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1 Introduction and summary

There has recently been considerable interest in defining and studying supersymmetric

gauge theories on compact manifolds. This stems from the fact that certain observables may

be computed exactly in such quantum field theories using localization. The first examples

of such computations in the literature typically studied round sphere backgrounds, but

more generally the observables also depend on the choice of background geometry, leading

to a richer structure. Such exact computations may be used to test and explore non-

perturbative dualities, and the focus of this paper will be the gauge/gravity duality.

In [1] the partition function Z of three-dimensional N = 2 supersymmetric gauge theo-

ries on a general class of background three-manifold geometries M3 was computed exactly.

In particular Z was shown to depend on the background geometry only through a certain

supersymmetric Killing vector field K.1 There are rich classes of N = 2 superconformal

gauge theories which have a large N gravity dual in M-theory. For these theories one can

compute the large N limit of the partition function using the matrix model saddle point

technique of [3]. When M3 is diffeomorphic to S3 with the standard action of U(1)×U(1) on

S3 ⊂ R2⊕R2, and writing K = b1∂ϕ1 +b2∂ϕ2 in terms of the generators ∂ϕi of U(1)×U(1),

one finds [1] the large N free energy F = − logZ satisfies

lim
N→∞

F
Fround

=
(|b1|+ |b2|)2

4|b1b2|
, (1.1)

1This was also argued independently in [2].
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where Fround is the large N limit of the free energy on the round three-sphere, which scales

as N3/2 [4].

In [5] the field theory result (1.1) was reproduced in a dual computation in four-

dimensional gauged supergravity. Here M3
∼= S3 arises as the conformal boundary of

a self-dual Einstein four-manifold M4, where the supersymmetric Killing vector K also

extends over M4. The asymptotically locally Euclidean AdS metric on M4 is conformally

Kähler, and supersymmetry requires one to turn on a graviphoton field A proportional to

the Ricci one-form of this Kähler metric. A remarkable feature of the computation of the

holographic free energy in [5] is that one does not need to know the form of the Einstein

metric on M4 explicitly — rather (1.1) is proven for an arbitrary such metric.

In [6] the vacuum expectation values of BPS Wilson loops on the round sphere were

computed for a variety of gauge theories, and matched to regularized M2-brane actions

in AdS4 × Y7. Here the choice of internal space Y7 determines the gauge theory on M3.

The purpose of this paper is to extend these computations to general supersymmetric

backgrounds M3 = ∂M4. A Wilson loop is BPS if it wraps an orbit of K, and we will find

that the large N Wilson loop VEV satisfies

lim
N→∞

log 〈W 〉
log 〈Wround 〉

= Sb1,b2 , (1.2)

where

Sb1,b2 ≡
|b1|+ |b2|

2
` . (1.3)

Here 〈Wround 〉 denotes the large N limit of the Wilson loop on the round sphere, whose

logarithm scales as N1/2, and 2π` denotes the length of the orbit of K. Such orbits always

close over the poles of S3, i.e. at the origins of each copy of R2 in S3 ⊂ R2 ⊕ R2, where

the lengths are then ` = 1/|b1| and ` = 1/|b2|, respectively. For these Wilson loops (1.2)

becomes a function of b1/b2, exactly as in (1.1). The supergravity dual configurations are

given by M2-branes wrapping a supersymmetric copy of the M-theory circle in Y7 [6] and

a complex curve Σ2 ⊂ M4, with boundary ∂Σ2 ⊂ M3 being the Wilson line. Identifying

the logarithm of the VEV with minus the holographically renormalized M2-brane action,

we also prove that (1.2) holds in general, thus verifying the matching of this observable in

AdS/CFT in a very broad (infinite-dimensional) class of backgrounds.

The outline of the rest of this paper is as follows. In section 2 we review the geometry of

M3, the definition of the BPS Wilson loop and how it may be computed using localization

techniques in the large N limit to find (1.2). Section 3 analyses supersymmetric M2-branes

in M4 × Y7 backgrounds in M-theory and we also derive the formula (1.2) in supergravity.

Since our arguments are for general backgrounds they are somewhat implicit; in section 4

we therefore look at some explicit toric self-dual Einstein spaces, to exemplify our general

formulae. We conclude in section 5 with a brief discussion.

2 Wilson loops in N = 2 gauge theories on M3

The field theories of interest have UV descriptions as N = 2 Chern-Simons gauge theories

coupled to matter on M3, where M3 is a supersymmetric three-manifold. We begin this

– 2 –
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section by reviewing the geometry of M3, and then define the BPS Wilson loops of interest.

These have been studied on particular squashed sphere backgrounds in [7, 8] (see also [9,

10]), and the extension to the general backgrounds of [1, 11] is straightforward. After

explaining how the Wilson loop VEVs localize in the matrix model, we then take the large

N limit to derive (1.2).

2.1 Three-dimensional background geometry

The manifold M3 belongs to a general class of “real” supersymmetric backgrounds, with

two supercharges related to one another by charge conjugation [11]. If χ denotes the Killing

spinor on M3 then there is an associated Killing vector field

K ≡ χ†γµχ∂µ = ∂ψ . (2.1)

This Killing vector is nowhere zero and therefore defines a foliation of the three-manifold.

This foliation is transversely holomorphic with local complex coordinate z. In terms of

these coordinates the background metric may be written as2

ds2
M3

= (dψ + φ(0))
2 + 4ew(0)dzdz̄ , (2.2)

where φ(0) = φ(0)(z, z̄)dz + φ(0)(z, z̄)dz̄ is a local one-form and w(0)(z, z̄) is a function. We

introduce an orthonormal frame for the three-metric ds2
M3

:

e1
(3) = dψ + φ(0) , e2

(3) + ie3
(3) = 2ew(0)/2dz , (2.3)

and will use indices i, j, k = 1, 2, 3 for this frame.

It is important to stress here that arbitrary choices for φ(0) and w(0) (subject to M3

being smooth) lead to supersymmetric backgrounds. The corresponding Killing spinor

equation for χ may be found in [1, 11]. Choosing the three-dimensional gamma matrices,

in the frame (2.3), to be simply the Pauli matrices, one finds that the Killing spinor

solution is

χ = eiα(ψ,z,z̄)

(
χ0

χ0

)
, (2.4)

where χ0 is a constant and α(ψ, z, z̄) is a phase. The latter will play an important role

later.

In much of what follows, and as in [1], we will assume that M3
∼= S3 with a toric

structure, so that we have a U(1)×U(1) symmetry. If we realize M3
∼= S3 ⊂ R2⊕R2 then

we may write

K = b1∂ϕ1 + b2∂ϕ2 , (2.5)

where ϕ1, ϕ2 are standard 2π-period coordinates on U(1)×U(1).

2More generally there is a conformal factor for this metric [11]. However, as in [5] we are interested in

conformal field theories with gravity duals, and we may hence set this conformal factor to 1.
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2.2 The Wilson loop

InN = 2 supersymmetric gauge theories the gauge field Ai is part of a vector multiplet that

also contains two real scalars σ and D and a two-component spinor λ, all of which are in

the adjoint representation of the gauge group G. The BPS Wilson loop in a representation

R of G is given by

W =
1

dimR
TrR

[
P exp

(∮
γ

ds(iAiẋi + σ|ẋ|)
)]

, (2.6)

where xi(s) parametrizes the worldline γ ⊂ M3 of the Wilson loop and the path ordering

operator has been denoted by P. For a Chern-Simons theory the gauge multiplet has a

kinetic term described by the supersymmetric Chern-Simons action

SCS =
ik

4π

∫
Tr

[
A ∧ dA+

2

3
A ∧A ∧A+ (2Dσ − λ†λ)vol3

]
, (2.7)

where k denotes the Chern-Simons coupling and vol3 is the Riemannian volume form onM3.

The full set of supersymmetry transformations for a vector multiplet and matter mul-

tiplet may be found in [1]. For our purposes we need note only that localization of the

path integral, discussed in the next section, requires one to choose a Killing spinor, namely

χ in (2.4). We then need the following two supersymmetry transformations

δAi = − i

2
λ†τiχ , δσ = −1

2
λ†χ ,

where τi are the Pauli matrices. If one varies the Wilson loop (2.6) under the latter

supersymmetry transformation one obtains

δW ∝ 1

2
λ†(τiẋ

i − |ẋ|)χ . (2.8)

The Wilson loop is then invariant under supersymmetry provided

(τiẋ
i − |ẋ|)χ = 0 . (2.9)

Choosing s to parametrize arclength, so that |ẋ| = 1 along the loop, it is straightforward

to show that (2.9) is satisfied if and only if the Wilson loop lies along the e1
(3) direction.

From (2.3) we see that e1
(3) is the one-form dual to the supersymmetric Killing vector

K = ∂ψ. Thus the Wilson loop (2.6) is indeed a BPS operator provided one takes γ to

be an orbit of K. Notice that the topology of M3 has not been used in this subsection,

and thus any Wilson loop wrapped along an orbit of K is BPS, regardless of the topology

of M3.

2.3 Localization in the matrix model

The VEV of the BPS Wilson loop (2.6) is, by definition, obtained by inserting W into

the path integral for the theory on M3. The computation of this is greatly simplified by

the fact that this path integral localizes onto supersymmetric configurations of fields. This

is by now a fairly standard computation, and we shall simply summarize the main steps,
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referring the reader to [1, 3, 12–14] for further details. In particular the localization of the

Wilson loop was explained in detail in [6] for the round S3 case. This section generalizes

that discussion to a generic supersymmetric manifold M3
∼= S3.

The central idea is that the path integral, with W inserted, is invariant under the

supersymmetry variation δ corresponding to the Killing spinor χ. We have written two of

the supersymmetry variations in (2.8), and the variations of other fields (including fields in

the chiral matter multiplets) may be found on the curved background M3 in [1]. Crucially,

δ2 = 0 is nilpotent. There is then a form of fixed point theorem that implies that the only

net contributions to this path integral come from field configurations that are invariant

under δ [15].

For the N = 2 supersymmetric Chern-Simons-matter theories of interest, one finds

that the δ-invariant configurations on M3
∼= S3 are particularly simple:

Ai = 0 , σ = constant , D = −σh , (2.10)

where the function h = 1
2 ∗ (e1

(3) ∧ de1
(3)), and with all fields in the matter multiplet set

identically to zero [1]. Here we may diagonalize σ by a gauge transformation. The exact

localized partition function then takes the saddle point form [1]

Z =

∫
dσ e

− iπk
|b1b2|

Trσ2 ∏
α∈∆+

4 sinh
πσα

|b1|
sinh

πσα

|b2|
∏
ρ

sβ

[
iQ

2
(1− r)− ρ(σ)√

|b1b2|

]
. (2.11)

Here the integral is over the Cartan of the gauge group, k denotes the Chern-Simons level,

the first product is over positive roots α ∈ ∆+ of the gauge group, and the second product

is over weights ρ in the weight space decomposition for a chiral matter field in an arbitrary

representation Rmatter of the gauge group. We have also defined

β ≡

√∣∣∣∣b1b2
∣∣∣∣ , Q ≡ β +

1

β
, (2.12)

the R-charge of the matter field is denoted r, and sβ(z) denotes the double sine function.

In this set-up, the VEV of the BPS Wilson loop (2.6) reduces to

〈W 〉 =
1

Z dimR

∫
dσ e

− iπk
|b1b2|

Trσ2 ∏
α∈∆+

4 sinh
πσα

|b1|
sinh

πσα

|b2|

×
∏
ρ

sβ

[
iQ

2
(1− r)− ρ(σ)√

|b1b2|

]
TrR

(
e2π`σ

)
. (2.13)

Notice the integrand is the same as that for the partition function (2.11), with an additional

insertion of TrR(e2π`σ) arising from the Wilson loop operator. Note also that we have

normalized the VEV relative to the partition function Z, so that 〈 1 〉 = 1, as is usual in

quantum field theory. We have also defined∮
γ

ds = 2π` (2.14)
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so that ` parametrizes the length of the Wilson line. More precisely, the integral (2.14) is

well-defined only for a closed orbit of the Killing vector K = ∂ψ = b1∂ϕ1 +b2∂ϕ2 . A generic

orbit is closed only when b1/b2 ∈ Q is rational, so that K generates a circle subgroup of

U(1) × U(1). Writing b1/b2 = m/n with m,n ∈ Z relatively prime integers, these define

torus knots via γ ⊂ T 2 ⊂ S3, where the homology class [γ] = (m,n) ∈ H1(T 2,Z) ∼= Z⊕ Z.

These have been studied in the present context in [8]. If on the other hand b1/b2 is irrational,

then the only closed orbits are at the two “poles” of M3
∼= S3, where ∂ϕ1 = 0 and ∂ϕ2 = 0,

respectively. Over these poles
∮
γ ds = 2π/|b2|, 2π/|b1|, respectively. Wherever the loop is

located, we denote its length
∮
γ ds by 2π` as above.

For a U(N) gauge group we may write σ = diag(λ12π , . . .
λN
2π ), thus parametrizing 2πσ

by its eigenvalues λi. Localization has then reduced the partition function Z and the

Wilson loop VEV to finite-dimensional integrals (2.11), (2.13) over these eigenvalues, but

in practice the formulae are difficult to evaluate explicitly. For comparison to the dual

supergravity results we must take the N → ∞ limit, where the number of eigenvalues,

and hence integrals, tends to infinity. One can then attempt to compute this limit using

a saddle point approximation of the integral. In [3] a simple ansatz for the large N limit

of the saddle point eigenvalue distribution was introduced. One seeks saddle points with

eigenvalues of the form

λi = xiN
1/2 + iyi , (2.15)

with xi and yi real and assumed to be O(1) in a large N expansion. In the large N limit

the real part is assumed to become dense. Ordering the eigenvalues so that the xi are

strictly increasing, the real part becomes a continuous variable x, with density ρ(x), while

yi becomes a continuous function of x, y(x).

Writing Z = e−F one then obtains a functional F [ρ(x), y(x)], with x supported on

some interval [xmin, xmax], and to apply the saddle point method one then extremizes F
with respect to ρ(x), y(x), subject to the constraint that ρ(x) is a density∫ xmax

xmin

ρ(x)dx = 1 . (2.16)

One then finally also extremizes over the choice of interval, by varying with respect to xmin,

xmax, to obtain the saddle point eigenvalue distribution ρ(x), y(x).

As it turns out, if one caries out the large N limit with the ansatz (2.15), one finds a

very simple relation between the round sphere results Fround and log 〈Wround 〉 and their

squashed counterparts (with arbitrary b1 and b2) F and log 〈W 〉. To obtain this result

for F , one may first relabel σ as |b2|σ in (2.11). The partition function then takes the

same form as that in [16], where the large N limit was computed in detail. In particular

in the latter reference it was shown that in the large N limit F [ρ(x), y(x)] is simply a

rescaling of the round sphere result by a factor (βQ)3/23β2, provided one also rescales the

Chern-Simons coupling k as k → (2/βQ)2 · k. This then leads to the large N result (1.1).

The same logic may be applied to the calculation of the Wilson loop. For the class of

N = 2 supersymmetric Chern-Simons theories coupled to matter on the round three-sphere

– 6 –
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studied in [6], xmax is always proportional to 1/
√
k. According to the above prescription,

the result for xmax on a general background M3 is given by rescaling the round sphere result

by |b2|·(βQ/2) = (|b1|+|b2|)/2. Here the factor of |b2| comes from the relabelling σ → |b2|σ,

while the factor of βQ/2 comes from the rescaling of the Chern-Simons coupling. Thus

xmax =
|b1|+ |b2|

2
xround

max , (2.17)

where xround
max determines the supremum of the support of ρ(x) for the field theory on

the round three-sphere. For the theories studied in [6], the eigenvalue density is always a

continuous piecewise linear function supported on [xmin, xmax]. Using this fact, the large N

limit of the Wilson loop (2.13) in the fundamental representation may be easily computed

with a saddle point approximation, and is

log 〈W 〉QFT = ` · xmax N
1/2 + o(N1/2) . (2.18)

Here recall that the length
∮
γ ds is in general 2π`. The round three-sphere Wilson loop in

particular is obtained by setting b1 = b2 = 1 and ` = 1 and is, as shown in [6],

log 〈Wround 〉QFT = xround
max N1/2 + o(N1/2) . (2.19)

We thus obtain

lim
N→∞

log 〈W 〉QFT

log 〈Wround 〉QFT
=
|b1|+ |b2|

2
` . (2.20)

This is the field theory result for the VEV of a supersymmetric Wilson loop on a general

supersymmetric manifold M3
∼= S3. In the next section we will look at the M2-brane dual

to this Wilson loop, and show quite generally that the holographic dual computaton of the

VEV agrees with (2.20).

3 Dual M2-branes

In this section we analyse the supersymmetric M2-brane probes that are relevant for com-

puting the holographic dual of the Wilson loop VEV (2.20). The dual solution is con-

structed in four-dimensional gauged supergravity [5], and we begin by summarizing the

geometry of these solutions. We then look at the eleven-dimensional uplift, and finally we

compute the regularized action of the M2-brane.

3.1 Four-dimensional supergravity dual

In [5] it was shown that supersymmetric three-manifolds M3 of precisely the form described

in section 2.1 arise as the conformal boundaries of Euclidean self-dual solutions to four-

dimensional gauged supergravity. For M3
∼= S3 the four-dimensional supergravity solution

is defined on a four-ball M4
∼= B4, and is asymptotically locally Euclidean AdS with con-

formal boundary M3. The Killing vector K defined by (2.1) extends as a Killing vector

bilinear over M4, and the four-metric is then Einstein, has anti-self-dual Weyl tensor, and

– 7 –
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is conformal to a Kähler metric. Supersymmetry also requires one to turn on a specific

graviphoton field A. After summarizing these solutions, and deriving some relevant for-

mulae, we then use them to study the BPS M2-branes dual to the Wilson loops of the

previous section.

The four-dimensional metric on the manifold M4 takes the form

ds2
M4

=
1

y2

[
V −1(dψ + φ)2 + V (dy2 + 4ewdzdz̄)

]
, (3.1)

where

V = 1− 1

2
y∂yw ,

dφ = i∂zV dy ∧ dz − i∂z̄V dy ∧ dz̄ + 2i∂y(V ew)dz ∧ dz̄ , (3.2)

and w = w(y, z, z̄) satisfies the Toda equation

∂z∂z̄w + ∂2
yew = 0 . (3.3)

The metric (3.1) is equipped with the Killing vector K = ∂ψ, which extends the vector (2.1)

on the conformal boundary, which is at y = 0. The coordinate y may be regarded as a

radial coordinate, y ∈ (0, y0], with the conformal boundary at y = 0 and the origin of

M4
∼= B4 being at y = y0 > 0. The local complex coordinate z similarly extends that on

the conformal boundary M3. The metric (3.1) is then entirely determined by the solution

w = w(y, z, z̄) to the Toda equation (3.3).

Supersymmetry requires that the graviphoton gauge field A takes the local form

A = −1

4
V −1∂yw(dψ + φ) +

i

4
∂zwdz − i

4
∂z̄wdz̄ , (3.4)

where the field strength F is defined by F = dA. Indeed, the metric (3.1) is conformal to

the Kähler metric ds2
Kahler = y2ds2

M4
, which is asymptotic to a cylinder R×M3 near to the

conformal boundary y = 0. The gauge field (3.4) is then 1
2 of the Ricci one-form for this

Kähler metric. These solutions were referred to as self-dual solutions in [5], since the Weyl

tensor is anti-self-dual3 and F is anti-self-dual, i.e. ∗4F = −F . Moreover, the metric (3.1)

is Einstein with negative cosmological constant. We shall use the following orthonormal

frame for (3.1)

e0 =
1

y
V 1/2dy , e1 =

1

y
V −1/2(dψ + φ) , e2 + ie3 =

2

y
(V ew)1/2dz . (3.5)

As already mentioned, the solutions of interest are asymptotically locally Euclidean

AdS (asymptotically hyperbolic), with the conformal boundary at y = 0. In particular

imposing boundary conditions such that w(y, z, z̄) is analytic around y = 0, i.e.

w(y, z, z̄) = w(0)(z, z̄) + yw(1)(z, z̄) +
1

2
y2w(2)(z, z̄) +O(y3) , (3.6)

3With respect to the canonical orientation of the conformal Kähler metric.
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then setting r = 1/y the metric (3.1) expands to leading order as

ds2
M4
' dr2

r2
+ r2

[
(dψ + φ(0))

2 + 4ew(0)dzdz̄
]
, (3.7)

when r →∞. Here we have also expanded the one-form φ tangent to M3

φ(y, z, z̄) |TM3 = φ(0)(z, z̄) + yφ(1)(z, z̄) +O(y2). (3.8)

In fact by expanding (3.2) one can show that φ(1) = 0. Equation (3.7) shows explicitly

that the metric is asymptotically locally Euclidean AdS around y = 0, and moreover there

is a natural choice of conformal class for the metric on the boundary M3 given precisely

by (2.2).

The four-dimensional geometry that we have just described, together with the gauge

field A, form a supersymmetric solution to Euclidean gauged supergravity. There is cor-

respondingly a Dirac spinor ε satisfying the Killing spinor equation of this theory. In the

orthonormal frame (3.5) and using the gamma matrices

Γi =

(
0 τi

τi 0

)
, Γ0 =

(
0 iI2
−iI2 0

)
, (3.9)

with τi the Pauli matrices, the Killing spinor ε is given by

ε =
1√
2y

(
1 + V −1/2Γ0

)
ζ . (3.10)

with

ζ =

(
χ

0

)
where χ =

(
χ0

χ0

)
. (3.11)

In particular the bulk spinor (3.10) precisely matches onto the boundary two-component

spinor χ given by (2.4). The phase in (2.4) may be shifted locally by making gauge

transformations of A, since the Killing spinor is charged under the latter. However, for

these solutions one may write A as a global one-form on M4. This requires making an

appropriate gauge transformation on the local expression (3.4), as we shall see in the next

subsection.

So far we have not imposed the U(1) × U(1) symmetry we imposed on the boundary

M3 at the end of section 2.1. Doing so will simplify the subsequent discussion. Thus as

in [5] we assume that the four-manifold M4 is M4
∼= B4 ∼= R2 ⊕ R2 and that the torus

U(1) × U(1) acts in the standard way on R2 ⊕ R2. The Killing vector K = ∂ψ is then

parametrized as

K = b1∂ϕ1 + b2∂ϕ2 , (3.12)

again precisely as in (2.5) on the conformal boundary. It will be important to fix carefully

the orientations here. Since the metrics are defined on a ball, diffeomorphic to R4 ∼= R2⊕R2

– 9 –
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with U(1)× U(1) acting in the obvious way, we choose ∂ϕi so that the orientations on R2

induce the given orientation on R4 (with respect to which the metric has anti-self-dual

Weyl tensor). This fixes the relative signs of b1 and b2. Given that K has no fixed points

near the conformal boundary, we must also have b1 and b2 non-zero. Thus b1/b2 ∈ R \ {0},
and its sign will be important in what follows.

In order to construct such backgrounds one can start with a toric (U(1) × U(1)-

invariant) self-dual Einstein metric on a ball, which is asymptotically locally Euclidean

AdS. There are many examples of such metrics — we discuss the two simplest in section 4,

but as explained in [5] the moduli space is in fact infinite-dimensional (each metric inducing

a different conformal structure on the boundary M3
∼= S3). One can then choose a Killing

vector (3.12), and then writing K = ∂ψ the metric will necessarily take the form (3.1).

Thus in particular the choice of K determines the conformal Kähler metric, which in turn

determines the instanton gauge field A and Killing spinor ε. However, not all choices of K

in (3.12) give non-singular gauge fields. While the metric (3.1) is smooth by assumption,

the instanton F = dA and Killing spinor ε are singular where the conformal Kähler metric

is singular. Regularity is in fact equivalent to having either b1/b2 > 0 or b1/b2 = −1.

Moreover, the origin y = y0 of M4
∼= R2 ⊕ R2 is then at

y0 =
1

|b1 + b2|
, (3.13)

which notice is y0 =∞ when b1/b2 = −1.

3.2 Global gauge for A

As remarked after equation (3.11), we will want to choose a gauge for A in which it is a

global, smooth one-form on M4. The reason for this is that we will evaluate the Wess-

Zumino term in the M2-brane action in section 3.4 by using Stokes’ theorem for F = dA,

which requires us to write A as a global one-form. This was also discussed to some extent

in [5], but for the computation of the Wilson loop we need a little more information.

The key point is to recall that A is proportional to the Ricci one-form for the conformal

Kähler metric ds2
Kahler = y2ds2

M4
. When b1/b2 > 0 the associated complex structure

identifies M4
∼= R2 ⊕ R2 ∼= C2. The orientation in which the Weyl tensor is anti-self-dual

is the same as the canonical orientation on C2. One can then introduce standard complex

coordinates zi = ρie
iψi , i = 1, 2, on C2. The spinor ζ in (3.11), which is used to construct

the Killing spinor (3.10), is the canonical spinor that exists on any Kähler manifold [5]. As

such we have

L∂ψi ε =
i

2
ε , i = 1, 2 . (3.14)

Denoting the complex structure tensor by J we also have that J(V −1∂y) = ∂ψ = K. Since

y is decreasing as we move away from the origin of C2, where recall that the origin is at

y = y0 > 0, this means that for b1 > 0 and b2 > 0 we must then identify ϕi = −ψi, where

ϕi are the coordinates on U(1)×U(1) in (3.12). This is because for r any radial coordinate

on C2 we have J(r∂r) = a1∂ψ1 + a2∂ψ2 where necessarily a1, a2 > 0 (that is, the Reeb cone

– 10 –



J
H
E
P
1
2
(
2
0
1
4
)
1
7
3

is the positive quadrant in R2 — see, for example, [17]). On the other hand for b1 < 0 and

b2 < 0 we instead have ϕi = +ψi, i = 1, 2.

The other non-singular case is b1/b2 = −1. This is qualitatively different from the case

b1/b2 > 0 in the last paragraph, as here y0 = ∞ (3.13). Moreover, the origin y = y0 of

M4
∼= R2⊕R2 is now identified with the point at infinity in C2, rather than the origin. One

can see this from the conformal Kähler metric ds2
Kahler = y2ds2

M4
, which is asymptotically

Euclidean around y = y0. Thus now V −1∂y has the correct orientation for a radial vector

on C2, and we deduce that for b1 < 0 and b2 > 0 we have ϕ1 = −ψ1, ϕ2 = +ψ2, while for

b1 > 0 and b2 < 0 we instead have ϕ1 = +ψ1, ϕ2 = −ψ2.

Putting all of the above together, we may compute the charge of the Killing spinor ε

under the supersymmetric Killing vector K = ∂ψ:

LKε = iγε , (3.15)

where4

γ ≡ −sign

(
b1
b2

)
· |b1|+ |b2|

2
. (3.16)

Since in all cases the Kähler structure is defined on C2, the canonical bundle is trivial

and one may indeed take A to be a global one-form on M4. We denote the restriction of this

global A to the conformal boundary M3 = ∂M4 at y = 0 by A(0). Then the formula (3.15)

for the charge of ε under K = ∂ψ means that

A(0) = γdψ − 1

4
w(1)(dψ + φ(0)) +

i

4
∂zw(0)dz −

i

4
∂z̄w(0)dz̄ . (3.17)

This is the restriction of (3.4) to y = 0, together with a gauge transformation A→ A+γdψ

which accounts for the charge (3.15). One can show independently that (3.17) then defines

a global one-form on M3
∼= S3, which leads to another formula for γ that was derived in

section 3.3 of [5], although we will not need this in the present paper.

3.3 Uplifting to D = 11 supergravity

In order to study the M2-branes dual to Wilson loops, we need to uplift the four-dimensional

geometry to an eleven-dimensional supergravity solution. More precisely, we are interested

in a class of N = 2 supersymmetric M4 × Y7 backgrounds of M-theory in Euclidean sig-

nature. In Euclidean signature there are certain factors of i that appear relative to the

uplifting formula in Lorentzian signature of [18]. Again, this will be important for correctly

evaluating the M2-brane action.

The action of D = 11 supergravity in Euclidean signature is

S11 =
1

(2π)8`9p

(∫
d11x
√
g11

[
−R+

1

2
dC ∧ ∗11dC

]
+

i

6

∫
C ∧ dC ∧ dC

)
. (3.18)

4We also denoted the Wilson line curve by γ : S1 → M3 in section 2, but have chosen to use the same

symbol for the charge of ε under K as this was also used in [1, 5].
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Here we have denoted by g11 the eleven-dimensional metric, with associated Ricci scalar

R, C is the three-form potential and `p denotes the eleven-dimensional Planck length. The

equations of motion for the metric and C-field follow immediately:

RAB −
1

12
(GAC1C2C3GB

C1C2C3 − 1

12
gABG

2) = 0 ,

d ∗11 G+
i

2
G ∧G = 0 , (3.19)

where we have defined G ≡ dC and A,B,C = 1, . . . , 11. It is also useful to define G7 =

i(∗11G+ i
2C ∧G) so that the equation of motion for G is simply dG7 = 0.

An ansatz that leads to a consistent truncation to four-dimensional gauged super-

gravity in Lorentz signature was given in [18]. Here the internal space Y7 is taken to be

any Sasaki-Einstein seven-manifold Y7 with contact one-form η, transverse Kähler-Einstein

six-metric ds2
T with Kähler form ωT = dη/2, and with the seven-dimensional metric nor-

malized so that Ric = 6gY7 . The consistent truncation ansatz in Euclidean signature then

becomes

ds2
11 = R2

[
1

4
ds2

M4
+

(
η +

1

2
A

)2

+ ds2
T

]
,

G = −iR3

(
3

8
vol4 −

1

4
∗4 F ∧ dη

)
. (3.20)

As before, ds2
M4

is the four-dimensional gauged supergravity metric on M4 with gauge field

A, field-strength F = dA and volume form vol4. The radius R is

R6 =
(2π`p)

6N

6Vol(Y7)
, (3.21)

where N is the number of units of flux

N =
1

(2π`p)6

∫
Y7

G7 . (3.22)

Substituting the ansatz (3.20) into the equations of motion (3.19), we find the latter are

equivalent to the metric gµν corresponding to ds2
M4

and F satisfying

Rµν + 3gµν = 2

(
Fµ

ρFνρ −
1

4
F 2gµν

)
,

d ∗4 F = 0 . (3.23)

The ansatz (3.20) then solves the eleven-dimensional Euclidean equations of motion if and

only if the four-dimensional metric gµν and gauge field A are a solution of four-dimensional

Euclidean gauged supergravity.

3.4 BPS M2-branes

We are interested in calculating the action of M2-branes that are dual to Wilson loops of

the dual gauge theory on M3. These M2-branes wrap Σ2×S1
M , where the surface Σ2 ⊂M4
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has boundary given by the Wilson line ∂Σ2 = S1 ⊂M3 = ∂M4, and S1
M ⊂ Y7 is a copy of

the M-theory circle. In particular we will show that submanifolds Σ2 ⊂ M4 parametrized

by the radial direction y in M4 and an orbit of the Killing vector K are complex with

respect to the complex structure J of the conformal Kähler metric to ds2
M4

. The wrapped

M2-brane is then supersymmetric.5 Over the poles S1 ⊂M3
∼= S3 the topology of Σ2 is a

disc, where y ∈ (0, y0] serves as a radial coordinate with the origin of the disc at y = y0 > 0.

The action of the M2-brane is

SM2 =
1

(2π)2`3p

[
Vol(Σ2 × S1

M ) + i

∫
Σ2×S1

M

C

]
. (3.24)

A supersymmetric M2-brane satisfies an appropriate κ-symmetry condition, which may be

written as [19]

Pε11 = 0 , where P ≡ 1

2

(
1− i

3!
εijk∂iX

M∂jX
N∂kX

P Γ̂MNP

)
, (3.25)

with i, j, k indices on the worldvolume. Here ε11 is the eleven-dimensional Killing spinor

for the background (3.20), which is constructed as a tensor product of the four-dimensional

spinor ε and the Killing spinor on the internal space Y7. The Γ̂M are eleven-dimensional

gamma matrices, with XM describing the M2-brane embedding. One can analyse (3.25)

precisely as the authors did in [6]. The upshot is that S1
M ⊂ Y7 must be a calibrated circle

in Y7 [6], while taking Σ2 ⊂ M4 to be a surface at constant z, parametrized by y and ψ,

one finds (3.25) is equivalent to the projection condition

(1− iΓ5Γ01)ε = 0 . (3.26)

Here we have used the orthonormal frame (3.5), and Γ5 ≡ Γ0Γ1Γ2Γ3 with Γµ defined

by (3.9) (in the orthonormal frame). Using the explicit form for ε in (3.10) it is trivial to

see that (3.26) indeed holds. Moreover, Σ2 is calibrated with respect to the Kähler form

for the conformal Kähler metric, making it a complex curve.

Let us now calculate the action (3.24) for our M2-brane. Using the self-dual four-

dimensional supergravity solution of section 3.1 and the uplift (3.20) the C-field is computed

to be

C = −iR3

(
−1

8
Γ +

1

4
F ∧ η

)
, (3.27)

where

Γ ≡ 1

2y2
(dψ + φ) ∧ dφ+

1

y3
(dψ + φ) ∧ 2iV ewdz ∧ dz̄ , (3.28)

and dΓ = −3vol4. The area of the surface Σ2 in M4 is divergent, but can be regularized

by subtracting the length of its boundary, i.e. the length of the S1 in M δ
3 at y = δ → 0.

5More precisely the copy of S1
M ⊂ Y7 must also be calibrated by the contact one-form η on Y7. Since

this internal space geometry is identical to the AdS4×Y7 backgrounds studied in [6], in this paper we focus

on the geometry of M4.
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Notice this is then a local boundary counterterm. If we denote by M δ
4 the manifold M4

with boundary M δ
3 = {y = δ} (with 0 < δ < y0), and similarly for Σδ

2 etc, the action of the

M2-brane is

SM2 =
1

(2π)2`3p

∫
S1
M

R3

4
volS1

M
· lim
δ→0

[∫
Σδ2

volΣ2 −
∫
∂Σδ2

e1
µdxµ +

∫
Σδ2

F

]
. (3.29)

Here we have written volS1
M

for the volume form on S1
M induced from the metric g7, and

similarly for volΣ2 and the metric gM4 . Applying Stokes’ theorem for the gauge field term

F = dA we then compute6

SM2 =
1

(2π)2`3p

∫
S1
M

volS1
M
· π`R

3

2
lim
δ→0

[(∫ y0

δ

dy

y2
− 1

δ
√
V (δ, z, z̄)

)
− 1

2π`

∫
∂Σδ2

A

]

=
1

(2π)2`3p

∫
S1
M

volS1
M
· π`R

3

2

[
−
(

1

y0
+

1

4
w(1)

)
− 1

2π`

∫
∂Σ2

A

]
. (3.30)

Recall here that 2π` denotes the length of the orbit of K, as in (2.14). The contribution of

the M-theory circle S1
M is exactly the same as for the AdS4×Y7 backgrounds studied in [6],

and is expressed in terms of the contact form η on Y7 and the Dirac quantized number N

of (3.22). The gauge field integral is easily computed, thanks to (3.17)∫
∂Σ2

A =

∫
∂Σ2

A(0) = 2π`

(
−1

4
w(1) + γ

)
. (3.31)

Putting everything together, and using the formula (3.13) for y0, we have

log 〈W 〉gravity = −SM2 = ` (|b1 + b2|+ γ) ·
(2π)2

∫
S1
M
η√

2
∫
Y7
η ∧ (dη)3

N1/2 . (3.32)

Using the round sphere result of [6]

log 〈Wround 〉gravity =
(2π)2

∫
S1
M
η√

2
∫
Y7
η ∧ (dη)3

N1/2 , (3.33)

and the formula (3.16) for γ, in both cases b1/b2 > 0 and b1/b2 = −1 we obtain

log 〈W 〉gravity =
|b1|+ |b2|

2
` · log 〈Wround 〉gravity . (3.34)

In [6] it was shown in numerous families of examples that the large N limit of the Wil-

son loop on the round three-sphere and the M2-brane in AdS4 have the same VEV, i.e.

log 〈Wround 〉QFT = log 〈Wround 〉gravity holds to leading order at large N . Assuming this

6The sign in front of the gauge field term arises because y is decreasing towards the boundary of M4,

and hence dy points inwards from M3. Thus the natural orientation of the boundary we take is opposite

to that in Stokes’ theorem.
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to be the case, equations (2.20) and (3.34) mean that we have shown very generally that

in the large N limit

log 〈W 〉QFT = log 〈W 〉gravity (3.35)

where now the field theory is defined on a general class of background three-manifolds M3,

with fillings M4 in four-dimensional gauged supergravity.

We conclude this section with two further comments. Firstly, it is interesting to note

that when the orbit of K is one of the poles of S3, where correspondingly ` = 1/|b1| or

` = 1/|b2| respectively, the Wilson loops are then functions only of |b1/b2|, just as for the

free energy (1.1). Secondly, in the case that b1/b2 = m/n is rational and the Wilson line

wraps a generic orbit γ ⊂ T 2 ⊂ S3 (i.e. not at either pole), then the curve Σ2 ⊂M4
∼= C2

wrapped by the dual M2-brane is the Brieskorn-Pham curve {zn1 = zm2 } ⊂ C2. This follows

since supersymmetry pairs the orbit of K with its complexification in M4
∼= C2, meaning

that Σ2 is swept out as a generic C∗ orbit of (z1, z2) → (λmz1, λ
nz2), with λ ∈ C∗. The

curve {zn1 = zm2 } adds the origin in C2 at y = y0, which is a singular point when m,n > 1,

although notice this does not affect our computation of the M2-brane action, which is

finite. It is well-known that (m,n) torus knots in S3 may be realized as links of the above

Brieskorn-Pham curves, and it is interesting to see that this construction is realized as the

holographic dual of the knot.

4 Examples

Our derivation of the formula (3.34) was necessarily somewhat indirect, as we have shown

that it holds for a very general (infinite-dimensional) class of solutions. In particular we

didn’t need to use the explicit form of the solution to the Toda equation (3.3). In this

section we illustrate our general results by discussing two explicit families of solutions,

where all quantities in the previous section may be written down in closed form. We will

focus on the four-dimensional part of the M2-brane calculation, in particular showing how

the factor `(|b1|+ |b2|)/2 in (3.34) arises explicitly in these cases. In order to do so we will

use the results of the previous section that allow us to write

log 〈W 〉gravity = Sb1,b2 · log 〈Wround 〉gravity , (4.1)

where

Sb1,b2 ≡
1

2π

(
−
∫

Σ2

volΣ2 +

∫
∂Σ2

vol∂Σ2 +

∫
∂Σ2

A

)
. (4.2)

Here we cut off Σ2 at y = δ, and (4.2) is then understood to be the limit δ → 0. We

compute (4.2) directly in the examples, confirming that (3.34) indeed holds in these cases.

AdS4. We begin with the metric on Euclidean AdS4, which can be written

ds2
EAdS4

=
dq2

q2 + 1
+ q2

(
dϑ2 + cos2 ϑdϕ2

1 + sin2 ϑdϕ2
2

)
. (4.3)
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Here q is a radial variable with q ∈ [0,∞), so that the origin of M4
∼= R4 is at q = 0 while

the conformal boundary is at q =∞. The coordinate ϑ ∈ [0, π2 ], with the endpoints being

the two axes of R2 ⊕ R2 ∼= R4.

Of course the metric (4.3) is conformally flat, which leads to a trivial graviphoton

A = 0. However, we may instead pick a general supersymmetric Killing vector K =

b1∂ϕ1 + b2∂ϕ2 . This leads to a family of conformal Kähler structures on C2, where the

explicit formulae for the conformal factor y and the metric function w(y, z, z̄) may be

found in [5]. In particular one calculates the local gauge field given by (3.4) to be

Alocal =

(
b1 + b2

√
q2 + 1

)
dϕ1 +

(
b2 + b1

√
q2 + 1

)
dϕ2

2

√
(b2 + b1

√
q2 + 1)2 cos2 ϑ+ (b1 + b2

√
q2 + 1)2 sin2 ϑ

, (4.4)

which is a non-trivial instanton on Euclidean AdS4. In fact this solution was first found

in [16] using very different methods. One can check that the field strength F = dA

for (4.4) indeed defines a smooth, non-singular instanton on EAdS4 precisely when b1/b2 >

0 or b1/b2 = −1, with b1/b2 = ±1 both giving trivial instantons. When b1/b2 < 0 and

b1/b2 6= −1 the instanton is singular along one axis or the other.

Writing A as a global one-form and restricting to the conformal boundary at q = ∞
we obtain

A(0) =
b2dϕ1 + b1dϕ2

2
√
b21 cos2 ϑ+ b22 sin2 ϑ

− 1

2
(sign(b2)dϕ1 + sign(b1)dϕ2) . (4.5)

In particular notice this is well-defined at both poles ϑ = 0 and ϑ = π/2. The submanifold

Σ2 is parametrized by the radial direction q in AdS4 and the S1 wrapping ϕ1 or ϕ2 when

ϑ = 0 or ϑ = π/2, respectively.

We now turn to computing (4.2). Notice that the dependence on b1 and b2 arises only

via the gauge field A, and not from the metric. Indeed, we compute[
−
∫

Σ2

volΣ2 +

∫
∂Σ2

vol∂Σ2

]
= 2π , (4.6)

and

∫
∂Σ2

A(0) =

 π( b2
|b1| − sign(b2)) · sign(b1) if ϑ = 0 ,

π( b1
|b2| − sign(b1)) · sign(b2) if ϑ = π/2 .

(4.7)

The overall factors of sign(b1), sign(b2) for ϑ = 0, π/2 arise because the orientation of ∂Σ2

is determined by K. Equation (4.2) immediately gives for all regular cases that

Sb1,b2 =


|b1|+ |b2|

2|b1|
if ϑ = 0 ,

|b1|+ |b2|
2|b2|

if ϑ = π/2 .
(4.8)
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In particular using the variable ` introduced previously, which is given by ` = 1/|b1| and

1/|b2| for the ϑ = 0 pole and ϑ = π/2 pole, respectively, we obtain for both poles and all

regular cases that

Sb1,b2 =
|b1|+ |b2|

2
` , (4.9)

as expected.

Taub-NUT-AdS4. The Taub-NUT-AdS4 metrics are a one-parameter family of self-dual

Einstein metrics on the four-ball, and have been studied in detail in [20, 21]. The metric

may be written

ds2
4 =

r2 − s2

Ω(r)
dr2 + (r2 − s2)(σ2

1 + σ2
2) +

4s2Ω(r)

r2 − s2
σ2

3 , (4.10)

where

Ω(r) ≡ (r ∓ s)2[1 + (r ∓ s)(r ± 3s)] , (4.11)

and σ1, σ2, σ3 are left-invariant one-forms on SU(2) ' S3. The latter may be written in

terms of Euler angle variables as

σ1 + iσ2 = e−iς(dθ + i sin θdϕ) , σ3 = dς + cos θdϕ . (4.12)

Here ς has period 4π, while θ ∈ [0, π] with ϕ having period 2π. The radial coordinate r

lies in the range r ∈ [s,∞), with the origin of the ball ∼= R4 being at r = s. The parameter

s > 0 is referred to as the squashing parameter, with s = 1
2 being the Euclidean AdS4

metric studied in the previous section. The metric is asymptotically locally Euclidean AdS

as r →∞, with

ds2
4 '

dr2

r2
+ r2(σ2

1 + σ2
2 + 4s2σ2

3) , (4.13)

so that the conformal boundary at r =∞ is a biaxially squashed S3.

While the Taub-NUT-AdS metric (4.10) has SU(2)×U(1) isometry, a generic choice of

the Killing vector K = b1∂ϕ1 +b2∂ϕ2 = (b1 +b2)∂ϕ+(b1−b2)∂ς breaks the symmetry of the

full solution to U(1) × U(1). In particular, this symmetry is broken by the corresponding

instanton A. On the other hand, in [20, 21] the SU(2)×U(1) symmetry of the metric was

also imposed on the gauge field, which results in two subfamilies of the above solutions,

which are 1/4 BPS and 1/2 BPS, respectively. In each case this effectively fixes the Killing

vector K (or rather the parameter b1/b2) as a function of the squashing parameter s.

1/4 BPS solution: The supersymmetric Killing vector for this solution is K = − 1
2s∂ς

and we have

b1 = −b2 = − 1

4s
. (4.14)
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Here ς = ϕ1 − ϕ2, ϕ = ϕ1 + ϕ2 is the change of angular coordinates. The boundary gauge

field A(0) is [21]

A(0) =
1

2
(4s2 − 1)σ3 , (4.15)

which is a global one-form on M3
∼= S3. We may now take the surface Σ2 wrapped by

the M2-brane to be any S1 orbit of the Hopf Killing vector ∂ς (at any point on the base

S2 = S3/U(1)ς), together with the radial direction r. This is supersymmetric, and the

regularized volume of Σ2 is[
−
∫

Σ2

volΣ2 +

∫
∂Σ2

vol∂Σ2

]
= 8πs2 , (4.16)

while the gauge field integral is∫
∂Σ2

A(0) = −2π(4s2 − 1) . (4.17)

This leads to

Sb1,b2 = 1 =
|b1|+ |b2|

2
` , (4.18)

where ` = 4s is the length of K divided by 2π.

1/2 BPS solution: The Taub-NUT-AdS metric (4.10) also admits a 1/2 BPS solu-

tion [20, 21]. There are thus two linearly independent Killing spinors, and an appropriate

linear combination preserves U(1)×U(1) symmetry, leading to the Killing vector

K =
(

2s+
√

4s2 − 1
)
∂ϕ +

(
1
2s − 2s−

√
4s2 − 1

)
∂ς , (4.19)

so that

b1 =
1

4s
, b2 = − 1

4s
+ 2s+

√
4s2 − 1 . (4.20)

The boundary gauge field is

A(0) = s
√

4s2 − 1σ3 . (4.21)

This time we take the Wilson loop to wrap one of the two poles θ = 0, θ = π. These are

both copies of S1, and Σ2 is again formed by adding the radial direction r. The boundary

gauge field is

A(0) |pole =

{
2s
√

4s2 − 1 dϕ1 if θ = 0 ,

−2s
√

4s2 − 1 dϕ2 if θ = π .
(4.22)

The regularized volume is again 8πs2, which then gives

Sb1,b2 =

{
2s(2s+

√
4s2 − 1) if θ = 0 ,

2s(2s−
√

4s2 − 1) if θ = π .
(4.23)

In both cases we indeed have

Sb1,b2 =
|b1|+ |b2|

2
` , (4.24)

where ` = 1/|b1|, ` = 1/|b2| for the two poles.
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5 Discussion

In this paper we have derived the formula (1.2), (1.3) for the expectation values of large

N BPS Wilson loops, in both gauge theory and in supergravity. In particular the gauge

theories are defined on a general class of supersymmetric backgrounds M3
∼= S3, which in

the supergravity dual arise as the conformal boundaries of self-dual solutions to gauged

supergravity. A key feature of the gravity calculation is that we are able to evaluate the

regularized M2-brane action, that is identified with the Wilson loop VEV, without using the

explicit form of the metric and graviphoton field. This seems to be a general feature of such

computations of BPS quantities in AdS/CFT, and allows us to verify the correspondence

for these observables in a very broad class of solutions.

The results described in this paper lead to a number of questions, and possible future

directions to pursue. First, in supergravity we have restricted to self-dual solutions, while

more generally there are also non-self-dual solutions to gauged supergravity. A local study

of these solutions appears in [22], while global asymptotically locally Euclidean AdS solu-

tions were constructed in [21]. Presumably the methods we have used extend to this general

class of solutions. In particular the Wilson loop was computed for a charged topological

black hole background in [23], and successfully compared to a field theory calculation.

The non-self-dual solutions in [21] all have the feature that the bulk M4 has non-trivial

topology, which in turn leads to issues in interpreting them holographically (and in par-

ticular uplifting to eleven dimensions restricts the choice of Y7, implying the solutions are

only relevant to specific gauge theories on M3). It would be interesting to try to calculate

Wilson loops in such examples, and compare to a dual field theory computation. Indeed,

in [21] it was argued that in appropriate circumstances 〈W 〉 = 0 in supergravity, via a

similar mechanism to that in [24]. Typically here the boundary M3 in such examples has

a non-trivial fundamental group, as in the large N gauge theory computation in [25], and

there is indeed evidence that if the R-symmetry gauge field on M3 has non-trivial topology

then the large N Wilson loop VEV vanishes also in the gauge theory.7 Finally, it is now

clear that similar results should also hold in higher dimensions. A very similar formula

to (1.2), (1.3) was found to hold for certain supersymmetric squashed five-sphere confor-

mal boundaries and their gravity duals in [27, 28], and was conjectured to hold for general

backgrounds in those references. It would also be interesting to compute Wilson loops in

the general class of S1 × S3 Hopf surface geometries in [29].
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7The matrix model behaviour is then much more complicated, and seems difficult to analyse analytically,

but very roughly speaking the Wilson loop VEV averages to zero due to the sum
∑p−1
k=0 ω

k
p = 0, where ωp is

a primitive pth root of unity. This arises from the fact that the dominant contribution to the Wilson loop

at large N comes from a non-trivial flat connection, with ωkp related to its holonomies [26].
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