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Abstract: In previous papers [1, 2] we argued that mesons and baryons can be described

as rotating open strings in holographic backgrounds. Now we turn to closed strings, which

should be the duals of glueballs. We look at the rotating folded closed string in both flat

and curved backgrounds.

A basic prediction of the closed string model is that the slope of Regge trajectories is

half that of open strings. We propose that a simple method to identify glueballs is to look

for resonances that belong to trajectories with a slope of approximately 0.45 GeV−2, half

the meson slope. We therefore look at the experimental spectra of flavorless light mesons

to see if such a scheme, where some of the states are placed on open string trajectories and

some on closed ones, can fit known experimental data. We look at the f0 (JPC = 0++)

and f2 (2++) resonances. As there is no preference for a single scheme of sorting the

different states into meson and glueball trajectories, we present several possibilities, each

identifying a different state as the glueball. We supplement each scheme with predictions

for the masses of excited glueballs.

We show that the width of the decay into two mesons is different for glueballs and

mesons thus providing a supplementary tool to distinguish between them. In addition, we

look at some lattice QCD results for glueball spectra and check their compatibility with

the closed string model.

One of the main conclusions of this paper is that an extension of experimental data on

the spectrum of flavorless hadrons is needed, in particular in the region between around

2.4 GeV and 3 GeV.

Keywords: Strings and branes phenomenology

ArXiv ePrint: 1507.01604

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP12(2015)011

mailto:cobi@post.tau.ac.il
mailto:dorinw@mail.tau.ac.il
http://arxiv.org/abs/1507.01604
http://dx.doi.org/10.1007/JHEP12(2015)011


J
H
E
P
1
2
(
2
0
1
5
)
0
1
1

Contents

1 Introduction 2

2 The rotating closed string 5

2.1 Quantized closed string in light cone gauge 5

2.1.1 Quantized closed string: the spectrum 6

2.2 The rotating closed string solution 7

2.2.1 Classical rotating folded string 7

2.2.2 Quantization of the rotating folded string 7

2.2.3 The closed string in a curved background 9

2.3 Other string models of the glueball and the Regge slope 11

2.4 The decays of the holographic closed string 12

2.4.1 Open string decays 12

2.4.2 Rotating closed string 13

2.5 Theoretical and experimental uncertainties 14

3 Phenomenology 16

3.1 Basic assumptions and fitting models 16

3.1.1 The two types of trajectories 17

3.2 The glueball candidates: the f0 and f2 resonances 18

3.3 Assignment of the f0 into trajectories 18

3.3.1 Assignment of all states as mesons 20

3.3.2 Assignment with f0(980) as glueball 20

3.3.3 Assignment with f0(1370) as glueball 21

3.3.4 Assignment with f0(1500) as glueball 23

3.3.5 Assignment with f0(1710) as glueball 23

3.3.6 Conclusions from the f0 fits 23

3.4 Assignment of the f2 into trajectories 25

3.4.1 Trajectories in the (J,M2) plane 25

3.4.2 Trajectories in the (n,M2) plane 27

3.4.3 Conclusions from the f2 fits 29

3.5 Assignments with non-linear trajectories for the glueball 29

3.5.1 Fits using the holographic formula 30

3.5.2 Using the holographic formula with a constrained intercept 31

3.6 Glueball Regge trajectories in lattice QCD 31

3.6.1 Regge trajectory fits to results from the lattice 32

3.6.2 SU(N) vs. SU(3) and the quenched approximation 34

4 Summary 35

– 1 –



J
H
E
P
1
2
(
2
0
1
5
)
0
1
1

A Predictions 37

A.1 Predictions for glueballs 37

1 Introduction

A well known item of the string/gauge theory holographic dictionary states that closed

strings are the duals of glueballs in the corresponding gauge theories. On the other hand,

using the gravity/gauge theory duality, glueball operators of the boundary field theory cor-

respond to fields in the gravity bulk theory, in particular modes of the dilaton, the graviton,

and the RR field. Using this latter correspondence a spectrum of holographic glueballs has

been determined [3–5]. However, from the same reasoning as in [1] and [2], it is probably

the spectrum of the strings and not of the bulk fields that would really correspond to the

experimental data when moving from large Nc and large λ to the to the realistic values of

Nc = 3 and λ ∼ 1. For mesons [1] and baryons [2] it was argued that the (open) string

configurations admit a modified Regge behavior that matches that of the observed hadrons

whereas bulk modes do not admit this property. In this paper we argue that a similar

correspondence exists for glueballs, and that the glueballs will probably have a better de-

scription in terms of closed strings rather than modes of bulk fields. The idea of glueballs

as closed strings has previously been discussed in various terms in works such as [6–19].

It is common lore that glueballs and flavorless mesons cannot be distinguished since

they carry the same quantum numbers and that the corresponding resonances encountered

in experiments are in fact generically linear combinations of the two kinds of states. If,

however, we refer to the stringy description of hadrons then, since mesons and glueballs

correspond to open and closed strings respectively, there are certain characterizing features

with which one can distinguish between them.

The most important difference between the open string mesons and the closed string

glueballs is the slope, or equivalently the (effective) tension. It is a basic property of strings

(see sections 2.1 and 2.2.1) that the effective tension of a closed string is twice that of an

open string and hence there is a major difference between the two types of strings, as

α′closed =
1

2
α′open → α′gb =

1

2
α′meson . (1.1)

Thus the basic idea of this paper is that one should be able to distinguish between glueballs

and flavorless mesons by assigning some of them to certain trajectories with a mesonic slope

α′meson ∼ 0.9 GeV−2 and others to trajectories with a glueball slope of α′gb ∼ 0.45 GeV−2.

The slope is not the only thing that is different between open and closed strings. It

follows trivially from the spectrum of closed strings (see section 2.1) that in the critical

dimension it has an intercept that is twice that of the open string. However, we are

interested in strings in four dimensions rather than the critical dimension, and there, as will

be discussed in section 2.2.2, the determination of the intercept is still not fully understood.

Thus the intercept cannot currently serve as a tool for identifying glueballs.
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Another important difference between open and closed string hadrons is in their decay

mechanisms. Based on the holographic description of a meson as a string that connects to

flavor branes at its two endpoints, it was determined in [20] that the width of decay of a

meson of mass M behaves like

Γ ∼

(
2M

πT
−
m1

sep +m2
sep

2T

)
e
−m

q
sep

2

T , (1.2)

where M is the mass of the meson, m1
sep and m2

sep are the masses of the string endpoint

quarks in the initial state (assumed here to be small), mq
sep is the mass of the quark and

antiquark pair generated by the split of the string and T is the string tension. The factor

preceding the exponent is in fact the string length.

As we discuss in section 2.4, for the case of a closed string decaying into two open strings

the width will be proportional to the string length squared, and the single exponential

suppressing factor will be replaced by

e
−m

q
sep

2

T e
−m

q′
sep

2

T , (1.3)

where mq
sep and mq′

sep are the masses of each of the two quark-antiquark pairs that will have

to be created in the process.

Thus it is clear that the width of a glueball should be narrower than that of the

corresponding meson open string, particularly for decay channels involving heavier quarks

like s, c and b. This can serve as an additional tool of disentangling between mesons and

glueballs. We list one distinguishing feature of a glueball decaying into two mesons in

section 2.4.

The main motivation of reviving the description of mesons and baryons in terms of

open strings in [1] and [2] has been the holographic string/gauge duality. The same applies

also to the closed string picture of glueballs. The spectra of closed strings in a class of

holographic confining models was analyzed in [21]. The result was that the relation between

the mass and angular momentum takes the following form:

J = α′gb(E
2 − 2m0E) + a , (1.4)

where α′gb is the corresponding slope, E is the mass of the glueball, a is the intercept, and

m0 is a parameter that can be either positive or negative and is determined by the particular

holographic model used. Note that this relation modifies the well known linear relation

between J and E2. In section 3.5 we discuss the phenomenological implications of this

relation and analyze the possibility of grouping flavorless hadrons along such holographic

trajectories.

The main goal of this paper is to perform an explicit comparison between observational

data of flavorless hadrons and the resonance states predicted by the models of rotating open

string with massive endpoints for the mesons and rotating folded closed strings for glueballs.

Unfortunately there exists no unambiguous way to assign the known flavorless hadrons

(the focus in this paper is on the f0 and f2 resonances) into trajectories of mesons and
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glueballs, but it is clear that one cannot consistently sort all the known resonances into

meson trajectories alone. One of the main problems in identifying glueball trajectories

is simply the lack of experimental data, particularly in the mass region between 2.4 GeV

and the cc̄ threshold, the region where we expect the first excited states of the glueball

to be found. It is because of this that we cannot find a glueball trajectory in the angular

momentum plane.

We mostly focused then on the radial trajectories of the f0 (JPC = 0++) and f2 (2++)

resonances. For the f0 we examined the possibility of identifying one of the states f0(980),

f0(1370), f0(1500), or f0(1710) as the glueball ground state and building the trajectories

beginning from those states. This procedure did not show any significant preference for

any one of the glueball candidates over the other. For the f2 there is less ambiguity, but

still no positive identification. Between the different 2++ state we find that the two very

narrow resonances f2(1430) and fJ(2220) (the latter being a popular candidate for the

tensor glueball) do not belong on meson trajectories.

The paper is organized as follows. Section 2 is devoted to the theory of rotating

closed strings. In section 2.1 we review the light-cone quantization of the basic bosonic

string and describe its spectrum. Next we address the rotating folded string. We present

the classical solution and the corresponding Regge trajectory, starting by discussing the

case of flat spacetime. We introduce the Polchinski-Strominger term needed to assure two

dimensional conformal invariance in non-critical dimension and discuss the problematic

result for the intercept for a folded closed string in four dimensions. In section 2.2.3 we

review the results of [21] for the rotating folded string in holographic backgrounds, and

the semiclassical correction obtained there. Section 2.4 is devoted to the decay process of

string decaying into two strings. We summarize the result for the decay of an open string

into two open strings [20] and generalize it also to the case of a closed string decaying

into two open strings. In section 2.5 we discuss the errors and uncertainties in applying

the stringy model to QCD and experiment. Section 3 deals with the phenomenology of

the rotating folded string models and the comparison between them and the observational

data. We begin by spelling out the basic assumptions of the phenomenological models

in section 3.1. We then present the key experimental players: the f0 and f2 resonances.

In 3.3 we propose several assignments of the f0 resonances into radial (n,M2) trajectories,

first into only various mesonic trajectories and then into various possible combinations

when singling out some states as glueballs. In 3.4 we describe possible assignments of

the f2, first into orbital (J,M2) trajectories, then into (n,M2) trajectories. Section 3.5

expands on previous sections by using the non-linear trajectory that characterizes the

glueballs of holographic models. In section 3.6 we discuss the spectrum of glueballs that

follows from lattice gauge theory models. We review the trajectories determined in lattice

simulations and their corresponding slopes. Both types of trajectories, (J,M2) and (n,M2),

are discussed. Section 4 is a summary and discussion of the results and states some open

questions. In the appendix A we list the predictions of our models for the yet unobserved

excited partners of the glueball candidates, based on their Regge trajectories.
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2 The rotating closed string

2.1 Quantized closed string in light cone gauge

We review here the derivation of the spectrum of the bosonic closed string in the light

cone gauge. We simply present the derivation in chapter 1 of [22], omitting some of the

details for brevity’s sake. The following treatment is essentially true only for the critical

dimension D = 26, but we keep a general D in the formulae. We return to this point in

section 2.2.2.

We start from the Polyakov action

S = − 1

4πα′

∫
dτdσ

√
−γγαβηµν∂αXµ∂βX

ν . (2.1)

We define the light cone coordinates x± = 1√
2
(x0 ± ix1), and set the gauge by making the

three requirements

X+ = τ , ∂σγσσ = 0 ,
√
−γ = 1 . (2.2)

The equations of motion for the transverse coordinates are then simple wave equations and

they are generally solved (with closed string boundary conditions, for σ ∈ (−`, `)) by

Xi(σ, τ) = xi+
pi

p+
τ+i

(
α′

2

)1/2∑
n 6=0

[
αin
n

exp

(
−i2πn(σ + cτ)

2`

)
+
βin
n

exp

(
i
2πn(σ − cτ)

2`

)]
.

(2.3)

The constant c is related to the coordinate length ` and the conserved quantity p+ via

c = `/(πα′p+). Aside from `, which is proportional to the physical string length, these

constants do not have any significance on their own except in keeping track of units.

The left and right moving modes, αin and βin, are independent of each other (and hence,

commute) and are normalized in such a way that

[αim, α
j
n] = [βim, β

j
n] = mδijδm,−n . (2.4)

The Hamiltonian has the mode expansion

H =
pipi

2p+
+

1

πα′

[∑
n>0

(
αi−nα

i
n + βi−nβ

i
n

)
+A+ Ã

]
, (2.5)

noting that (αin)† = αi−n. A and Ã are the c-numbers one gets when normal-ordering the

sums. After regularizing the appropriate infinite sums, identical for the left and the right

moving modes, and taking contributions from D − 2 transverse modes, we get the result

A = Ã =
2−D

24
. (2.6)

From here we get the spectrum using the mass shell condition M2 = −p2 = 2p+H−pipi,
which translates to

M2 =
2

α′

(∑
n>0

(
αi−nα

i
n + βi−nβ

i
n

)
+A+ Ã

)
, (2.7)
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or,

M2 =
2

α′

(
N + Ñ +A+ Ã

)
, (2.8)

where N and Ñ are the total population numbers of the left and right moving modes.

For comparison, the same treatment of the open string leads to the result

M2
open =

1

α′
(N +A) . (2.9)

Here we have neither the constant prefactor of two which halves the slope of the closed

string, nor do we have two different kinds of modes on the string and the resulting doubling

of the intercept.

2.1.1 Quantized closed string: the spectrum

While the left and right moving modes on the closed string are independent, there is one

constraint that relates them, affecting the spectrum. After making the gauge choice by

imposing the three conditions of eq. (2.2) we still have a residual symmetry of τ -independent

translations of σ. This results in the additional constraint

N = Ñ . (2.10)

The total number of excitations has to be equal for the left and right moving modes.

The vacuum state of the closed string is defined as the state annihilated by all αin and

βin, for positive n. It has N = Ñ = 0, we denote it simply |0〉,1 and its mass is determined

by the intercepts:

M2 =
2

α′
(A+ Ã) =

2−D
6α′

. (2.11)

For D = 26 this state is a tachyon, with M2 = −4/α′. The first excited state has N =

Ñ = 1, and so is of the form

αi−1β
j
−1|0〉 (2.12)

and its mass is

M2 =
2

α′
(2 +A+ Ã) =

26−D
6α′

. (2.13)

In the critical dimension we have here a massless tensor and a massless scalar.

The most important feature of the spectrum for our uses is that it forms an infinite

tower of states, with the difference between each pair of consecutive states being

∆M2 =
4

α′
, (2.14)

with one factor of two coming from the halving of the slope, and the other from the fact

that N + Ñ takes only even values: 0, 2, 4, 6, . . ..

1The vacuum state may also have some center of mass momentum p, but we suppress it in this notation.
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2.2 The rotating closed string solution

2.2.1 Classical rotating folded string

Here we use the Nambu-Goto action for the string

S = − 1

2πα′

∫
dτdσ

√
−h , (2.15)

with

h = dethαβ , hαβ = ηµν∂αX
µ∂βX

ν , (2.16)

and

α′ =
1

2πT
. (2.17)

The rotating folded string is the solution

X0 = τ X1 =
1

ω
sin(ωσ) cos(ωτ) X2 =

1

ω
sin(ωσ) sin(ωτ) . (2.18)

We take σ ∈ (−`, `) and correspondingly ω takes the value ω = π/`. The energy of this

configuration is

E = T

∫ `

−`
dσ∂τX

0 = 2T` . (2.19)

The angular momentum we can get by going to polar coordinates (X1 = ρ cos θ,X2 =

ρ sin θ), then

J = T

∫ `

−`
dσρ2∂τθ =

T

ω

∫ `

−`
dσ sin2(ωσ) =

πT

ω2
=
T`2

π
. (2.20)

From the last two equations we can easily see that for the classical rotating folded string

J =
1

4πT
E2 =

1

2
α′E2 . (2.21)

2.2.2 Quantization of the rotating folded string

In a previous section we reviewed the quantization of the bosonic closed string in the critical

dimension, D = 26. There we have the result

1

2
α′M2 = N + Ñ − D − 2

12
. (2.22)

We would like to obtain a correction to the classical trajectory of a similar form when

quantizing the rotating folded string in D = 4 dimensions. In [23] the intercept was

computed in the context of effective string theory where the Polchinski-Strominger (PS)

term [24],

LPS =
26−D

24π

(∂2
+X · ∂−X)(∂2

−X · ∂+X)

(∂+X · ∂−X)2
, (2.23)

compensates for the conformal anomaly when working outside the critical dimension. The

derivatives are with respect to the variables σ± ≡ τ ± σ.

As was described in the introduction and will be further discussed in section 2.2.3,

a major candidate for describing the glueball is a rotating closed string in a holographic

– 7 –
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background which lives, by definition, in the critical dimension. One may conclude that in

this case the PS term is not needed. However, as was argued in [25], upon integrating out

the massive degrees of freedom of the closed string that resides in the critical holographic

dimension one gets the PS action as part of the effective string action in the non-critical

D dimensions.

The calculation in [23] is for a general dimension D, with, as already mentioned, the

PS term included. In dimensions larger than four the string will rotate in two planes and

the angular momentum is characterized by two quantum numbers J1 and J2. The result

obtained there for the Regge trajectory of the closed string is

α′

2
M2 = (J1 + J2)− D − 2

12
+

26−D
24

((
J1

J2

) 1
4

−
(
J2

J1

) 1
4

)2

. (2.24)

This expression is singular when J2 = 0, which is necessarily the case when D = 4, since

in four dimensions the rotation is in a single plane. Therefore the expression is not usable

precisely in the context in which we would like to use it.

We can see where this originates by inserting the 4D rotating solution from eq. (2.18)

into the expression for the PS term, eq. (2.23). The expression obtained,

LPS = −D − 26

24π
ω2 tan2(ωσ) , (2.25)

is singular when ωσ = ±π
2 , i.e. at the two points σ = ± `

2 , which are the “endpoints”, or

folding-points, of the rotating folded string, and the integral on LPS giving the correction

diverges:∫ `

−`
dσLPS = −D − 26

12π
ω2

∫ `/2

−`/2
dσ tan2(ωσ) = −D − 26

12π
ω (tanx− x) |π/2x=−π/2 . (2.26)

We see that beneath the divergent tan x there is also the finite part

D − 26

12

π

`
. (2.27)

The denominator in the PS term is simply (Ẋ2)2, so the problem emerges because the

endpoints move at the speed of light. The same problem is encountered in the treatment of

the open string, but as was shown in [23] in that case one can introduce a counterterm at the

string boundaries that renders the action and correspondingly the intercept finite. In fact

it was found out that summing up the contributions to the latter from the PS and from the

Casimir term, the D dependence is canceled out between the two terms, and the intercept

is given simply by a = 1, for all D. Another possible approach for regularizing the rotating

open string is to add masses to its endpoints. However, the quantization of the system of

a rotating string with massive particles on its ends is still not fully understood [26].

For the closed string it is not clear how to regularize the system. One potential way to

do it might be to add two masses at the two endpoints of the folded string. The resulting

system looks like two open strings connected at their boundaries by these masses, but not

– 8 –
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interacting in any other way. In the rotating solution the two strings lie on top of one

another. The boundary condition, which is the equation of motion of the massive endpoint

is modified: it is the same as for the open string, but with an effective double tension

T → 2T , in accordance with the ratio of the slopes of the open and closed strings discussed

above. In fact everything else is doubled too. If this process of adding masses on the closed

string and taking then the limit of zero mass is a legitimate way to regularize, then it is

probable that the result is also simply double that of the open string, as it is for the critical

dimension. Obviously, though, even in that case we cannot perform the quantization of

the folded closed string since, as mentioned above, we do not fully control the quantization

of an open string with massive endpoints.

2.2.3 The closed string in a curved background

The full analysis of rotating closed string in holographic curved backgrounds was performed

in [21]. We present here the key points in short form.

If we look at a curved background metric of the form

ds2 = h(r)−1/2(−dX0dX0 + dX idX i) + h(r)1/2dr2 + . . . , (2.28)

with i = 1, 2, 3 and the ellipsis denoting additional transverse coordinates, the rotating

folded string, namely the configuration,

X0 = lτ X1 = l sinσ cos τ X2 = l sinσ sin τ , (2.29)

is still2 a solution to the string equations of motion provided we take

r(σ, τ) = r0 = Const. (2.30)

where r0 is a point where the metric satisfies the condition

∂rg00(r)|r=r0 = 0, g00(r)|r=r0 6= 0 . (2.31)

The existence of such a point is also one of the sufficient conditions for the dual gauge

theory to be confining [27]. Compared to the folded string in flat spacetime, the energy

and angular momentum take each an additional factor in the form of g00(r0):

E =
1

2πα′

∫ π

−π
g00(r0)dσ = g00(r0)

l

α′
, (2.32)

J = T

∫ π

−π
g00(r0) sin2 σdσ = g00(r0)

l2

2α′
. (2.33)

Defining an effective string tension Teff = g00(r0)T and slope α′eff = (2πTeff)−1, we can

write the relation

J =
1

2
α′effE

2 . (2.34)

2We follow a somewhat different normalization here, taking ω = π/` from the previous section to be 1,

and introducing a common prefactor l, but the solution is essentially the same as the flat space solution of

section 2.2.1.
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Figure 1. Closed and open strings in holographic backgrounds (top), and their mappings into

flat spacetime (bottom). For the open string, the mapping from curved to flat background adds

endpoint masses to the strings [1, 28], with the vertical segments mapped to the point-like masses

in flat space. For the closed string, we look at the simple folded string in both cases. Note that

classically the rotating folded string has zero width, and as such would look like an open string

with no endpoint masses, and not like in the drawing.

The same factor of g00(r0) multiplies the effective tension in the open string case, and

therefore the closed and open string slopes are still related by the factor of one half, although

the open string trajectories have the additional modification which can be ascribed to the

presence of endpoint masses [1, 28]. We draw the two types of strings in figure 1.

Calculations of the quantum corrected trajectory of the folded closed string in a curved

background in different holographic backgrounds were performed in [21] and [29] using

semiclassical methods. This was done by computing the spectrum of quadratic fluctuations,

bosonic and fermionic, around the classical configuration of the folded string. It was

shown in [21] that the Noether charges of the energy E and angular momentum J that

incorporate the quantum fluctuations, are related to the expectation value of the world-

sheet Hamiltonian in the following manner:

lE − J =

∫
dσ < Hws > . (2.35)

The contributions to the expectation value of the world-sheet Hamiltonian are from several

massless bosonic modes, “massive” bosonic modes and massive fermionic modes. For the

“massive” bosonic fluctuations around the rotating solution one gets a σ-dependent mass

term, with equations of motion of the form

(∂2
τ − ∂2

σ + 2m2
0l

2 cos2 σ)δX i = 0 (2.36)

appearing in both analyses, m0 being model dependent. A similar mass term, also with

cosσ, appears in the equations of motion for some fermionic fluctuations as well, the factor

– 10 –
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of cos2 σ in the mass squared coming in both cases from the induced metric calculated for

the rotating string, which is hαβ ∼ ηαβ cos2 σ.

The result in both papers is that the Regge trajectories are of the form

J = α′closed(E2 − 2m0E) + a . (2.37)

where m0 is a mass parameter that characterizes the holographic model and a is the

intercept which generically takes the form a = π
24(#bosonic massless modes −#fermionic

massless modes). The two papers [21] and [29] use different holographic models (Klebanov-

Strassler and Maldacena-Núñez backgrounds in the former and Witten background in the

latter) and predict different signs for m0, which is given as a combination of the parameters

specific to the background. In [21] m0 is positive, while in [29] it is negative. According

to [21] the slope of the closed string trajectory is left unchanged from the classical case

α′closed =
1

2
α′open , (2.38)

while the model used in [29] predicts an additional renormalization of the slope,

α′closed =
1

2

(
1− c

λ

)
α′open , (2.39)

for some small constant c, which makes this a smaller effect than that caused by the

addition of the m0 mass term.

2.3 Other string models of the glueball and the Regge slope

In previous sections we have shown that the expected Regge slope for the closed string is

α′closed =
1

2
α′open , (2.40)

but other string models of the glueball predict different values for the effective slope of the

glueballs, α′gb.

One such prediction is based on the potential between two static adjoint SU(N) charges,

that, according to lattice calculations, is expected to be proportional to the quadratic

Casimir operator. For small distances this added group theory factor can be obtained

easily from perturbation theory, and calculations in [30] show that what is referred to as

the “Casimir scaling hypothesis” holds in lattice QCD for large distances as well, and this

means that the effective string tension also scales like the Casimir operator (as the potential

at large distances is simply V (`) ≈ Teff`). Therefore, a model of the glueball as two adjoint

charges (or constituent gluons) joined by a flux tube predicts the ratio between the glueball

and meson (two fundamental charges) slopes to be

α′gb
α′meson

=
C2(Fundamental)

C2(Adjoint)
=
N2 − 1

2N2
=

4

9
, (2.41)

where for the last equation we take N = 3. For N →∞ we recover the ratio of 1/2, as can

be easily seen. An argument from field theory for the double tension of the adjoint string

at large N is in [31].
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Other models attempt to tie the closed string to the phenomenological pomeron. The

pomeron slope is measured to be [32]

α′pom = 0.25 GeV−2 ≈ 0.28× α′meson , (2.42)

and the pomeron trajectory is commonly associated with both glueballs and closed strings.

One string model that predicts a pomeron-like slope was proposed in [33] and is presented

in [34] or in more detail in [35]. It is simply the model of a rotating closed string, with

a fixed circular shape. This string has two types of trajectories, a phononic trajectory

(excitations propagating along the string) which has α′phonon = 1
4α
′
open, and an orbital

trajectory (the circular string rotating around an axis in the circle’s plane), for which

α′orbital = 3
√

3
16 α

′
open ≈ 0.32 × α′open. If the rotating circular loop were allowed to deform,

it would have necessarily flowed towards the flattened folded string configuration that we

have been discussing, which always maximizes the angular momentum at a given energy.

There are also other possibilities of rigidly rotating closed string of other shapes, as

in [36], which may give yet another prediction of the ratio between open and closed string

Regge slopes. Another related object is the “∆-shaped” string, which we mentioned in [2]

as one of the stringy models of the baryon. The model is that of three masses with each

pair of them connected by a string. This results in what is essentially a closed string with

three quarks placed on it, which has lead ’t Hooft to remark that such a configuration

could be related to a quark-gluon hybrid [37], rather than a pure glueball.

2.4 The decays of the holographic closed string

2.4.1 Open string decays

The open string hadron decays when it tears at a point along the string and the two loose

ends connect via quantum fluctuations to a flavor brane, creating a quark-antiquark pair.

Another way to think of this process is that the string fluctuates, before tearing, and when

it reaches a flavor brane it connects to it, tears, and the pair is created. When thinking

of the decay in this second way, with the fluctuation preceding the tear, it is clear that

the quark and antiquark are of the same flavor, a result not a priori guaranteed when the

strings tears and then reconnects to the branes. This is illustrated in figure 2.

The probability that a fluctuation reaches the flavor brane of a quark of flavor q is [20]

e−(mq
sep)2/T , (2.43)

where the quark mass mq
sep in this context is equal to the string tension times the distance

of the brane from the holographic wall.3

Since the tear can occur at any point along the string, we expect the total probability

(and hence the total decay width) to be proportional to the string length L.4 We then

3The fact that in this model the mass mq
sep is proportional to T is especially important when considering

the opposing limits T → 0 and T →∞.
4In the holographic picture, it is the length of the horizontal segment of the string that is considered.

When moving into flat space, it is the length between the two endpoint masses, and the relation M ∝ TL

receives corrections from the endpoint masses, as already written in eq. (1.2) in the introduction.
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Figure 2. A schematic look at the decay of a holographic open string, in this case a strange

meson decaying into a strange meson and a light meson. Top: the picture where the string tears

first, then reconnects to the flavor branes. Bottom: the string fluctuates up to the brane before

tearing, the splits. We prefer the second picture since it assures that flavor is conserved, which is

not a priori the case when the string tears at the bottom.

expect that the total decay width behave like

Γ ∝ Le−(mq
sep)2/T , (2.44)

where mq
sep is the quark produced in the decay. In [1] we extracted some values of the

quark masses as obtained from the Regge trajectories of mesons. For the light u/d quarks

the masses were small enough so the exponent is close to one, while the s quark showed a

mass for which m2
s/T ∼ 1. We would then say that decays where an ss̄ pair is created are

suppressed by a factor of e−1 (before taking into account the smaller phase space).5

2.4.2 Rotating closed string

The decay process of a closed string is less simple as the string has to tear twice.6 A single

tear in the closed would produce an open string, and it in turn will have to tear again, so

at the end of the process we have two open strings. If the closed string is the glueball, then

this is the process of a glueball decaying to two mesons. In the total decay width we will

5In an alternative description [38, 39], the decay rate is power-like (rather than exponentially) suppressed

with the mass of the quark-antiquark pair.
6Another holographic approach to describe the decay of a glueball into two mesons, based on fields in

the bulk and not closed strings was discussed in [40–42].
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have then the string length squared, one factor of L for each time the string tears, as well

as two exponents for the two pair creation events:

Γ ∝ L2 exp

(
−
m2
q

T

)
exp

(
−
m2
q′

T

)
. (2.45)

This process is illustrated in figure 3.

If we want to identify a glueball from this basic prediction we have to look at the

branching ratios of processes where the presence of the second exponent is significant,

namely at processes where pairs of s and s̄ are produced.

The glueball unlike the meson will have the possibility of decaying into either of the

three options: decay into two light mesons with two pairs of light quarks created, into KK̄

with one pair of ss̄ and the other light, or into φφ when two pairs of ss̄ are created. The

exponents predict the following hierarchy between the three modes:

Γ(Gb→ 2 light) : Γ(Gb→ KK̄) : Γ(Gb→ φφ) = 1 : e−1 : e−2 . (2.46)

This ratio will still need to be modified by phase space factors, which in any realistic

scenario will be significant and will suppress the ss̄ modes even further. This is because

the states we would measure are not too far from the φφ threshold of approximately 2 GeV.

2.5 Theoretical and experimental uncertainties

There are several sources of uncertainties when comparing the rotating folded closed string

to QCD or experimental spectra. The phenomenological model of the rotating string is

inspired by holography, which in its turn aims to describe QCD, and finally hadrons and

glueballs found in nature.

For the closed string in flat spacetime in critical dimension, the prediction

α′closed =
1

2
α′open (2.47)

is exact. However, we have seen in section 2.2.2 that the non-critical rotating closed string

has a divergence for D = 4, and the appropriate regularization has not been carried out.

For the closed string in a curved spacetime (section 2.2.3) we wrote the general ex-

pression

J = α′closed(E2 − 2m0E) + a . (2.48)

The slope α′closed is half the open string slope, with a possible small correction, which

should be insignificant for phenomenology. The holographic correction m0, which adds a

non-linear term to the glueball trajectories, is not emphasized in the phenomenology of the

next section. The reason for this is that adding it as an additional degree of freedom (it is

model dependent and a priori unknown) adds too much ambiguity in the Regge trajectory

assignments, but this does not mean that the m0 term cannot appear in the QCD glueball

spectrum.

In general, the relation between the large Nc and large λ predictions of holography to

the QCD regime of Nc = 3 is not known, and it is difficult then to quantify the expected

deviation between holographic models and QCD.
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Figure 3. A schematic look at the decay of a holographic closed string to two mesons. (I) The

string tears for the first time. (II) An ss̄ pair is produced and the string tears for the second time.

(III) A second pair is created, this time of light quarks (i.e. uū or dd̄), and two open strings are

formed. (IV) A different perspective showing more clearly the final product of this decay: a K

meson and a K̄. Note that the distances in this schematic between the flavor branes and the wall

are not in scale. The bottom figure is the corresponding world sheet, of a closed string opening up

at two points and forming two open strings.

One source from which we can gain some notion of the expected errors in the predictions

of Regge trajectories of our phenomenological models is our previous work on mesons and

baryons as rotating open strings [1, 2].
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There are two things we can look at. First is the typical deviation of a meson state

from its assigned Regge trajectory. Our best example is a fit that was done in [1] using

mesons composed of u, d, s, and c quarks. We used a single value of the slope for all

the trajectories in the fit (0.88 GeV−2), and the calculated masses were off by only a few

percent from their measured masses, even in this scenario where different types of mesons

with either linear or non-linear trajectories were fitted using a fixed value of the slope. A

typical error is ∆M2 ≈ 0.05M2.

Secondly, we may look at the deviation in the slope α′open of the open strings between

trajectories of different types of hadrons, when fitting them separately. For meson trajec-

tories we found slopes in the range 0.84–0.90 GeV−2. This gives us some uncertainty in the

glueball slope, even when the closed/open slope ratio is taken to be exactly half. In the next

section we will not assume a specific slope, but we do assume the ratio of one half between

mesons and glueballs in a given fit. In appendix A, where we offer some predictions for

glueball masses, we use linear trajectories with a slope in the range α′ = 0.40–0.45 GeV−2.

We assume this uncertainty in the glueball trajectories’ slope based on experiment (the

observation of the slopes of the different mesons) rather than theory, but this assumption

also serves to quantify our ignorance of possible deviations from our simple picture.

However, we must remember that the question whether or not glueballs in QCD lie on

Regge trajectories, like those of the mesons and baryons but with a different slope, has not

yet been settled. The wish of verifying it experimentally cannot be currently fulfilled, given

currently available data, as we shall see in the following section. Using results from lattice

QCD, which we will discuss in section 3.6, we can form some linear glueball trajectories

and test our basic prediction of α′gb = 1
2α
′
meson against glueball spectra, comparing the

theories in a different way.

3 Phenomenology

3.1 Basic assumptions and fitting models

We will be looking at unflavored isoscalar resonances below the cc̄ threshold. These states

will be either mesons with the quark contents 1√
2
(uū − dd̄) or ss̄, or glueballs.7 Corre-

spondingly, we have several types of trajectories. For the light mesons we have the usual

linear form,

J + n = α′M2 + a , (3.1)

with α′ = (2πT )−1. Note that whenever we use α′ without a subscript in this paper, it

refers to this slope of the linear meson trajectories.

For ss̄ states, we use the formula for the mass corrected trajectory (as was used in [1])

defined by

E = 2ms

(
β arcsin β +

√
1− β2

1− β2

)
, (3.2)

J + n = a+ 2πα′m2
s

β2

(1− β2)2

(
arcsin β + β

√
1− β2

)
. (3.3)

7Some states, such as the f0(500)/σ, may also be exotic multiquark states.
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These are the trajectories of a rotating string with two masses ms at its endpoints, and

with an added intercept and extrapolated n dependence. β is the velocity of the endpoint

mass. The limit ms → 0 (with β → 1) takes us back to the linear trajectory of eq. (3.1),

with the first correction in the expression for J being proportional to α′m
3/2
s E1/2.

For the glueballs we assume linear trajectories of the form

J + n = α′gbM
2 + a , (3.4)

and we take α′gb to be 1
2α
′, where α′ is the slope of the mesons as obtained in our fits of

the various meson trajectories. A typical value would be between 0.80 and 0.90 GeV−2.

In a later section we examine the possible application of the formula based on the

holographic prediction,

J + n = α′gbE
2 − 2α′gbm0E + a . (3.5)

When using this formula we will also take α′gb = 1
2α
′, ignoring the possible correction to

the slope, which we assume to be small.

One assumption which we must state explicitly before continuing to the fits is that

there is no mixing of light mesons, ss̄ mesons, and glueballs. It is an open question how

strongly glueballs and mesons are mixed, with results varying greatly between different

models, from almost maximal mixing to very weak (different results based on different

models are collected in [43]). In a stringy model, where glueballs are represented by closed

strings and mesons by open strings, it seems more natural that they will not mix at all.

We also assume that the mixing between the light quark states and the ss̄ is weak, in

placing states either on the linear trajectories of the light mesons or on the mass corrected

trajectories of the ss̄, the same assumption that was used in [1] in fitting the ω and φ

mesons. It is not obvious how the possible mixing between the two types of mesons affects

the trajectories.

3.1.1 The two types of trajectories

Along radial trajectories, or trajectories in the (n,M2) plane, the states differ only by the

radial8 excitation number n, all other quantum numbers constant. Since n is not actually

measured we have to assign a value ourselves to the different states, and from there emerges

a great ambiguity that we have to solve.

Mesons belong on trajectories in the (n,M2) plane with a slope that seems to be

slightly smaller than in the (J,M2) plane. The typical values are 0.80–0.85 GeV−2 for the

former and 0.90 GeV−2 for the latter type of trajectories, as our fits in [1] have shown.

We implicitly assume in the following sections that for the glueballs there will be a similar

difference between the slopes in the different planes. When we write that α′gb = 1
2α
′
meson

we refer to α′meson as it is obtained for the meson fits in the same plane, rather than taking

fixed values of α′. This also serves to restrict the number of parameters in a given fit: we

always try to describe all the trajectories using a single value of α′.

We should also note that while for the mesons, n naturally takes the values n =

0, 1, 2, . . . along the radial trajectories, the case is not so for glueballs. For the closed

8The term should not be confused as having something to do with the radial coordinate of holography.
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strings we noted in section 2.1 that the number of left and right moving modes has to be

equal, and so n, which is really N + Ñ in this case, should be even: n = 0, 2, 4, . . ..

For the orbital trajectories, or trajectories in the (J,M2) plane, we expect to find,

along the leading trajectory of the glueball, the ground state with JPC = 0++ followed by

the tensor glueball (2++) as its first excited state, and continue to higher states with even

J and PC = ++.

The orbital trajectories of the mesons will be constructed as usual, and using the

known quark model relations P = (−1)L+1 and C = (−1)L+S . The relevant trajectories

are then expected to have states with JPC = 1−−, 2++, 3−−, 4++, . . .. It is worth noting

then that for mesons, a 0++ state is an excited state with L = 1 and S = 1, and not a part

of what we usually take for the trajectory when we use states of increasing J .

3.2 The glueball candidates: the f0 and f2 resonances

There is an abundance of isoscalar states with the quantum numbers JPC = 0++ (the

f0 resonances) or JPC = 2++ (f2). The Particle Data Group’s (PDG) latest Review of

Particle Physics [44], which we we use as the source of experimental data throughout this

paper, lists 9 f0 states and 12 f2 states, with an additional 3 f0’s and 5 f2’s listed as

unconfirmed “further states”. These are listed in tables 1 and 2. In the following we make

a naive attempt to organize the known f0 and f2 states into trajectories, first in the plane

of orbital excitations (J,M2), then in the radial excitations plane (n,M2).

The states classified as “further states” are generally not used unless the prove to be

necessary to complete the trajectories formed by the other states. The “further states”

will be marked with an asterisk below.9

It is not the purpose of this paper to review all the information available on the f0

and f2 resonances, nor to present the different theories and speculations regarding their

meson or glueball nature. We usually attempt to form Regge trajectories first, using just

the masses and basic quantum numbers, and then verify if the implications regarding the

contents of a given state make sense in the light of additional experimental data, namely

the different states’ decay modes.

For a more complete picture regarding the spectrum and specifically the interpretation

of the different resonances as glueballs, the reader is referred to reviews on glueball physics

and their experimental status such as [43, 45–47], citations therein, and subsequent works

citing these reviews.

3.3 Assignment of the f0 into trajectories

In a given assignment, we generally attempt to include all the f0 states listed in table 1,

sorting them into meson and, if possible, glueball trajectories.

We make an exception of the f0(500)/σ resonance, which we do not use in any of the

following sections. Its low mass and very large width are enough to make it stand out

among the other f0 states listed in the table. There is no common consensus regarding the

9Note that the asterisk is not standard notation nor a part of the PDG given name of a state, we only

use it to make clear the status of given states throughout the text.
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State Mass [MeV] Width [MeV] Width/mass Decay modes

f0(500)/σ 400–550 400–700 1.16±0.36 ππ dominant

f0(980) 990± 20 40–100 0.07±0.03 ππ dominant, KK seen

f0(1370) 1200–1500 200–500 0.26±0.11 ππ, 4π, ηη, KK

f0(1500) 1505± 6 109± 7 0.072±0.005 ππ [35%], 4π [50%],

ηη/ηη′ [7%], KK [9%]

f0(1710) 1720± 6 135± 8 0.078±0.005 KK, ηη, ππ

f0(2020) 1992± 16 442± 60 0.22±0.03 ρππ, ππ, ρρ, ωω, ηη

f0(2100) 2103± 8 209± 19 0.10±0.01

f0(2200) 2189± 13 238± 50 0.11±0.02

f0(2330) 2325± 35 180± 70 0.08±0.03

*f0(1200–1600) 1200–1600 200–1000 0.43±0.29

*f0(1800) 1795± 25 95± 80 0.05±0.04

*f0(2060) ∼ 2050 ∼ 120 ∼ 0.04–0.10

Table 1. All the f0 states as listed by the PDG. The last few states, marked here by asterisk, are

classified as “further states”.

State Mass [MeV] Width [MeV] Width/mass Decay modes

f2(1270) 1275.1±1.2 185.1±2.9 0.15±0.00 ππ [85%], 4π [10%], KK, ηη, γγ, . . .

f2(1430) 1453±4 13±5 0.009±0.006 KK, ππ

f ′2(1525) 1525±5 73±6 0.048±0.004 KK [89%], ηη [10%], γγ [seen], . . .

f2(1565) 1562±13 134±8 0.09±0.01 ππ, ρρ, 4π, ηη, . . .

f2(1640) 1639±6 99±60 0.06±0.04 ωω, 4π, KK

f2(1810) 1815±12 197±22 0.11±0.01 ππ, ηη, 4π, KK, γγ [seen]

f2(1910) 1903±9 196±31 0.10±0.02 ππ, KK, ηη, ωω, . . .

f2(1950) 1944±12 472±18 0.24±0.01 K∗K∗, ππ, 4π, ηη, KK, γγ, pp

f2(2010) 2011±76 202±67 0.10±0.03 KK, φφ

f2(2150) 2157±12 152±30 0.07±0.01 ππ, ηη, KK, f2(1270)η, a2π, pp

fJ(2220) 2231.1±3.5 23±8 0.010±0.004 ππ, KK, pp, ηη′

f2(2300) 2297±28 149±41 0.07±0.02 φφ, KK, γγ [seen]

f2(2340) 2339±55 319±81 0.14±0.04 φφ, ηη

*f2(1750) 1755±10 67±12 0.04±0.01 KK, γγ, ππ, ηη

*f2(2000) 2001±10 312±32 0.16±0.02

*f2(2140) 2141±12 49±28 0.02±0.01

*f2(2240) 2240±15 241±30 0.11±0.01

*f2(2295) 2293±13 216±37 0.10±0.02

Table 2. All the f2 states as listed by the PDG. The last few states, marked here by asterisk, are

classified as “further states”.
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composition of the σ. We find that it does not belong on a meson Regge trajectory. If we

assume it is a glueball then our model predicts the next state to be at around 2.2 GeV, and,

since we assume its width to be proportional to its mass squared (as implied by eq. (2.45)),

it would have a width of at least 8 GeV. We hope, in that case, that there is no reason to

make such an assumption.10 Therefore, we simply “ignore” the f0(500) in the following

sections.

3.3.1 Assignment of all states as mesons

Sorting the f0 states into trajectories with a meson-like slope leads to an assignment of the

f0’s into two groups of four:

Light : 980, 1500, 2020, 2200,

ss̄ : 1370, 1710, 2100, 2330.

While this simple assignment includes all the confirmed f0 states (except the f0(500)) on

two parallel trajectories, it remains unsatisfactory. If there are no glueballs we expect the

states in the lower trajectory to be (predominantly) composed of light quarks, while the

higher states should be ss̄. This does not match what we know about the decay modes of

the different states. For example, the f0(1370) does not decay nearly as often to KK̄ as one

would expect from an ss̄ state. In fact, this assignment of the f0’s into meson trajectories

was proposed in some other works [49–51], and the mismatch with the decay modes was

already addressed in greater detail in [52].

3.3.2 Assignment with f0(980) as glueball

In this and the following sections we pick and single out a state as the glueball ground

state and try to build the meson trajectories without it.

First is the the f0(980). Assuming it is the glueball then the f0(2330) is at the right

mass to be its first excited (n = 2) partner. However, we find that the two meson trajec-

tories given this assignment,

Light : 1370, 1710, 2100,

ss̄: 1500, 2020,

also predict a state very near the mass of the f0(2330), and according to this assignment,

there should be two more f0 states near the f0(2330), for a total of three. The f0(2200)

has to be excluded.

We again have to put some states on trajectories that are not quite right for them:

the f0(1710) has a significant branching ratio for its decay into KK, while the f0(1500),

which is taken as the head of the ss̄ trajectory, decays to KK less than 10% of the time.

Note that the assignment above is the same as the one we would make if we excluded

the f0(980) on the grounds of it being an exotic (but non-glueball) state and assumed all

10The authors of [48] state that the interpretation of the f0(500)/σ as a glueball is “strongly disfavored”,

from what they consider a model independent viewpoint. We found no references that suggest the opposite.
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n Light ss̄ Glueball

Exp. Thry. Exp. Thry. Exp. Thry.

0 1350±150 1317 1505±6 1505 990±20 990

1 1720±6 1738 1992±16 1984 - -

2 2103±8 2075 ? 2340 ? 2470

3 2325±35 2365

4 ? 2620

Table 3. The results of the fit to the assignment with f0(980) as the glueball ground state. The

slope is α′ = 0.788 GeV−2 and the mass of the s quark ms = 500 MeV. This fit has χ2 = 3.78. The

intercepts obtained are (-1.35) for light mesons, (-0.52) for ss̄, and (-0.38) for glueballs. We also

list the predicted mass of the next state in each trajectory.

the other states are mesons. The f0(980) is commonly believed to be a multiquark state

or a KK̄ ground state,11 and in fact, we will find in following sections that even it is not a

glueball, it is better to exclude it from the meson trajectories. The trajectories and masses

obtained are in table 3.

3.3.3 Assignment with f0(1370) as glueball

From here onwards the states singled out as glueballs are too high in mass for their excited

states to be in the range of the f0 states listed in table 1, that is beneath 2.4 GeV.

Excluding the f0(1370), we have:

Light : [980], 1500, ∗1800, 2100, 2330

ss̄: 1710, 2200.

The f0(980) is put here in brackets to emphasize that it is optional. Including or excluding

it can affect some of the fitting parameters but the trajectory is certainly not incomplete if

we treat f0(980) as a non-meson resonance and take f0(1500) as the head of the trajectory.

11See the PDG’s “Note on scalar mesons below 2 GeV” and references therein.
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n Light ss̄ Glueball

Exp. Thry. Exp. Thry. Exp. Thry.

0 990±20 1031 1720±6 1733 1350±150 1350

1 1505±6 1488 2189±13 2103 - -

2 1795±25 1835 ? 2400 ? 2530

3 2103±8 2123

4 2325±35 2377

5 ? 2610

Table 4. The results of the fit to the assignment with f0(1370) as the glueball ground state. The

slope is α′ = 0.873 GeV−2 and the mass of the s quark ms = 500 MeV. This fit has χ2 = 10.01.

The intercepts obtained are (-0.93) for light mesons, (-1.06) for ss̄, and (-0.80) for glueballs. We

also list the predicted mass of the next state in each trajectory.

The main issue here is that we have to use the state ∗f0(1800) to fill in a hole in the

meson trajectory, a state that is still considered unconfirmed by the PDG and whose nature

is not entirely known. It was observed so far only as an enhancement in the radiative decay

J/ψ → γωφ and its observers at BESIII [53] suggest it is an exotic state — a tetraquark,

a hybrid, or itself a glueball. More experimental data is needed here.

Other than that we have f0(2100) as a light meson and f0(2200) as ss̄. This is the

option that is more consistent with the decays, as f0(2200) is the one state of the two

which is known to decay into KK (we again refer to the comments in [52] and references

therein). However, in terms of the fit, we might do better to exchange them. It is possible

that the proximity of these two resonances to each other affects their masses in such a way

that our model can not predict, and this affects badly the goodness of our fit, as can be

seen in table 4.
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3.3.4 Assignment with f0(1500) as glueball

Taking the f0(1500) to be the glueball, then the light meson trajectory will start with

f0(1370), giving:

Light : 1370, ∗1800, 2020, 2330,

ss̄: 1710, 2100.

With f0(1500) identified as the glueball, this assignment includes all the states except

f0(2200). Incidentally though, the f0(2200) would have belonged on the glueball trajectory

if we had allowed odd values of n for the glueball. In other words, it matches the prediction

for the n = 1 state of the half slope trajectory beginning with f0(1500). We could also use

f0(2200) as the ss̄ state and leave out f0(2100) instead.

There is no glaring inconsistency in this assignment with the decay modes, but we

are again confronted with the state ∗f0(1800), which we need to complete the light meson

trajectory. We can see from table 1 that the f0(2020) is wider than other states in its

trajectory, whereas we maintain that the ratio between width and mass Γ/M should be

roughly constant along a trajectory. In particular, the last state in the trajectory, f0(2330),

is much narrower than f0(2020). We can assign the f0(2330) to the ss̄ trajectory instead,

but there is no other argument for that state being ss̄, considering it was observed only

in its decays to ππ and ηη. Perhaps the fact that f0(1370) and f0(2020) are both quite

wide means that there should be two additional states, with masses comparable to those of

∗f0(1800) and f0(2330), that are also wide themselves, and those states will better complete

this assignment. The results of the assignment are presented in table 5.

3.3.5 Assignment with f0(1710) as glueball

Excluding the f0(1710) from the meson trajectories we can make an assignment that in-

cludes all states except the f0(500) and f0(980):

Light : 1370, ∗1800, 2100, 2330

ss̄: 1500, 2020, 2200

Glue : 1710

The disadvantage here is that we again have to use f0(1500) as the head of the ss̄ trajectory

despite knowing that its main decay modes are to 4π and ππ, as well as the fact the we —

once again — need the ∗f0(1800) resonance to fill in a hole for n = 1 in the resulting light

meson trajectory. This trajectory can be seen in table 6.

3.3.6 Conclusions from the f0 fits

It is not hard to see that the f0 resonances listed in the PDG’s Review of Particle Physics all

fit in quite neatly on two parallel trajectories with a slope similar to that of other mesons.

However, upon closer inspection, these trajectories — one for light quark mesons and one

for ss̄ — are not consistent with experimental data, as detailed above. For us the naive

assignment is also inconsistent with what we have observed for the other ss̄ trajectories
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n Light ss̄ Glueball

Exp. Thry. Exp. Thry. Exp. Thry.

0 1350±150 1031 1720±6 1723 1505±6 1505

1 1795±25 1723 2103±8 2097 - -

2 1992±16 2029 ? 2400 ? 2620

3 2325±35 2295

4 ? 2530

Table 5. The results of the fit to the assignment with f0(1500) as the glueball ground state. The

slope is α′ = 0.870 GeV−2 and the mass of the s quark ms = 500 MeV. This fit has χ2 = 2.51. The

intercepts obtained are (-1.58) for light mesons, (-1.03) for ss̄, and (-0.99) for glueballs. We also

list the predicted mass of the next state in each trajectory.

in [1], namely that the ss̄ trajectories are not purely linear, and have to be corrected by

adding a non-zero string endpoint mass for the s quark, usually of at least 200 MeV.

The other novelty that we hoped to introduce, the half slope trajectories of the glueball,

proved to be impractical — given the current experimental data which only goes up to less

than 2.4 GeV for the relevant resonances.

One conclusion that can be drawn is that the state f0(980) can be comfortably excluded

from any of the meson trajectories, which is consistent with its being the KK ground state.

The unconfirmed state ∗f0(1800) turns up in the assignments with glueballs in them,

usually to fill in a hole in the light meson trajectory. If the ∗f0(1800) is not in itself a

meson as mentioned before, then we would hope that there is another yet unobserved f0

state with a very similar mass, say 1800–1850 MeV.

There is no one assignment that seems the correct one, although the two assignments

singling out either f0(1370) or f0(1500) as the glueball ground states seem more consistent

than the other possibilities. The best way to determine which is better is, as always, by

finding more experimental data. We list our predictions for higher resonances based on

these assignments in section A of the appendix.
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n Light ss̄ Glueball

Exp. Thry. Exp. Thry. Exp. Thry.

0 1350±150 1378 1505±6 1506 1720±6 1720

1 1795±25 1777 1992±16 1977 - -

2 2103±8 2102 ? 2330 ? 2830

3 2325±35 2383

4 ? 2640

Table 6. The results of the fit to the assignment with f0(1710) as the glueball ground state. The

slope is α′ = 0.793 GeV−2 and the mass of the s quark ms = 500 MeV. This fit has χ2 = 0.71. The

intercepts obtained are (-1.51) for light mesons, (-0.53) for ss̄, and (-1.17) for glueballs.

3.4 Assignment of the f2 into trajectories

We now turn to the f2 tensor resonances, that were listed in the beginning of the section

in table 2. We will first examine trajectories in the (J,M2) plane, then move on to the

attempt to assign all the f2 states to trajectories in the (n,M2) plane.

3.4.1 Trajectories in the (J,M2) plane

The only way to get a linear trajectory connecting a 0++ and a 2++ state with the slope

α′gb = 1
2α
′
meson is to take the lightest f0 glueball candidate and the heaviest known f2. Then

we have the pair f0(980) and f2(2340), and the straight line between them has a slope of

0.45 GeV−2. There is no J = 1 resonance near the line stretched between them. However,

this example mostly serves to demonstrate once again the difficulty of forming the glueball

trajectories in practice. The glueball states are predicted to be fewer and farther apart

then the mesons in their respective Regge trajectories.

Therefore, it is a more sound strategy to look again for the meson trajectories, see

what states are excepted from them, and check for overall consistency of the results. In

forming the meson trajectories, we know that we can expect the ω mesons with JPC = 1−−

to be part of the trajectories, in addition to some states at higher spin, which will allow us

to form trajectories with more points.
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Figure 4. The trajectory of the ω (blue) and φ (red) mesons in the (J,M2) plane and their

daughter trajectories. The fits have the common slope α′ = 0.903 GeV−2, and the ss̄ trajectories

are fitted using a mass of ms = 250 MeV for the s quark. The states forming the trajectories are as

follows: with JPC = 1−−, ω(782), φ(1020), ω(1420), ω(1650), φ(1680). With JPC = 2++, f2(1270),

f ′2(1525), f2(1810), f2(1950), and f2(2010). With JPC = 3−−, ω3(1670), φ3(1850), ∗ω3(2255), and

ω3(2285). And with JPC = 4++, f4(2050) and f4(2300). We also plot at JPC = 0++ the f0(980)

and f0(1370) which are found to lie near the trajectories fitted, but were not included themselves

in the fits, as they are not theoretically expected to belong to them.

Moving on from J = 0++ and 2++ to higher spin states, we see two JPC = 4++ states

that could belong to a trajectory: f4(2050) and f4(2300). The first of those, f4(2050),

belongs to a well known meson trajectory in the (J,M2) plane, following ω(782), f2(1270),

and ω3(1670). The slope of the fit to that trajectory is α′ = 0.91 GeV−2, and we can even

include in it states of spin 5 and 6: ∗ω5(2250) and f6(2510).

The mass of the f4(2300) is too low for it to belong to a linear trajectory with a

glueball slope. Taking it to be a meson one can put it on a linear trajectory following

ω(1420) and f2(1810). To complete this trajectory we need a JPC = 3−− state with a

mass near 2070 MeV. The PDG lists one unconfirmed state, X(2080), with the quantum

numbers I(JPC) =?(3−?), which might be a match.

We also find another meson trajectory involving the second excited ω meson - ω(1650).

This trajectory would be comprised of ω(1650), ∗ω3(2255), and with one of f2(1950) or

f2(2010) between them.

We also have the meson trajectories of the ss̄. The first joins the ground state φ(1020)

with f ′2(1525) and φ3(1850). We can form a daughter trajectory starting with the φ(1680),

and going on to include f2(1950) or f2(2010), as well as the unconfirmed ∗ω3(2285). This

trajectory is nearly identical to that of the ω(1650) of the last paragraph.

The meson trajectories described above are plotted in figure 4.
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To summarize, we have found several meson trajectories in the (J,M2) plane of at

least three states. As shown in the figure, these trajectories pass quite closely to the states

f0(980) and f0(1370), but as meson trajectories these should begin with a JPC = 1−−

state (with orbital angular momentum L = 0 and spin S = 1). A 0++ meson state could

only be included as an excited state with L = 1 and S = 1, but we found that for each

trajectory we can use an existing f2 state in that place. The f2 states classified in this

assignment as mesons are f2(1270), f ′2(1525), f2(1810), f2(1950), and f2(2010). These can

perhaps be partnered to existing f0 states as members of triplets of states with J = 0, 1, 2

and PC = ++ split by spin-orbit interactions. We do not know the exact magnitude of the

splitting. There are some f0 states close (within 20–100 MeV) to the f2 states mentioned

above, and the PDG lists some f1 (1++) resonances that may be useful, but we do not find

any such trio of states with similar properties and masses that could be said to belong to

such a spin-orbit triplet. Therefore, we limit our conclusions from these Regge trajectories

to the f2 which we found we could directly place on them.

3.4.2 Trajectories in the (n,M2) plane

Sorting the f2 resonances into trajectories, the situation is somewhat simpler than with

the f0 scalars, as here we have two states that belong on meson trajectories in the (J,M2)

plane, as we found in previous sections. In particular, the f2(1270) belongs to the trajectory

of the ω meson, and the f ′2(1525) is an ss̄ and sits on the φ trajectory. Their decay modes

and other properties are also well known and there is no real doubt about their nature.

The linear trajectory beginning with the f2(1270) meson includes the states

f2(1640)and f2(1950). We can include one of the further states ∗f2(2240) as the fourth

point in the trajectory. We can also use the fJ(2220) in place of the ∗f2(2240), but it

seems an unnatural choice because of the widths of the states involved (the fJ(2220) is

much narrower than the others).

The projected trajectory of the f ′2(1525), using the same slope as the f2(1270) trajec-

tory and adding mass corrections for the s quark, includes the f2(2010) and the f2(2300).

This leaves out the states f2(1430), f2(1565), f2(1810), f2(1910), fJ(2220), and

f2(2340), as well as the five resonances classified as further states.

The next state we look at is f2(1810), classified as a light meson in the (J,M2) fits of

the previous section. Its mass is not right for it to belong to the trajectory of the f2(1270),

so we try to use it as the head of another light meson trajectory. If it belongs to a parallel

trajectory to that of the f2(1270) then the state that follows it is f2(2150). The next state

could be f2(2340), except that it has been observed to decay to φφ, making it very unlikely

to be a light quark meson.

The state f2(1430) is intriguing. In part because of the very small width reported

by most (but not all) experiments cited in the PDG, and in part because it is located in

mass between the two lightest mesons of JPC = 2++, that is between f2(1270) (light) and

f ′2(1525) (ss̄). If we had to assign the f2(1430) to a Regge trajectory, then it is best placed

preceding the f2(1810) and f2(2150) in the linear meson trajectory discussed in the last

paragraph.
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Figure 5. Some radial trajectories of the f2, with blue lines for light mesons and red for ss̄. The

fits have the common slope α′ = 0.846 GeV−2, and the ss̄ trajectories are fitted using a mass of

ms = 400 MeV for the s quark. The states forming the trajectories are as follows: the first light

meson trajectory with f2(1270), f2(1640), and f2(1950), and followed by the unconfirmed state

∗f2(2240) which was not used in the fit. The ss̄ trajectory with f ′2(1525), f2(2010), and f2(2300).

And the second light meson trajectory with f2(1810) and f2(2150).

The fJ(2200), previously known as ξ(2230), is also a narrow state. It is currently

listed by the PDG as having either JPC = 2++ or 4++, but some of the experiments

cited by the PDG tend towards J = 2. It has been considered a candidate for the tensor

glueball [43, 54]. It can be assigned to a linear meson trajectory, as already discussed, but it

is clear already from its narrow width that it is not the best choice, even before addressing

other experimental finds regarding it (for example, the fact that it was not observed in γγ

scattering [55] and the resulting bounds on its decay into photons).

The f2(1565) is also left out, but it could be paired with f2(1910) to form another linear

meson trajectory. To continue we need another state with a mass of around 2200 MeV.

To summarize, we may organize the f2 resonances by picking first the resonances for

the trajectories of the two known mesons,

Light : 1270, 1640, 1950

ss̄: 1525, 2010, 2300

then find the trajectories starting with the lightest states not yet included. This gives us

another meson trajectory using the states

Light : 1810, 2150

The trajectories formed by these eight states are drawn in figure 5.
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3.4.3 Conclusions from the f2 fits

There are some simplifications in assigning the f2 to radial trajectories compared to as-

signing the f0 resonances, as we can look at both orbital and radial trajectories and it is

easier to classify some states as mesons. The radial trajectories described in section 3.4.2

are consistent with the orbital trajectories of section 3.4.1: states classified as mesons in

the latter are also classified as mesons in the former, and with the same quark contents.

In the previous sections we for the most part avoided using the five f2 states classified

in the PDG as “further states”, although some of them could have played a role in the

radial trajectory assignments. Counting confirmed and unconfirmed states alike, the PDG

lists a total of 11 states with masses between 1900 and 2340 MeV. Since the different states

have been observed in different processes, and hence have different decay modes, it would

be useful to clarify experimentally the status of all these states and then reattempt the

assignments of the then confirmed states into trajectories. We also note that the fact that

there are many resonances with identical quantum numbers near to each other can interfere

with the naive mass predictions of the Regge trajectories. In any case, and like for the f0,

further experimental data on resonances between 2.3–3.0 GeV will likely prove useful.

We have not addressed yet the issue of the decay modes of the different states and

how consistent they are with the assignments of the previous sections. The f2(1270) and

f ′2(1525) are well established as a light quark meson and an ss̄ respectively, and they were

the basis from which we built the different trajectories. As for their excited states, the data

on their branching ratios cited by the PDG is very partial for higher states. However, we

find an interesting case when looking at the trio of states f2(1910), f2(1950), and f2(2010).

We have classified f2(1950) as a light meson and f2(2010) as ss̄, which is what fits best

with the Regge trajectories. Another option would be to use f2(1910) as a light meson and

f2(1950) as ss̄, which is still consistent. Then the f2(2010), which was observed to decay to

φφ (despite the very small phase space), could perhaps be classified as a φφ bound state,

in an analogous fashion to the f0(980).

The most interesting states after that remain the f2(1430) and fJ(2220). While the

latter has been considered a candidate for the glueball and has been the object of some

research (see papers citing [54]), the former is rarely addressed, despite its curious place-

ment in the spectrum between the lightest 2++ light and ss̄ mesons. It seems a worthwhile

experimental question to clarify its status — and its quantum numbers, as the most recent

observation [56] can not confirm whether it is a 0++ or 2++ state, a fact which led to at

least one suggestion [57] that the f2(1430) could be itself the scalar glueball.

3.5 Assignments with non-linear trajectories for the glueball

In this section we check the applicability of a glueball trajectory of the form

J = α′gbE
2 − 2α′gbm0E + a , (3.6)

which is the general form we expect from a semi-classical calculation of the corrections to

the trajectory in a curved background, and as put forward in section 2.2.3. The novelty

here is a term linear in the mass E, which makes the Regge trajectory α(t) non-linear in
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Ground state Excited state α′ [GeV−2] m0 [GeV] a

f0(980) f0(2200) 0.79 -0.52 -0.78

f0(1370) f0(2020) 0.87 -2.00 -3.21

f0(1500) f0(2200) 0.87 -1.51 -2.97

f2(1430) fJ(2220) 0.81 -1.33 -2.42

Table 7. Values obtained for the parameters m0 and a for some of the possible pairs of states on

glueball trajectories. The states selected as the excited state of the glueball are those not included

in the meson trajectories of the assignments of sections 3.3 and 3.4, and the slopes are selected

based on the results of the meson fits presented in the same sections.

t = E2. The constant m0 can be either negative or positive, depending on the specific

holographic background, and a priori we have to examine both possibilities. It was also

noted in section 2.2.3 that there may be a correction to the slope, but we assume it is small

compared to the uncertainty in the phenomenological value of the Regge slope, and we use

α′gb =
1

2
α′ (3.7)

throughout this section. We also substitute J → J + n as usual to apply the formula to

radial trajectories.

With the m0 term we can write

∂J

∂E2
=
α′

2

(
1− m0

E

)
. (3.8)

We can look at this as an effective slope, and it is the easiest way to see that when m0 is

negative, the effective slope is higher than that of the linear trajectory, and vice versa.

3.5.1 Fits using the holographic formula

Using the simple linear formula we could not, in most cases, find glueball trajectories among

the observed f0 and f2 states. This is because the first excited state is expected to be too

high in mass and outside the range of the states measured in experiment.

Adding an appropriate m0 term can modify this behavior enough for us to find some

pairs of states on what we would then call glueball trajectories, and by appropriate we

mean a negative value that will make the effective slope of eq. (3.8) higher. The problem

is then that we have only pairs of states, with two fitting parameters: m0 and a (and α′

which is fixed by the meson trajectory fits). We form these pairs by picking a state left

out from the meson trajectories proposed in sections 3.3 and 3.4 and assigning it as the

excited partner of the appropriate glueball candidate.

There is a solution for m0 and a for any pair of states which we can take, and the

question then becomes whether there is a reason to prefer some values of the two parameters

over others. We list some other values obtained for m0 and a in table 7.
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3.5.2 Using the holographic formula with a constrained intercept

Ref. [29] implies that a universal form of the first semi-classical correction of the Regge

trajectory of the rotating folded string is

J + n =
1

2
α′(E −m0)2 , (3.9)

up to further (model dependent) modifications of the slope, which in the cases calculated

are small. In other words, the intercept obtained then from the semi-classical calculation is

a =
1

2
α′m2

0 . (3.10)

The intercept is always positive in this scenario. If we want to include the ground

state with J = n = 0 the only way to do it is to take a positive m0, specifically we should

take m0 = Mgs, where Mgs is the mass of the ground state. There is no problem with

the resulting expression theoretically, but it is not very useful in analyzing the observed

spectrum. The trouble is that when using this expression the energy rises much too fast

with J and we end up very quickly with masses outside the range of the glueball candidates.

If we take, for instance, f0(980) as the ground state then the first excited state is expected

to have a mass of around 2500 MeV, and the heavier candidates naturally predict even

heavier masses for the excited states.

Another way to use eq. (3.6) is to begin the trajectory with a J = 2 state. Then m0

can be either positive or negative. We can then proceed as usual: we pick the head of a

trajectory and see if there are any matches for its predicted excited states. We can see, for

example, that we can again pair f2(1430) with fJ(2220). Constraining α′ to be 0.90 GeV−2,

the best fit has m0 = −0.72 GeV, and the masses calculated are 1390 and 2260 MeV for

the experimental values of 1453 ± 4 and 2231± 4 MeV.

3.6 Glueball Regge trajectories in lattice QCD

The glueball spectrum has been studied extensively in lattice QCD. Some works have com-

pared results with different stringy models, e.g. [58–61]. However, the question whether or

not the glueballs form linear Regge trajectories is not often addressed, due to the difficulty

involved in computing highly excited states. When linear Regge trajectories are discussed,

it is often when trying to identify the glueball with the pomeron and searching for states

along the given pomeron trajectory,

α(t) = α′pt+ 1 + ε (3.11)

where the slope and the intercept are known from experiment to be α′p = 0.25 GeV−2 and

1 + ε ≈ 1.08 [32].

The most extensive study of glueball Regge trajectories is that of Meyer and Te-

per [34, 35], where a relatively large number of higher mass states is computed, including

both high spin states and some highly excited states at low spin.

We quote in table 8 some lattice results for glueball masses from different calculations.

The results are for SU(3) and D = 4, and more results are collected in [62]. Most of these
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Meyer [35] M&P [64] Chen [65] Bali [66] Gregory [62]

0++ 1475±30±65 1730±50±80 1710±50±80 1550±50±80 1795±60

2++ 2150±30±100 2400±25±120 2390±30±120 2270±100±110 2620±50

0++ 2755±30±120 2670±180±130 - - 3760±240

0−+ 2250±60±100 2590±40±130 2560±35±120 2330±260±120 -

2−+ 2780±50±130 3100±30±150 3040±40±150 3010±130±150 3460±320

0−+ 3370±150±150 3640±60±180 - - 4490±590

α′++ (in J) 0.82±0.17 0.72±0.18 0.72±0.17 0.73±0.19 0.55±0.05

α′++ (in n) 0.37±0.05 0.48±0.14 - - 0.18±0.03

α′−+ (in J) 0.75±0.26 0.69±0.28 0.74±0.32 0.55±0.27 -

α′−+ (in n) 0.32±0.08 0.31±0.07 - - -

Table 8. Lattice predictions from different studies for glueball masses [MeV] and resulting Regge

slopes [GeV−2], in the (J,M2) plane or in the (n,M2) plane. The slope is calculated assuming the

first excited state has n = 2.

give only the masses of the lowest glueball states for different quantum numbers. These are

low spin states with different combinations of parity and charge parity. While a spectrum

is obtained, most states are isolated, in the sense that they cannot be grouped with other

states to form Regge trajectories.

In the table 8 we list the lattice results for the 0++ ground state, the lowest 2++ state,

and the first excited 0++ glueball, as well as for the 0−+ and 2−+. We may straight lines

between the first spin-0 state and its excited partner to calculate the slope.

One thing we see at this first glance at the spectrum is that the spin-2 state is, in most

studies, lower than we would expect it based on the Regge slope assumption.12 The second

spin-0 state, on the other hand, is about where we want it to be, assuming a closed string

model, where the slope is half that of meson trajectories, and the first excited state has

the excitation number n = 2 (for one left moving and one right moving mode excited). In

the next section we do some fits to some trajectories with more than two states, based on

the results in [35].

3.6.1 Regge trajectory fits to results from the lattice

Results in lattice computations are for the dimensionless ratio between the mass of a state

and the square root of the string tension: M/
√
T . To get the masses M in MeV one has

to fix the scale by setting the value of T . This introduces an additional uncertainty in the

obtained values. In table 8 we listed the masses in MeV and calculated the dimensionful

slope, but for the purpose of identifying Regge trajectories we can work directly with

dimensionless quantities, avoiding this extra error. Thus, for the following, our fitting

model will be
M2

T
=

2π

q
(N + a) (3.12)

12The fact that the tensor glueball is close to the scalar seems to have been long known in lattice QCD,

see e.g. [63].
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In this notation the ratio q, which is the primary fitting parameter (in addition to the

intercept a), is expected to be 1 for open strings and 1/2 for closed strings. It is referred to

below as the “relative slope”. N will be either the spin J or the radial excitation number n.

Trajectories in the (J,M2) plane. As mentioned above, [35] has the most high spin

states. The analysis there observes that the first 2++and 4++ states can be connected by

a line with the relative slope

q = 0.28± 0.02, (3.13)

which, when taking a typical value of the string tension
√
T = 430 MeV (α′ = 0.84 GeV−2),

gives a slope virtually identical to that expected for the pomeron, 0.25 GeV−2. This tra-

jectory can be continued with the calculated 6++ state. A fit to the three state trajectory

gives the result

q = 0.29± 0.15. (3.14)

This trajectory leaves out the 0++ ground state. In [35] the lowest 0++ is paired with the

second, excited, 2++ state, giving a trajectory with

q = 0.40± 0.04. (3.15)

A possibility not explored in [35] is that of continuing this trajectory, of the first 0++ and

the excited 2++, and with the 4++ and 6++ states following. Then we have the result

q = 0.43± 0.03 (3.16)

This second option not only includes more points, it is also a better fit in terms of χ2

per degrees of freedom (0.37 instead of 1.24). This is a nice result from the closed string

perspective, but the lowest 2++ state is then left out. There is also a J = 3 state in the

PC = ++ sector that lies very close to the trajectory of the 0++ ground state. In our

model it is not expected to belong to the trajectory, so that state is also left out of the fit.

The trajectories of the PC = ++ states are in the left side of figure 6.

Trajectories in the (n,M2) plane. In trajectories in the (n,M2) plane we assume n

takes only even values, i.e. n = 0, 2, 4, . . ., as it does for the closed string. The results when

taking n = 0, 1, 2, . . . will be half those listed.

In this section, we again have to rely mostly on [35], as it offers calculations of several

excited states with the same JPC . Most notably we see there four states listed with

JPC = 0++. We observe that those points are well fitted by a trajectory with the slope

q = 0.50± 0.07, (3.17)

where χ2 = 1.48 for the fit. It is interesting to compare this with the trajectory that can

be drawn from the 0++ ground state in the (J,M2) plane. The (n,M2) trajectory with

n = 0, 2, 4, 6 is very similar to the trajectory beginning with the same state and continuing

to J = 2, 4, and 6. This is what we see also for mesons and baryons in experiment: two

analogous trajectories with similar slopes in the different planes.

Other than the trajectory of the four 0++ states (plotted in figure 6), we list the slopes

calculated for pairs of states who share other quantum numbers. This is in table 9.
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Figure 6. The trajectories of the PC = ++ glueball states found in lattice calculations in [35].

Left: trajectories in the (J,M2) plane. The full line is the fit to a proposed trajectory using

four states with J = 0, 2, 4, 6, where the relative slope is 0.43 and the lightest tensor is excluded

(χ2 = 0.37). The dotted line is the leading trajectory proposed in the analysis in [35], with a

pomeron-like slope. It includes the J = 2, 4, and 6 states. (χ2 = 1.24). In this second option the

scalar is excluded. Also plotted is the 3++ state, which was not used in the fit. Right: trajectory

of four states with JPC = 0++. The relative slope is exactly 0.50 (χ2 = 1.48).

JPC 0++ 2++ 4++ 0−+ 2−+

Meyer [35] 0.50±0.07 0.67±0.10 0.30±0.06 0.39±0.07 0.56±0.13

M&P [64] 0.51±0.12 - - 0.32±0.02 0.38±0.03

Table 9. Relative slopes q of trajectories in the (n,M2) plane. The first result (Meyer/0++) is

that of a fit to the four point trajectory drawn in 6. The other results are obtained when calculating

the slopes between pairs of states, where the lowest state is assumed to have n = 0, and the first

excited state is taken to have n = 2.

3.6.2 SU(N) vs. SU(3) and the quenched approximation

Most of the studies of glueballs on the lattice utilize the “quenched” approximation, which

in this case amounts to calculating the spectrum of the pure SU(3) Yang-Mills gauge theory

without matter. The degree to which the quenched results are modified when fermions are

added to the theory is still unknown. However, if our purpose is to see whether or not

glueballs form Regge trajectories, the spectrum of the pure gluon theory should be as useful

as that of real QCD.

There have also been some calculations of the “glueball” spectrum of SU(N) Yang-

Mills for other values of N [67]. These results taken from [68], are fitted in [67] to the

formulae (the numbers in brackets are the errors in the last significant digits):

M0++√
T

= 3.28(8) +
2.1(1.1)

N2
, (3.18)

M2++√
T

= 4.78(14) +
0.3(1.7)

N2
,

M0++∗√
T

= 5.93(17)− 2.7(2.0)

N2
.
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Using these values, we get for SU(3), the relative slopes (the prefactor of 2 in these formulae

is J or n):

2
2πT

M2
2++ −M2

0++

= 1.16± 0.27, 2
2πT

M2
0++∗ −M2

0++

= 0.65± 0.11 , (3.19)

while for the N →∞ limit,

2
2πT

M2
2++ −M2

0++

= 1.04± 0.13, 2
2πT

M2
0++∗ −M2

0++

= 0.52± 0.05 . (3.20)

While this is too little data to be significant, we observe that the value approaches

1 as N grows for the excitation in J , and it approaches 1
2 (the closed string value) in n.

However, as was already seen from the results of [35], the first 2++ does not seem to lie

on the trajectory of the 0++ ground state, and these results seem to confirm this further.

The radial trajectory on the other hand is again perfectly consistent with the closed string

picture, and more so when going to the limit of this large N computation.

4 Summary

For many years the identification of glueballs, a basic prediction of QCD, in the experi-

mental spectrum of flavorless isoscalar hadrons has been an open question. Moreover, the

common lore is that there is no way to disentangle glueballs from flavorless mesons since

there is no quantum number that distinguish between them.

Here in this paper we have attempted to identify glueballs by turning to a well known

feature of the hadron spectrum, its Regge trajectories. Stating it differently we use a

stringy picture of rotating folded closed strings to describe the glueball in a similar way

to the description of mesons and baryons in terms of open string with massive endpoints

of [1] and [2].

The great disadvantage in using trajectories is that they are a property not of single

states, but of a spectrum of states. Thus, for positive identification, we need to have in

our spectrum, to begin with, several glueballs which we would then assign to a trajectory.

The fact that the ratio between the open and closed string slopes is exactly half adds

some ambiguity to the (n,M2) trajectories where the value of n cannot be determined by

experiment: two states whose mass difference is, for instance, ∆M2 = 4/α′ can be either

open strings with ∆n = 4 between them, or closed strings with ∆n = 2. The difference

between the open and closed string trajectories would be in the number of states between

those two: there would be more open strings for ∆n = 1, 2, and 3. Thus we have to rely on

experiment to observe all the relevant states in the given mass range, so that the absence

of a state from a Regge trajectory could reasonably be used as evidence.

Due to this situation it is clearly advisable to use additional predictions pertaining

to the properties of single states to identify them as open or closed string hadrons. We

have presented, qualitatively, the decay mechanism of the closed string to two open strings,

which would be the decay of a glueball into two mesons. We included one prediction of the

branching ratios of glueballs when decaying into light mesons, kaons, or φ (ss̄) mesons. If
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there were measurements of a state which has those three decay modes with the hierarchy

we predict between them, we could have declared it a glueball, based on our model of

holographic strings. One has to look more closely to find more ways in which open and

closed strings vary.

There are obviously additional tasks and questions to further explore the closed string

picture of glueballs. Here we list some of them:

• As was emphasized in this note the most urgent issue is to gain additional data about

flavorless hadrons. This calls for a further investigation of experiments that yield

this kind of resonances and for proposing future experiments of potential glueball

production, in particular in the range above 2.4 GeV. This can follow the predictions

of the masses and width of the resonances as were listed in appendix A.

• Related to the exploration of experimental data is the investigation of efficient mech-

anisms of creating glueballs. This issue was not addressed in this paper. Among

possible glueball formation one finds radiative J/ψ decays, pomeron pomeron col-

lisions in hadron-hadron central production and in p-p̄ annihilation. Naturally, we

would like to understand possible glueball formation in LHC experiments. It is known

that we can find in the latter processes of gluon-gluon scattering and hence it may

serve as a device for glueball creation.

• As was mentioned in section 2.2.2, the quantization of folded closed strings in D non-

critical dimensions has not yet been deciphered. In [23] the expression derived for

the intercept is singular in the case where is only one rotation plane - as it naturally

is in D = 4. We mentioned a potential avenue to resolve this issue by introducing

massive particles on the folds, quantize the system as that of a string with massive

endpoints [26], and then take the limit of zero mass.

• We have mentioned that the rotating closed strings are in fact rotating folded closed

strings. However, we did not make any attempt in this note to explore the role of the

folds. In fact it seems that very few research has been devoted to the understanding

of folded strings [69]. It would be interesting to use the rotating closed string as a

venue to the more general exploration of strings with folds which may be related to

certain systems in nature.

• A mystery related to the closed string description of glueballs is the relation between

the pomeron and the glueball. Supposedly both the glueball and the pomeron are

described by a closed string. As we have emphasized in this note the slope of the

closed string is half that of the open string and hence we advocated the search of

trajectories with that slope. However, it was found from fitting the differential cross

section of p-p collisions that the slope of the pomeron is α′pomeron ≈ 0.25 GeV−2.

That is, a slope which is closer to a quarter of that of the meson open string rather

than half. Thus the stringy structure of the pomeron and its exact relation to the

glueball is still an open question.
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• The closed string description of the glueball faces a very obvious question. In QCD

one can form a glueball as a bound state of two, three, or in fact any number of gluons.

The stringy picture seems to describe the composite of two gluons, and it is not clear

how to realize those glueballs constructed in QCD from more than two gluons.
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A Predictions

A.1 Predictions for glueballs

In this section we list the masses obtained when using linear trajectories for glueballs, with

an appropriate slope α′gb = 1
2α
′
meson, and based on assigning one of the candidates as the

ground state for the trajectory.

The slope α′gb is taken to be 0.40–0.45 GeV−2. This is based on the values for the light

meson slopes of the fits in [1], as well as on the results of the fits in section 3 of this paper.

In [1] we see that in general the slopes of the (J,M2) trajectories tend to be higher than

those of the radial (n,M2) trajectories. The typical values are 0.90 GeV−2 for the former,

and closer to 0.80 GeV−2 for the latter. In the radial fits done in this paper we get slopes

between 0.79 and 0.88 GeV−2, depending on assignments. The predictions are not based

specifically on these assignments, but we maintain that the range for the slope mentioned

above α′gb = 0.40–0.45 GeV−2 is valid for both the (J,M2) and (n,M2) trajectories of the

glueball.

We also include a prediction for the widths of the excited states. When calculating

the width, we assume the simple relation Γ/M2 = Const. as put forward in section 2.4.

Therefore the width of a state with mass M is calculated using

Γ = M2 Γ0

M2
0

, (A.1)

with M0 and Γ0 the experimentally measured mass and width of the ground state.

The error bars take into account both the experimental uncertainty in M0 and G0 and

the uncertainty in the parameter α′gb.

We present the results in tables 10–13.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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n or J Mass Width

0 990±20 70±30

2 2385±70 405±175

4 3225±95 740±325

6 3885±115 1080±470

8 4450±130 1415±615

Table 10. Predictions using linear trajectories with glueball slope α′gb = 0.40–0.45 GeV−2 using

f0(980) as the ground state. All states have PC = ++, and one of n or J should be taken as zero

along a trajectory, as the other changes.

n or J Mass Width

0 1350±150 350±150

2 2555±110 1255±615

4 3350±115 2155±1050

6 3995±130 3060±1490

8 4545±140 3965±1930

Table 11. Predictions using linear trajectories with glueball slope α′gb = 0.40–0.45 GeV−2 using

f0(1370) as the ground state. All states have PC = ++, and one of n or J should be taken as zero

along a trajectory, as the other changes.

n or J Mass Width

0 1505±6 109±7

2 2640±80 335±30

4 3415±100 560±50

6 4050±120 790±70

8 4590±135 1015±90

Table 12. Predictions using linear trajectories with glueball slope α′gb = 0.40–0.45 GeV−2 using

f0(1500) as the ground state. All states have PC = ++, and one of n or J should be taken as zero

along a trajectory, as the other changes.

n or J Mass Width

0 1720±6 135±8

2 2770±85 350±30

4 3515±105 565±50

6 4130±125 780±65

8 4665±140 995±85

Table 13. Predictions using linear trajectories with glueball slope α′gb = 0.40–0.45 GeV−2 using

f0(1710) as the ground state. All states have PC = ++, and one of n or J should be taken as zero

along a trajectory, as the other changes.
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