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1 Introduction

Non-abelian gauge theories exhibit a vast number of extremely interesting phenomena.

Many of these involve non-perturbative physics and are also present even in N = 2 su-

persymmetric gauge theories. These theories can be viewed as a precise laboratory to test

our intuition on the dynamics of quantum chromodynamics in terms of exact results, that

include all perturbative and non-perturbative contributions in terms of closed, analytic for-

mulas. Since the pioneering work of Seiberg and Witten [1, 2], in the last two decades there

were numerous remarkable discoveries and key constructions (for reviews, see e.g. [3, 4]).

Using holomorphy, the approach of Seiberg and Witten [1, 2] leads to the exact compu-

tation of the low-energy effective action for general N = 2 supersymmetric gauge theories.

A systematic way to obtain these solutions by means of instanton counting was found

some years later by Nekrasov [5, 6]. Another approach is supersymmetric localization,

which was used to determine 1/2 supersymmetric observables in N = 2 theories on S4,

such as the partition function and the circular Wilson loop, in terms of an r-dimensional

integral, where r is the rank of the gauge group. For SU(2) gauge groups, localization thus

reduces the computation of the exact partition function to a single integral, which means

an enormous simplification as compared with the original infinite dimensional functional

integral. However, the partition function is still very difficult to compute exactly because

the integrand is complicated, involving Barnes G-functions and the instanton factor.
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One case that can be computed exactly is SU(N)N = 2 supersymmetric gauge theories

in the limit of large N . Taking the infinite N limit leads to two important simplifications.

First, instanton contributions are exponentially suppressed with N and as a result the

instanton factor is set to 1. Secondly, in this limit the integral is determined by a saddle

point. In turn, this permits to calculate the partition function and Wilson loop exactly

as a function of the coupling in terms of analytic formulas. Along the way one obtains

predictions for theories with AdS/CFT duals. Using these ideas, many new insights into

the physics of large N four-dimensional gauge theories have recently been obtained [8–20].

One of the surprising outcomes of these studies is the proliferation of large N quantum

phase transitions in the decompactification limit, which seem to be generic features of

N = 2 theories with massive matter (exceptions include massive deformations of the N = 2

superconformal theory [13]). The quantum critical points originate from resonances that

appear whenever the coupling is such that the saddle point hits points in the Coulomb

branch of the moduli space where there are massless excitations. In some cases, this effect

leads to complicated phase structures.

One of the motivations of this paper is to elaborate on the bridge between these

recent results from localization and the extense literature based on the Seiberg and Witten

solution. While the phase transitions were detected at large N , it is plausible that even

for low-rank gauge groups, such as SU(2), there might be non-analytic features in the free

energy due to the fact that, for certain critical couplings, configurations crossing massless

singularities may dominate the integral.

In this paper we will focus on two supersymmetric gauge theories where the Seiberg-

Witten solution has been extensively studied: the SU(2) super QCD with Nf = 2 massive

multiplets, and the SU(2) N = 2∗ theory, corresponding to a massive deformation of

N = 4 super Yang-Mills. In the large N SU(N) version, these two theories exhibit phase

transitions at certain couplings. For the SQCD theory, there are two phases [13, 15], the

weak coupling phase with 2Λ < M and the strong coupling phase with 2Λ > M . On the

other hand, N = 2∗ theory exhibits an infinite number of phase transitions undergoing

as the coupling λ is increased and accumulating at λ = ∞ with the asymptotic critical

coupling
√
λ ∼ nπ, where n� 1 is an integer [12, 13, 18, 20].

The basic starting point will be the observation that, in a certain regime of the coupling,

taking the decompactification limit in localization formulas permits to write the Pestun

partition function in terms of the Seiberg-Witten prepotential. The simplification occurs

provided a saddle point exists at sufficiently large value of the integration variable.

In compactifying the gauge theories on S4, the curvature couplings generate a scalar

potential that lifts the vacuum degeneracy. In [15] it was pointed out that sending sub-

sequently the radius of the sphere to infinity defines a unique vacuum in the decompact-

ification limit, in much the same way as switching on a small external magnetic field in

a Heisenberg ferromagnet selects a unique vacuum. The present results show that this

“S4 vacuum” corresponds to minimizing the Seiberg-Witten prepotential. The curvature

couplings indeed do not drop out in the infinite radius limit, but contribute to the Seiberg-

Witten prepotential in the classical or one-loop term, as we shall explain.

We will begin with the simplest example, pure SU(2) super Yang-Mills theory.

– 2 –
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2 Pure SU(2) super Yang-Mills theory

2.1 The Seiberg-Witten solution

The supersymmetric vacuum in pure N = 2 SU(N) gauge theories is characterized by the

expectation value of the scalar field of the vector multiplet, given by

Φ = diag(a1, . . . , aN ) ,

N∑
i=1

ai = 0 . (2.1)

The low-energy effective action in N = 2 gauge theory is fully determined in terms of the

prepotential F(ai). The magnetic dual variables defined by

aDi =
∂F
∂ai

, (2.2)

will play an important rôle in what follows.

Our discussion will be restricted to SU(2) gauge group. In this case the coupling

constant is given by

τ(a) =
∂2F
∂a2

. (2.3)

It represents the renormalized coupling in the vacuum (2.1),

τ(a) = 2τUV −
8

2πi
ln

a

ΛUV
+ . . . (2.4)

= − 8

2πi
ln
a

Λ
+ . . . (2.5)

where Λ is the dynamical scale, related to the renormalization scale ΛUV by

Λ = ΛUV e
1
2
πiτUV . (2.6)

Equation (2.5) shows the one-loop contribution to τ(a). The exact expression for the

coupling at a given vacuum parametrized by a is obtained from the Seiberg-Witten (SW)

solution. For pure SU(2) SYM, the SW curve is given by [1]

y2 = (x2 − Λ4)(x− u) , (2.7)

where u is the gauge invariant parameter

u = 〈tr Φ2〉 = 2a2 + . . . , (2.8)

and dots stand for quantum corrections. The curve (2.7) has singularities at u = ±Λ2.

The periods of this curve determine a and aD in terms u. One finds

a =

√
2Λ2

2π

∫ Λ2

−Λ2

dx
√
x− u√

x2 − Λ4
, aD =

√
2Λ2

π

∫ u

Λ2

dx
√
x− u√

x2 − Λ4
. (2.9)

– 3 –
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These integrals can be expressed in terms of elliptic functions. A compact form is [21]

aD(u) =
i

4
Λ(u2 − 1)2F1

(
3

4
,
3

4
, 2; 1− u2

)
,

a(u) =
1

1 + i
Λ(1− u2)

1
4 2F1

(
− 1

4
,
3

4
, 1;

1

1− u2

)
. (2.10)

The prepotential F(a) can then be obtained from the formula

aD =
∂F
∂a

. (2.11)

At weak coupling, one finds the expansion [21]

2πiF = −4a2 ln
4a

e3/2Λ
+

∞∑
k=1

zk
Λ4k

a4k−2
, (2.12)

with

z1 =
1

25
, z2 =

5

214
, z3 =

3

218
, z4 =

1469

231
, . . . (2.13)

2.2 Localization

We wish to reproduce the formula for the prepotential (2.12) starting with the exact formula

for the partition function for the theory compactified on a four-sphere of radius R, derived

by using localization techniques. For pure N = 2 SYM, the one-loop determinant is

divergent and needs to be properly regularized and renormalized. An elegant way to

obtain the renormalized partition function is by adding a hypermultiplet of mass M and

then taking a suitable limit M →∞ [7]. The N = 2 SYM with a massive hypermultiplet

is the familiar N = 2∗ theory, which can be viewed as a flow between N = 4 SYM and

pure N = 2 SYM. It is a finite theory, since in the UV regime it flows to N = 4 SYM.

For large mass M , the theory can be viewed as regularized pure N = 2 SYM, where M

represents a UV cutoff. For SU(2) gauge group, the partition function is given by [7]

ZN=2∗ =

∫ ∞
−∞

da a2 e
− 16π2

g2
a2R2 H2(2aR)

H(2aR+MR)H(2aR−MR)

∣∣ZN=2∗
inst (a,M)

∣∣2 , (2.14)

H(x) =

∞∏
n=1

(
1 +

x2

n2

)n
e−

x2

n ,

which as expected is a convergent expression. The Nekrasov instanton function

ZN=2∗
inst (a,M) is computed with equivariant parameters ε1 = ε2 = 1/R [22].

The factor e−
x2

n –which renders the infinite product convergent– is not present auto-

matically in the one-loop determinant. For the N = 2∗ theory, one is free to add it since

it cancels out between numerator and denominator (modulo a constant).

The function H can be written in terms of the Barnes G-function,

H(x) = e−(1+γ)x2
G(1 + ix)G(1− ix) .

– 4 –
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For large argument, it has the asymptotic form

lnH(x) = −x2 ln |x|eγ−
1
2 +O(lnx) . (2.15)

Thus, for large M , the partition function takes the form

ZN=2∗ → e2M2R2 lnMR

∫ ∞
−∞

da a2 e
− 16π2

g2
R

a2R2

H2(2aR)
∣∣Zinst(a)

∣∣2 , (2.16)

where g2
R, defined by,

4π2

g2
R

≡ 4π2

g2
− 2 lnMRe1+γ , (2.17)

is kept fixed. The coupling g2
R represents the renormalized coupling at the scale set by

the radius of the four-sphere, and the factor e2M2R2 lnMR reproduces the expected UV

divergence of the partition function coming from zero modes of the one-loop determinant.

As usual in asymptotically free theories, g2
R should be traded by the dynamical scale

of the theory:

1

2
ΛR ≡ lim

M→∞, g→0
MR e

− 2π2

g2 = e
− 2π2

g2
R

−1−γ
, (2.18)

which is the only parameter in the problem. Thus

Z = const.

∫ ∞
−∞

da a2 e8a2R2 ln( 1
2

ΛRe1+γ)H2(2aR)
∣∣Zinst(a)

∣∣2 . (2.19)

The instanton factor of N = 2∗ flows automatically to the instanton factor for pure SYM,

once taken into account the renormalization (2.17), with no extra divergent factor. For

example, for one-instanton and two-instantons, one has

ZN=2∗
inst (a,M) = z1 q + z2 q

2 + . . . ,

q = e2πiτ ,

τ =
θ

2π
+

4πi

g2
,

where z1 and z2 are given in (A.5), with ε = 1/R. The θ parameter plays no rôle in our

discussion so it will be set to zero. For M →∞ and g → 0 with Λ fixed, we find

z1 e
2πiτ → Λ4

24

1

2ε2 (a2 + ε2)
,

z2 e
4πiτ → Λ8

28

8a2 + 33ε2

4ε4 (a2 + ε2) (4a2 + 9ε2)2 . (2.20)

Thus, this limit just decouples the hypermultiplet, giving rise to the correct finite instanton

coefficients of pure SYM on the four-sphere.

– 5 –
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2.3 Partition function at large R

Let us return to the computation of the partition function. For theories with coupling

constant, such as N = 2∗, the radius is an independent parameter that can be sent to

infinity at any fixed coupling. However, for pure SU(2) SYM, the partition function depends

only on one parameter ΛR. One may explore the theory in the ultraviolet (weak coupling),

ΛR� 1, or in the infrared (strong coupling), where ΛR→∞.

In the weak coupling limit ΛR� 1, one can use the above formula (2.19) to compute

the perturbation series to any desired loop order, just by Taylor expanding H(2aR) in

powers of 2aR. In the process, one discovers that perturbation series has a finite radius of

convergence [23].

Our main interest here is to see if we can find a closed, analytic form in the strong

coupling regime, ΛR � 1. Fixing Λ, this implies looking at the decompactification limit

R→∞. We write

Z =

∫
da e−R

2S(a) , (2.21)

with

R2S(a) = − ln a2R2−8a2R2 ln

(
1

2
ΛRe1+γ

)
−2 lnH(2aR)− lnZinst(a)− ln Z̄inst(a) (2.22)

Since R is large, it is natural to assume that, in this limit, the integral (2.21) will be

dominated by a saddle point. Assuming that the saddle point lies at a real aR � 1 –

which we will turn to be a self-consistent assumption– then one can use the asymptotic

expansion (2.15) to show that lnH scales with R2. Similarly, considering the above one

instanton and two instanton terms (2.20), we find

lnZinst(a)→ R2

(
1

25

Λ4

a2
+

5

214

Λ8

a4
+ . . .

)
. (2.23)

This exactly reproduces the instanton expansion of the prepotential (2.12), (2.13) of SU(2)

SYM obtained from Seiberg-Witten theory. This is not a surprise, it follows from the

universal formula [5]

2πiFins(a) = lim
ε1,2→0

ε1ε2 lnZins , (2.24)

upon making the identification ε1 = ε2 = 1/R. Therefore, we find

S(a)→ 8a2 ln
4 a

e
3
2 Λ
− Λ4

24a2
− 5

213

Λ8

a4
+ . . . (2.25)

This is nothing but twice the prepotential (2.12) of SU(2) N = 2 supersymmetric Yang-

Mills theory, including the one-loop term. Note that the one-loop term has combined with

the Gaussian term coming from the curvature coupling of the scalar field of the vector

multiplet. Thus

lim
R→∞

1

R2
lnZPestun(S4) = 2πi

(
F(a)− F̄(a)

)
. (2.26)

It is natural to conjecture that this formula extends to any N = 2 theory with arbitrary

gauge group and matter content, in a regime of coupling where saddle points at large

ai exist.

– 6 –
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Without the instanton terms, the saddle-point calculation for the N = 2 SU(2) SYM

theory was carried out in [10], finding that there was indeed a non-trivial saddle point

dominating the integral. The calculation in [10] was made in the context of a toy model,

in order to motivate large N physics. It was a toy model because instantons cannot be

ignored for SU(2), as we will shortly confirm.

We look for a saddle point on the real line for a, so a = ā. The saddle-point equations

are now
∂S

∂a
= 0 −→ ∂F

∂a
= 0 . (2.27)

Hence

aD = 0 . (2.28)

Strikingly, as long as there is a saddle point at large aR dominating the integral, the exact

determination of the partition function amounts to computing the prepotential at the point

where the dual magnetic variable vanishes and a monopole becomes massless. Since aD is

a period integral, aD = 0 represents a singularity of the curve. For the SU(2) curve (2.7),

this is the singularity located at u = Λ2. At this point

a→ a∗ =
2Λ

π
, aD → 0 . (2.29)

In particular, this confirms that, at the saddle point, instanton effects are of order 1, since

a ∼ Λ. Therefore they cannot be neglected. It also confirms that the saddle point occurs

at aR� 1, provided ΛR� 1.

The prepotential can be computed from the Matone relation [24]:

u = 2πi

(
F(a)− 1

2
a∂aF(a)

)
, (2.30)

which, at the saddle point, gives

2πiF(2Λ/π) = Λ2 . (2.31)

Thus

lim
R→∞

1

R2
lnZPestun(S4) = 2Λ2 . (2.32)

This may be compared with the result of [10] for the toy model without instantons, lnZ ∼
e−2γΛ2R2.

In order to justify the saddle-point approximation, we need to compute the second

derivative of the action. This gives

∂2S

∂a2
= −4πi

∂aD
∂a

= −4πiτ(a) . (2.33)

Note that −4πiτ(a) is real and > 0. From the behavior near the singularity,

aD ≈
i

2Λ
(u− Λ2) , a ≈ 2Λ

π
− 1

4πΛ
(u− Λ2) ln

(
u

Λ2
− 1

)
, (2.34)

– 7 –
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Figure 1. Ratio between the lnZ computed numerically using the exact Seiberg-Witten solution

and the saddle-point estimate lnZ
∣∣
saddle

≈ 2Λ2R2 for different values of R.

we find

R2∂
2S

∂a2
≈ 8π2R2

| ln( u
Λ2 − 1)|

→ 0 . (2.35)

This is consequence of the familiar fact that the electric coupling diverges at the point

where the monopole is massless. Although the second derivative of the action vanishes,

all higher derivatives, however, diverge at this point, showing that this point has more the

structure of a cusp than a Gaussian shape. Nevertheless, because of the sharp peak at

a∗, the saddle point still captures the leading behavior in lnZ, despite R2S′′ = 0 at the

singularity. This is shown in figure 1, which shows the ratio between the partition function

computed numerically at large R, using the exact Seiberg-Witten solution (2.10), and the

saddle-point result (2.32). We have used that, at large R,

Z =

∫
da e4πiR2F(a) =

∫
du ∂ua e

4πiR2F(u) , (2.36)

where F(u) is obtained by integrating aD(u)∂ua(u) using (2.10) and (2.31). In (2.36), the

contour in the integral over u has been chosen from u = Λ2 to infinity on the real axes.

The integral approaches the same value for any contour passing near u = Λ2, because at

large R the integral is dominated by the u = Λ2 region. In the original integral, this choice

of contour corresponds to a going from 2Λ/π to infinity, where we have chosen the branch

where a is real (then the prepotential is purely imaginary and the action is real). Other

branches around Λ2 have imaginary components for a, as can be seen from the monodromy

aD → aD , a → a − aD arising as u circles the singularity at u = Λ2 (cf. (2.34)). While

the original partition function (2.21) involves an integration from a = 0 to ∞, in the

Seiberg-Witten quantum solution there is no contour in the u-plane where a(u) is real and

0 < a < 2Λ/π. It would be interesting to compute the complete partition function (2.21)

numerically at finite R. This requires knowing the instanton factor in a closed form.

– 8 –
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3 SU(2) SQCD with massive fundamental and antifundamental hyper-

multiplets

3.1 The partition function

Consider now N = 2 supersymmetric Yang-Mills theory coupled to Nf = 2 massive matter,

namely a fundamental and an antifundamental hypermultiplet of mass M . This theory is

asymptotically free. Localization now leads to the following partition function1

ZSQCD(S4) = const.

∫ ∞
−∞

da a2 e4a2R2 ln ΛRe1+γ H2(2aR)

H2(aR+ MR√
2

)H2(aR− MR√
2

)

∣∣Zinst(a)
∣∣2 .
(3.1)

This partition function is obtained after renormalization procedure. Like in the case of pure

SYM theory, this can be carried out by starting from a finite theory, the theory obtained

by adding two extra (fundamental and antifundamental) hypermultiplets of mass M0 and

using the flow from the superconformal Nf = 4 theory to Nf = 2. This approach was

followed in [15]. In the UV, the resulting theory flows to the N = 2 superconformal SYM;

therefore it is a finite theory with convergent partition function. The idea is then to take

the M0 →∞ limit to decouple the two extra hypermultiplets by following similar steps as

we did for pure SYM. The limit leads to the partition function (3.1), with the identification

lim
M0→∞, g0→0

M0e
− 4π2

g20 = Λ = fixed , (3.2)

where g0 is the coupling of the original theory.

We now take the decompactification limit. This implies looking into the infrared

regime, where ΛR � 1. We assume again that in this limit the integral is dominated

by a saddle point at some aR � 1. Using the asymptotic formula (2.15) for H and the

formula (2.24), we now find

lim
R�1

ZSQCD(S4) =

∫
da e−R

2S(a,M) , (3.3)

with

S(a,M) = 8a2 ln
2e

1
4 a

Λ
− 2

(
a+

M√
2

)2

ln
|a+ M√

2
|

Λ
− 2

(
a− M√

2

)2

ln
|a− M√

2
|

Λ

−2πiFins + 2πiF̄ins . (3.4)

We recognize the one-loop contribution to the prepotential, which, combined with the

instanton contributions, gives the full prepotential of the theory [25, 26]. The singular-

ity at a = ±M/
√

2 represents the point in the moduli space where the hypermultiplet

becomes massless.

1In [13, 15] Nf represents Nf pairs of fundamental and antifundamental hypermultiplets, so our model

here corresponds to Nf = 1 and N = 2 in the notation of [13, 15].
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Note that, once again, the ln Λ piece originating from the curvature coupling of the

scalar field of the vector multiplet has combined with the terms from the one-loop deter-

minant to produce the correct one-loop terms of the prepotential with the dynamical scale

Λ included. Thus

lim
R→∞

1

R2
lnZSQCD(S4) = 2πiF(a∗)− 2πiF̄(a∗) , (3.5)

provided a∗R � 1. The limit is taken with M, Λ fixed. To complete the derivation, we

need to find the saddle point, compute the prepotential at the saddle point and show that

the approximation is justified.

3.2 SQCD toy model without instantons

The basic physical mechanisms underlying the large N phase transitions of [13, 15] can be

illustrated in the SU(2) SQCD model by ignoring the instanton terms. It is a toy model

because, as shown below, instantons cannot be cannot be neglected in any regime of the

coupling. The model, however, contains the essential ingredients of the large N SU(N)

models of [13, 15] that exhibit phase transitions.

The saddle point corresponds to the minimum of the action:

S0(a,M) = 8a2 ln
2e

1
4a

Λ
− 2(a−m)2 ln

|a−m|
Λ

− 2(a+m)2 ln
|a+m|

Λ
, (3.6)

with m ≡M/
√

2. The saddle-point equation is then given by

0 = a+ 4a ln
2e

1
4a

Λ
− (a−m) ln

|a−m|
Λ

− (a+m) ln
|a+m|

Λ
. (3.7)

This is a transcendental equation which can be solved analytically in different regimes.

Let us call a∗ the value of a at the saddle point. Then, as usual, the partition function is

given by

lnZ → −R2S0(a∗) . (3.8)

One can numerically verify that, as expected, the saddle-point formula (3.8) reproduces

the complete integral over a in Z with arbitrary accuracy for sufficiently large R.2

In the weak coupling regime, Λ � m, and the minimum is at small values of a,

Expanding (3.7) in powers of a, we find the solution

a∗ =
1

2

√
mΛ

(
1− 1

48

Λ

m
− 11

23040

(
Λ

m

)2

+ . . .

)
, (3.9)

and

F = − lnZ = R2m2

(
4 ln

Λ

m
− Λ

m
+

1

48

Λ2

m2
+

1

5760

Λ3

m3
+

1

5760

Λ4

m4
+ . . .

)
. (3.10)

2The convergence is much faster if one includes the quadratic fluctuations and uses Z =

2
√

2π/(R
√
S′′(a∗)) e−R

2S(a∗).
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This can be recognized as an OPE expansion in terms of the dynamical scale Λ.3

As Λ/m is increased, the minimum a∗ increases until it hits the singularity at a = m

where a component of the elementary hypermultiplet becomes massless. This occurs at

Λc = 2em . (3.11)

This is the analog of the critical point in the large N phase transitions of [13, 15]. Near Λc,

Λ− Λc ≈ e (m− a∗) ln

(
1− a∗

m

)
. (3.12)

As Λ is further increased and becomes greater than Λc, a crosses the massless singu-

larity and keeps increasing. For large Λ/m, a∗ is large and we find the behavior

a∗ ≈ Λ

4e

(
1 +O

(
m2

Λ2

))
, F ≈ − 1

8e2
Λ2R2

(
1 +O

(
m2

Λ2

))
. (3.13)

We can now see that neglecting instantons cannot be justified in any of the above three

regimes. By looking at the first few terms in the instanton expansions (see e.g. [25]), one

finds that instanton effects are small provided:

a) a�
√

ΛM , in the weak coupling regime Λ�M .

b) a� Λ, near Λc or in the strong coupling regime Λ�M .

Comparing with the values of the saddle points a∗ given above, we see that in no case

instanton contributions can be neglected.

In the following section we will see how instantons affect this picture.

3.3 Exact results via Seiberg-Witten

The SW curve for N = 2 SU(2) SYM with two flavors of equal mass is

y2 =

(
x2 − 1

64
Λ4

)
(x− u) +

1

4
M2Λ2 x− 1

32
M2Λ4 . (3.14)

In this case, a and aD are defined as period integrals of the meromorphic one-form

λ = −
√

2

4π

y dx

x2 − Λ4

64

. (3.15)

By a shift x→ x+ u/3, we can write the curve (3.14) in the Weierstrass form

y2 = (x− e1)(x− e2)(x− e3) , (3.16)

with

e1 =
u

6
− Λ2

16
+

1

2

√
u+

Λ2

8
+ ΛM

√
u+

Λ2

8
− ΛM ,

e2 = −u
3

+
Λ2

8
,

e3 =
u

6
− Λ2

16
− 1

2

√
u+

Λ2

8
+ ΛM

√
u+

Λ2

8
− ΛM . (3.17)

3The emergence of an OPE expansion at weak coupling was noticed in [12, 13] for the SU(N) models.
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It has singularities at the zeroes of the discriminant

∆ =
1

216
Λ4
(
Λ2 + 8M2 − 8u

)2 ((
Λ2 + 8u

)2 − 64Λ2M2
)
, (3.18)

i.e. at

u1 = −MΛ− Λ2

8
, u2 = MΛ− Λ2

8
, u3 = M2 +

Λ2

8
. (3.19)

The periods a and aD for this curve were explicitly computed in [27]. aD is defined as an

integral over the cycle γ2 surrounding e1 and e2, whereas a on the cycle γ1 surrounding e2

and e3. The cycle γ1 picks also a pole of the one-form λ whose residue is M/
√

2.

One of the salient aspects of this theory is the occurrence of an Argyres-Douglas [28]

superconformal fixed point [29, 30]. This arises when some zeroes of ∆ coincide. Then,

at the singularity, e1, e2 and e3 get together and the Riemann surface develops a cusp.

From (3.19), we see that this occurs at

2M = Λ . (3.20)

An important question is whether there is any manifestation of the existence of this fixed

point in the partition function. We have argued that in the large R limit the partition

function on the four-sphere (3.1) can be dominated by a saddle point if the action has

a minimum at a∗R � 1. In such a case, the partition function can be read from the

prepotential evaluated at the saddle point, as prescribed in (3.5).

The saddle-point equation is

∂S(a,M)

∂a
= 0 −→ aD =

∂F
∂a

= 0 . (3.21)

The behavior of aD was examined in detail in [27], and can be understood by looking at

the above expressions for e1, e2, e3. The equation aD = 0 requires that e1 → e2. This is

the singularity with

u3 = M2 +
1

8
Λ2 . (3.22)

More precisely, this gives e1 = e2 provided M < Λ/2. When M > Λ/2, then one has

e2 = e3 and aD 6= 0. To verify this, we examine the exact formula for aD in terms of

elliptic integrals (eq. (2.27) in [27]). Figure 2a shows a plot of −iaD as a function of Λ/M ,

which confirms that aD is nowhere vanishing when M > Λ/2.

Thus a saddle point exists only when M < Λ/2. To justify the saddle-point approxi-

mation, we must compute the second derivative of the action. This gives

R2∂
2S(a,M)

∂2a
= −R24πiτ(a,M) > 0 . (3.23)

The coupling −4πiτ(a,M) at the u3 singularity is shown in figure 3 as a function of M/Λ.

We see that the second derivative of S is positive and O(1) in the whole interval 0 < M <

Λ/2. Therefore, R2S′′ → ∞ in the infinite R limit and the saddle-point approximation

becomes exact.
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0.5 1.0 1.5 2.0

M

L

0.2

0.4

0.6

0.8

1.0

-i aD

0.0 0.1 0.2 0.3 0.4 0.5

M

L

0.1

0.2

0.3

0.4

a

M

2

(a) (b)

Figure 2. a) −iaD as a function of M/Λ at the singularity u = M2 + 1
8Λ2. It vanishes identically

for M < Λ/2, showing that it corresponds to a saddle point in the partition function. b) a as a

function of M/Λ at the same singularity.

0.1 0.2 0.3 0.4 0.5

M

L

0.5

1.0

1.5

2.0

2.5

-4ΠiΤ

Figure 3. −4πiτ(a,M) as a function of M/Λ on the saddle point at e1 = e2, u = M2 + 1
8Λ2,

M < Λ/2.

The behavior of the saddle-point a at the singularity, e1 = e2 is shown in figure 2b.

We have used the exact expressions in terms of elliptic integrals given in [27] (this picks

the specific branch where a(u3) is real). Importantly,

lim
M→Λ

2

a =
M√

2
. (3.24)

This is a consequence of the fact that at this point e2 → e3 and the period integral over

γ1 vanishes. When M → Λ/2, the integral defining the partition function is dominated

by a saddle point located precisely at the point where a component of the hypermultiplet

becomes massless. From figure 2b we see that the value of a increases from a non-zero value

a = 1√
2π

at M = 0, until it hits the singularity at M → Λ/2. As long as M < Λ/2, the

free energy will be given by F = −R2Re
(
4πiF(a∗)

)
. On the other hand, when M > Λ/2

computing the free energy requires an integration over the full domain, as there seems to

be no saddle point dominating the integral. This gives evidence of non-analytic behavior

of the free energy as a function of the coupling Λ/M in crossing the point M = Λ/2, and
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therefore a phase transition. At the critical point, the theory is described by an interacting

superconformal theory, whose spectrum of scaling dimensions was discussed in [29].

The free energy is thus completely determined in the strong coupling phase M < Λ/2

in terms of the prepotential as a function of M/Λ, obtained by sitting on the u = u3

singularity. To compute the order of the phase transition, one would need the expression

for the free energy in the weak-coupling phase, which we do not know.4 From the free energy

in the weak-coupling phase one can also compute the weak-coupling OPE expansion for

the full model including instanton contributions. In particular, this would be interesting in

order to have a better understanding of a long-standing question in QCD, concerning the

precise manner by which instanton and non-instanton power-like corrections contribute,

and how they can be distinguished.5

It is interesting to see how the theory behaves for complex mass parameter. In this

case, the partition function still has a saddle-point at u = u3 for Re(M) < Λ/2, where

e1 → e2. However, the simultaneous condition e1 → e2 and e2 → e3 cannot be satisfied in

this case and, as a result, there is no phase transition for any value of Λ. The same applies

to the large N SU(N) models [13]. The saddle-points occur at real expectation values of

the scalar field of the vector multiplet. Therefore, for any real value of Λ, they cannot hit

the massless singularity, which for complex mass is located at complex values of a.

In conclusion, the SQCD SU(2) theory with two flavors seems to have a phase transition

of a similar nature as the large N phase transition found in SQCD with Nf < 2N flavors

discussed in [13, 15]. However, note that the picture is very different from what was found in

the toy model of section 3.2. This was expected, since, as shown, instantons are important

in the whole range of couplings. Nonetheless, just as in the transitions of [13, 15], here

the phase transition occurs because, at some critical coupling, the saddle-point a hits the

singularity where the electric hypermultiplet becomes massless. We now also see that the

critical point of these transitions is precisely the Argyres-Douglas superconformal point of

the theory discovered in [29].

4 N = 2∗ SU(2) SYM

The exact partition function for N = 2∗ SU(2) Super Yang-Mills theory on S4 is given

by the formula (2.14) derived by Pestun [7]. Different properties of this theory have been

discussed in [7] and in subsequent works. In particular, the vacuum expectation value of

a supersymmetric ’t Hooft loop operator carrying magnetic charge is computed in [31].

Extending previous results in flat space [32], Billo et al. [33] find that the prepotential

terms satisfy a modular anomaly equation, which in turn generates a recursion relation for

the coefficients of the expansion in inverse powers of a. The perturbation series for the

partition function was studied in [23, 34], where it was found that it has an n! large order

behavior associated with Borel singularities originating from zero modes of the one-loop

determinant that occur in the complex a-plane.

4In the large N SQCD model, the analogous phase transition is third order [13].
5We thank K. Zarembo for this remark.
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Our purpose here is to connect this partition function with the Seiberg-Witten so-

lution and look for possible phase transitions. The partition function depends on two

independent parameters, MR and the coupling g. We now take the decompactification

limit at fixed coupling g. From the asymptotic expansion (2.15) for H, and using Nekrasov

formula (2.24), we find

lim
R→∞

1

R2
lnZN=2∗(S4) = −S(a,M) , (4.1)

with

S(a,M) =
16π2

g2
a2 + 8a2 ln(2|a|R)− (2a+M)2 ln |2aR+MR|

−(2a−M)2 ln |2aR−MR| − 2πiFins + 2πiF̄ins . (4.2)

One recognizes the classical, one-loop and instanton contributions to the prepotential

(see [32]). Thus

S(a,M) = −2πiF + 2πiF̄ . (4.3)

Let us take the ε→ 0 limit in (2.24) explicitly, by starting with the general instanton

partition function ZN=2∗
inst on the sphere. The one- and two-instanton terms are computed

in appendix A. Using the expressions for zk=1 and zk=2 given in (A.5), we obtain

2πiFins(a) = lim
ε1,2→0

ε1ε2 lnZins

= M2

((M2

2a2
− 2
)
q +

(
5M6

64a6
− 3M4

4a4
+

3M2

2a2
− 3

)
q2 + . . .

)
(4.4)

We can recognize the coefficients 1/2 and 5/64 of the instanton expansion (2.12), (2.13) in

pure SYM, here appearing as the leading term at large M (which are the only terms that

survive upon taking the limit (2.18).

In the large N limit, the N = 2∗ SU(N) supersymmetric Yang-Mills theory exhibits

an infinite number of phase transitions [12, 13, 18, 20]. In this limit, instantons are ex-

ponentially suppressed, so the dynamics of the phase transitions is fully governed by the

classical and one-loop terms. To exemplify this dynamics, in appendix B we present a toy

N = 2∗ SU(2) model ignoring instanton contributions. It shows a behavior qualitatively

similar to the toy N = 2 SU(2) SQCD described in previous section, with OPE series at

weak coupling and a non-analitic behavior at the massless singularity.

The question is whether this picture survives instanton corrections. To address this

question, we now consider the exact computation of partition function using Seiberg-Witten

description of the model. As in previous examples, we look for possible saddle points. The

saddle-point equation is

aD =
∂F
∂a

= 0 . (4.5)

Denoting this saddle point as a∗, we would then have,

lnZ ∼ 2πiR2(F(a∗)− F̄(a∗)) ≡ R2f(MR, g) . (4.6)
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A possible phase transition will occur if a∗ reaches 2M at some finite coupling gcr. Then

possible discontinuities in derivatives of f(MR, g) with respect to the coupling at gcr will

dictate the order of the phase transition.

For the N = 2∗ theory, the Seiberg-Witten curve is [2]

y2 =

(
x− e1ũ−

1

4
e2

1M
2

)(
x− e2ũ−

1

4
e2

2M
2

)(
x− e3ũ−

1

4
e2

3M
2

)
. (4.7)

where the ei are the following combinations of Jacobi θ functions,

e1 − e2 = θ4
3(0, τ) , e3 − e2 = θ4

2(0, τ) , e1 − e3 = θ4
4(0, τ) , (4.8)

satisfying e1 + e2 + e3 = 0, and ũ is given by [36]

ũ = u− M2

12
−M2

∞∑
n=1

αnq
n . (4.9)

Here u = 1
2〈trΦ

2〉 = a2 + . . .. The numerical values of αn will not be important for our

arguments. Various aspects of this theory have been extensively studied in the literature

(see [3] and references therein). A study of quantum critical points in general N = 2∗

SU(N) theories is in [35]. In particular, for a gauge group SU(3), Donagi and Witten

find a set of eight Argyres-Douglas critical points, which transform under the action of

SL(2,Z). It would be interesting to understand these different phases in terms of the free

energy computed by localization.6

Returning to the curve (4.7), singularities are at

ũi =
1

4
eiM

2 , i = 1, 2, 3 . (4.10)

The weak coupling expansions for the ei are e1 = 2/3+O(q), e2,3 = −1/3+O(q1/2). Then,

at weak coupling, near the singularity ũ1,

u ≈ ũ1 +
M2

12
≈ 1

4
M2 . (4.11)

i.e. a ≈ ±M/2, corresponding to the point where a component of the hypermultiplet

become massless. The behavior of the effective coupling τ(a) near this singularity was

studied in [32]. It has the expected classical and one-loop term plus instanton corrections

given in terms of the Dedekind η function. In the Donagi-Witten approach [35], the singular

point corresponds to a degenerating limit of a genus 2 Riemann surface.

Defining the branch points as xi = eiũ+ 1
4e

2
iM

2, then a is defined as a period integral

over the cycle γ1 that loops around x2, x3, and aD with γ2 that loops around x1 and x2.7

6On the other hand, the SU(3) pure SYM has two critical points [28]. This theory is described in terms

of a (genus 2) hyperelliptic Riemann surface with six branch points. Minimizing the prepotential requires

that the dual variables a1
D, a

2
D vanish. Under this condition the β1,2 cycles shrink. This is, however, a

different condition than the one leading to the Z3 conformal fixed points of [28]. Presumably the critical

points are reached only in a singular limit.
7Choosing another combination such as x1 and x3 shifts aD by an integer multiplying a. This can be

removed by an integer shift of τ , since aD obeys the asymptotic condition aD ≈ 2aτ .
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The saddle-point solution occurs at the value of u where aD vanishes, which in turn is

the singularity at ũ = ũ3, producing the shrinking of the γ2 cycle, x1 → x2. Therefore, the

solution of the saddle-point equation is

u =
1

4
e3M

2 +
M2

12
+M2

∞∑
n=1

αnq
n . (4.12)

Since a is a function of u, this defines a(τ) on the saddle point. Our aim is to see if

there is a coupling τc such that a(τ) meets the massless hypermultiplet singularity, i.e.

a(τc) = ±M/2. This requires that at this value of the coupling, x2 → x3, i.e. that ũ = ũ1.

However, both conditions together require ũ1 = ũ3, which is impossible, since

ũ1 − ũ3 =
1

4
M2 θ4

4(0, τ) 6= 0 , (4.13)

as θ4
4(0, τ) is nowhere vanishing in the upper half complex τ plane. Therefore there cannot

be a phase transition in the SU(2) model. The phase transition appearing in the toy model

of appendix B vanishes away (or moves to g →∞) when instanton contributions are incor-

porated. This is perhaps expected, given that there is no Argyres-Douglas superconformal

fixed point in N = 2∗ SU(2) theory at finite coupling, and we have argued that there

is a correspondence between conformal fixed points and quantum critical points in phase

transitions associated with massless resonances.
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A Instantons in N = 2∗

The Nekrasov equivariant instanton partition function has the general form

Zinst =

∞∑
k=0

qkzk(M,a, ε1, ε2) , q = e2πiτ , τ =
θ

2π
+

4πi

g2
. (A.1)

In this appendix we compute the first two coefficients using the construction of [5, 6] (see

also [7, 37]). We obtain

z1 =

(
4M2 − (ε1 − ε2) 2

) (
4M2 − 16a2 + 3 (ε1 + ε2) 2

)
8ε1ε2 ((ε1 + ε2) 2 − 4a2)

, (A.2)

z2 =

(
4M2 − (ε1 − ε2) 2

) (
c0 + c1a

2 + c2a
4 + c3a

6
)

256ε21ε
2
2 ((ε1 + ε2) 2 − 4a2) ((2ε1 + ε2) 2 − 4a2) ((ε1 + 2ε2) 2 − 4a2)

, (A.3)

where

c0 = 64M6
(
8ε21 + 17ε2ε1 + 8ε22

)
+ 16M4

(
40ε41 + 301ε2ε

3
1 + 542ε22ε

2
1 + 301ε32ε1 + 40ε42

)
+4M2

(
24ε61 + 435ε2ε

5
1 + 1868ε22ε

4
1 + 2978ε32ε

3
1 + 1868ε42ε

2
1 + 435ε52ε1 + 24ε62

)
− (ε1 + ε2) 2

(
72ε61 − 415ε2ε

5
1 − 3224ε22ε

4
1 − 5730ε32ε

3
1 − 3224ε42ε

2
1 − 415ε52ε1 + 72ε62

)
,
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c1 = −512M6 − 128M4
(
37ε21 + 86ε2ε1 + 37ε22

)
−32M2 (ε1 + ε2) 2

(
67ε21 + 446ε2ε1 + 67ε22

)
+8
(
105ε61 − 486ε2ε

5
1 − 3209ε22ε

4
1 − 5396ε32ε

3
1 − 3209ε42ε

2
1 − 486ε52ε1 + 105ε62

)
,

c2 = 4096M4 + 2048M2
(
5ε21 + 13ε2ε1 + 5ε22

)
−256

(
ε21 − 8ε2ε1 + ε22

) (
11ε21 + 18ε2ε1 + 11ε22

)
,

c3 = −2048
(
4M2 − ε21 − ε22 + 8ε1ε2

)
. (A.4)

This agrees with the results of [7, 33]. Higher instanton coefficients can be automatically

generated from the general formulas of [5, 6], but they involve longer expressions.

The computation of the partition function on the four-sphere requires using the Eu-

clidean prescription a → ia and M → iM and, in addition, setting ε1 = ε2 ≡ ε = 1/R.

This gives

z1 = −
M2

(
4a2 −M2 + 3ε2

)
2ε2 (ε2 + a2)

z2 =
M2

4ε4 (a2 + ε2) (4a2 + 9ε2)2

(
64a6

(
2M2 − 3ε2

)
− 32a4

(
2M4 − 23M2ε2 + 30ε4

)
+4a2

(
2M6 − 80M4ε2 + 290M2ε4 − 393ε6

)
+33M6ε2 − 306M4ε4 + 477M2ε6 − 804ε8

)
(A.5)

There is an overall factor of M2 in all instanton contributions. As a result, when M = 0,

all instanton contributions vanish, as expected, since in this case the theory reduces to

N = 4 SYM on S4.

B N = 2∗ toy model without instantons

In this appendix we study the partition function of N = 2∗ SU(2) theory as a function

of the coupling, ignoring instanton contributions. The model gives some insight on the

dynamics of the large N SU(N) gauge theories in a simplified context, though, as shown

below, instanton contributions are actually important at all couplings.

We consider the partition function

ZN=2∗ =

∫
da e−S , (B.1)

where S is given by (4.2) without the instanton terms. The saddle-point equation is (R = 1)

0 =
8π2

g2
a+ 4a ln 2|a| − (M + 2a) ln |M + 2a|+ (M − 2a) ln |M − 2a| . (B.2)

We now solve this equation in different regimes.

Weak g � 1 coupling regime. When g � 1, the saddle point is located at a � M .

Expanding the saddle-point equation in powers of a, we find the solution

a∗ ≈ e

2
e
− 2π2

g2 M

(
1− e2

6
e
− 4π2

g2 +
7e4

360
e
− 8π2

g2 + . . .

)
. (B.3)
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Substituting into the action, we find the free energy F = − lnZ,

F = R2M2

(
2 lnM + e2e

− 4π2

g2 − e4

6
e
− 8π2

g2 − e6

30
e
− 12π2

g2 − e8

84
e
− 16π2

g2 + . . .

)
. (B.4)

This is a non-perturbative expansion which is not due to instantons, which are not incor-

porated in this toy model. The physical origin of such terms is, as in the SQCD model,

the OPE expansion. Upon including instantons, there will be a mixing of non-perturbative

terms of different origin. For an SU(N) gauge group with large N , there is no mixing,

because instantons are suppressed like e−
8π2N
λ , whereas OPE contributions are finite con-

tributions of order e−
8π2

λ .

Note that truncating the instanton expansion (4.4) is justified if g � 1 and the saddle

point lies on a region

a�Me
− 2π2

g2 . (B.5)

The location of the saddle point (B.3) does not satisfies this condition. Therefore instantons

cannot be ignored in this regime.

Phase transition at g ≈ gcr. As g is gradually increased from 0, the value of a∗
monotonically increases until a critical value where a∗cr = M/2. This occurs when

e
− 2π2

g2cr =
1

2
. (B.6)

Just below gcr, a∗ exhibits a non-analytic behavior defined by

4π2

g4
cr

(g2 − g2
cr) ≈

1

M
(M − 2a∗) ln(M − 2a∗) . (B.7)

Again we note that neglecting instantons is not justified, since the condition (B.5) is not

satisfied near a∗ = M/2, see (B.6).

Strong g � 1 coupling regime. Expanding S at large a, we find that the saddle point

is at

a∗ = M
g

4π
. (B.8)

Interestingly, this is of a similar form as the formula found for the width of the eigenvalue

distribution for SU(N) (in that case, the width was given by M
√
g2N/2π).

Substituting into the action, we find the free energy in the strong coupling limit g � 1,

F ∼= −M2R2 ln
(
g2M2R2

)
. (B.9)
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