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1 Introduction

The investigation of entanglement entropy has been gaining more and more attention in

the last decade. We give the definitions of entanglement entropy [1, 2]. For a system with

normalized density matrix ρ with tr ρ = 1, one can divide the system into a subsystem A

and its complement B. The entanglement is defined as

SA = − trA ρA log ρA, (1.1)

with the reduced density matrix being ρA = trB ρ. It encodes the quantum entanglement

between A and B. To calculate the entanglement entropy, one can use the replica trick [3].

One firstly calculates the Rényi entropy

S
(n)
A = −

1

n− 1
log trA ρnA, (1.2)

and then takes n → 1 limit to get the entanglement entropy. For two subsystems A and B

that are not necessarily complements of each other, one can define the mutual information

IA,B = SA + SA − SA∪B, (1.3)

and the Rényi mutual entropy

I
(n)
A,B = S

(n)
A + S

(n)
B − S

(n)
A∪B. (1.4)

When there is no ambiguity, we write for short S = SA, Sn = S
(n)
A , I = IA,B, and In = I

(n)
A,B.

– 1 –
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The Rényi entropies in a two-dimensional conformal field theory (CFT) are much easier

to calculate than their higher dimensional cousins. For the case of one interval on an infinite

straight line with zero temperature, the Rényi entropy is exact and universal [4]

Sn =
c(n+ 1)

6n
log

l

ǫ
, (1.5)

with c being central charge of the CFT, l being the length of the interval, and ǫ being

the UV cutoff. For cases of multiple intervals, there are no universal results and details of

the CFT are needed [5–9]. However, when the interval is short perturbative calculation is

available [8–10]. Similarly, Rényi entropy of one interval on a circle with zero temperature

is universal [4]

Sn =
c(n+ 1)

6n
log

(

R

πǫ
sin

πl

R

)

, (1.6)

with l and R being lengthes of the interval and the circle, respectively. When low temper-

ature is turned on, there would be thermal corrections to the Rényi entropy that depend

on field contents of the CFT [11–15].

As an application of the AdS/CFT correspondence [16–19], one can calculate the

entanglement entropy in a CFT using the holographic entanglement entropy [20–23] in

anti-de Sitter (AdS) spacetime. For a subsystem A in the boundary of the AdS spacetime,

the holographic entanglement entropy is proportional to area of the minimal surface ΣA in

the bulk that is homogenous to A

SA =
Area(ΣA)

4G
, (1.7)

with G being the Newton constant. The area law of the Ryu-Takayanagi (RT) formula for

the holographic entanglement entropy has been proved in terms of the generalized gravita-

tional entropy [24]. The RT formula is proportional to the inverse of Newton constant and

so is only the classical result, and there are also subleading quantum corrections [8, 25, 26].

It was proposed long time ago that quantum gravity in AdS3 spacetime is dual to a

two-dimensional CFT with central charge [27]

c =
3ℓ

2G
, (1.8)

where ℓ is the AdS radius. Expansion of small Newton constant in gravity side corresponds

to expansion of large central charge in CFT side. The RT formula in AdS3/CFT2 corre-

spondence was analyzed carefully in both the CFT and gravity sides. In CFT side the tree

level Rényi entropy at large central charge is related to Virasoro vacuum block, which only

depends on operators in conformal family of identity operator [28]. The corresponding clas-

sical gravitational configuration was constructed in [29]. Furthermore, 1-loop corrections

to holographic Rényi entropy under this gravitational background were calculated in [25],

and the field contents of gravity theory are relevant.

Various conditions have been investigated for the holographic entropy of two short

intervals on a line with zero temperature [8, 10, 25, 30–34]. One could get the Rényi

entropy in expansion of the small cross ration x. There were calculations in both the
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gravity and CFT sides, and perfect matches were found. In case of the correspondence

between pure Einstein gravity and a large central charge CFT, there are contributions of

graviton in gravity side and contributions of stress tensor T , T̄ in CFT side [8, 10, 25, 30, 34].

In case of higher spin gravity/CFT with W symmetry correspondence, with higher spin

chemical potential being turned off, there are contributions of graviton and higher spin

fields in gravity side and contributions of stress tensor T , T̄ and W , W̄ operators in CFT

side [30, 31, 33, 34]. In case of critical massive gravity/logarithmic CFT correspondence,

there are contributions of graviton and logarithmic modes in gravity side and contributions

of stress tensor T , T̄ and their logarithmic partners in CFT side [32]. A scalar field in the

bulk corresponds to a scalar operator in the CFT, and the 1-loop holographic entanglement

entropy of the case was considered in [33]. There is a similar story for the holographic Rényi

entropy of one interval on a circle with low temperature [13–15, 25].

In this paper we extend the previous results to supersymmetric AdS3/CFT2 corre-

spondence. In gravity side we consider N = 1 supergravity (SUGRA) in AdS3 spacetime,

where there is massless graviton as well massless gravitino. The N = 1 SUGRA is dual

to a two-dimensional N = (1, 1) superconformal field theory (SCFT), where we have to

consider the stress tensor T , T̄ and their superpartners G, Ḡ. We calculate the Rényi en-

tropy of both cases of two short intervals on a line with zero temperature and one interval

on a circle with low temperature in both SUGRA and SCFT sides. For the case of two

intervals, we get the Rényi mutual information to order x5 with x being the cross ratio.

For the case of one interval on a circle, we get the Rényi entropy to order e−5πβ/R with

β being the inverse temperature and R being the length of the circle. There are perfect

matches between SUGRA and SCFT results for both cases.

When dealing with a two-dimensional SCFT, one should be careful with the boundary

conditions of fermionic operators. For an SCFT on a cylinder, one can consider antiperiodic

boundary condition of fermionic operators, and it is called Neveu-Schwarz (NS) sector of

the SCFT. Or one can consider periodic boundary condition, and it is called Ramond

(R) sector. One can use a conformal transformation and map an SCFT on a cylinder to

an SCFT on a complex plane. For an SCFT on a complex plane, in NS sector fermionic

operators are periodic when circling around the origin, while in R sector fermionic operators

are antiperiodic. Fermionic operators are expanded by half-integer modes in NS sector, and

by integer modes in R sector. In NS sector vacuum of an SCFT on a complex plane one has

the conformal weights hNS = h̄NS = 0, and in R sector vacuum one has hR = h̄R = c
24 with

c being the central charge. In NS vacuum of an SCFT on a cylinder one has the energy

HNS = − πc
6R with R being the circumference of the cylinder, and in R sector vacuum one

has HR = 0. In large central charge limit, R sector vacuum is highly excited compared

to NS vacuum, and so contributions of R sector to Rényi entropy are highly repressed. In

AdS3/CFT2 correspondence, NS sector SCFT corresponds to quantum gravity in global

AdS3 spacetime, while on the other hand R sector SCFT corresponds to quantum gravity

in background of zero mass BTZ black hole [35, 36]. Thus the gravitational configuration

in [25, 29] only corresponds to the NS sector SCFT. So in this paper we only consider

contributions of NS sector to Rényi entropy.

The rest of the paper is arranged as follows. In section 2 we give some basic properties

of the two-dimensional N = (1, 1) SCFT. In section 3 we calculate the Rényi mutual

– 3 –
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information for the case of two intervals on a line with zero temperature in both the

SUGRA and SCFT sides. In section 4 we consider the case of one interval on a circle

with low temperature. We conclude with discussion in section 5. We collect some useful

summation formulas in appendix A.

2 Basics of two-dimensional N = (1, 1) SCFT

In this section we give some basic properties of the two-dimensional N = (1, 1) SCFT on

a complex plane that are useful in this paper. One can see details in, for example, the

textbooks [37–39].

In the two-dimensional N = (1, 1) SCFT, one has the stress tensor T (z) and T̄ (z̄) and

their superpartners G(z) and Ḡ(z̄). Operator G(z) is a holomorphic primary operator with

conformal weights h = 3/2, h̄ = 0, and Ḡ(z̄) is an antiholomorphic primary operator with

conformal weights h = 0, h̄ = 3/2. Since the holomorphic and antiholomorphic parts are

independent and similar, we will only discuss the holomorphic part below.

For holomorphic quasiprimary operators φi we have two-point function

〈φi(z)φj(w)〉C =
αiδij

(z − w)2hi
, (2.1)

with C denoting the complex plane, hi being conformal weight of φi, and αi being the

normalization factor. Note that the operators φi are orthogonalized but not normalized. Of

course we have α1 = 1 for the identity operator 1. For a holomorphic quasiprimary operator

φ with conformal weight h and normalization factor αφ, we have the mode expansion

φ(z) =
∑

r

φr

zr+h
, (2.2)

with r being integers or half-integers when h is an integer or a half-integer. Note that we

only consider NS sector for fermionic operators in this paper. When φ is hermitian, we

have φ†
r = φ−r. We also have

φr|0〉 = 0, r > −h, (2.3)

with |0〉 being the vacuum state. We have the correspondence between operators and states

∂mφ ↔ |∂mφ〉 ≡ ∂mφ(0)|0〉 = m!φ−h−m|0〉, m = 0, 1, 2, · · · . (2.4)

We have the bra states

〈∂mφ| = |∂mφ〉† = m!〈0|φh+m = 〈0|∂mφ(∞), (2.5)

with the definitions

∂mφ(∞) ≡ lim
z→∞

(−z2∂z)
m[z2hφ(z)]. (2.6)

We have the normalization factors

α∂mφ ≡ 〈∂mφ|∂mφ〉 =
m!(2h+m− 1)!

(2h− 1)!
αφ. (2.7)

– 4 –
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For examples, when m = 0, 1, 2 we have

φ(∞) = z2hφ(z), ∂φ(∞) = −z2h+2∂φ(z)− 2hz2h+1φ(z), (2.8)

∂2φ(∞) = z2h+4∂2φ(z) + 2(2h+ 1)z2h+3∂φ(z) + 2h(2h+ 1)z2h+2φ(z),

with the limit z → ∞. Note that the products of bra and ket states can be written as

correlation functions. For example we have

〈∂mφi|∂
nφj〉 = 〈∂mφi(∞)∂nφj(0)〉C = α∂mφiδijδ

mn. (2.9)

This strategy has been used in [14, 15, 34] to calculate correlation functions.

For quasiprimary operator T and primary operator G, we adopt the usual normaliza-

tion factors

αT =
c

2
, αG =

2c

3
, (2.10)

with c being the central charge of the SCFT. As stated in the introduction, we only consider

NS sector of the SCFT, and so we expand G by half-integer modes. We use Lm with m ∈ Z

and Gr with r ∈ Z +1/2 to denote the modes of the T (z) and G(z), and then we have the

N = 1 super Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,

[Lm, Gr] =
(m

2
− r
)

Gm+r, (2.11)

{Gr, Gs} = 2Lr+s +
c

3

(

r2 −
1

4

)

δr+s.

Note that every local operator in a two-dimensional unitary CFT can be written as

linear combinations of quasiprimary operators and their derivatives.1 We count the number

of linearly independent holomorphic operators in the N = (1, 1) SCFT to level 5 as

trxL0 =
∞
∏

m=0

1 + xm+3/2

1− xm+2
= 1+x3/2+x2+x5/2+x3+2x7/2+3x4+3x9/2+3x5+O(x11/2),

(2.12)

from which we get the number of holomorphic quasiprimary operators to level 5 as

(1− x) trxL0 + x = 1 + x3/2 + x2 + x7/2 + 2x4 + x9/2 +O(x11/2). (2.13)

1For the N = (1, 1) SCFT, we can also introduce a complex Grassmann variable θ and work in a

superspace with coordinate (z, θ). The quasiprimary operators can be combined as super quasiprimary

operators in superspace. Each holomorphic super quasiprimary operator is composed of two holomorphic

quasiprimary operators Φ(z, θ) = φ(z) + θψ(z), and they are related by |ψ〉 ∼ G
−1/2|φ〉. This may be

useful in the search of quasiprimary operators in higer levels. Also for the SCFTn that will be introduced in

subsection 3.2, we may expand the twistor operators in global superconformal blocks instead of the ordinary

global conformal blocks. This may be more convenient in the expansion to higher orders. We thank the

anonymous referee for suggestion about this.

– 5 –
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level 0 3/2 2 5/2 3 7/2 4 9/2 5 · · ·

operator 1 G T ∂G ∂T B, ∂2G A, C, ∂2T D, ∂B, ∂3G ∂A, ∂C, ∂3T · · ·

Table 1. The linearly independent holomorphic operators in N = (1, 1) SCFT.

These operators can be written as quasiprimary operators or derivatives thereof, and they

are listed in table 1. Here there are definitions of quasiprimary operators

A = (TT )−
3

10
∂2T, B = (TG)−

3

8
∂2G,

C = (G∂G) +
1

2(5c+ 22)
[34(TT )− (7c+ 41)∂2T ], (2.14)

D = (T i ∂G)−
3

4
(i ∂TG)−

1

5
i ∂3G,

with the brackets denoting normal ordering. Note that C is not only a quasiprimary opera-

tor, but also a primary one. The normalization factors for these quasiprimary operators are

αA =
c(5c+ 22)

10
, αB =

c(4c+ 21)

12
, (2.15)

αC =
c(4c+ 21)(10c− 7)

6(5c+ 22)
, αD =

7c(10c− 7)

40
,

and the normalization factors for the derivatives of the quasiprimary operators can be

got easily from (2.7). In (2.14) we have added a factor i in the definition of D, and this

makes that

〈D(z)D(w)〉C =
αD

(z − w)9
, (2.16)

with αD being positive in large c limit. For the same reason we do not have factor i in the

definition of C.

Also we need how these operators transform under a general conformal transformation

z → f(z). We have the Schwarz derivative

s(z) ≡
f ′′′(z)

f ′(z)
−

3

2

(

f ′′(z)

f ′(z)

)2

, (2.17)

and define the shorthand

f = f(z), f ′ = f ′(z), f ′′ = f ′′(z), s = s(z). (2.18)

These quasiprimary operators transform as

T (z) = f ′2T (f) +
c

12
s, G(z) = f ′3/2G(f),

A(z) = f ′4A(f) +
5c+ 22

30
s
(

f ′2T (f) +
c

24
s
)

, (2.19)

B(z) = f ′7/2B(f) +
4c+ 21

48
f ′3/2sG(f), C(z) = f ′4C(f),

D(z) = f ′9/2D(f) +
i(10c− 7)

480
f ′1/2

(

3(2f ′′s− f ′s′)G(f) + 4f ′2sG′(f)
)

,

from which transformations of their derivatives can be got easily.
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3 Two intervals on a line with zero temperature

In this section we investigate the Rényi entropy of two short intervals on a line with zero

temperature. In this case the CFT is located on a complex plane. We consider the case

when the cross ratio x is small, and so we can get the first few orders of the Rényi entropy

in both the gravity side and the CFT side. In the gravity side it is the N = 1 SUGRA,

and there are contributions from both the graviton and the gravitino. In the CFT side,

it is the N = (1, 1) SCFT, and there are contributions from both stress tensor T , T̄ and

operators G, Ḡ.

3.1 Holographic Rényi entropy

The classical part of the holographic Rényi entropy is proportional to the central charge.

It is related to the classical configuration of the gravity. The gravitino vanishes in classical

SUGRA solution, and so we conclude that the gravitational configuration for pure Einstein

gravity in [25, 29] still applies to the N = 1 SUGRA case. We have the classical part of

the holographic Rényi mutual information [25]

I(cl)n =
c(n− 1)(n+ 1)2x2

144n3
+
c(n− 1)(n+ 1)2x3

144n3
+
c(n− 1)(n+ 1)2(11n2 + 1)(119n2−11)x4

207360n7

+
c(n− 1)(n+ 1)2(589n4 − 2n2 − 11)x5

103680n7
+O(x6), (3.1)

with c being the central charge of the dual SCFT.

The 1-loop part of the holographic Rényi entropy depends on the field contents of

the gravity theory, and one considers the fluctuation of the fields around the classical

background. The procedure was given in [25], and it is related to the 1-loop partition

function in [40, 41]. The 1-loop Rényi entropy is

S1-loop
n = −

1

n− 1

(

logZ1-loop
n − n logZ1-loop

1

)

, (3.2)

with Z1-loop
n being the 1-loop partition function around a genus n − 1 handlebody back-

ground in the case of two intervals. When the spacetime is the quotient of global AdS3 by

a Schottky group Γ, the 1-loop partition function for the spin-2 massless graviton is [40–42]

Z1-loop
(2) =

∏

γ∈P

∞
∏

m=0

1

|1− qm+2
γ |

, (3.3)

with P being a set of representatives of the primitive conjugacy classes of Γ. Here qγ is

defined in the way that the eigenvalues of γ is q
±1/2
γ with |qγ | < 1. For the case of two

short intervals on a line with zero temperature, qγ can be written as expansion of the cross

ration x, and so the 1-loop Rényi entropy can be expanded by x too. To order x5 the

1-loop Rényi mutual information is [25]

I1-loopn,(2) =
(n+ 1)(n2 + 11)(3n4 + 10n2 + 227)x4

3628800n7

+
(n+ 1)(109n8 + 1495n6 + 11307n4 + 81905n2 − 8416)x5

59875200n9
+O(x6). (3.4)

– 7 –
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In the N = 1 SUGRA in AdS3 background, there is also the superpartner of the

graviton, the massless spin-3/2 gravitino. The 1-loop partition function (3.3) should be

multiplied by [43, 44]

Z1-loop
(3/2) =

∏

γ∈P

∞
∏

m=0

|1 + qm+3/2
γ |. (3.5)

Then we get the additional 1-loop Rényi mutual information from the gravitino

I1-loopn,(3/2) =
(n+ 1)(2n4 + 23n2 + 191)x3

60480n5
+

(n+ 1)(33n6 + 358n4 + 2857n2 − 368)x4

604800n7

+
(n+ 1)(32422n8 + 336385n6 + 2606961n4 − 532285n2 − 24283)x5

479001600n9
+O(x6).

(3.6)

3.2 Rényi entropy in SCFT side

We use the replica trick in the SCFT side, and get an SCFT on an n-sheeted complex

plane, which is a genus (n − 1)(N − 1) Riemann surface Rn,N in the case of N intervals.

Equivalently, this configuration can be viewed as n copies of the SCFT on a complex plane,

with twist operators σ, σ̃ being inserted at the boundaries of the intervals [4]. We denote

the n copies of the SCFT as SCFTn. The twist operators are primary operators with

conformal weights

hσ = h̄σ = hσ̃ = h̄σ̃ =
c(n2 − 1)

24n
. (3.7)

We choose the two intervals A = [0, y] ∪ [1, 1 + y] with y ≪ 1, and so the cross ratio

x = y2 ≪ 1. The partition of the SCFT on Riemann surface Rn,2 is equivalent of the

four-point function of SCFTn on a complex plane [4]

trA ρnA = 〈σ(1 + y, 1 + y)σ̃(1, 1)σ(y, y)σ̃(0, 0)〉C . (3.8)

We use the OPE of the twist operators to do short interval expansion [8–10, 30–33]. We

denote the orthogonalized quasiprimary operators in SCFTn by ΦK(z, z̄), and a general

ΦK has normalization factor αK and conformal weights hK , h̄K .

In SCFTn we have the operator product expansion (OPE) [8–10]

σ(z, z̄)σ̃(0, 0) =
cn

z2hσ z̄2h̄σ

∑

K

dK
∑

m,r≥0

amK
m!

ārK
r!

zhK+mz̄h̄K+r∂m∂̄rΦK(0, 0), (3.9)

with cn being the normalization factor of the twist operators, summation K being over all

the independent quasiprimary operators of SCFTn, and

amK ≡
Cm
hK+m−1

Cm
2hK+m−1

, ārK ≡
Cr
h̄K+r−1

Cr
2h̄K+r−1

. (3.10)

Also, the OPE coefficient dK can be calculated as [9]

dK =
1

αK lhK+h̄K
lim
z→∞

z2hK z̄2h̄K 〈ΦK(z, z̄)〉Rn,1 , (3.11)

– 8 –
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with l being the length of the single interval [0, l] that results in the Riemann surface Rn,1

in replica trick. To calculate the expectation value of ΦK on Rn,1, we use the conformal

transformation [4, 9]

z → f(z) =

(

z − l

z

)1/n

, (3.12)

that maps Rn,1 with coordinate z to a complex plane with coordinate f .

With the OPE (3.9), the partition function (3.8) becomes [10, 30, 31]

trA ρnA = c2nx
−

c(n2
−1)

6n

∑

K

αKd2KxhK+h̄KF (hK , hK ; 2hK ;x)F (h̄K , h̄K ; 2h̄K ;x), (3.13)

with summation K being over all the independent quasiprimary operators of SCFTn, and

F being the hypergeometric function. When every quasiprimary operator we consider can

be written as a product of holomorphic and antiholomorphic parts and there is one-to-

one correspondence between operators in holomorphic and antiholomorphic sectors, the

partition function can be further simplified as

trA ρnA = c2nx
−

c(n2
−1)

6n

(

∑

K

αKd2KxhKF (hK , hK ; 2hK ;x)

)2

, (3.14)

with summation K being over all the independent holomorphic quasiprimary operators. In

this case the Rényi mutual information is

In =
2

n− 1
log

(

∑

K

αKd2KxhKF (hK , hK ; 2hK ;x)

)

. (3.15)

In SCFTn, we count the number of independent holomorphic quasiprimary operators as

(1− x)
(

trxL0
)n

+ x = 1 + nx3/2 + nx2 +
n(n− 1)

2
x3 + n2x7/2 + n(n+ 1)x4 (3.16)

+
n(n+ 1)(n+ 2)

6
x9/2 +

n(n− 1)(n+ 2)

2
x5 +O(x11/2),

with trxL0 being defined as (2.12). These holomorphic quasiprimary operators are listed

in table 2, where we have the definitions

Ej1j2 = Gj1 i ∂Gj2 − i ∂Gj1Gj2 , Fj1j2 = Tj1 i ∂Gj2 −
3

4
i ∂Tj1Gj2 , (3.17)

Hj1j2 = Tj1 i ∂Tj2 − i ∂Tj1Tj2 , Ij1j2 = ∂Gj1∂Gj2 −
3

8
(Gj1∂

2Gj2 + ∂2Gj1Gj2).

The factors i’s in Fj1j2 and Hj1j2 are chosen to make αF > 0 and αH > 0. We would have

αE > 0 and αI > 0 if G is bosonic. But in fact G is fermionic, and so we have αE < 0 and

αI < 0 in our definitions.

Then we calculate the normalization factors αK and OPE coefficients dK . It is easy

to see that

dG = dB = dC = dD = dTG = dGGG = dF = 0. (3.18)
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level quasiprimary operator degeneracy number

0 1 1 1

3/2 Gj n n

2 Tj n n

3 Gj1Gj2 with j1 < j2
n(n−1)

2
n(n−1)

2

7/2
Bj n

n2

Tj1Gj2 with j1 6= j2 n(n− 1)

Aj n

4
Cj n

n(n+ 1)

Tj1Tj2 with j1 < j2
n(n−1)

2

Ej1j2 with j1 < j2
n(n−1)

2

Dj n

9/2 Gj1Gj2Gj3 with j1 < j2 < j3
n(n−1)(n−2)

6
n(n+1)(n+2)

6

Fj1j2 with j1 6= j2 n(n− 1)

Gj1Bj2 with j1 6= j2 n(n− 1)

5
Tj1Gj2Gj3 with j1 6= j2, j1 6= j3, j2 < j3

n(n−1)(n−2)
2 n(n−1)(n+2)

2

Hj1j2 with j1 < j2
n(n−1)

2

Ij1j2 with j1 < j2
n(n−1)

2

· · · · · · · · · · · ·

Table 2. Holomorphic quasiprimary operators in SCFTn to level 5. Here j, j1, j2, j3 are integers

and take values from 0 to n− 1.

The useful normalization factors are

α1 = 1, αT =
c

2
, αGG = −

4c2

9
, αA =

c(5c+ 22)

10
,

αTT =
c2

4
, αE = −

8c2

3
, αGB = −

c2(4c+ 21)

18
, (3.19)

αTGG = −
2c3

9
, αH = 2c2, αI = −7c2.

The useful OPE coefficients are

d1 = 1, dT =
n2 − 1

12n2
, dj1j2GG = −

3 i

16n3c

1

s3j1j2
,

dA =
(n2 − 1)2

288n4
, dj1j2TT =

1

8n4c

1

s4j1j2
+

(n2 − 1)2

144n4
,
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dj1j2E = −
3 i

32n4c

cj1j2
s4j1j2

, dj1j2GB = −
i(n2 − 1)

64n5c

1

s3j1j2
, (3.20)

dj1j2j3TGG =
i

64n5c2

(

9

s2j1j2s
2
j1j3

sj2j3
−

(n2 − 1)c

s3j2j3

)

,

dj1j2H =
1

16n5c

cj1j2
s5j1j2

, dj1j2I = −
i

448n5c

(

28

s5j1j2
−

3(n2 + 7)

s3j1j2

)

,

with the definitions sj1j2 ≡ sin π(j1−j2)
n and cj1j2 ≡ cos π(j1−j2)

n .

Finally, using the formula (3.15), normalization factors (3.19), OPE coefficients (3.18)

and (3.20), as well as the summation formulas in appendix A, we obtain the Rényi mutual

information

In = Itreen + I1-loopn + I2-loopn + · · · , (3.21)

with the tree part being

Itreen =
c(n− 1)(n+ 1)2x2

144n3
+
c(n− 1)(n+ 1)2x3

144n3
+
c(n− 1)(n+ 1)2(11n2+1)(119n2−11)x4

207360n7

+
c(n− 1)(n+ 1)2(589n4 − 2n2 − 11)x5

103680n7
+O(x6), (3.22)

the 1-loop part being

I1-loopn =
(n+ 1)(2n4 + 23n2 + 191)x3

60480n5
+

(n+ 1)(201n6 + 2191n4 + 17479n2 + 289)x4

3628800n7

+
(n+ 1)(11098n8 + 116115n6 + 899139n4 + 40985n2 − 30537)x5

159667200n9
+O(x6),

(3.23)

and the 2-loop part being

I2-loopn =
(n+ 1)(n2 − 4)(n2 + 19)(n4 + 19n2 + 628)x5

26611200cn9
+O(x6). (3.24)

The result in the SCFT side can be compared to the SUGRA one. The tree part of the

Rényi mutual information (3.22) equals the classical part of the holographic Rényi mutual

information (3.1)

Itreen = Icln . (3.25)

The 1-loop part of the Rényi mutual information (3.23) equals the summation of the 1-loop

holographic Rényi mutual information from the graviton (3.4) and gravitino (3.6)

I1-loopn = I1-loopn,(2) + I1-loopn,(3/2). (3.26)

The result is in accordance with the SUGRA/SCFT correspondence.

4 One interval on a circle with low temperature

In this section we investigate the Rényi entropy of one interval on a circle with low tem-

perature. In this case the CFT is located on a torus. We calculate in both the SUGRA

and SCFT sides, using the methods in [13–15, 25].
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4.1 Holographic Rényi entropy

We set that the length of the circle is R and the interval is A = [−l/2, l/2]. The temperature

is T , and the inverse temperature is β = 1/T . In low temperature we have β ≫ R, and the

holographic Rényi entropy can be expanded by exp(−2πβ/R) [14, 15, 25]. The procedure

is that one firstly calculates the Rényi entropy at large temperature that is expanded by

exp(−2πR/β) and then makes the modular transformation R → iβ, β → iR to get the

Rényi entropy at low temperature.

At zero temperature, the holographic Rényi entropy for one interval with length l on

a circle with length R is [20, 21, 25]

Sn =
c(n+ 1)

6n
log

(

R

πǫ
sin

πl

R

)

, (4.1)

with ǫ being the UV cutoff. This is the same as the CFT result (1.6) in [4]. At low

temperature, there would be thermal correction to the Rényi entropy. Similar to the case

of two intervals on a line, the classical Holographic Rényi entropy in SUGRA is the same

as that in pure Einstein gravity. One can find the classical part of the correction to the

holographic Rényi entropy in [14, 15, 25]

δScl
n = −

(

c(n− 1)(n+ 1)2

9n3
sin4

πl

R

)

e−4πβ/R +O(e−6πβ/R). (4.2)

For the 1-loop part, (3.3) and (3.5) still apply, but now the Schottky group is parameterized

differently. The 1-loop correction to Rényi entropy from graviton can be found in [14, 15, 25]

δS1-loop
n,(2) = −

1

n− 1

[(

2

n3

sin4 πl
R

sin4 πl
nR

− 2n

)

e−4πβ/R +O(e−6πβ/R)

]

. (4.3)

We also get the 1-loop correction to the Rényi entropy from gravitino

δS1-loop
n,(3/2) = −

1

n− 1

{(

2

n2

sin3 πl
R

sin3 πl
nR

− 2n

)

e−3πβ/R +

[

1

n4

sin3 πl
R

sin5 πl
nR

(

6n2 cos2
πl

R
sin2

πl

nR

− 3n sin
2πl

R
sin

2πl

nR
+sin2

πl

R

(

3 cos
2πl

nR
+5

)

)

−2n

]

e−5πβ/R +O(e−6πβ/R)

}

.

(4.4)

We take the n → 1 limit, and get the 1-loop correction to the entanglement entropy

δS1-loop
(2) = 8

(

1−
πl

R
cot

πl

R

)

e−4πβ/R +O(e−6πβ/R), (4.5)

δS1-loop
(3/2) = 6

(

1−
πl

R
cot

πl

R

)

e−3πβ/R +10

(

1−
πl

R
cot

πl

R

)

e−5πβ/R +O(e−6πβ/R).

4.2 Rényi entropy in SCFT side

We use the method in [13–15] and calculate the contributions of stress tensor T , T̄ and

operators G, Ḡ to Rényi entropy in the SCFT side. As in the case of two intervals, we
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only analyze the holomorphic operators carefully, and we multiply the Rényi entropy by a

factor 2 to account for the contributions from the antiholomorphic sector.

When the temperature is low β ≫ R, we has the SCFT that is located on a cylinder

with a thermally corrected density matrix. The hamiltonian from the holomorphic sector is

H =
2π

R

(

L0 −
c

24

)

, (4.6)

and without affecting the final result we shift it to be

H =
2π

R
L0. (4.7)

We have the unnormalized density matrix [13–15]

ρ = |0〉〈0|+
∑

φ

∞
∑

m=0

e−2π(m+hφ)β/R

α∂mφ
|∂mφ〉〈∂mφ|, (4.8)

with summation φ being over all the independent non-identity holomorphic quasiprimary

operators of the SCFT. To the order of e−5πβ/R we only need to consider three states |G〉,

|T 〉, and |∂G〉.

We trace the degree of freedom of B, and get the reduced density matrix ρA = trB ρ.

Then we get the Rényi entropy

Sn = −
2

n− 1
log

trA ρnA
(trA ρA)n

, (4.9)

with the additional factor 2 accounting for contributions from the antiholomorphic sector.

Note that we have trA ρA = tr ρ, as well as [4]2

log trA(trB |0〉〈0|)n = −
c(n2 − 1)

12n
log

(

R

πǫ
sin

πl

R

)

. (4.10)

Thus the thermal correction to Rényi entropy is

δSn = −
2n

n− 1

[

(I − 1) e−3πβ/R +(II − 1) e−4πβ/R +(III − 1) e−5πβ/R +O(e−6πβ/R)
]

, (4.11)

with definitions of I, II and III being

I =
trA
[

trB |G〉〈G|(trB |0〉〈0|)n−1
]

αG trA
(

trB |0〉〈0|
)n ,

II =
trA
[

trB |T 〉〈T |(trB |0〉〈0|)n−1
]

αT trA
(

trB |0〉〈0|
)n , (4.12)

III =
trA
[

trB |∂G〉〈∂G|(trB |0〉〈0|)n−1
]

α∂G trA
(

trB |0〉〈0|
)n .

2Note that here we have only incorporated contributions from holomorphic sector, and to get the full

result we need to multiply a factor 2 on the right-hand side of the equation.
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Originally we have the SCFT on a cylinder with coordinate w = x−i t and of circumfer-

ence R. We denote the cylinder also by R. In replica trick we get an SCFT on an n-sheeted

cylinder, which we denote by Rn. Note that here we take the viewpoint that there is one

copy of the SCFT and n copies of the cylinder. Firstly we make the transformation

z = e2π iw/R, (4.13)

and this changes the n-sheeted cylinder Rn with coordinate w to an n-sheeted complex

plane Cn with coordinate z. Then we make the transformation [13–15]

f(z) =

(

z − eiπl/R

z − e− iπl/R

)1/n

, (4.14)

and this changes the n-sheeted complex plane Cn to a complex plane C with coordinate

f . To calculate (4.12), we adopt the strategy in [14, 15]. Firstly they equal to correla-

tion functions on Cn, and then one uses (2.6), (4.14) and transforms them to correlation

functions on C. Explicitly, we have

I =
〈G(∞)G(0)〉Cn

αG
=

1

n3

sin3 πl
R

sin3 πl
nR

,

II =
〈T (∞)T (0)〉Cn

αT
=

c(n2 − 1)2

18n4
sin4

πl

R
+

1

n4

sin4 πl
R

sin4 πl
nR

, (4.15)

III =
〈∂G(∞)∂G(0)〉Cn

α∂G
=

1

2n5

sin3 πl
R

sin5 πl
nR

(

6n2 cos2
πl

R
sin2

πl

nR
− 3n sin

2πl

R
sin

2πl

nR

+ sin2
πl

R

(

3 cos
2πl

nR
+ 5

))

.

Then we get the tree part of the correction to the Rényi entropy

δStree
n = −

(

c(n− 1)(n+ 1)2

9n3
sin4

πl

R

)

e−4πβ/R +O(e−6πβ/R), (4.16)

which equals to the classical part of the correction to holographic Rényi entropy δScl
n (4.2).

The 1-loop part of correction to Rényi entropy is

δS1-loop
n = −

1

n− 1

{(

2

n2

sin3 πl
R

sin3 πl
nR

− 2n

)

e−3πβ/R +

(

2

n3

sin4 πl
R

sin4 πl
nR

− 2n

)

e−4πβ/R

+

[

1

n4

sin3 πl
R

sin5 πl
nR

(

6n2 cos2
πl

R
sin2

πl

nR
− 3n sin

2πl

R
sin

2πl

nR
(4.17)

+ sin2
πl

R

(

3 cos
2πl

nR
+ 5

))

− 2n

]

e−5πβ/R +O(e−6πβ/R)

}

,

and this equals the summation of contributions of graviton and gravitino to the 1-loop

holographic Rényi entropy δS1-loop
n,(2) (4.3) and δS1-loop

n,(3/2) (4.4).
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5 Conclusion and discussion

In this paper we investigated the holographic Rényi entropy for the two-dimensional N =

(1, 1) SCFT, which is dual to N = 1 SUGRA in AdS3 spacetime. We considered both

cases of two short intervals on a line with zero temperature and one interval on a circle

with low temperature. For the first case, we got the Rényi mutual information to order x5

with x being the cross ratio. For the second case, we got the thermal correction of Rényi

entropy to order e−5πβ/R with β being the inverse temperature and R being the length of

the circle. We found perfect matches between SUGRA and SCFT results.

It would be nice to extend the results to higher orders, in terms of x for the two

intervals case and in terms of e−πβ/R for the one interval case. In the SUGRA side, the

so-called p-consecutively decreasing words and p-letter words of Schottky group with p ≥ 2

would be needed. In SCFT side one needs m-point correlation functions with m ≥ 4.

It is also interesting to consider the holographic Rényi entropy of large interval at high

temperature in the SUGRA/SCFT correspondence, as what was done for Einstein gravity

in [45, 46].

In this paper we have only considered the NS sector of the SCFT. It is an interesting

question whether one can calculate Rényi entropy of the SCFT in R sector vacuum and

compare it with the holographic result in some suitable gravitational background.

Acknowledgments

The author would like to thank Bin Chen and Jun-Bao Wu for careful read-

ing of the manuscript and valuable suggestions. Special thanks Matthew Head-

rick for his Mathematica code Virasoro.nb that could be downloaded at

http://people.brandeis.edu/ headrick/Mathematica/index.html. The work was in

part supported by NSFC Grants No. 11222549 and No. 11575202.

A Some useful summation formulas

In the appendix we give some summation formulas that are used in our calculation. We

define

fm =
n−1
∑

j=1

1
(

sin πj
n

)2m , (A.1)

and explicitly we need

f1 =
n2 − 1

3
, f2 =

(n2 − 1)
(

n2 + 11
)

45
,

f3 =
(n2 − 1)

(

2n4 + 23n2 + 191
)

945
, (A.2)

f4 =
(n2 − 1)

(

n2 + 11
) (

3n4 + 10n2 + 227
)

14175
,

f5 =
(n2 − 1)

(

2n8 + 35n6 + 321n4 + 2125n2 + 14797
)

93555
.
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The above formulas are useful because they appear in the following summations

∑

0≤j1<j2≤n−1

1

s2mj1j2
=

n

2
fm,

∑

0≤j1<j2<j3≤n−1

(

1

s2mj1j2
+

1

s2mj2j3
+

1

s2mj3j1

)

=
n(n− 2)

2
fm, (A.3)

with sj1j2 ≡ sin π(j1−j2)
n . There are also two other useful summation formulas

∑

0≤j1<j2<j3≤n−1

1

s2j1j2s
2

j2j3
s2j3j1

(

1

s2j1j2
+

1

s2j2j3
+

1

s2j3j1

)

=
n(n2−1)(n2−4)(n4+40n2+679)

14175
,

∑

0≤j1<j2<j3≤n−1

s2j1j2+s2j2j3+s2j3j1
s4j1j2s

4

j2j3
s4j3j1

=
2n(n2−1)(n2−4)(n2+19)(n4+19n2+628)

467775
.

(A.4)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] M.A. Nielsen and I.L. Chuang, Quantum computation and quantum information, Cambridge

University Press, Cambridge U.K. (2010).

[2] D. Petz, Quantum information theory and quantum statistics, Springer, Berlin Germany

(2008).

[3] C.G. Callan Jr. and F. Wilczek, On geometric entropy, Phys. Lett. B 333 (1994) 55

[hep-th/9401072] [INSPIRE].

[4] P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory,

J. Stat. Mech. (2004) P06002 [hep-th/0405152] [INSPIRE].

[5] M. Caraglio and F. Gliozzi, Entanglement Entropy and Twist Fields, JHEP 11 (2008) 076

[arXiv:0808.4094] [INSPIRE].

[6] S. Furukawa, V. Pasquier and J. Shiraishi, Mutual Information and Compactification Radius

in a c = 1 Critical Phase in One Dimension, Phys. Rev. Lett. 102 (2009) 170602

[arXiv:0809.5113] [INSPIRE].

[7] P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in

conformal field theory, J. Stat. Mech. (2009) P11001 [arXiv:0905.2069] [INSPIRE].

[8] M. Headrick, Entanglement Renyi entropies in holographic theories,

Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].

[9] P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in

conformal field theory II, J. Stat. Mech. (2011) P01021 [arXiv:1011.5482] [INSPIRE].

[10] B. Chen and J.-j. Zhang, On short interval expansion of Rényi entropy, JHEP 11 (2013) 164
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arXiv:1412.0763 [INSPIRE].

[46] B. Chen and J.-q. Wu, Holographic calculation for large interval Rényi entropy at high
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