the remaining EFT fields factorizing as [11]

GMV(x’Y) = p_Q(Y) G/W_(x) )
A (@, Y) = pH(Y) A (@) U™ (Y)
Buya(z,Y) = 9_2(Y) Buya(z) Us"(Y) ,
Cuvp(2,Y) = p~(Y) Cpup™(2) Uz (Y) (2.8)

with a scalar function p(Y'). The 7-dimensional metric of the full 10-dimensional type II
theory, g,., is related to G/, above by

G (2, Y) = |g| VPG (2, Y), (2.9)

where |g| here is the determinant of the metric in the internal directions and G, () is the
metric of the 7-dimensional gauged SUGRA. Consistency of the reduction Ansatz translates
into the set of differential equations [7] (we use the conventions of [11])

!
OV U’ = = p Sgp
cabeef <Uefal§ 0 U — U [ab 8abUcé]> L 2 abe :
8chrzECd —6p" UaECd Deap = =20 Tgp (2.10)

for the twist matrices, with Ug®™ = U[a‘_lUb]E, and constant tensors S,;, Z%€ - trans-
forming in the 15, 40’, and 10, of SL(5), respectively. These tensors form the torsion
of the Weitzenbock connection of EFT [9, 29, 37, 39] and correspond to the embedding
tensors of maximal D = 7 supergravity, which describe the allowed gaugings of the seven-
dimensional theory [22]. The quadratic constraints which these tensors need to satisfy for
consistency are a direct consequence of their definition by (2.10) together with the section
constraint (2.1) and ensure that the gauge group closes. For later convenience, we spell

out these equations

6.0 _ L T S RS Gay gy
SacZZd(b’c) T eaJéngde’beg’c + 3 C—szd(b’c) EE—— (Sa(b Ec)dengJéng 7
SaJZbc’d + 6 6bcdef Tész_zcz _ _Z 5[1[17 ec]dengJéTf_g 7 (2‘11)
| P 2 s
SaJZbc,d + § TaJZde _ _5 5(_1[b ec]dengJéng )
In particular, these identities imply that
de,EXaZ; _ ’ (212)



where

o I R
be _ b, bede,
Wa C_ _Za c+§€ac eré’

is the “intertwining tensor” coupling two-forms to the vector field strengths [40] whose rank

(2.13)

encodes the number of massive two-forms in the theory. The X_; are the gauge generators
evaluated in the vector representation, which take the form

d g_1 efd | osd L 2.d
(X;3):% = 74T+ 26[(135]6 + 08T + SO T

c Tabe = o Cabee 3%Tab T 3%aTble (2.14)

in terms of the embedding tensors (2.10). With 7,3 = 0, the corresponding theories are the
conventional gaugings of D = 7 supergravity constructed in [22]. In particular, the gaugings
triggered by S;; correspond to CSO(p, ¢, 5 —p — q) gauge groups. The corresponding twist
matrices for their D = 11 embedding have been provided in [11]. The gaugings triggered by
7 contain theories with gauge groups CSO(p, ¢, 4 —p—q) x (U(1))*P~7 and 1IB origin.
We will construct the corresponding twist matrices in this paper. A non-vanishing 7,
corresponds to a gauging of the trombone scaling symmetry of the D = 7 theory, resulting
in a theory that can be defined on the level of the equations of motion but does not admit
an action [18] while still allowing for an uplift to the ITA /IIB equations of motion.

3 Dualising ITA /TIB truncations

In the above we have reviewed how consistent truncations of the ITA /IIB theory are encoded
in Scherk-Schwarz twist matrices on the extended space (1.7) satisfying the consistency
conditions (2.10) and the section constraint (2.1). In this section, we will first realize the
duality (1.5) on the twist matrices and the coordinates of extended space in order to map
consistent ITA truncations into consistent I1IB truncations. In particular, this will provide
the full non-linear reduction Ansitze for the reduction of the IIB theory on S® and the
hyperboloids H?+.

At the level of the effective seven-dimensional theories this duality is realized on the
embedding tensors that define the maximal gaugings. Decomposing the embedding tensors
under the T-duality group as SL(5) — SL(4) ~ Spin(3,3) we find

15— 100401,
400 — 2030100604, (3.1)
10 —63®4.

We will now discuss the O(3,3) transformation (1.5) that exchanges the 10 +— 10" and
maps the two 6’s into themselves. We will show that it corresponds to a duality between
ITA and IIB truncations. This transformation extends SL(4) ~ Spin(3,3) to Pin(3,3),
acting on SL(4) as the outer automorphism.

3.1 Duality as an outer automorphism

In order to consider type II truncations, we first perform a dimensional reduction of the
exceptional space (1.7). In terms of SL(4) irreducible representations, the coordinates



decompose as Y — (YO‘B, Y"‘5), where a = 1,...4, cf. (2.3). We assume no dependence
on the Y5, i.e. reduce the exceptional space to the doubled space of DFT [41, 43-45],
see [46]. Depending on the choice of the physical coordinates among the remaining yeB,
the theory is of ITA or IIB origin according to (2.4). Let us also introduce the notation

1 1
Yog = seappsY 0, 00 =005, (3.2)

where €*#79 is the 4-dimensional totally-antisymmetric symbol. The flip between ITA and
IIB coordinates in (1.7) is then realized as

Yop < YO (3.3)

We start from the following GL(4) Ansatz for the SL(5) Scherk-Schwarz twist matrix

) —1/2v/ a
o ARG (3.4)
0 w?

with V,* € SL(4). Tt follows from (2.10) that this Ansatz can only produce gaugings in
the 10’s and 6’s according to the decomposition of (3.1). The corresponding embedding
tensors are given in terms of the twist by

Sag = Mas = P_le(aa@\ang)ﬂ, 75@.8) _ ppoB = p—lea(aalaﬁlyﬁﬁ),
2755 = —p tw <8Q5V@50‘6 - 5V&B“ﬁ8a5 Inw + 6V&Ba68ag In (p_lw)) , (3.5)

62707 = 267 = 1w (977,57 - 5V,s™ 9" Inw) |

where we use Vaﬁé‘g = V[aé‘VmB . The explicit form of these equations shows that combining
the flip (3.3) with the Zy outer automorphism of SL(4)

Vo — (V1)a™, (3.6)
induces the duality (1.5) on the embedding tensor. Concretely this takes

Mg M&B7 Tag 7567 5&6 — Eap s (3.7)
where 798 = %65‘5%7@5 and {5 = %66‘6;/55'75. Additionally, the dualisation of the coordi-
nates (3.3) exchanges ITA and IIB sections so that this duality relates ITA and IIB trun-
cations. The NS-NS sector remains invariant under the duality since in the half-maximal
theory both 10 and 10’ lie in the same O(3,3) orbit [19]. Within the maximal theory the
duality (1.5) relates consistent truncations of the maximal theories, which in general have
different gauge groups, vacua, and fluctuations.

The gaugings above are the only ones that survive the Zo projection to the half-
maximal theory [19]. In section 4, we will also discuss gaugings which do not survive the
Zs projection (these are the 20', 4’s and 1) and we will show that the duality above does
not, in general, hold for these cases.



3.2 Example: ITA and IIB on S$3 and HP*9

Before discussing the duality further, let us apply it to work out the consistent truncation
of IIB SUGRA on S? and on warped HP*¢ manifolds. According to the above discussion,
these are dual to the consistent truncations of IIA on these manifolds and yield a gauging
in the 10’ C 40" with gauge group CSO(p, ¢,7) x U(1)" where p+ q+1r = 4.

Let us begin by reading off w and V,® from the ITA twist matrices for CSO(p, q,)
gaugings given in [11]. Here and throughout this paper we will order the rows and columns
of Vo, @ as (i,4,z) with i,5,=1,...,4—rand z,y =5 —7,...,3. The twist is

(1—v)! /"6 — (1 =) My 0
Va& = | _ (1 o ,0)71/4 Knijyj (1 _ 0)73/4 (1 + Ku) 0 ’ W = (1 o U)l/lO ’
0 0 (1—v)4,

(3.8)
with u = §;;y'y’, v = n;5'y’, and the matrix 7;; being the SO(p — 1,¢) invariant di-
agonal matrix. Moreover, y* = Y™ and we make no distinction between un/barred and
upper/lower indices on the ITA coordinates 3. From (3.5), we further see that setting
p = w induces vanishing trombone parameter 7,; as required for these gaugings. Together,
the twist matrix then induces the gauging

Maz = 1z, Mz =1, Mzy =0. (3.9)
The function K (u,v) appearing in the twist satisfies the differential equation
2(1=v) (WK +v0,K)=((1+qg—p)(1—v) —u) K -1, (3.10)

with u = (5Z-jyiyj. This can be solved analytically for all allowed values p,q. The internal
space corresponding to these truncations are warped hyperboloids HP'¢ together with r flat
directions [11].

We now apply the duality (3.3), (3.6), to obtain the IIB truncations on H?¢ which
give rise to the CSO(p, ¢,r) gaugings in the 10" C 40’ such that

M7 =, M* =1, M™ =0, (3.11)

cf. (3.7). The IIB twist matrices are thus

(1=0) Y48+ Knijn 5 g7) (1—0)'/* K 0
5 _ \1/1
Vol = (1) /47 (1-5)%/4 0 . w=01-9)"", (312)
0 0 (1—)~Y/41,

with p = w and where now §; are IIB coordinates (2.4), @ = §§;7; and & = 57,3,
Using (2.7) and the parameterisation (2.5) we can read off the internal space of the com-
pactification. At the origin of the scalar coset, M;(x) = 04, we find the background,



given by:

o kg il
ds’ = (1+a—p) K&” 4 TR S 1y’“"~ yl) dijidi; + 6™V diadi,

+(1+a—0)Y*ds?, 5.15)

. 1
B = (1-9)" 2 (1 —— K) €My

e =(1+a—1)""%.

Here we let m,n = 1,2,3 and we denote by B™" the Kalb-Ramond form and by ¢ the
dilaton. We recall that following the conventions of [25] and matching the indices of the
IIB coordinates (2.4), the four-dimensional IIB indices are “upside-down” compared to
the usual placement. The internal space here is the a warped product HP? x R", where
HP4 is the surface satisfying n Uil + 22 =1 in R*™", with z an additional coordinate.
This coincides with the ITA background for this truncation, see [11]. The Kalb-Ramond
background field strength is given by

emnp

Frme = 3plm gl —
1—9)Y2 (1 +a—9)

s(p—qg—2+(@—-7)(p—q)), (3.14)

upon using (3.10).

Using (2.7), we can furthermore determine the full truncation Ansatz for the internal
fields as fluctuations about the background (3.13). To simplify the notation, we will for this
discussion not distinguish between barred and un-barred indices and we will simply refer
to the IIB coordinates as y;, i.e. drop the tilde. Let us start by considering the case where
p + q = 4. The truncation Ansatz can be elegantly formulated in terms of the harmonics

Ya = (ym 0 =0) ), ¥* =9, (3.15)
the auxiliary metric
ik, ol
i YRy _
9= T G = G i (3.16)
with volume form
DR = (1 — p) V2 k| (3.17)

and the auxiliary two form
B = o Ky +m) = 30VBM =27k, (3.18)

see section 3 of [13] on details of the construction. We note that only for the sphere case,
when 7;; = d;;, these auxiliary structures coincide with the background (3.13). Further-
more, it will be useful to decompose the scalar fields My, (z) as

1 3/2
K (Mag + Masmps) K2/ “mas
M, = , (3.19)
K3 2mgs K



with SL(4) matrix mqg. The truncation formulae for the internal components of all IIB
fields are then read off from (2.5), (2.7) and yield

gij _ K—5/4A3/56iyaajyﬂmaﬁ 7

KTP2YOVB (mag + Mmasmps) Vimas

Hyy = A2/5 )
Yompgs RO/ (3.20)
g o 2 .
Cii — {B”, o} — =07 {A‘lalA, —5m—5/2A4/5aly[“yﬁ]:Wmas)mm} :
G = I{3/4A_1/5GMV(IE) ’
in terms of the objects (3.15)—(3.19) and with the function A given by
_5/4
A= (yayﬁmaﬁ) . (3.21)

It is straightforward to verify that at the scalar origin My,(x) = d4p, these formulae reduce
to the background (3.13).

Let us now compare this result to the ITA truncation formulae on the dual background.
Define, now in terms of the IIA coordinates, the harmonics

ya = (yzv (1 - 0)71/2) ; yoz = naﬁyﬁ ; (322)
the auxiliary metric (as before but now with the reverse position of indices)

niky 0y’ )

Gij=mij+———, G0 =n"=yy, (3.23)
with volume form
e = (1= )" i, (3.24)
and the auxiliary two-form
Bij = f:)ijk (Knklyl + yk> - 38[2Bjk} = QLDijk . (3.25)

With the same scalar matrix (3.19), the truncation formulae for the internal components
of all ITA fields are again read off from (2.5), (2.7) and yield

gij = KNP0, Y°0, VP mep
e — K5/2A2/5 ,

Ci = k°20; (VMays)
(3.26)

2. 1. .
Bij = Bij — ;A 'Gikg" oA,
Cijr = —5_3/2A4/55Jz‘jkma5maﬁyﬁ,

G = /13/4A_1/5G/JV($) 7

,10,



in terms of the above objects and with

A= (maﬁyay,@>_5/4 . (3.27)

We can now see that the full reduction formulae of the ITA and IIB truncations coincide
for the NS-NS sector and are related by the same SL(4) outer automorphism we have used
for the twists, extended to the scalar fields (3.19)

m — mags, YV, > V&, (3.28)

Finally, let us also give the reduction formulae when 2 < p + ¢ < 4. To keep the
notation more compact it will now be useful to use the dualised form potentials. For IIB

these are 1
CLt = §6mnp0”p’“, (3.29)
while for ITA they are
m 1 mnp 1 mnp
B™ = 56 B, C = ?6 Crnp - (3.30)

Let us once again start with the IIB reduction. Recall that our convention is that m = (i, x)
where n*¥ = 0 and % # 0. Let

ya: (ylu (]-_1))1/27 y:v) ) ya:naﬁyﬁ7
(3.31)
—5/4 - 1 . 3 .
A= (masy¥?) By = gen B = (1— o) (Knyy? + i) .

and g;;, §% as before. Then we obtain the IIB truncation formulae
gmn _ R—5/4A3/56myaanyﬁmaﬁ ’

5_5/2yayﬁma,8 Ymas

Huv = A2/5
5/2

yﬁmﬁs) K
Ot = {BZ-, o} - % (1—v)"2g; {A‘laﬂ'A, —5/-:‘5/2A4/58j37[“y5]y”mas,mﬁy} ;
C," = (1 - ’U)_l/2 A4/5 {m:nayay 5_5/2 (maﬁmm5 - ma5mxﬁ> yayﬂ} >

I = /@3/4A*1/5GW($) .

(3.32)
The corresponding IIA formulae can be given in terms of
Y = (v =0 y) s Ya=nasd,
Al (maﬁyayg) —5/4 | B = (1 v) V4 Koy, + o) . (3.33)
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and read
Imn = 5_5/4A3/5amyaanyﬁma,8 y

e = k5225

Co = K720, (VMas)
B' =B — % (1—v)"2A"1GH A (3.34)
B*=—-(1- U)_1/2 KA mrey,
C=—(1- v)*l/Q /4;_3/2A4/5ma5m0‘ﬁy5 ’
g = KATVPG ()
3.3 A no-go theorem on ITA /IIB uplifts

We have just shown that the IIA truncations with gaugings in the 10 C 15 induce dual IIB
truncations with gaugings in the 10’ C 40’, according to the embedding (3.1). A natural
question to ask is whether it is possible to obtain the 10 C 15 gauging by a IIB truncation
— or equivalently the 10’ C 40’ by a ITA truncation. We will now show that this cannot
be done by analysing the symmetries of the embedding tensor.

In order to use symmetry properties of the embedding tensor, we work in the 10-
dimensional representation with

TaE,EJéf = 27—&5,[6[65&]ﬁ ) (3.35)

where Tag7éd represents the embedding tensor as given in (2.14). The consistency equa-
tions (2.10) in this representation can conveniently be computed in terms of

Ey™ =p U[aaUB]b . (3.36)
via the generalized Lie derivative
1 1 5F
[’EaEEEcZef = §EagabaabEécjef + §E5JefaabEagab + QEEJa[eaabEagf]b = _TaE,EJEfEéf_ef :
(3.37)

We first assume that the twist only depends on ITA coordinates Y™* and introduce the
following notation

1
Ea645 — Ral?a Ea’m4 — K({m7 Ea5m5 _ §6mannp,al;7 Ea,mn — mnp b -
(3.38)
Then the consistency condition (3.37) takes the form
- aE,EJéfKéfm = £a(3Kaim = KaénanKEJm - KédnanKaBm )
_TaB,EJEfRéf = K" O Req — K" Om Ry, (3.39)

*TaB,éziéfLmn,éf = ‘CEL(_)Lmn,Ed_ - ?’KaEpa[men},aB - 2Tézi[m8n] Rap + 2Réd_8[mT|aB|,n] )

_T&B,Eciéme,éf = ﬁ&BTm,Ecj - 2K5Jna[nTm],aB'

— 12 —



Here L5 denotes the standard Lie derivative with diffeomorphism parameter K ;™ acting
mn.ab Note that_in the _ﬁrst two
equations, the right-hand side is antisymmetric under the exchange of [ab] <+ [¢d]. Thus,

on vectors K ;" and co-vectors 7T, m.ab and two-forms L

we see that certain contractions of the symmetric part of the embedding tensor vanish. Its
symmetric part is given by the intertwining tensor (2.13),

ef ef ef.g h
Tai),aief + TE&,@Bef = faBEJgWELg = abcngef 948 &ng Tgh - (3.40)

Thus, a necessary requirement for gaugings to be lifted to ITA is that
3ZP G — e K™ =0, 32" Ry, — € Rp=0.  (3.41)

For completeness let us also consider the analogous consistency equations for the IIB
theory. In terms of

1
Eg"" ="K p.ab> Eab45 3|€mnpRabmnp7 Egg™" = Lagg™ ", (3.42)

where u = 4,5 labels the SL(2) symmetry of IIB, equation (3.37) becomes

—Tab, EcZéme ef — ‘CZLI_)Km ed — n aban m,ed n cdanK
T CdefRefﬂ"mp = LR + 6eyy Loy ™M om L7l (3.43)
- aa,aff L™ = LogLeg™" + 2K, 00" L™

Here L;; denotes the standard IIB Lie derivative, i.e. with upside-down indices (see for
example [25]), with the diffeomorphism parameter K; ;;. We see that the right-hand side
of the first equation is antisymmetric under the exchange of the pair of indices [&l_?] > [Ecﬂ .
Thus, we find that for a gauging to be of IIB origin, we must have
3Z"K,, 5o — €K, o =0. (3.44)
Let us now return to the question of whether the 10’ C 40’ can come from IIA. To
differentiate between the ITA and IIB theories we require dependence on all three internal
coordinates and so we consider the case where the gaugings of the 10’ are not degenerate.
Using (3.40) it is easy to show that when M = %7 is not degenerate, (3.41) can only
be satisfied by a vanishing twist matrix. Thus these gaugings cannot be obtained from a
ITA truncation. In particular, this applies to the SO(4) theory. By the duality established
above, in turn a non-degenerate Mz = 1);5 cannot be obtained from a IIB truncation.
This is interesting in the light of the half-maximal theory, where there is a family of
SO(4) gaugings involving non-degenerate gaugings in both M5 and M9 i.e.inthe 10 and
10’ [19]. The result here suggests that such gaugings can only be obtained by violating the
section condition, as the corresponding twist matrix would be required to depend both on

ITA coordinates and their dual IIB ones. Indeed, this has been shown for the half-maximal
theory in [19, 47].
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4 Dualising the 4’s

Recall from (3.1) that the embedding tensor also contains two 4’s and one 4’. Can the
duality discussed above be extended to these gaugings? Let us begin by relaxing the
Ansatz (3.4) in order to have non-zero 4’s. Consider first

—1/2y; a ,,—1/2
g (@ Ve e A (4.1)
0 w?

The consistency equations are then
Mag = p WV g V), M = p lwV,@0lflv0)
25 =—p w<8 Vﬁo‘ﬁ—f)V 58a51nw+6 8a51n(p 1w)> ,
- _ _ (4.2)
269 = p~lw (80‘5Va50‘5 - 5Va5°"88°‘5 lnw) ,
2955 = p V50 A5 + <M0‘ﬁ + 5“5) Az,
where Az = V3z%A,. We see that the equations for the 10’s and 6’s are unchanged but
additionally the 4' C 40’ can be gauged. If we instead take the Ansatz

~ 71/2‘/ a
v , (4.3)
w?BY W2

we again find the same 10’s and 6’s as in (3.5) but additionally the following can be gauged:

Tas = —%p v, 0‘58 5BB — BBTQB,
7B _ lp ety 5p86 B'Y_ge apyp (555+BSM55>+2B[5‘ (MB]?_i_gBH) —oplaghi
Sys = —%p LWV, 5%0,3B" — BP M5
Ses = —B° (2Sa5+B M, ) .
(4.4)

The SL(4) (co-)vectors A, and B® should be exchanged by the outer automorphism of
SL(4) so that

Vol s (Va1 O > 0°P Ay < B>, (4.5)

This maps a solution of the equations (4.4) to a solution of (4.2) but not vice versa. Thus,
it is not in general possible to map a twist that gauges the 4’ C 40’ into a twist gauging
the 4 C 15, 4 C 10 and 20’ C 40’. Furthermore, if we start with a gauging of the 4’ C 40’
that satisfies the quadratic constraints (2.11) and perform the duality to obtain a gauging
in the 4 C 15,4 C 10 and 20’ C 40/, then this dual gauging does not in general satisfy the
quadratic constraint. Then the dual gaugings do not define a consistent gauged SUGRA.
We will see an example of this in section 5.2.
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Orbit Mg Mas 7855 | B |
1 diag (n,1,0,0) diag (0,0,7,1) 0 0
2 diag (1,0,0,0) cos a | diag (0,0,0,1)sin« 0 0 0
3 diag (n,7',1,0) 0 (0,0,0,1) 0
4 diag (1, 1,0, 0) 0 0,0,0,1)| 0 | 0
5 diag (1,0,0,0) cos a | diag(0,0,0,1)sina | (0,0,1,0) 0 0
6 diag (0,0,0,0) diag (0,0,0,0) 0 A—11 A
7 diag (n,1,0,0) 0 0 —a a
8 diag (n,1,0,0) diag (0,0,7,1) 0 —a a
9 diag (1,0,0,0) cos v | diag (0,0,0,1)sin« 0 —a a

Table 1. Orbits of gaugings for which we will construct uplifts. Each « in the range —7/2 < o <,

each A =1, %, 0, each 1, " = £1 and each a € R labels different inequivalent orbits.

5 Further examples

We will now use our twist Ansétze (3.4), (4.1) and (4.3) and the duality discussed above to
obtain new uplifts of various maximal gauged SUGRAs. This is not an exhaustive list of
solutions to the quadratic constraints, but rather a selection of examples for which uplifts
to type IT SUGRA can be constructed nicely with the twist Ansétze we have considered

so far. The gaugings we consider are summarised in table 1. Each value of « in the range
) %7
each a € R labels different inequivalent orbits. Note that for orbits 1 and 7-9 we have

—71/2 < a < 7, as well as each A\ taking the values A = 1 0, each n, 7’ = +1 and
indicated that the gaugings in the 4 vanish. This is because any non-zero gaugings in the 4
allowed by the quadratic constraint (2.11) can be removed by an SL(5) transformation and
thus lead to equivalent 7-dimensional theories. Orbits 6-9 involve the trombone gauging
(when A # 0) and thus the 7-dimensional theories they represent do not admit an action
principle. We will see in section 5.5 that in some cases their uplifts are non-geometric,
where the trombone scaling symmetry is used to patch together the solution.

5.1 Orbits 1 and 2

In section 3.3 we showed that non-degenerate gaugings in the 10 descend from ITA and
those in the 10" descend from IIB. Let us now uplift gaugings which mix the 10 and 10’.
The quadratic constraint is now

MY Mgy =0. (5.1)

The solutions are given by orbits 4-11 of [19].

Orbit 1. This orbit can be represented by the gaugings

M5 = diag (n,1,0,0) , M7 = diag (0,0,7,1) . (5.2)
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These correspond to an embedding of orbits 6 and 9 (with a = 7/4) of [19] into the maximal
theory.
The twist matrices are given by

(1—v)* =y (1 —v) 0 0
e [n@-oT A= 0 0 |
0 0 (1—0)3* —y (1 =)/ (5.3)
0 0 (=0 g (1 —0)¥
w=(1- 0)1/10 ’

with p = w and where v = 7y and u = y}. From (2.5) we find the internal space in string
frame to be

0 2 _ _
ds = (1—v) 1dy%+dy§+dy§—2y1(n—1)(1—v)1/2(1+u—v) Y dyadys + ds?,

Bys=y1(p—1D)(1-0)20+u—-0v)"", e=0+u—v)""2.
(5.4)

Note that when n = 1 the background is the Kaluza-Klein circle encountered in (3.13).
However, the internal space will be different at other points in the scalar moduli space. It
is of course also possible to generate the gaugings

M, = diag (0,0,7,1) , M =diag(,1,0,0) , (5.5)

by applying the duality discussed in section 3.1. As before, the internal space remains the
same under the duality.

Orbit 2. These orbits describe an embedding of orbits 11 of [19] into the maximal theory.
The gaugings are

M5 = diag (0,1,0,0) cosa, N8 = diag (0,0,0,1) sin v, (5.6)
where —7/2 < v < 7 gives the range of inequivalent orbits. The twist matrices are given by

1 —yjcosa 0 0
~ 0 1 0 0
Voo = . ) w=1, (5.7)
0 0 1 —ypsina

0 0 0 1
where y; = Y'* and the internal space is given by

ds® = dy% + dy% + (dys — y1sina dyg)2 + ds%, (5.8)
Bas =y1cosa, .

with all other fields vanishing. The dual gaugings M5 «— M8 are in this case equivalent
to the gaugings discussed.
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5.2 Orbits 3 and 4

When M3 and Z9:5 are the only non-zero gaugings, the quadratic constraint is

M. 52755 = 0. (5.9)

(e}

Thus, Z a5,5 # 0 only when M5 is degenerate. Let us consider separately the cases where
M35 has rank 3 and rank 2, corresponding to orbits 3 and 4 in table 1, respectively.

Orbit 3. Take Mz; = 5, Mzz = 1 and M3z = 0, with 7,7 = 1,2 and all other elements
vanishing. Then by (5.9) we can only have

735 = ¢ (5.10)

We could use an SL(5) transformation to set ¢ = 1 but we will not do so here to keep track
of ¢ in the internal space. However, the reader should keep in mind that all values of ¢ # 0
correspond to equivalent 7-dimensional theories.

From the no-go theorem (3.41) one finds that this gauging cannot be obtained by a ITA
truncation. It can, however, be lifted to 10-dimensional IIB SUGRA using the Ansatz (4.1)
with the same V,% as in (3.12) with 7 = 1 and with

Ag=—cys(1—v)™Y4 A, =43=0, (5.11)

where y3 = Y2 is the third IIB coordinate. Recall that the other two coordinate are given
by y1 = Y, yo = Y24, The background for this truncation is given by

ds’ = ds2 + (1 =11 54 du.d (77ij3/z‘dyj)2
s =ds7+ (1 —-v) L e Sr—
S l+K(1+u—wv) 2 (5.12)
1+u—v)|d 1— o) 12 Gyidy;
) [di o+ (-0 S )

CY = —cys (1 — v)*l/2 €,

As before, we use the convention of [25] where IIB indices are placed “upside-down” and Cii
labels the Ramond-Ramond two-form. The metric here is the T-dual of the HP? solutions
in (3.13). Furthermore, only the two-form depends on ¢ and the NS-NS sector remains
invariant as ¢ is turned on.

Orbit 4. Take Mj; =7, M3; = 1 and all other components vanishing. Then by (5.9) we
can have the gaugings
70 = ¢, Z3%5 =d. (5.13)

One can use an SL(5) transformation to set ¢ = 0 and d = 1 but we will not do so here to
keep track of where the gaugings appear in the internal space. Once again, however, the
reader should remember that different values of ¢ and d (with at least one non-vanishing)
correspond to the same 7-dimensional theory.
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We again use the Ansatz (4.1) with V,® as in (3.12) with r = 2 and solve the gauging

of the Z% by
A =(1- v)_1/4 (cys — dy2) , (5.14)
with all other A, = 0, a # 1. The twist now only depends on y; = Y™, 3, = Y24 and

y3 = Y3* and so gives an uplift to ITA supergravity. From (2.5) the internal space is found
to be

—2/3

.2
ds;; = (1+u—v) dy% + dy% + (dz + Cldy1)2

dy? _
1 _\1/3 1 1 B 2/3 342
+(1+u—0v) 71_1)4-( +u—v) 5%, (5.15)

Cose=(14+u—v) A=) (1 =n)y,

Co’l =(1- U)_1/2 (cys — dys) -

This is the same circle/hyperbola reduction as in (3.13) but with an additional Ramond-
Ramond one-form C turned on. Similar to orbit 3, only the Ramond-Ramond one-form
depends on ¢ and d.

To conclude the discussion of these orbits, let us consider the dual gaugings. The
duality would give gaugings of the 4 C 15, 4 C 10 with

Sd5 = Tab , (516)

as well as possibly the 20’. However, these gaugings violate the quadratic constraint (2.11)
and hence they do not define a consistent gauged SUGRA.

5.3 Orbit 5

For the gaugings Mz = diag (0, 1,0,0) cos @ and M8 = diag (0,0,0, 1) sin v the quadratic
constraint allows the 4’s o
Z%5 = (d,0,c,e) . (5.17)

We can use an SL(5) transformation to make two of these vanish and scale the third. Let
us thus take d = e = 0 but keep ¢ # 1 in general so that we can see where it ends up in the
internal space. The twist matrix is then given by Ansatz (4.1) with V,% as in (5.7) and

As =cy; . (5.18)
The internal space is then given by

09 .
ds” = dy? + dy? + (dys — y1 sina dy)* + ds?
Bos = y1 cosa,

B = (5.19)
Cy = —cy?sina,
ég = CyYq -

As for orbits 3 and 4 we find that the parameter ¢ only appears in the Ramond-Ramond
1-form. The dual gaugings would again not satisfy the quadratic constraint (2.11).
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5.4 Orbit 6
To keep our formulae simple we will actually uplift the gaugings

ma=3\-1), =3, (5.20)
1

’ 9
the block-diagonal Ansatz for the twist matrix (3.4) and by choosing the scalars p and w

with inequivalent gaugings for A = 1,5,0. We can obtain these gaugings easily using

appropriately.
The twist matrix is given by Vo® = §,% with scalars w = (1 —y1)V° and p =
(1—a- y)6>‘/571. The internal space in string frame is
592 .
ds” = dypmdy™ + (1 —a-y)* ds2 e =(1—a-y*. (5.21)

We can see that the string-frame metric is independent of A and the dilaton tunes between
the different gaugings. In particular, when A = 1 we have a standard 7-dimensional gauged
SUGRA, whereas for the cases A = 0 and A = 1/2 the 7-dimensional theory does not have
an action principle, even though it can still be uplifted to 10-dimensional SUGRA. For
each A the outer automorphism discussed in section 3.1 relates equivalent gaugings.

5.5 Orbits 7-9

The gaugings we consider here involve some of the gaugings encountered previously in
this paper together with both 6’s. These can be uplifted by using almost the same twist
matrices as without the 6’s. In particular we will keep V,® unchanged but change p = w.
Let us write p = w = wph, where wq is the value of w where the 6’s vanish. The function
h then has to satisfy

2755 = —2855 = 5V35""0apnh. (5.22)

Orbit 7. Let us start with the ITA sphere/hyperboloid case (3.8) where wp = (1 — 0)71/10.

The quadratic constraint (2.11) implies the only gaugings with non-zero ¢ = —798 are
given by

M,; = diag (,1,0,0) , 73 =—£ =a. (5.23)

For a = 0 these are S' and H! reductions. Now, we find

h = exp <2a arcsin (\/ﬁyl) ) . (5.24)

5/

The internal space in string-frame is given by

o 2 1
ds" = ——dy? +

T (dys + dy3) + ds3,

l+u—vw

By =(1-v)"?(1+u—v)(n—1)y, (5.25)

e =1+u— v)_1/2 exp (aarcsir;/%ﬁyﬁ) )
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We see that when 1 = 1, the internal space is non-geometric because the dilaton is not
globally well-defined. Instead, it is patched by the trombone scaling symmetry of the
equations of motion. This is a reminiscent of the non-geometric construction in [14] albeit
in seven dimensions.

Orbit 8. For the gaugings
My = diag (1,1,0,0) , M =diag(0,0,7,1) , m3=—(2=a, (5.26)

with V,% and w as in (5.3), the consistency condition on h, (5.22), has the same solution
h as in (5.24). We find the internal space in string-frame

0 2 _ .
ds = (1—v) 1dy%—|—dy§—|—dy§+2y(77—1)(1—1})1/2(1+u—v) Y dyadys + ds?,

Bos=(1—-0)"?(1+u—v)"yn—1),

¢ = (1+u—v)2exp <a arCSiI\l/%ﬁ:Ul)) '

(5.27)
Orbit 9. For the gaugings
Mg = diag (0,1,0,0) cosa, M =diag (0,0,0,1)sinc, 713 = €% =a, (5.28)

with V,® and wg as in (5.7) we find

2
h = exp (;m) ) (5.29)

The internal space in string-frame is

592 )
ds = dy% + dy% + (dys — y1 sin« dyg)2 + ds%,
By =y cosa, (5.30)

e? = exp (ay1) .
6 Conclusions

In this paper we studied consistent truncations of type IIA and IIB SUGRA to 7-
dimensional maximal gauged SUGRA using exceptional field theory. By using a GL(4)
Ansatz for the twist matrices, we showed that ITA/IIB consistent truncations are related
by the outer automorphism of SL(4) which acts on the irreducible representations of the
embedding tensor as

10 +— 10,, 640 <— 649 s 6190 <— 61 . (6.1)

Here 649 and 63y denote the 6’s coming from the 40" of SL(5) and from the trombone
gauging, respectively. We also showed that this duality between IIA and IIB consistent
truncations always exists when the embedding tensor has vanishing components in the
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4’ of SL(4). Otherwise, the dual gaugings will in general not satisfy the quadratic con-
straints (2.11).

We used this duality to prove the consistent truncation of IIB on S® and HP? by con-
structing twist matrices that give rise to the relevant CSO(p, ¢, ) gaugings with embedding
tensor in the 40’. The twist matrices are dual to those describing the ITA uplift of gaugings
in the 15 [11]. Using the dictionary between EFT and ITA/IIB fields, we used the twist
matrices to derive the full truncation Anséitze for the internal sectors of the ITA and IIB
reductions. They were shown to coincide in the NS-NS sector. This is a general feature
of the duality: it relates truncations with the same NS-NS sector. Finally, from the form
of the consistency equations we derived some no-go theorems showing that non-degenerate
gaugings with ITA origin cannot also be uplifted to IIB and vice versa.

In the second part of this paper we further generalised the twist matrices of [11] to
uplift other gaugings of 7-dimensional maximal gauged SUGRA to type II SUGRA. These
examples include gaugings of the 15 and 40’ simultaneously, and of the trombone, where
the gauged SUGRA does not admit a Lagrangian. In the latter case, the internal space
of the truncation is only well-defined up to the R™ scaling symmetry of the equations of
motion. Among the direct applications of these uplift formulas is the higher-dimensional
embedding of the vacua found in the lower-dimensional theories, such as [48].

The twist matrices used throughout this paper are defined in local patches. For the
truncation to be consistent, these twist matrices must yield a generalised parallelisation [9].
To show this we would have to patch our twist matrices to obtain globally well-defined
vector fields. A patching prescription for exceptional field theory is still lacking, although
it is known for double field theory [49-52]. Whatever this covariant patching prescription
will be, it should consist of the global SL(5) x R™ symmetries of the 7-dimensional SUGRA.
We can thus argue that our twist matrices are well-defined by checking that the internal
space they define is well-defined up to SL(5) x R™ dualities. This is indeed the case for all
the examples given here.

The duality established in this paper exchanges IIA and IIB consistent truncations,
by relating different irreducible representations of the embedding tensor of 7-dimensional
gauged supergravity according to the embedding (3.1). Similar dualities are expected to
arise in all dimensions. In contrast to the 7-dimensional case, for all other dimensions the
embedding tensor X 4pc of the half-maximal theory sits in an irreducible representation of
SO(d,d), thus in a single irreducible representation of the Fy j(44+1) duality group of the
maximal theory. It is thus less clear if the resulting gaugings sit in different orbits of the
duality group according to their ITA/IIB origin, i.e. if ITA and IIB reductions give rise to
inequivalent lower-dimensional theories. A natural starting point for further investigation
are 3-dimensional maximal gauged SUGRAs. These are known to have two inequivalent
SO(8) gaugings, expected to arise from S” reductions of ITA/IIB [53]. Indeed, the full
EFT has been constructed for this case [54] so that the full reduction Ansétze of the
S7 truncations could then also be derived. It would also be interesting to cast into this
framework consistent truncations of the massive IIA theory such as [55] which would require
a (modest) dependence of the twist matrices on one of the non-physical coordinates, cf. [56].

Finally, it would be interesting to try and find a systematic procedure for the construc-
tion of the twist matrices for all possible allowed gaugings of the quadratic constraint (2.11).
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An interesting proposal for the case of half-maximal gauged SUGRA appeared in [20]. How-
ever, the resulting twist matrices are not O(d, d)-valued so that it is not immediately clear
how to find the associated reduction Ansatze.
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