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1 Introduction

The Wess-Zumino-Witten (WZW) model [1] and the Principal Chiral Model (PCM) [2]

for a group manifold G provide two of the most well studied examples of two-dimensional

integrable systems and are of immense importance in many areas of theoretical and mathe-

matical physics. Key to their simplicity is the underlying group structure; the WZW model

is a current algebra Conformal Field Theory (CFT), whereas the equations of motion and

Bianchi identities for the currents of the PCM can be combined into a Lax equation for a

Lax connection from which an infinite number of conserved quantities can be deduced [3].
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It is natural to ask whether it is possible to deform such theories whilst preserving in-

tegrability. It was observed in [4] that there exists a one-parameter deformation of the

canonical Poisson structure of the PCM which defines two commuting Kac-Moody aleg-

bras and preserves integrablity. Some years later, a first step to finding a Lagrangian

description of these deformed theories was made in [5] for the case where the underlying

group G = SU(2). Due to technical complexity involved, extending the direct approach

of [5] to arbitrary groups seemed rather intractable.

However, very recently [6] the Lagrangian description of the deformed theories for any

group G was provided. The approach of [6] was to consider a total action comprised of the

sum of PCM parametrized by group element g̃ ∈ G together with a WZW parametrized

by a g ∈ G. The combined action enjoys a GL × GR global symmetry of the PCM and a

GL,cur × GR,cur current symmetry of the WZW. The critical step is to then gauge a sub-

group of the global symmetry that acts as GL on g̃ and Gdiag on g. The gauge symmetry

can be fixed, for instance by setting g̃ = 1, and the non-propagating gauge fields may be

integrated out. The result is a σ-model that depends on the level k of the WZW and the

‘radius’ κ2 of the PCM in the combination

λ =
k

k + κ2
, (1.1)

which can be related to the deformation parameter of [4, 5].

When the level of the WZW is much smaller than the radius of the PCM, the later

is effectively frozen out of the dynamics. Indeed, for small λ the result is to deform the

WZW CFT by a current-current bilinear.

The opposite limit λ → 1 requires more care; it was shown in [6] that if the group

element g is appropriately expanded near the identity the result is to produce a σ-model

whose spacetime is the non-Abelian T-dual of the PCM on the group space G with respect

to the GL action. So for λ near unity, one can also view this as a regulated version of

non-Abelian T-dual resolving global ambiguities.1

By either a direct calculation of the algebra of non-local charges or via an expansion

of the Maillet-type Poisson brackets for the monodromy matrix, these theories can be seen

to exhibit the whole Yangian symmetry for all values of the deformation 0 6 λ 6 1 [9].

With some modification, this general construction of integrable deformations can be

applied to strings on cosets or symmetric spaces giving rise to integrable deformations

of coset CFTs [6, 10]. Furthermore it has been extended, with obvious applications to

AdS/CFT, to Green-Schwarz superstrings on super-cosets [11]. In this later context one

may make connections with other known deformations of superstrings in AdS5 × S5. A

sequence of works [12–15] have studied how the symmetries of the world sheet S-matrix may

be deformed to a quantum group whilst still satisfying S-matrix axioms. The deformation

is labeled by a parameter q and there are two cases to consider. First is q = eη ∈ R which

corresponds to the “η-deformation” introduced from the string world sheet perspective

in [16, 17] building on earlier work in [18]. The η-deformation has been further developed

in [19–22]. The second case is when q is a root of unity and it was conjectured in [11] that

1This idea originated in [7]. It was more recently put forward and further tested in [8].
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the λ-deformed theories described above give a world sheet realisation for this scenario.

The deformation parameter of the quantum group is related to the level of the WZW by

q = e
iπ
k [11].

A crucial question is then whether these integrable deformations are marginal and

thus give rise to a target space that is a consistent string theory background. Working in

a κ-fixed Green-Schwarz style action makes it technical to ascertain the full geometry of

such a deformation. Within the context of just bosonic string theory the deformation of

the WZW CFT fixed point is certainly not marginal according to the results of [23] (indeed

the running of λ was calculated in [24, 25] and shown to agree with that of the non-Abelian

bosonized Thirring model computed in [26]). Further fermionic field content, coming from

the RR sector of the type-II superstring, is needed so that one-loop conformal invariance is

preserved for all values of λ. This then provides the motivation to the question we address

here: can we embed the target spaces corresponding to integrable λ-deformations as full

solutions of type-II supergravity?

We will show, with a number of worked examples, that this is indeed possible. It is, by

no means, obvious that this will be the case; indeed a number of simplistic first attempts

at this problem yielded no success. Our results come from two observations. First applying

the above deformation to a compact group will give a λ dependent positive contribution to

the one-loop dilaton beta-function. To counter balance this it seems necessary to perform

a similar λ deformation in a non-compact group. Second, at the λ = 1 fixed point which we

recall is the GL non-Abelian T-dual of a PCM, we can embed the geometry into a solution

of supergravity by the inclusion of Ramond fields determined by group theoretic consid-

erations in [27]. The close relation to non-Abelian T-duality suggests that the techniques

of [27] may be generalised to find appropriate supporting Ramond fluxes for all values of λ.

In this paper we will explicitly consider examples of λ-deformations applied to:

1. AdS3 × S3 using the SU(2)× SL(2,R) isometry of the group

2. AdS2 × S2 using the SU(2)× SL(2,R) isometry of the maximal coset

3. AdS3 × S3 using the SU(2)× SU(2)× SL(2,R)× SL(2,R) isometry of the maximal

coset

The first example is somewhat simpler since it uses groups rather than cosets and we

include it for didactic purposes. However, in this case one is forced to the conclusion that

the RR fields must be imaginary and thus constitute a solution of type-II? rather than

type-II theories [28]. The reader who is dissatisfied with this state of affairs should quickly

move to the second and third example which employ the coset generalisation of [6] —

though a little more involved, these are real backgrounds of type-II theories.

The rest of the paper is as follows: we begin in section 2 by reviewing the general con-

struction of [6] for group manifolds. In section 3 we provide the first of the examples listed

above including a high level of detail and methodology. In section 4 we describe the gener-

alisation to cosets and follow this with the remaining examples in section 5 and section 6.
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2 λ-deformations for groups

In this section we present the background fields for the NS-sector of our models. In order to

set up our notation and make our paper self-contained we first briefly review the necessary

results and conventions.

Consider a general compact groupG and a corresponding group element g parametrized

by Xµ, µ = 1, 2, . . . ,dim(G). The right and left invariant Maurer-Cartan forms, as well as

the orthogonal matrix (or adjoint action) relating them, are defined as

JA+ = −iTr(TA∂+gg
−1) = RAµ ∂+X

µ , JA− = −iTr(TAg−1∂−g) = LAµ ∂−X
µ ,

RAµ = DABL
B
µ , DAB = Tr(TAgTBg

−1) .
(2.1)

The matrices TA obey [TA, TB] = ifABCTC and are normalized as Tr(TATB) = δAB.

The PCM on the group manifold for an element g̃ ∈ G is

SPCM(g̃) =
κ2

π

∫
Σ
δABLA+(g̃)LB−(g̃) (2.2)

and enjoys a GL × GR global symmetry. The WZW action for a group element g ∈ G is

defined by

SWZW,k(g) =
k

2π

∫
Σ
δABL

A
+(g)LB−(g) +

k

12π

∫
B
fABCL

A ∧ LB ∧ LC , (2.3)

where B is an extension such that ∂B = Σ. The approach of [6] was to consider the sum of

the actions in (2.2) and (2.3) and to gauge a subgroup of the global symmetries that acts as

g̃ → h−1g̃ , g → h−1gh , h ∈ G . (2.4)

This is achieved by introducing a connection A = AATA valued in the alebgra of G that

transforms as

A→ h−1Ah− h−1dh , h ∈ G . (2.5)

We replace derivatives in the PCM with covariant derivatives defined as

Dg̃ = dg̃ −Ag̃ (2.6)

and replace the WZW with the G/G gauged WZW given by

SgWZW,k(g,A) = SWZW,k(g) +
k

π

∫
Tr(A−∂+gg

−1 −A+g
−1∂−g +A−gA+g

−1 −A−A+) .

(2.7)

The gauge symmetry can now be gauged fixed by setting g̃ = 1 such that all that remains

of the gauged PCM is a quadratic term in the gauge fields. The gauge fields, which are

non-propagating are integrated out to result in the σ-model action [6]

Sk,λ(g) = SWZW,k(g) +
k

π

∫
JA+ (λ−1 −DT )−1

ABJ
B
− , (2.8)
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where

λAB = λδAB , λ =
k

k + κ2
. (2.9)

The σ-model of (2.8) is integrable as was proven in [6] by showing that the corresponding

metric and antisymmetric tensor fields satisfy the algebraic constraints for integrability

of [5] and [29]. A form of the action similar to (2.8) appeared before in [30].

We note that a more general class of actions can be obtained by retaining λAB as a

general constant matrix (or one that depends only on spectator fields and not the Xµ).

Such models are obtained by repeating the same procedure but replacing the inner product

κ2δAB occurring in the PCM of (2.2) with a general constant coupling matrix EAB to

which λAB is related with a straightforward extension of (2.9) [6, 25]. It remains an open

question as to which choices EAB can be made whilst retaining integrability. With future

possibilities in mind many of our derivations are done keeping λAB as a general matrix.

2.1 Limit properties

In the limit of small λAB the action (2.8) can be approximated by

Sk,λ(g) = SWZW,k(g) +
k

π

∫
λABJ

A
+J

B
− +O(λ2) , (2.10)

corresponding to the WZW theory perturbed by the current bilinear JA+J
B
− with arbitrary

coupling matrix λAB. The first two terms define the bosonized anisotropic non-Abelian

Thirring model in analogy with the non-Abelian Thirring model [31–33]. Hence, it is

reasonable to expect that (2.8) provides an effective all loop action for the bosonized non-

Abelian Thirring model. Based on studies of the RG flow and symmetry considerations

this has been shown for λAB = λδAB in [24] and for general λAB in [25]. The fact that

the model is driven away from the conformal point by the current bilinear in (2.10) is tied

to the non-Abelian nature of the group. Had the current bilinear been restricted to the

Cartan torus, as for instance in [34], the σ-model would have remained conformal [23]. We

remark that other interesting types of marginal deformations have included the so-called

asymmetric deformations of the form
∫
d2zJJ̄G in which J̄G corresponds to some other U(1)

outside the chiral ring of the WZW [35, 36]. Heterotic embeddings of these asymmetric

deformations were considered in [37].

What motivated the present paper is the behaviour of (2.8) for k � 1 and λ→ 1 [6].

Then expanding the matrix and group elements near the identity we have that

λAB = δAB −
1

k
EAB +O

(
1

k2

)
, g = 1+ i

vAT
A

k
+O

(
1

k2

)
, (2.11)

leading to

JA± =
∂±v

A

k
+O

(
1

k2

)
, DAB = δAB +

fAB
k

+O
(

1

k2

)
, fAB = fABCvC . (2.12)

In this limit the action (2.8) becomes

Snon−Abel(v) =
1

π

∫
∂+v

A(E + f)−1
AB∂−v

B , (2.13)
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which is the the non-Abelian T-dual with respect to the GL action of the σ-model given

by the PCM action with general coupling matrix EAB.

2.2 Towards a supergravity embedding

The purpose of this paper is to embed models for which the metric and antisymmetric

tensor of the NS sector are provided by (2.8) to type-II supergravity. This will be done by

supporting these fields with a dilaton as well as with appropriate RR fluxes. The dilaton

factor is obtained from integrating out the gauge fields in a path integral and is given by

e−2Φ = e−2Φ0kdimG det(λ−1 −DT ) , (2.14)

where Φ0 is the dilaton of the original theory in which the PCM is a part of.

Let us now restrict to the simplest cases when λAB = λδAB. The target space metric

can be read from the σ-model (2.8) and can be conveniently expressed using two frame

fields eA+ and eA− given by [6, 24]

eA+ = −
√
k(1− λ2)(D − λ1)−1

ABR
B , ea− =

√
k(1− λ2)(DT − λ1)−1

ABL
B . (2.15)

Both these frame field define the same geometry and are related according to a local frame

rotation e− = Λe+ given by

Λ = −(1− λD)−1(D − λ1) . (2.16)

In the spirit of [27] we will need the orthogonal transformation in the spinor represen-

tation Ω found from

Ω−1ΓAΩ = ΛABΓB , (2.17)

where ΓA are the ten-dimensional Γ-matrices. An ansatz for the RR fields, completely

determined by the group theory, is given by allowing this Ω matrix to act by Clifford

multiplication on the RR fields of the original model in much the same as it does for

both Abelian and non-Abelian T-duality. We consider the RR sector in the democratic

formalism that incorporates fluxes and their Hodge duals equally specified by polyforms

IIB : F =

4∑
n=0

F2n+1 , IIA : F̂ =

5∑
n=0

F2n , (2.18)

from which one obtains bi-spinors /F by contracting the constituent p-forms with p-anti-

symmetrised gamma matrices. Then the ansatz we propose for the RR sector is

eΦ/F = µ(λ)eΦ0/F0 · Ω−1 , (2.19)

where on the right hand side we have the bispinor /F0 formed from the RR fields supporting

the PCM of (2.2) when embedded into a supergravity background. The RR fields across

the deformation are obtained from the left hand side of this relation upon replacing the

anti-symmetrised gamma matrices with the wedge of the corresponding frame fields eA

given in (2.15). We include in this ansatz a possible multiplicative λ dependent constant

– 6 –
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coefficient µ(λ) which is, of course, related to the normalisation employed for the dilaton.

This constant should necessarily vanish in the limit λ→ 0 since then the background, being

a CFT, should consist of purely NS fields. We believe this to be the only consistent ansatz

for the RR fields which is compatible with the group theoretic structure of the problem and

that agrees with the result in the non-Abelian T-dual limit. A first principles derivation

of the form of the RR fields should eventually be established using e.g. a Green Schwarz

or pure-spinor formalism.

3 Integrable deformation based on SU(2) and SL(2,R)

With the aim of constructing an integrable deformation of AdS3 × S3 × T 4 we recap the

application of the above construction for the case of the SU(2) group manifold given in [6]

for the NS sector. We then provide the analytic continuation that gives an analogous result

for SL(2,R) before combining these to give a full supergravity embedding. To prevent

feelings of resentment on behalf of the reader, let us state the outcome upfront: in this

case the result will be a background of Type-IIB? supergravity with imaginary fluxes. To

obtain real backgrounds of type-II supergravity we will consider the generalisation of the

these λ deformations to coset spaces in later sections.

3.1 The SU(2) integrable deformation

We parametrize an SU(2) group element by

g = eiαn̂iσi , n̂ = (− sinβ sin γ, sinβ cos γ, cosβ) , (3.1)

where σi’s are the Pauli matrices such that

g =

(
a0 + ia3 a2 + ia1

−a2 + ia1 a0 − ia3

)
=

(
cosα+ i sinα cosβ sinα sinβ e−iγ

− sinα sinβ eiγ cosα− i sinα cosβ

)
. (3.2)

The corresponding σ-model has metric and NS two-form

SU(2) : ds2 = k

(
1 + λ

1− λ
dα2 +

1− λ2

∆(α)
sin2 α ds2(S2)

)
,

B = k

(
−α+

(1− λ)2

∆(α)
cosα sinα

)
Vol(S2) ,

(3.3)

where we have defined

∆(α) = (1− λ)2 cos2 α+ (1 + λ)2 sin2 α (3.4)

and ds2(S2) = dβ2 + sin2β dγ2 and Vol(S2) = sinβ dβ ∧ dγ. Note that for α→ 0 and for

α→ π the geometry becomes R3. For α→ π/2 it becomes S1 × S2.

The Lorentz rotation matrix define by (2.16) is given by

ΛAB =
1

∆(α)

[
((1 + λ)2 sin2 α− (1− λ)2 cos2 α)δAB

−2(1− λ2) cosα εABCaC − 2(1 + λ)2aAaB

]
, (3.5)
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and its spinor representation (2.17) is given by

Ω =
1√

∆(α)
Γ11

[
(λ− 1) cosαΓ123 + (1 + λ) sinα n̂ · Γ

]
. (3.6)

In the limit λ → 0 we obtain the metric and the antisymmetric tensor for the SU(2)

WZW model with normalization such that Rij = 2gij . In this case the rotation matrix in

the spinor representation (3.6) becomes

Ω = Γ11

(
− cosαΓ123 + sinα n̂ · Γ

)
. (3.7)

The fact that it is not the identity is in agreement with the fact that the frames become

in that limit eA+ = −RA and eA− = LA. This implies that in this limit ΛAB = −DAB,

consistent with (2.16).

The non-Abelian limit of the SU(2) PCM is obtained (setting κ = 1) by letting

α =
r

2k
, λ =

k

1 + k
, k →∞ . (3.8)

This limiting procedure gives

ds2 =
1

2

(
dr2 +

r2

r2 + 1
ds2(S2)

)
, B = −1

2

r3

r2 + 1
Vol(S2) . (3.9)

In addition the Lorentz transformation in the spinor representation (3.6) becomes

Ω =
Γ11√
1 + r2

(−Γ123 + v · Γ) , (3.10)

where v = rn̂. These expressions correspond the non-Abelian T-dual of the SU(2) PCM

which in fact has been embedded in supergravity. It was shown in [27] that when supported

by appropriate flux fields it is a solution of massive IIA-supergravity and that it represent

the non-Abelian T-dual of the background corresponding to the near horizon of the D1-D5

brane system.

3.2 The SL(2,R) integrable deformation

The case with G = SL(2,R) can be obtained by an analytic continuation β → iβ̃ and the

simultaneous flip of sign of k. In addition we rename α→ α̃ and γ → γ̃. Then from (3.3)

we obtain the background

SL(2,R) : ds2 = k

(
−1 + λ

1− λ
dα̃2 +

1− λ2

∆(α̃)
sin2 α̃ ds2(H2)

)
,

B = k

(
−α̃+

(1− λ)2

∆(α̃)
cos α̃ sin α̃

)
Vol(H2) ,

(3.11)

where ds2(H2) = dβ̃2 + sinh2β̃ dγ̃2 and Vol(H2) = sinh β̃ dβ̃ ∧ dγ̃. As expected the metric

has signature (−,+,+).

– 8 –
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3.3 Embedding to supergravity

We consider performing the above procedure on SL(2,R)× SU(2)×T 4. i.e. we look for an

integrable deformation to the model whose target space is AdS3 × S3 × T 4 supported in

type-IIB supergravity by an RR three-form flux field

F3 =
√

2(e0 ∧ e1 ∧ e2 + e3 ∧ e4 ∧ e5) , (3.12)

where the indices 0, 1, 2 and 3, 4, 5 run along the AdS3 and S3 directions.2

Turning to the deformation we note that this will be non-trivial for the SU(2) and

SL(2,R) factors as presented in the previous section. There will be no deformation for T 4.

The metric and the NS antisymmetric tensor are given by

ds2 = ds2
SL(2,R),λ + ds2

SU(2),λ +

4∑
i=1

dx2
i (3.13)

and

B = BSL(2,R),λ +BSU(2),λ , (3.14)

with the obvious notation for the various terms corresponding to (3.3) and (3.11). The

geometry will supported by a dilaton field given by

e−2Φ = ∆(α)∆(α̃) . (3.15)

The frame we will use are given by

e0 =

√
k

1 + λ

1− λ
dα̃ , e1 =

√
k

1− λ2

∆(α̃)
sin α̃dβ̃ , e2 =

√
k

1− λ2

∆(α̃)
sin α̃ sinh β̃dγ̃ ,

e3 =

√
k

1 + λ

1− λ
dα , e4 =

√
k

1− λ2

∆(α)
sinαdβ , e5 =

√
k

1− λ2

∆(α)
sinα sinβdγ ,

ex
i

= dxi , i = 6, . . . , 9 ,

(3.16)

so that the metric is then

ds2 = −(e0)2 + (e1)2 + (e2)2 + (e3)2 + (e4)2 + (e5)2 +

9∑
i=6

dxidxi . (3.17)

Note that these simple frame fields are not the same as those defined by 2.15.

Combining the SU(2) result of (3.7) with its SL(2,R) counterpart, the Ω matrix relating

left and right moving frames, in this basis, has the form

Ω =
i√

∆(α)∆(α̃)

(
(λ− 1) cosαΓ345 + (λ+ 1) sinαΓ3

)
·
(
(λ− 1) cos α̃Γ012 + (λ+ 1) sin α̃Γ0

)
. (3.18)

2We normalize the metric so that Rµν = ∓gµν for the AdS3 (upper sign) and the S3 (lower) and set

the dilaton to be zero. We are not considering at this stage the (p, q) string case where the geometry is

supported by both NS and RR flux in combination.
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Then we use our proposal for the RR fields described by eq. (2.19) in this case with

F0 = F3 + ?F3 and Φ0 = 0. The new polyform

/F = µ(λ)e−Φ/F0 · Ω−1 , (3.19)

obtained in this way has components

F1 = iµ(λ)(1− λ2)
(
cosα sin α̃e0 + cos α̃ sinαe3

)
,

F3 = iµ(λ)
(

(1− λ)2 cosα cos α̃(e012 + e345)− (1 + λ)2 sinα sin α̃(e045 + e123)
)
,

F5 = (1 + ?)f5 , f5 = −iµ(λ)
(
1− λ2

) (
sinα cos α̃e01245 + cosα sin α̃e12345

)
,

(3.20)

with

µ(λ) =
4λ√

k(1− λ)1/2(1 + λ)3/2
. (3.21)

Then, the Bianchi identities and equations of motion of the type-II supergravity are solved.

However the fluxes are pure imaginary meaning that this should be interpreted in the

context of the type-II? theory described in [28]. This arises because the Ω matrix involves

a Γ0 and therefore has similar features to performing a time-like T-duality.

In the λ→ 0 limit one immediately recovers the geometry AdS3 × S3 × T 4 supported

by NS flux and in the λ → 1 limit we find the non-Abelian T-dual of AdS3 × S3 × T 4

supported by RR flux.

4 λ-deformations for cosets

In this section we will let {TA} be the generators of G, {T a} be those of some subgroup

H ⊂ G and {Tα} the remaining generators for the coset G/H. We will also need a second

subgroup K ⊂ G and denote its generators by {Tm}.
The σ-model on the geometric coset G/H is given by

SG/H(g̃) =
κ2

π

∫
δαβL

α
+L

β
− , (4.1)

where the sum is over only coset indices. This action has a local invariance g̃ → g̃h for

h ∈ H and so depends on dim(G)− dim(H) degrees of freedom. We now consider the sum

of this action with that of the WZW model (2.3) and gauge a subgroup K ⊂ G that acts as

g̃ → k−1g̃ , g → k−1gk . (4.2)

We introduce a connection that transforms as

A→ k−1Ak − k−1dk , (4.3)

and repeat the analogous steps in the gauging, replacing derivatives in the PCM to covari-

ant ones and replacing the WZW for G with a G/K WZW model, giving the gauged action

S = SWZW,k(g) +
k

π

∫
Tr(A−∂+gg

−1 −A+g
−1∂−g +A−gA+g

−1 −A−A+)

−κ
2

π

∫
δαβ(g̃−1D+g̃)α(g−1D+g̃)β , (4.4)
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where

D±g̃ = ∂±g̃ −A±g̃ . (4.5)

Integrating out the A±’s gives

S = SWZW,k(g)− k

π

∫
[J+ + L̃+(λ−1 − 1)D̃T ]m

×[DT − 1− D̃(λ−1 − 1)D̃T ]−1
mn[J− − D̃(λ−1 − 1)L̃−]n , (4.6)

in which the L̃ and D̃ are the left-invariant forms and adjoint matrix for the PCM group

element g̃ and the contracted indices are running over the gauge group K.

Let us focus our attention on the case where K = G, i.e. we gauge the entire global

G-symmetry. In that case we may partially fix the gauge by setting g̃ = 1. This will

however leave a residual H gauge symmetry that will be used to fix dim(H) degrees of

freedom in g. Then the action becomes

S = SWZW,k(g)− k

π

∫
RA+(M−1)ABL

B
− , (4.7)

where

MAB =

(
(DT − 1)ab (DT )aβ

(DT )αb (DT − λ−1
1)αβ

)
. (4.8)

For the case where the coset is a symmetric space,3 integrability of this theory was proved

in [10] using the gauged WZW-like origin of the construction of the action. We also note

that the action (4.7) with the given expression for MAB arises if we simply set in (2.8) the

block diagonal part of the matrix λ corresponding to the subgroup H to unity.

The λ → 1 limit, together with appropriate rescalings results in the non-Abelian T-

dual of the geometric coset as constructed in [38]. On the other hand the λ → 0 limit

of (4.7) gives

S = SWZW,k(g)− k

π

∫
Ja+(DT − 1)−1

ab J
b
− +O(λ) . (4.9)

which is the σ-model corresponding to the gauged WZW model for G/H as expected. The

leading correction that drives the model away from the CFT point is proportional to∫
Tr(TαD0

+gg
−1)Tr(Tαg−1D0

−g) , D0
±g = ∂±g − [A0

±, g] , (4.10)

where A0
± are the solution for the gauge fields arising from integrating them out in the

action after setting λ = 0. Explicitly

A0a
+ = −i(D − 1)−1

ab J
b
+ , A0a

− = i(DT − 1)−1
ab J

b
− . (4.11)

This term can be written at a bilinear in the classical parafermions [39, 40] and there-

fore it has a precise CFT interpretation. For the perturbation on SU(2)/U(1) the above

considerations were made explicit in [6].

3A symmetric coset G/H is one for which the algebra g of G admits a Z2 grading g = g(0) ⊕ g(1) where

g(0) = h is the algebra of H and with [g(0), g(0)] ⊂ g(0), [g(0), g(1)] ⊂ g(1), [g(1), g(1)] ⊂ g(0).

– 11 –



J
H
E
P
1
2
(
2
0
1
4
)
1
6
4

One generalisation of this construction is given by replacing the inner product δαβ
entering in (4.1) with general metric Eαβ, however the G invariance condition

faβδEδγ + faγδEβδ = 0 , (4.12)

should still be obeyed.4 A second generalisation is to consider rather than a single WZW

model, multiple WZW factors each at different levels - we will give further details of this

in the appendix.

To obtain the supergravity embedding we need to generalise the ansatz for RR fields

described in (2.19) from the group to the coset. Fortunately this has been done already in

the case of non-Abelian duality (the λ→ 1 limit of the present construction) in [38] and is

easily extrapolated to the case at hand. If we let Xα be dim(G)−dim(H) local coordinates

for the σ model (4.7) then frame fields are obtained by defining

eα− = −
(

k

2λ2
(1− λ2)

) 1
2

(M−1)αBLB(g) ≡ Nαβ
− dXβ ,

eα+ =

(
k

2λ2
(1− λ2)

) 1
2

(M−1)BαRB(g) ≡ Nαβ
+ dXβ .

(4.13)

These are related by a Lorentz rotation Λ = N+N−1
− from which the corresponding spinor

matrix Ω can be obtained and then the rule in (2.19) can be directly applied. Of course, the

exact form of these objects will depend on the way the residual symmetry is gauge fixed.

5 AdS2 × S2 deformations

5.1 Deforming the SU(2)/U(1) exact CFT

We follow this procedure and work out the action (4.7) for the case G = SU(2) and

H = U(1). We parametrize the group element as

g = ei(φ1−φ2)σ3/2eiωσ2ei(φ1+φ2)σ3/2 . (5.1)

In both the gauged WZW and its deformation given by eq. (4.7), we can fix the U(1)

gauge redundancy by setting φ2 = 0 (one finds in an explicit calculation that φ2 enters the

action only as a surface term). The metric of the deformed σ-model (4.7) is then given by

ds2 = k

(
1− λ
1 + λ

(dω2 + cot2 ωdφ2) +
4λ

1− λ2
(cosφdω + sinφ cotωdφ)2

)
(5.2)

and zero antisymmetric tensor, where the parameter λ is defined in (2.9) and have renamed

φ1 by φ. The factor that will contribute to the dilaton in the supergravity embedding that

will shall do is determined, up to a constant piece, as e−2Φ = sin2 ω. These expressions

coincide with those found in [6].

4When G/H is symmetric the Cartan-Killing metric restricted to the coset is the unique G invariant

metric and so Eαβ ∝ δαβ , however for more general cosets one can find many examples where Eαβ is

not the Cartan-Killing form, for instance the most general SU(3) invariant metric on six-dimensional coset

SU(3)/U(1)×U(1) depends on three real parameters [41].
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For λ � 1, i.e. k � κ2, the dominant term is that corresponding to the exact

SU(2)/U(1) coset CFT [39]. It can moreover be shown [6] that the extra term is a

parafermion bilinear which corresponds to a relevant perturbation since the parafermions

have conformal dimension 1−1/k. Hence these parafermions drive the σ-model away from

the CFT point in accordance with our general discussion above. This perturbation has

been shown to be integrable, massive and argued that in the k →∞ limit the model flows

under the renormalization group to the O(3) σ-model [42]. This is consistent with the fact

that SU(2)/U(1) is a symmetric coset space.

5.2 Deforming the SL(2,R)/SO(1, 1) and SL(2,R)/U(1) exact CFTs

We perform an analytic continuation in (5.2) by sending

k → −k , κ→ iκ , ω → −iρ , (5.3)

and as a result obtain a σ-model with metric

ds2 = k

(
1− λ
1 + λ

(dρ2 + coth2 ρdφ2) +
4λ

1− λ2
(cosφdρ− sinφ coth ρdφ)2

)
, (5.4)

and zero antisymmetric tensor and dilaton factor e−2Φ = sinh2 ρ. This background repre-

sents an integrable deformation of the exact SL(2,R)/SO(1, 1) coset CFT. Performing a

further analytic continuation in (5.4) as

φ→ it , (5.5)

we obtain a σ-model with metric

ds2 = k

(
1− λ
1 + λ

(− coth2 ρdt2 + dt2) +
4λ

1− λ2
(cosh tdρ+ sinh t coth ρdt)2

)
, (5.6)

zero antisymmetric tensor and the contribution to the dilaton factor e−2Φ = sinh2 ρ. This

background for λ = 0 corresponds to geometry of the exact SL(2,R)/U(1)) coset CFT. It

was globally extended and interpreted as a two-dimensional black hole in [43].5 We shall

return to the black hole interpretation shortly.

5.3 Embedding to supergravity

Consider the ten-dimensional metric arising from combining (5.2) and (5.6) with the six-

dimensional flat metric on the T 6

ds2 = k

(
1− λ
1 + λ

(− coth2 ρdt2 + dρ2) +
4λ

1− λ2
(cosh tdρ+ sinh t coth ρdt)2

)
+k

(
1− λ
1 + λ

(dω2 + cot2 ωdφ2) +
4λ

1− λ2
(cosφdω + sinφ cotωdφ)2

)
(5.7)

+

9∑
i=4

dx2
i .

5In fact for λ = 0, the metric in (5.6) covers the patch of the geometry containing the black hole

singularity, i.e. region V in figure 2 of [43]. A different analytic continuation, or alternatively using vector

rather than axial gauging, gives the geometry in region I of the same figure.
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In addition, by combining the corresponding dilaton factor we have for the dilaton

e−2Φ = sin2 ω sinh2 ρ . (5.8)

The antisymmetric tensor vanishes. In order to satisfy the supergravity equations of motion

we need to turn on flux fields. To present them we first define the frames

e0 =

√
k

1− λ
1 + λ

(sinh tdρ+ cosh t coth ρdt) ,

e1 =

√
k

1 + λ

1− λ
(sinh t coth ρdt+ cosh tdρ) ,

e2 =

√
k

1− λ
1 + λ

(cosφ cotωdφ− sinφdω) , (5.9)

e3 =

√
k

1 + λ

1− λ
(cosφdω + sinφ cotωdφ) .

We will also denote by J2 the Kahler form and by J3 the real part of the complex differential

form of type (3, 0) in R6. In a convenient basis we have that

J2 = dx1 ∧ dx2 + dx3 ∧ dx4 + dx5 ∧ dx6 ,

J3 = dx1 ∧ dx3 ∧ dx5 − dx1 ∧ dx4 ∧ dx6 − dx2 ∧ dx4 ∧ dx5 − dx2 ∧ dx3 ∧ dx6 .
(5.10)

The NS sector fields can be supported in a full supergravity solution either within type-IIB

or within type-IIA supergravity.

Within type-IIB we have the five-form RR flux

IIB : F5 = (1 + ?)f5 , f5 =
1√
k

√
4λ

1− λ2
sinω sinh ρ e0 ∧ e3 ∧ J3 . (5.11)

Within type-IIA with the two- and four-form RR fluxes are

IIA : F2 =
1√
k

√
4λ

1− λ2
sinω sinh ρ e0 ∧ e3 ,

F4 =
1√
k

√
4λ

1− λ2
sinω sinh ρ e1 ∧ e2 ∧ J2 . (5.12)

These are real forms, and are solutions of type-II supergravity. The form of the RR

fields may be established using the action of Ω = Γ1Γ2 on either the type-IIB or type-

IIA embedding of the AdS2 × S2 PCM (see [44] for discussion of the GS action for the

superstring in this background and its integrability).

5.3.1 The non-Abelian T-dual limit and the near singularity region

Then above geometry is singular for ρ = 0 and for ω = 0 where, for instance, the scalar

curvature blows up. We are interested in magnifying the geometry around these points. It

turns out that we have to zoom in also at specific sections for the variables t and φ. Indeed

after letting

t =
τ

2k
, ρ =

r

2k
, φ =

x1

2k
, ω =

x2

2k
, λ = 1− 1

k
+ . . . , (5.13)
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we obtain that

ds2 =
1

2

(
−dτ

2

r2
+

(
dr + τ

dτ

r

)2
)

+
1

2

(
dx2

1

x2
2

+

(
dx2 + x1

dx1

x2

)2
)

+

9∑
i=4

dx2
i (5.14)

and for the dilaton

e−2Φ = x2
2r

2 . (5.15)

Compared with (5.8) we have shifted the dilaton so that eΦ gets multiplied by 4k2 and Φ

remains finite in the above limit. That implies that the fluxes are also multiplied by 4k2

so that the Einstein equation of motion is satisfied. The result for this limiting procedure

for the fluxes of type-II supergravity gives

IIB : F5 = (1 + ?)f5 , f5 =
1√
2
dτ ∧ (x2dx2 + x1dx1) ∧ J3 (5.16)

and

IIA : F2 =
1√
2
dτ ∧ (x2dx2 + x1dx1) ,

F4 =
1√
2

(rdr + τdτ) ∧ dx1 ∧ J2 . (5.17)

In conclusion the non-Abelian T-dual in this case provides the geometry near the singular-

ities when the parameter λ tends to unity.

5.4 Global structure

In this section we will study the geometry presented here in the context of the two-

dimensional black hole solution of [43]. First let us just consider the two-dimensional

metric (5.6) and obtain its conformally flat form by making a coordinate transformation

u = cosh ρ(e−t + λet) , v = cosh ρ(et + λe−t) . (5.18)

Then (5.6) becomes

ds2 = k(1− λ2)
dudv

f(u, v)
, f(u, v) = (u− λv)(v − λu)− (1− λ2)2 . (5.19)

For λ = 0 this coincides with the global metric found in eq. (28) of [43]. At face value the

effect of the λ-deformation is to modify the location of the singularity defined by f(u, v) = 0.

This is illustrated in the Penrose diagram of figure 1. A peculiar feature is that the deformed

black-hole singularity curve is no longer a horizontal line extending to null infinities I± but

instead “bends” back on itself in the Penrose diagram to close off into a tear drop shaped

ending at future time-like infinity. As a consequence it appears that some portion of the

singularity is not protected by a horizon. This is clearly a puzzling feature and warrants a

further study. One likely resolution is that this portion of the space time should be excised.

The study of this metric is made somewhat more difficult since for λ 6= 0, 1, it does not

admit any isometries as can be seen by direct inspection of the Killing equations.
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uv V

IIIIV

III

VI

Figure 1. Kruskal (left) and Penrose (right) diagram of deformed space time showing how the

location of singularity (red lines) migrates. Shown in blue is the undeformed λ = 0 singularity at

uv = 1 and its corresponding horizon is displayed on the Penrose diagram in green. In red are

the singular curves corresponding to f(u, v) = 0 for λ = (0.05, 0.2, 0.5) which forming increasingly

sharper tear drop regions in the Penrose diagram as λ→ 1.

It is interesting to consider the limit as λ → 1 where in the Penrose diagram the

singularities curves degenerate into vertical lines. As stated above, if the coordinates

are also scaled in this limit one obtains a non-Abelian T-dual geometry that probes the

singularity. Instead let us take a different limit under which the coordinates are not scaled.

We simply let λ→ 1 by sending k →∞ with κ2 fixed. Then the metric (5.19) becomes

ds2 = −k(1− λ2)
dudv

(u− v)2
+ · · · = κ2dz

2 − dt2

z2
+ · · · , (5.20)

so that an AdS2 geometry of size κ2 emerges. Hence, taking this limit in this way one

(necessarily) shows that the singularity is removed.

We now turn to a second question: can this full globally extended geometry be sup-

ported in type II supergravity? In fact, the answer is no and the reason can be seen even

in the context of the undeformed black-hole for λ = 0. In this case the singularity lies

on uv = 1 and in crossing the singularity (going from region V to II in the terminology

of [43]) the dilaton Φ = −1
2 ln(1 − uv) picks up a shift of iπ. Of course, when λ = 0 the

geometry does not requires any RR flux and so the additive shift to the dilaton can be,

to an extent, ignored at the level of solving the supergravity equations. However when

λ 6= 0, if one wishes to keep the dilaton real, this will necessitate allowing the RR fluxes

to become imaginary. Thus there is no global extension that can cover both asymptotic

regions whilst keep the solution in type II.
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6 An AdS3 × S3 coset deformation

6.1 Deforming the SO(4)/SO(3) coset

We parametrize the group SO(4) element g in the SU(2)× SU(2) decomposition with

g1 =

(
α0 + iα3 α2 + iα1

−α2 + iα1 α0 − iα3

)
, g2 =

(
β0 + iβ3 β2 + iβ1

−β2 + iβ1 β0 − iβ3

)
, (6.1)

with the usual determinant constraints. A nice gauge choice that completely fixes the

residual H = SU(2) symmetry is

α2 = α3 = β3 = 0 (6.2)

and H invariant combinations of the remaining coordinates are given by

α = α1 = (1− α2
0)

1
2 , γ = β1α1 , β =

(
β2

1 + β2
2

) 1
2 , (6.3)

which are simply |~α|, |~β| and ~α · ~β after gauge fixing (in what follows we prefer to use

the invariants α0 and β0 rather than α and β since they lead to marginally more concise

expressions).

Following the procedure described in section 4 results in an effective target space

geometry

ds2 =
k

2(1− λ2)Λ

(
∆ααdα

2
0 + ∆ββdβ

2
0 + ∆γγdγ

2

+2∆αβdα0dβ0 + 2∆αγdα0dγ + 2∆βγdβ0dγ
)
, (6.4)

with

Λ = (1− α2
0)(1− β2

0)− γ2 (6.5)

and

∆αα = 4(1 + λ)2 − β2
0(3 + λ)(1 + 3λ) ,

∆ββ = 4(1 + λ)2 − α2
0(3 + λ)(1 + 3λ) ,

∆γγ = (1− λ)2 , (6.6)

∆αβ = α0β0(1− λ)2 + 4γ(1 + λ)2

∆αγ = −β0(1− λ)2 , ∆βγ = −α0(1− λ)2 .

The NS two-form potential can be chosen to be zero and the contribution to the dilaton

factor is given (up to a constant shift) by e−2Φ = Λ. The contribution to the dilaton beta

function equation turns out to be
6

k

1 + λ2

1− λ2
which is just a constant. This is an important

consistency check that there is a possibility to embed this into a full supergravity solution

by combining with another model that may contribute exactly the opposite.

Note the ranges of the coordinates

0 < α2
0 < 1 , 0 < β2

0 < 1 , γ2 < (1− α2
0)(1− β2

0) , (6.7)

– 17 –



J
H
E
P
1
2
(
2
0
1
4
)
1
6
4

ensure that on this domain the function Λ > 0. These are important to keep in mind since

they ensure that the metric has positive signature (that is to say if one uses the metric (6.4)

blindly and goes beyond the range of these coordinates, it does not remain positive). There

is a manifest Z2 symmetry swapping α0 and β0 just corresponds to a switching of the two

SU(2) factors of the SO(4) decomposition.

In the limit λ → 0 the geometry is precisely that corresponding to the G/H gauged

WZW model written explicitly in this parametrisation in (4.12) (for r = 1) of [45].

The limit λ→ 1 needs to be taken with some care. Defining

λ =
k

k + κ2
, α2 = − t1

k2
, β2 = − t3

k2
, γ =

t2
k2

(6.8)

and taking the limit k → ∞ one recovers (setting κ =
√

2) the metric of the non-Abelian

T-dual of G/H = S3 with respect to G = SO(4) obtained in (4.20) of [38].

The frame fields for the geometry are defined by eq. (4.13) and are given6 by (we start

the frame numbering at 3 for reasons that become obvious momentarily):

e3
± =

√
k

2Λ

1− λ
1 + λ

(β0dα0 + α0dβ0 − dγ) ,

e4
± = ±

√
2k

Λ

1 + λ

1− λ
sin

ψ

2

(√
1− β2

0 dα0 −
√

1− α2
0 dβ0

)
,

e5
± = ∓

√
2k

Λ

1 + λ

1− λ
cos

ψ

2

(√
1− β2

0 dα0 +
√

1− α2
0 dβ0

)
,

(6.9)

where the angle ψ is defined through

γ =
√

(1− α2
0)(1− β2

0) cosψ . (6.10)

Because the plus and minus frames differ only by reflection in the e4 and e5 directions it is

evident that the corresponding Lorentz rotation in the spinor representation will have the

form Ω ∼ Γ4Γ5.

6.1.1 Analytic continuation

Results for (SL(2,R)×SL(2,R))/SL(2,R) can be obtained by analytic continuation. There

may be several different ways to perform an analytic continuation and these are given

essentially by changing the domains of α0, β0 and γ in eq. (6.7). The continuation we

seek should be such that the frame e3 defined in (6.9) becomes time-like and e4 and e5

remain space-like. With such a choice, the Ω matrix will contain reflections only in space-

like directions and the resulting RR fields will remain real (other choices could lead to

solutions of type II?).

Let α̃0, β̃0 and γ̃ be the coordinates for the analytically continued geometry which is

given by the same metric as (6.4) but with the replacement of k → −k and domains

1 < α̃2
0 , 1 < β̃2

0 , γ̃2 < (1− α̃2
0)(1− β̃2

0) . (6.11)

6To present these frames in a way that is deomocratic between α0 and β0 we in fact perform a supple-

mentary rotation in the 4− 5 plane on those frames given by a direct application of (4.13).
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We define the function

Λ̃ = (α̃2
0 − 1)(β̃2

0 − 1)− γ̃2 , (6.12)

which is positive over its domain and the angle ψ̃ through

γ̃ =

√
(α̃2

0 − 1)(β̃2
0 − 1) cos ψ̃ . (6.13)

The analytically continued versions of the frame fields in (6.9) are given by

e0
± =

√
k

2Λ

1− λ
1 + λ

(
β̃0dα̃0 + α̃0dβ̃0 − dγ̃

)
,

e1
± = ±

√
2k

Λ

1 + λ

1− λ
cos

ψ̃

2

(√
β̃2

0 − 1 dα̃0 −
√
α̃2

0 − 1 dβ̃0

)
,

e2
± = ∓

√
2k

Λ

1 + λ

1− λ
sin

ψ̃

2

(√
β̃2

0 − 1 dα̃0 +
√
α̃2

0 − 1 dβ̃0

)
,

(6.14)

where the flat metric has signature (− + +). The Lorentz rotation spinor matrix is this

space is given by Ω̃ ∼ Γ1Γ2.

6.2 Supergravity embedding

We introduce frame fields in the T 4 directions ei = dxi, i = 6 . . . 9 such that the full ten-

dimensional metric is ds2 = ηije
iej with e0, e1, e2 given by (6.14) and e3, e4e5 by (6.9). The

dilaton is given by e−2Φ = ΛΛ̃ and the NS two-form potential can be taken to be zero.

It is evident that because we have sent k → −k in the analytic continuation, the contri-

butions to the dilaton equation from the 3, 4, 5 directions will cancel exactly with those in

the 0, 1, 2 directions. To satisfy the Einstein’s equations we need simply an RR three form

F3 = 2

√
2λΛΛ̃

k(1− λ2)

(
e045 + e123

)
, (6.15)

which is in keeping with the ansatz for RR fluxes given by (2.19) when the spinor rotation

matrix is the combination of that in the 3, 4, 5 and 0, 1, 2 directions i.e. Ω ∼ Γ12Γ45. This

flux also solves its Bianchi identity and equation of motion. One can see that all compo-

nents of F3 are extended in either or both the non-compact directions α̃0 and β̃0, for this

reason there seems to be no well defined (i.e. finite) charge associated to this flux. A final

comment is that since this background only has an F3 active, the S-dual will have purely

NS flux which may be useful for further investigation.

7 Conclusions and discussion

In this work we have demonstrated very explicitly that the NS of backgrounds correspond-

ing to integrable λ-deformations can be upgraded to full solutions of supergravity supported

by appropriate Ramond fluxes. This gives very convincing support that the λ-deformation

of a supercoset σ-model (such as that for the AdS5×S5 string) will be an exactly marginal
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deformation and correspond to the q = e
πi
k root of unity quantum deformations as postu-

lated in [11]. Extracting the supergravity background in the specific case of AdS5×S5 will

be the subject of future work.

The examples presented within preserve no isometries and are thus very unlikely to

be supersymmetric. Also the defomations act equivalently in the AdS and sphere parts of

spacetime. It would be extremely interesting if one finds a way to avoid either of these

features; preserving even N = 1 supersymmetry would be desirable and acting just in the

sphere directions would result in a deformation to the geometry for which the dual field

theory would remain conformal. If this is the case one might be able to understand more

clearly the consequences of these λ-deformations for holography.

In this work we have been implicitly always thinking of the λ-deformation as being a

deformation away from the CFT defined by a (gauged)-WZW model. This is reflected in

the fact that our gauge fixing choice always involved fixing the group element defining the

PCM g̃ = 1. One consequence of this is that geometrically it is hard in general to see the

PCM geometry emerging (it is the non-Abelian T-dual of the PCM that is recovered in a

limit in which coordinates are also scaled as λ → 1). Prior to gauge fixing the PCM and

the WZW model are treated on equal footings. One may thus like to reconsider the system

instead as deformation away from the PCM point. One might expect that this can be done

by adopting a different gauge fixing choice in which the group element defining the PCM

is left untouched. In support of this, we saw for the case of Sl(2)/U(1) that by making

an appropriate coordinate transformation an AdS2 space did indeed emerge in the λ → 1

limit. There are however two difficulties with this, firstly it is not possible to completely

fix the gauge symmetry in this way and secondly that experience dictates that different

gauge fixing choices do no more than generating diffeomorphisms of the target space. This

issue warrants further consideration.

Note added in proof: subsequent to this work appearing, we received a preprint [47]

in which the supergravity embeddings of “η-deformations” (representing quantum group

deformations in the case of q ∈ R+) were deduced for lower dimensional AdSn×Sn examples

and partial results established for AdS5 × S5.
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A
∏N

i=1Gki
/G∑N

i=1 ki

We may easily generalize the construction for the case of direct groups. Consider a WZW

model on Gk1 × Gk2 × · · · × GkN and we gauge the G action of each of these factors to

give a copies of a G/G WZW at all the levels. In addition we consider a PCM on a coset∏N
i=1Gi/H where H is a diagonal subgroup of G. We find it convenient to work with a

block diagonal realization of this set up

T Ā = TAi = diag(0, 0, . . . , tA︸︷︷︸
ith

, 0, · · · , 0) , i = 1, 2, . . . , N . (A.1)

in which in introduce the composite index Ā = Ai . The subgroup H is generated by

ta = (ta, ta, . . . , ta) and then the coset is comprised by all generators T Ā, except these.

Then the group element is g = (g1, g2, . . . , gN ), where gi ∈ Gi and the gauged WZW is

given by the usual formulas but with the modification that the inner product is normalised

such that ki appears for each block. As before we consider the case in which group element

of the PCM on the coset is fixed to g̃ = 1. Then all the formulae of the previous section

can be applied directly.

Example: SU(2)k1 × SU(2)k2. Consider the simplest case of an SU(2)k1 × SU(2)k2
WZW model. Let σA be the generators of each SU(2) block such that

T Ā =

{
diag(σA, 0) , Ā = 1 . . . 3

diag(0, σA) , Ā = 4 . . . 6
, (A.2)

with the subgroup H being generated by diag(σA, σA).

Then one finds an action after gauge fixing the PCM model given by

Stot = k1SWZW [g1] + k2SWZW [g2] +
k

π

∫
iAĀ−J

Ā
+ − iAĀ+J Ā− +AĀ+MĀB̄A

Ā
− , (A.3)

where k = k1 + k2, si = ki/k and

J Ā±=

{
s1J

A
± [g1]

s2J
A
± [g2]

, MĀB̄=

 s1DBA(g1) +
(
κ2

k − s1

)
δAB −κ2

k δAB

−κ2

k δAB s2DBA(g2) +
(
κ2

k − s2

) .

(A.4)

We make the gauge fixing exactly as in section 6 and find after integrating out the

gauge fields a σ-model on a target space

ds2 =
k1 + k2

(1− λ)Λ

(
Ωααdα

2
0 + Ωββdβ

2
0 + Ωγγdγ

2

+2Ωαβdα0dβ0 + 2Ωαγdα0dγ + 2Ωβγdβ0dγ
)
, (A.5)

with

Ωαα = (1 + r)−2Z−1
[
Z2 −

(
Z2 − (1− λ)2(1 + r−1)2

)
β2

0

]
,

Ωββ = (1 + r−1)−2Z−1
[
Z2 −

(
Z2 − (1− λ)2(1 + r)2

)
α2

0

]
,
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Ωγγ = (1− λ)2Z−1 , (A.6)

Ωαβ = (1− λ)2Z−1α0β0 + r(1 + r)−2Zγ

Ωαγ = −r−1(1− λ)2Z−1β0 , Ωβγ = −r(1− λ)2Z−1α0 ,

where

r =
k2

k1
, Z = 8λ+ (1− λ)r−1(1 + r)2 . (A.7)

For the case of r = 1 i.e. equal levels, this metric reduces to that of section 6 and for

unequal levels but with the deformation turned off (i.e. λ = 0) they give the geometry [45],

i.e. eq. (4.12) (see also [46]) . There is a also a manifest Z2 invariance under exchange of

α↔ β and k1 ↔ k2.

Frame fields for this geometry are found using the general formula (4.13) and are given

by

e3
± =

√
(k1 + k2)(1− λ)

ΛZ

(
r−1β0dα0 + rα0dβ0 − dγ

)
,

e4
± = ±

√
k1k2

k1 + k2

Z

(1− λ)Λ
sin

ψ

2

(
r−1/2(1− β2

0)
1
2dα0 − r1/2(1− α2

0)
1
2dβ0

)
,

e5
± = ∓

√
k1k2

k1 + k2

Z

(1− λ)Λ
cos

ψ

2

(
r−1/2(1− β2

0)
1
2dα0 + r1/2(1− α2

0)
1
2dβ0

)
,

(A.8)

where the angle ψ is given by (6.10). The NS two form potential can be chosen to be zero

and the dilaton is given (up to a constant shift) by e−2Φ = Λ. The dilaton beta function

equation gives a constant as is required for this to be embedded into a full supergravity

solution.

IIB embedding. The SL(2)k1 ×SL(2)k2 result can be obtained by analytic continuation

exactly as described in section 6.1.1; we change the domain of α0 and β0 and simultaneously

flip the sign of the levels as ki → −ki. Let us denote the corresponding frame fields obtained

in this way as e0, e1 and e3. These will be given by the expressions in (A.8) with all

quantities replaced by the tilded counterparts and with the arguments in the square roots

also flipping signs, i.e.
√
α̃2 − 1. A ten-dimensional metric is completely by appending a

T 4 to the six-dimensional space obtained from the SL(2,R) and SU(2) constructions. The

dilaton is then given by

e−2Φ = ΛΛ̃ , (A.9)

where Λ̃ is as defined in (6.12). The dilaton supergravity equation is solved by construction

due to the cancelation between SL(2) and SU(2) factors. The Einstein equation is solved

when the geometry is supported by three-form

F3 = µ
√

ΛΛ̃
(
e045 + e123

)
, (A.10)

where

µ2 =
1

k1r4Z3N3

(
1 + r4(1− Z2N2)2 − 2r2(1 + Z2N2)

)
, N−1 = (1 + r)(1− λ) . (A.11)

One may check that the constant µ is indeed invariant under the above Z2 symmetry, albeit

not manifestly. This flux solves its Bianchi identity and equation of motion.
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