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1 Introduction

Theories of multiple interacting spin-2 fields have recently experienced a remarkable re-

naissance, though their history is long. It is known that theories of multiple interacting

massless spin-2 fields are inconsistent [1], and thus a consistent theory of interacting spin-

2 fields must necessarily involve a consistent theory of a massive spin-2 field. Whilst a

consistent linear theory of massive spin-2 was constructed in the 30’s [2], for a long time

it was thought that any non-linear extension would inevitably introduce the (in)famous
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Boulware-Deser ghost [3], making the theory have an unacceptably low cutoff (generically

Λ5 = (m4MPl)
1/5, where m is the graviton mass), yet recently there was constructed [4–11]

a theory which is ghost free, and has the higher cutoff of Λ3 = (m2MPl)
1/3. Furthermore it

was shown that this theory retained its nice properties when extended to a theory of two

dynamical spin-2 fields (bigravity) [12, 13]. Work on further generalising this to a theory

of an arbitrary number of interacting, dynamical spin-2 fields was then completed in [14].

Some preliminary investigations into the cosmolgy of theories with more than two spin-2

fields was conducted in [15]. Finally, ghosts aside, it has been argued that massive gravity

may posses issues of acausality (for recent reviews discussing whether or not this is actually

cause for concern see [16, 17]); quite what ultimate bearing of this, especially on bi- and

multi-gravity, is as yet unknown.

With more than two fields the possibility of constructing elaborate networks of inter-

actions arises, and in [14] it was shown that provided the theory is formulated in terms

of vielbeins, any combination of individually healthy interactions would itself be healthy

(though see [18, 19] for some questions about a hole in the proof). In [14] however it

has been conjectured that the same is not true when the theory is formulated in terms of

metrics, and that if there is a cycle of interactions in the action, e.g. A interacts with B, in-

teracts with C, interacts with A again, then the theory will again contain a ghost and cease

to be healthy. This is the main question which we seek to address in the current paper.

Aside form the intrinsic theoretical interest in the question of which field theories are

classically consistent, cycles of interacting spin-2 fields appear in another context: gravita-

tional dimensional deconstruction [20–24]. This involves considering Einstein gravity on a

discrete, periodic extra dimension, in order to compare it with the the Kaluza-Klein reduced

version of the same theory, in which the infinite tower of states is truncated. The discreti-

sation turns e.g. five dimensional GR into a four dimensional theory of multiple interacting

spin-2 fields (different fields corresponding to different locations in the extra dimension),

whilst its periodic nature (i.e. compactifying on S1) means that the resulting theory will

contain a cycle of interactions. Thus the question of whether such theories contain a ghost

has bearing on the approach one must take to deconstructing gravitational dimensions.

This paper is structured in the following way: the next section briefly reviews some

of the details of these theories, in particular their representation in terms of graphs, and

their analysis via the Stückelberg trick. Section 3 then investigates a crucial way in which

theories with cycles of interactions differ from purely tree-like interactions. That this

difference will lead to ghosts in the metric version of the theory is then demonstrated in

two different ways in section 4; in section 5 we first review the vielbein version of multi-

gravity theories, investigate the structure of interactions, and argue why the same ghost is

not present there. Finally in section 6 we discuss in more detail the link with dimensional

deconstruction, before concluding in section 7.

2 Interacting spin-2 fields and theory graphs

Here we briefly review theories of multiple, interacting spin-2 fields, i.e. interacting mas-

sive gravitons, and in particular the Stückelberg analysis of such theories. For more detail

see [25].
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(a) Bimetric (b) Cyclic theory (c) Line theory

Figure 1. Examples of different types of theory graphs: (a) isolated interactions simply connecting

two fields not connected to any others; (b) a ‘cyclic theory’ made up of N sites with nearest

neighbour interactions only, with the N -th site interacting with the first, hence forming a cycle

with N links; (c) a ‘line theory’ made up of N sites with nearest neighbour interactions only,

forming a line with N − 1 links.

2.1 Theory graphs

These theories can be represented using theory graphs [14, 20, 25–27] in which each field

corresponds to a node of the graph; a term in the action which is an interaction between

two fields corresponds to an edge of the graph, and an interaction between more than two

fields can be represented by using an auxiliary vertex to which all the fields concerned are

connected; see figure 1 for some examples.

This formalism is useful as it allows one to restate certain questions about a particular

theory in terms of properties of its theory graph, which is the main topic of this paper:

looking at the effect of the presence of a cycle in the graph. We review previous work

on this in the section 2.3, but first mention another useful feature of theory graphs: they

allow one to understand possible physical interpretations of the structure of a particular

theory. In particular consider the ‘cyclic theory’ depicted in figure 1(b). Such a graph can

be derived from discretising a circle, and hence one would expect that the theory resulting

from the graph should be related to Kaluza-Klein reduction of the theory (in one more

dimension) on a circle; this is known as ‘dimensional deconstruction’ and we discuss it in

more detail, and how it relates to the results of this paper, in section 6.

2.2 Interacting spin-2 fields and the Stückelberg trick

Each field will be dynamical and thus have a kinetic term in the action, which we take

to be the Ricci scalar constructed out of that field; each field may then interact with one

or more of the other fields. Since we are concerned in this paper with the question of

the presence or absence of a ghost in certain theories, we take the interaction terms to be

those which are known to be individually ghost-free: the dRGT interaction terms, which

as interactions between two metrics g and f take the form

Sint[g, f ] =
1

2
m2M2

Pl

∫
dDx

√
−det g em

(√
g−1f

)
, (2.1)

where em(X) is the m-th order elementary symmetric polynomial in the eigenvalues of X.

Rather than metrics the theory can also be formulated in terms of vielbeins (see [14, 28, 29]
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field under GCi: under GCj :

Before g(i) tensor invariant

g(j) invariant tensor

After g(i) tensor invariant

G(i,j) = g(j) ◦ Y(i,j) tensor invariant

Table 1. The Stückelberg trick for an interaction term coupling g(i) and g(j).

i j
Y(i,j)

Figure 2. The Stückelberg trick for an interaction term coupling g(i) and g(j).

and references therein), in which case ghost-free interaction terms can be written which

involve not just two, but up to D different fields:

Sint[E(i1), . . . , E(iD)] = εa1...aD

∫
Ea1

(i1) ∧ · · · ∧ E
aD
(iD). (2.2)

We will in fact only be concerned with interactions between at most two fields at a time,

as these are the only ones for which ghost-free metric interaction terms can be written

straightforwardly (see however [30]). The equivalence between these two formulations

breaks down in the presence of a cycle in the theory graph [14].

The kinetic terms individually respect a diffeomorphism invariance,

GCi : g(i)µν(x)→ ∂µf
α∂νf

βg(i)αβ(f(x)), (2.3)

which can be written succinctly using functional composition notation

GCi : g(i) → g(i) ◦ f. (2.4)

So before the interaction terms are introduced a theory ofN fields respects GC1×· · ·×GCN ;

the interaction terms will (assuming that the theory graph is connected) break this down

to the diagonal subgroup, in which every GC acts in the same way. The full symmetry can

be reintroduced via the Stückelberg trick: new (gauge) fields are introduced, mimicking

the desired symmetry, which have just the right transformation properties to make the

action invariant. We emphasise that the resulting (Stückelberg-ed) action is dynamically

equivalent to the original action, the latter being a gauge-fixed version of the former.

As the kinetic terms are already invariant under the symmetries we are introducing, the

Stückelberg fields will only enter via the interaction terms and it turns out there are several

ways of doing this [25]. The approach we will consider throughout (with the exception of

sections 4.1 and 5.3.1) is that in which each interaction term/link is considered separately;

that is, for each interaction term one picks one field to be ‘mapped’ onto the site of the

other field. This is explained in table 1, and represented graphically in figure 2.
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Theories of multiple interacting massless spin-2 fields are inconsistent [1], and thus

N −1 of the fields must be massive, however upon introduction of the Stückelberg fields all

N of the metrics obey a GC gauge symmetry - the ‘lost’ degrees of freedom are of course

contained within the Stückelberg fields themselves. This is most easily seen by expanding

each metric/vielbein about a flat background, and each Stückelberg field about the identity

Y µ(x) = xµ +Aµ, (2.5)

followed by the introduction of an extra U(1) symmetry: Aµ → Aµ + ∂µπ. Upon taking

the so-called ‘decoupling’ limit

m→ 0, MPl →∞, Λn = (mn−1MPl)
1
n fixed, (2.6)

the Aµ fields transform as the helicity-1 components of the massive gravitons, π as the

helicity-0 components.

2.3 Cycles and why they’ve been argued to be dangerous

The possible importance of cycles in the theory graph when it comes to the ghost-freedom of

a theory of multiple interacting spin-2 fields is first mentioned in [14]. The authors note that

the equivalence between the vielbein and metric formulations of multi-gravity breaks down

in the presence of a cycle, and whilst demonstrating the health of the vielbein theory go

on to conjecture that the metric version will contain a Boulware-Deser ghost. The authors

of [31] (see also [32]) then showed how the standard constraint analysis, which is used to

prove the ghost-freedom of multi-metric theories with a tree-graph structure, breaks down

in the presence of a cycle, again suggesting the presence of a ghost. For a related analysis in

3D see [33]. Our paper now confirms this suspicion, by explicitly demonstrating the pres-

ence of higher derivative terms which will lead to a ghost, in the Stückelberg formulation.

3 Plaquettes

As noted in [25] one key difference between theory graphs with a cycle and those without

(tree graphs) is that in the presence of a cycle there are now more links than broken copies

of diffeomorphism invariance (since the diagonal subgroup remains unbroken). Hence if we

introduce a Stückelberg field for every link as in the tree case, then we will end up with a

set of fields which are not in fact independent, but satisfy some constraint. For example

in the case of a trimetric cycle as depicted in figure 3, the Stückelberg fields satisfy

Y(1,2) ◦ Y(2,3) ◦ Y(3,1) = id. (3.1)

One way of dealing with this is to use the constraint to re-express one Stückelberg field

in the cycle in terms of the others, i.e. in the trimetric case

Y(3,1) = Y −1
(2,3) ◦ Y

−1
(1,2). (3.2)

Following [26] we call such a construction a plaquette. Now site 1 is being pulled back to

site 3 all the way around the cycle. This has the advantage that all the fields are now
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1 3

2

Y(1,2) Y(2,3)

Y(3,1)
1 3

2

Y(1,2) Y(2,3)

Y −1(2,3) ◦ Y
−1
(1,2)

Figure 3. Left: introducing a Stückelberg field for every link the case of a cycle leads to an overall

constraint. Right: the constraint eliminates one Stückelberg field, replacing it with a plaquette

formed from the other fields in the cycle.

explicitly independent, however it does break the symmetry of the cycle by forcing one to

pick a Stückelberg field to eliminate, as well as introducing interactions between all the

remaining Stückelberg fields through the plaquette. Thus one may wonder whether this is

truly necessary, and in appendix A we show that if one introduces more Stückelberg fields

than broken copies of diffeomorphism invariance and treats them all independently, one

encounters fields which are infinitely strongly coupled hindering the analysis.

3.1 Plaquettes beyond the linear level

The condition (3.2) yields for the Stückelberg scalars at linear order: π(3,1) = −(π(1,2) +

π(2,3)), however at higher order we can no longer look at the scalars and vectors separately.

In fact

Y µ
(3,1)(x) = xµ +Aµ(3,1) + ∂µπ(3,1) (3.3)

= Y −1
(2,3)

(
Y −1

(1,2)(x)
)µ

= xµ + Z̃µ(1,2) + Z̃µ(2,3) +

∞∑
n=1

1

n!
Z̃ν1

(1,2) . . . Z̃
νn
(1,2)Z̃

µ
(2,3),ν1...νn

, (3.4)

where Y −1,µ(x) = xµ + Z̃µ = xµ + Bµ + ∂µφ, so Bµ and φ are the dual fields associated

with the Stückelberg vector Aµ and scalar π (for more information see appendix B) and

where a comma denotes partial differentiation. One can rewrite (3.4) as

xµ + ∂µ

(
φ(1,2) + φ(2,3) +

∞∑
n=1

1

n!
Z̃ν1

(1,2) . . . Z̃
νn
(1,2)φ(2,3),ν1...νn

)
(3.5)

+Bµ
(1,2) +

∞∑
n=0

1

n!
Z̃ν1

(1,2) . . . Z̃
νn
(1,2)

(
Bµ

(2,3),ν1...νn
− Z̃λ,µ(1,2)φ(2,3),λν1...νn

)
, (3.6)

from which the expressions for Aµ(3,1) and π(3,1) can be read. And so we see that each

receives contributions from both the vectors and the scalars, and in particular even if

Aµ(1,2) and Aµ(2,3) are set to zero one still has Aµ(3,1) 6= 0. For example

π(3,1) = −(π(1,2) + π(2,3)) +
1

2
(π(1,2) + π(2,3))

,µ(π(1,2) + π(2,3)),µ +Aµ(1,2)π(2,3),µ + . . . (3.7)

– 6 –



J
H
E
P
1
2
(
2
0
1
4
)
1
6
0

Aµ(3,1) = −Aµ(1,2) −A
µ
(2,3) +Aν(1,2)A

µ
(1,2),ν +Aν(2,3)A

µ
(2,3),ν +Aν(1,2)A

µ
(2,3),ν

+ (π(1,2) + π(2,3))
,ν(Aµ(1,2) +Aµ(2,3)),ν − π(2,3),ν(Aµ,ν(1,2) +Aν,µ(1,2))

+Aν(1,2)π
,µ
(1,2),ν +Aν(2,3)π

,µ
(2,3),ν − π

,µν
(1,2)π(2,3),ν + . . . . (3.8)

The final term of (3.8) will turn out to have important consequences. It is also worth

mentioning that there will be introduced quadratic mixing between the vectors through

the kinetic term for the plaquette vector:

∂[µA(3,1)ν]∂
[µA

ν]
(3,1) ⊃ ∂[µA(1,2)ν]∂

[µA
ν]
(1,2) + 2∂[µA(1,2)ν]∂

[µA
ν]
(2,3) +∂[µA(2,3)ν]∂

[µA
ν]
(2,3). (3.9)

This is a qualitatively new feature, as in the absence of a plaquette only the tensors and

scalars will be mixed quadratically (the scalar-tensor mixing can then be removed via a

conformal transformation leaving just the scalars mixed).

4 Ghosts in multi-metric theories

We will now show how the cycle leads to the introduction of a ghost at an energy scale

below Λ3 (or equivalently leads to a lowering of the cutoff). For simplicity we consider a

trimetric cycle, but in section 6.1 we consider larger cycles in the context of deconstructing

dimensions; we also set all of the interactions strengths and Planck masses equal. For

related work on trimetric cycle theories see [31, 34]

The key point is that it is the (1, 2) and (2, 3) fields which are canonically normalised:

Aµ(1,2) →
1

Λ2
2
Aµ(1,2), π(1,2) → 1

Λ3
3
π(1,2), and similarly for (2, 3). Thus the (3, 1) fields don’t

have the overall normalisation one would expect. In fact

π(3,1) →
∞∑

n=0,m=1

1

Λ2n
2 Λ3m

3

Anπm, (4.1)

Aµ(3,1) →
∞∑

n=1,m=0

1

Λ2n
2 Λ3m

3

Anπm +

∞∑
n=0,m=2

1

Λ2n
2 Λ3m

3

Anπm. (4.2)

For the scalar this is not an issue, since Λ2 > Λ3, and so Λ2n
2 Λ3m

3 ≥ Λ2n+3m
3 , thus any

terms from the plaquette will sit at or above Λ3. On the other hand Λ2n
2 Λ3m

3 < Λ2n+3m
2 for

m > 0, and so these terms from the vector will come in below Λ3 (since Aµ ∼ 1
Λ2

is what

is required to sit precisely at Λ3).

More precisely, recalling that the interaction Lagrangian has an overall pre-factor

m2M2
Pl, we have

m2M2
Pl∂[µA(3,1)ν]∂

[µA
ν]
(3,1) ⊃

1

Λ4
4

π(1,2),λ[µπ
,λ
(2,3),ν]

(
∂[µA

ν]
(1,2) + ∂[µA

ν]
(2,3)

)
− 1

Λ8
4

π(1,2),λ[µπ
,λ
(2,3),ν]π

,ρ[µ
(1,2)π

,ν]
(2,3),ρ, (4.3)

which we see to be higher derivative, but not of such a form as to eliminate higher order

equations of motion. Thus this theory contains a ghost associated with an energy scale

Λ4 < Λ3.
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There will be (an infinite number of) other, potentially dangerous, terms at energy

scales between Λ4 and Λ3, however it is just the lowest energy scale which concerns us

here, since this gives the new cutoff of the theory. Also one need not worry that this is just

an artefact of some sort of truncation since (4.3) are the only terms at Λ4.

Finally note that the first term in (4.3) involves the Stückelberg vector linearly - a

qualitatively new feature, which means that it cannot classically be set to zero and ignored

as it can in the absence of a cycle.

4.1 Without plaquettes

The presence of these dangerous terms can also be demonstrated using a different method,

in which one does not introduce Y(3,1) in the first place (and hence does not introduce a

plaquette). This necessitates a slightly different approach to introducing the Stückelberg

fields: one treats the action as a whole, picking one site onto which one maps all of the

other fields [25]. For a trimetric cycle this means

Sint = S[g(1), g(2)] + S[g(2), g(3)] + S[g(3), g(1)]

→ S[g(1) ◦ Y(2,1), g(2)] + S[g(2), g(3) ◦ Y(2,3)] + S[g(3) ◦ Y(2,3), g(1) ◦ Y(2,1)]; (4.4)

note the final term, which is different to all those considered previously, as it involves

Stückelberg fields applied to both the metrics involved.

It turns out that for the pure scalar part of the action coming from this term one finds

(e.g. for an interaction term consisting of just the first symmetric polynomial)

MPl

[
(D − 1)LTD

(1)

(
π(2,3)

)
+ LTD

(1)

(
π(2,1)

)]
+

1

m2

[
1

2
(D − 2)LTD

(2)

(
π(2,3)

)
+ LTD

(1,1)

(
π(2,3), π(2,1)

)]
+

1

Λ5
5

[
1

6
(D − 3)LTD

(3)

(
π(2,3)

)
+

1

2
LTD
(2,1)

(
π(2,3), π(2,1)

)]
+

1

Λ8
4

[
1

24
(D−4)LTD

(4)

(
π(2,3)

)
+

1

6
LTD
(3,1)

(
π(2,3), π(2,1)

)
+

1

4
π(2,1),λ[µπ

,λ
(2,3),ν]π

,ρ[µ
(2,1)π

,ν]
(2,3),ρ

]
+. . . (4.5)

where LTD
(n,l)(π, φ) is the total derivative combination of n copies of ∂2π and l of ∂2φ. We

see that this takes the expected, safe form, i.e. a total derivative, at quadratic and cubic

order, but at quartic order a new type of term appears which is precisely the same1 as

that in (4.3) suppressed by Λ8
4. Similarly the vector-scalar-scalar terms will consist of total

derivatives along with the term from (4.3) suppressed by Λ4
4.

Of course this is to be expected, as the different ways of introducing the Stückelberg

fields are all equivalent [25]; in fact, performing a gauge transformation on the final term

(each term is gauge invariant, so they can be treated individually) in (4.4) with parameter

Y −1
(2,3), and noting that Y(2,1) = Y −1

(1,2) one has

S
[
g(3), g(1) ◦

(
Y −1

(1,2) ◦ Y
−1

(2,3)

)]
, (4.6)

which is identical to using a plaquette.

1Recall that Y(2,1) = Y −1
(1,2), and so π(2,1) = −π(1,2) + . . .
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5 Absence of ghost in multi-vielbein theories

We show below how the dangerous terms which arise in multi-metric theories do not do

so in the case of multi-vielbein theories, which is to be expected since such theories have

been shown to be ghost-free even when cycles are present in the theory graph [14]. For

simplicity we specialise to D = 4, and where noted, interaction terms which consist of just

the first symmetric polynomial, however the result is completely general.

5.1 Vierbein version of bi-gravity

First we recapitulate the vierbein version of bi-gravity, including how to apply the

Stückelberg trick and demonstrating the equivalence to the metric version, which breaks

down in the presence of cycles. [14, 18, 28–30]

The Einstein-Hilbert action becomes

M2
pl

2

∫
d4x
√
−g R→

M2
Pl

2

∫
εabcdE

a ∧ Eb ∧Rcd(E), (5.1)

where Ea is a one-form vierbein and Rab(E) is the associated gauge curvature two-form,

and the interaction terms become

m2M2
Pl

4

∫
d4x
√
−g em

(√
g−1f

)
→ m2M2

Pl

4

∫
εa1...a4−mb1...bmE

a1 ∧ · · · ∧Ea4−m ∧ F b1 ∧ · · · ∧ F bm ,

(5.2)

where F a is a second one-form vierbein (distinct from Ea). Each Einstein-Hilbert term now

manifestly respects both a copy of diffeomorphism invariance, Eaµ(x) → Eaν (f(x))∂µf
ν ,

and also of local Lorentz invariance, Ea → ΛabE
b, which like the diff invariance is broken

down to a single (diagonal) copy by the interaction terms. Thus when applying the

Stückelberg trick, it makes sense to not only introduce diff Stückelberg fields, but also ones

to reintroduce the local Lorentz invariances (these Stückelberg fields will conventionally

be denoted by Λ).

It is clear from the form of the symmetry that the Lorentz Stückelberg field will be

non-dynamical and its equation of motion yields

Ea[µ|ηab(ΛF )b|ν] = 0, (5.3)

for any combination of interaction terms. In unitary gauge (Λab = δab ) this becomes the

famous Deser-van-Niewenhuizen (DvN) symmetric vierbein condition. We will now show

how this condition is sufficient to show the equivalence with the metric version of bi-gravity

(in four dimensions it is also necessary [19]). In matrix notation (5.3) reads ETη(ΛF ) =

(ΛF )TηE from which we get (ΛF )E−1 = η−1(ET)−1(ΛF )Tη, and thus

(E−1ΛF )(E−1ΛF ) = E−1η−1(E−1)T(ΛF )Tη(ΛF ) = (ETηE)−1(FTηF ) = g−1f, (5.4)

where the metric gµν = EaµηabE
b
ν , and similarly for f and F . Therefore E−1(ΛF ) =

√
g−1f

(modulo non-uniqueness of the square root), and hence∫
εa1...a4−mb1...bmE

a1 ∧ · · · ∧ Ea4−m ∧ (ΛF )b1 ∧ · · · ∧ (ΛF )bm
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=

∫
d4x εa1...a4−mb1...bmε

µ1...µ4−mν1...νmEa1
µ1
. . . Ea4−m

µ4−m(ΛF )b1ν1
. . . (ΛF )bmνm

=

∫
d4x |E| εµ1...µ4−mρ1...ρmε

µ1...µ4−mν1...νm(E−1)ρ1

b1
(ΛF )b1ν1

. . . (E−1)ρmbm (ΛF )bmνm

=

∫
d4x
√
−g 1

m!
δν1...νm
ρ1...ρm

√
g−1f

ρ1

ν1
. . .
√
g−1f

ρm
νm =

∫
d4x
√
−g em

(√
g−1f

)
,

where (in 4D) we have defined a tensor δα1...αn
β1...βn

separately anti-symmetric in its indices

α1 . . . αn and β1 . . . βn in terms of the totally antisymmetric tensor ε via

δα1...αn
β1...βn

≡ 1

(4− n)!
εα1...αnλ1...λ4−nεβ1...βnλ1...λ4−n . (5.5)

It is clear that in the case of multi-gravity, in the absence of cycles in the theory graph,

this equivalence of the vierbein and metric versions will continue to hold, since each Lorentz

Stückelberg field is independent and hence each pair of vierbeine joined by an interaction

term will individually obey the DvN condition (5.3).

5.2 Decoupling limit

Just as in the metric version one can then perturb about a flat background for the vierbeine,

Eaµ = δaµ +
1

2MPl
haµ, F aµ = δaµ +

1

2MPl
laµ, (5.6)

and about the identity for the Stückelberg fields,

∂µY
ν = δνµ +

1

mMPl
∂µA

ν + Πν
µ, Λab = e

1
mMPl

ωab , (5.7)

where the fields have already been canonically normalised, and Πµ
ν = 1

m2MPl
π,µ,ν ; the decou-

pling limit is then taken in the usual way:

MPl →∞, m→ 0, Λ3 = (m2MPl)
1
3 fixed. (5.8)

The normalisation of ω may seem arbitrary, since it has no kinetic term, however due to its

antisymmetry, ω will only couple to ∂µA
ν at leading order, and hence it must have the same

scaling in order to survive the decoupling limit without generating any divergent terms.

Since it scales in the same way as ∂µA
ν , we know that no terms involving both ω and

a helicity-2 field will survive the decoupling limit. Therefore the helicity-2/0 part of the

action will be of exactly the same form as in the metric version. For the helicity-1/0 part

one finds (simplifying to the case of a single interaction term)

Sint = −
m2M2

Pl

2

∫
1

3!
εabcdE

a ∧ Eb ∧ Ec ∧ F d (5.9)

→ S1/0 = −1

4

∫
d4x

(
δµνabG

a
µω

b
ν + δµνab (1 + Π)aµω

b
λω

λ
ν + δµνλabc (1 + Π)aµω

b
νω

c
µ

)
(5.10)

=
1

4

∫
d4x

(
[Gω]− [(1 + Π)ω2]

)
, (5.11)

where Gµν = 2∂[µAν], and [M ] = trM .
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The Lorentz Stückelberg field is an auxiliary field, whose equation of motion (5.3) in

the decoupling limit becomes

Gµν = 2(ωµν + ω[µ|λΠλ
|ν]). (5.12)

As a matrix equation this is the Lyapunov equation, which has solution

ωµν =

∫ ∞
0

du e−2ue−uΠρµGρλe
−uΠλν =

∞∑
n,m=0

(−1)n+m

21+n+m
n+mCn (ΠnGΠm)µν , (5.13)

and upon substitution of this into (5.11) we find

S1/0 =
1

4

∫
d4x

(
−1

4

[
G2
]

+

∞∑
n=1

(−1)n

22+n

n∑
m=0

(
(n− 1)n−1Cm−1 − (n+ 1)n−1Cm

) [
Πn−mGΠmG

])
.

(5.14)

The equivalent calculation in the metric version is slightly more involved but we have

confirmed that it nonetheless yields the same result, as it should given the equivalence, for

bigravity, demonstrated in the previous section.

5.3 A simple cycle

Let us now see what the vierbein version of a trimetric cycle looks like. The fact that not

all three Lorentz Stückelberg fields are independent means that instead of (5.3) for each

pair of vierbeins we now have

|E(1)|Ea(1),[µ|ηab(Λ(1,2)E(2))
b
|ν] − |E(2)|Ea(2),[µ|ηab(Λ(2,3)E(3))

b
|ν] = 0, (5.15)

|E(2)|Ea(2),[µ|ηab(Λ(2,3)E(3))
b
|ν] − |E(3)|Ea(3),[µ|ηab(Λ(3,1)E(1))

b
|ν] = 0, (5.16)

and we no longer have direct equivalence with the metric version. The dangerous terms

found in section 4 did not involve the helicity-2 mode, so let us focus on the helicity-1/0 part:

−4L1/0 =

2∑
i=1

[
ω(i,i+1)µνG

µν
(i,i+1) +

(
1 + Π(i,i+1)

)µ
ν
ων(i,i+1)ρω

ρ
(i,i+1)µ

]
+m2M2

Pl

(
ω(3,1)µνG

µν
(3,1) + (1 + Π(3,1))

µ
νω

ν
(3,1)ρω

ρ
(3,1)µ

)
+O(ω3). (5.17)

As in the metric case (3.4) can be used to replace the diff Stückelberg fields, which we will

write as

Aµ(3,1) =
∞∑
n=2

1

Λ3n
3

aµn +
1

Λ2
2

∞∑
n=0

1

Λ3n
3

bµn +O
(

1

Λ4
2

)
, (5.18)

π(3,1) =
∞∑
n=1

1

Λ3n
3

σn +O
(

1

Λ2
2

)
. (5.19)

Similarly the Lorentz Stückelberg field ω(3,1) can be related to the others via

eω(3,1) = Λ(3,1) = Λ−1
(2,3)Λ

−1
(1,2) = e−ω(2,3)e−ω(1,2) = e

− 1

Λ2
2

(ω(1,2)+ω(2,3))− 1

2Λ4
2

[ω(1,2),ω(2,3)]+...
,

(5.20)
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where we have chosen to normalise ω(1,2) and ω(2,3) by Λ2
2. (5.17) then becomes

−4L1/0 =
1

2
ω+µν

{
Gµν+ − 4∂[µ(b+ Λ2

2a)ν]
}

+
1

2
ω−µνG

µν
−

+ (1 + ∂µν σ + ∂µaν)ων+ρω
ρ
+µ +

1

4

{
(2 + Π+)µν

(
ων+ρω

ρ
+µ + ων−ρω

ρ
−µ
)

+ (Πµν
− + ∂[µaν])ω+νρω

ρ
−µ + (Πµν

− − ∂[µaν])ω−νρω
ρ
+µ

}
+O

(
1

Λ2
2

)
, (5.21)

where ω± = ω(1,2) ± ω(2,3), etc. The terms shown are those which naively would survive

the decoupling limit holding Λ3 constant (which we do not yet take). One derives the

following equations of motion for the Lorentz Stückelberg fields:(
G+ − 4∂(b+ Λ2

2a) + ω+(6 + Π+ + 4∂2σ + 2(∂a+ (∂a)T ))−ω−(Π− + (∂a− (∂a)T ))
)[µν]

+O
(

1

Λ2
2

)
= 0, (5.22)

(
G− + ω−(2 + Π+)− ω+(Π− − (∂a− (∂a)T ))

)[µν]
+O

(
1

Λ2
2

)
= 0, (5.23)

and can attempt to solve them via an expansion in powers of Λ2 and Λ3. Doing so one

finds that the leading terms are

ωµν+ =
4

3

Λ2
2

Λ6
3

∂[µa
ν]
2 + . . . , and ωµν− =

4

3

Λ2
2

Λ6
3

Π
[µ
−λ∂

λa
ν]
2 + . . . . (5.24)

But we immediately see a problem: with these solutions, terms in (5.21) which we have

ignored in fact will contribute at a level equivalent to those we have kept. Or in other

words, ω should not be normalised by Λ2, but by Λ3, and so if we want to take the

decoupling limit keeping Λ3 fixed, we must include terms with arbitrary powers of ω.

Whilst this does not mean that taking such a decoupling limit is impossible, it certainly

complicates matters, to the extent that unfortunately we are unable to explicitly show the

absence of the ghost in this way.

5.3.1 Without a plaquette

We can of course analyse the trimetric cycle in the same manner as section 4.1 - pulling

everything back to one site. The parts of the interaction Lagrangian involving just one

Stückelberg field, i.e. L[E(1) ◦ Y(2,1), E(2)] + L[E(2), E(3) ◦ Y(2,3)], will have standard forms

and so we just need to consider the part involving two Stückelberg fields:

L[E(3) ◦ Y(2,3), E(1) ◦ Y(2,1)] = (5.25)

− m2M2
Pl

2

1

3!
δµνρσabcd (Λ(2,3)E(3)∂Y(2,3))

a
µ(Λ(2,3)E(3)∂Y(2,3))

b
ν(Λ(2,3)E(3)∂Y(2,3))

c
ρ(Λ(2,1)E(1)∂Y(2,1))

d
σ.

Expanding around a flat background and normalising the fields in the usual way (5.25)

becomes

−4L = Λ3
3

(
1

3
h(1)µνX̃

µν
(0,3) + h(3)µνX̃

µν
(1,2)

)
+

1

3

(
ω(2,1)µλ∂νA

λ
(2,1) +

1

2

(
1 + Π(2,1)

)λ
µ
ω(2,1)λρω

ρ
(2,1)ν

)
X̃µν

(0,3)
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+

(
ω(2,3)µλ∂νA

λ
(2,3) +

1

2

(
1 + Π(2,3)

)λ
µ
ω(2,3)λρω

ρ
(2,3)ν

)
X̃µν

(1,2)

+ (ω(2,1)µν + ∂νA(2,1)µ)(ω(2,1)ρσ + ∂σA(2,1)ρ)X̃
µνρσ
(0,2)

+ 2(ω(2,3)µν + ∂νA(2,3)µ)(ω(2,3)ρσ + ∂σA(2,3)ρ)X̃
µνρσ
(1,1)

+ Λ2
2

(
1

3
(ω(2,1)µν + ∂νA(2,1)µ)X̃µν

(0,3) + (ω(2,3)µν + ∂νA(2,3)µ)X̃µν
(1,2)

)
+ Λ2

2

(
1

3
ω(2,1)µνΠν

(2,1)λX̃
µλ
(0,3) + ω(2,3)µνΠν

(2,3)λX̃
µλ
(1,2)

)
+O

(
1

Λ2
2

)
, (5.26)

where X̃µν...ρσ
(n,m) = ηνν̃ . . . ησσ̃δµ...ρα1...αnγ1...γm

ν̃...σ̃β1...βnδ1...δm
(1 + Π(2,1))

β1
α1 . . . (1 + Π(2,3))

δ1
γ1
. . . . The terms

on the final two lines would lower the cutoff since they are suppressed by a scale below Λ3;

we see that those in the penultimate line do not contribute because ωµνX̃
µν = 0 since X̃

is symmetric whereas ω is antisymmetric, and ∂νAµX̃
µν = ∂ν(AµX̃

µν) since ∂µX̃
µν = 0;

the terms in the final line however do not disappear2 and, as we show below, one arrives

at a similar conclusion to the previous section.

Including the contributions from the other links, leads to

L ⊃ −ω(2,1)µν

((
3X̃µλ

(2,0) +
1

3
X̃µλ

(0,3)

)
Gν(2,1)λ +

(
8X̃µνλρ

(1,0) + 2X̃µνλρ
(0,2)

)
G(2,1)λρ +

Λ2
2

3
Πν

(2,1)λX̃
µλ
(0,3)

)
− ω(2,3)µν

((
X̃µλ

(1,2) − η
µλ
)
Gν(2,3)λ + 4X̃µνλρ

(1,1) G(2,3)λρ + Λ2
2Πν

(2,3)λX̃
µλ
(1,2)

)
+ ω(2,1)µνω(2,1)λρ

((
3

2
X̃µσ

(2,0) +
1

6
X̃µσ

(0,3)

)
(1 + Π(2,1))

ρ
ση

νλ + 4X̃µνλρ
(1,0) + X̃µνλρ

(0,2)

)
+ ω(2,3)µνω(2,3)λρ

((
1

2
X̃µσ

(1,2)(1 + Π(2,3))
ρ
σ + Πµρ

(2,3) − η
µρ

)
ηνλ + 2X̃µνλρ

(1,1)

)
+O

(
1

Λ2
2

)
, (5.27)

from which we derive the following equations of motion for the Lorentz Stückelberg fields:

Tµνi = ωµν(2,i) − 2
(
ω

[µ
(2,i)λC

ν]λ
i +A

λ[µ
i ω(2,i)λρB

ν]ρ
i

)
+O

(
1

Λ2
2

)
, (5.28)

where i = 1, 3 and Ti etc. are given in appendix D. Compared to (5.12), the equivalent

for a single link, equation (5.28) is more complicated and for completeness its solution

neglecting the terms which are naively suppressed by Λ2
2 is given in appendix C. For now

we only need look at the terms suppressed by the lowest scale, for which we find

ωµν(2,1) = 2
Λ2

2

Λ6
3

Π
[µ
(2,1)λΠ

ν]λ
(2,3) + . . . , ωµν(2,3) = −6

Λ2
2

Λ6
3

Π
[µ
(2,1)λΠ

ν]λ
(2,3) + . . . , (5.29)

where we have explicitly extracted Λ−3
3 from each Π. These exhibit the same scaling

as (5.24) in the previous section. Our conclusion is thus the same: in order to consistently

take the decoupling limit holding Λ3 fixed one must consider terms with an arbitrary

nuber of ω’s.

In the absence of an explicit re-summation of the ω-dependent contributions we cannot

prove ghost-freedom in this way, but the fact that this is different from the metric version,

and the results of [14] (though see [18, 19] for some questions about a hole in the proof)

inspire confidence in the ghost-freedom of the vielbein version.

2We thank Garrett Goon and Kurt Hinterbichler for alerting us to this.
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6 Cycles and deconstructing dimensions

Dimensional deconstruction [20–23, 26] is the idea that a theory placed on a discrete,

periodic extra dimension is equivalent to the truncation of the infinite tower of modes

which arises from a standard KK reduction on S1. In this way it allows one to consider

whether a low energy effective theory can be derived from the compactification of a higher

dimensional theory.

Such a discrete, periodic extra dimension can clearly be represented as a circle the-

ory graph [21, 22], as in figure 1(b), and thus analysis of the dimensional deconstruction

paradigm requires analysis of theory graphs containing cycles. In particular, as we will

want to take the N →∞ naive continuum limit we will need to consider larger cycles than

in the previous sections.

6.1 Larger plaquettes

Whilst in the trimetric case it is possible to avoid the use of plaquettes, simplifying matters

slightly, for larger cycles the use of plaquettes (or plaquette-like constructions) is unavoid-

able, since now not every site is one link removed from every other site. Thus we now look

at plaquettes of larger size.

In the case of a cycle of N metrics the plaquette expression (3.2) is extended in the

obvious way and the equivalent of the final term in (3.8) is

Aµ(N,1) ⊃ −
N−2∑
i=1

N−1∑
j=i+1

π,µ(i,i+1),λπ
,λ
(j,j+1) (6.1)

and the analysis proceeds in the same way as in the trimetric case, leading to ghost-inducing

terms of the same form as (4.3), except that now there are 1
2(N − 1)(N − 2) vector-scalar-

scalar terms3 and 1
8(N − 1)(N − 2)(N2 − 3N + 4) tetra-scalar terms, all sitting at Λ4.

The scalar and vector modes are each mixed at the quadratic level and the kinetic

(and mass, in the case of the scalar) terms must be diagonalised in order to find the

propagating modes [25]; doing so will then introduce an N dependence to the previously

O(1) coefficients in front of the Λ4-suppressed terms, which then means that the actual

cutoff can in fact be much lower.

Grouping the scalars into a column vector π, we can write their kinetic terms as

L(∂π)2 ∝ πT,µKπ,µ. To find the propagating modes we must diagonalise the ‘kinetic ma-

trix’, K, and then canonically normalise by dividing each mode by the square root of the

appropriate eigenvalue of K; an analogous proceedure applies for the vectors.4

Before introducing the plaquette, the kinetic terms involving π(N,1) are

π,µ(N,1)π(N,1),µ − π
,µ
(N,1)

(
π(1,2),µ + π(N−1,N),µ

)
, (6.2)

3One might expect an additional factor of N − 1 from
∑
i ∂Ai, however the vector modes must be

demixed and this will be precisely one of the propagating modes.
4For the scalars we must also diagonlaise their mass matrix, however this turns out not to affect the

scaling with N .
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which, upon the plaquette substitution (just taken to lowest order, π(N,1) = −
∑

i π(i,i+1),

since here we are only interested in overall quadratic terms), becomes∑
i,j

π,µ(i,i+1)π(j,j+1),µ +
∑
i

π,µ(i,i+1)

(
π(1,2),µ + π(N−1,N),µ

)
. (6.3)

Thus the kinetic matrix takes the form

K =


2 −1

−1 2
. . .

. . .
. . .

+


2 2 · · ·
2 2 · · ·
...

...
. . .

+


1 · · · 1

1 · · · 1

+


1 1
...

...

1 1

 , (6.4)

where blank entries are zero and the ellipsis denotes repetition, so the first matrix is tri-

diagonal, the last only has non-zero entries in the first and last columns etc. The first

term is just the kinetic matrix for a line graph of length N (see figure 1 (c)). Upon

diagonalisation and normalisation (6.1) becomes

N−2∑
i=1

N−1∑
j=i+1

π,µ(i,i+1),λπ
,λ
(j,j+1) ∝

N−1∑
n,m=1

 1√
λnλm

N−2∑
i=1

N−1∑
j=i+1

(vn)i(vm)j

 π̃,µn,λπ̃
,λ
m, (6.5)

where vn is the nth normalised eigenvector of K, λn the corresponding eigenvalue, and π̃

the propagating modes. Taking this sum to be dominated by terms involving the smallest

eigenvalue of K, which numerical investigations reveal to decrease to zero as N−2, and

taking (vn)i ∼ N−
1
2 , we find that the largest coefficent in (6.5) scales like

N2
N−2∑
i=1

N−1∑
j=i+1

(
1√
N

)2

∼ N3. (6.6)

Remarkably the validity of these simple arguments is borne out by full numerical analysis

of (6.5); we should also diagonalise the mass matrix for the scalar fields as well, however

this turns out not to affect the scaling with N .

In the absence of a cycle the vectors are not mixed at quadratic level, which however

is changed by the presence of a cycle and introduction of a plaquette:

∂[µA(N,1)ν]∂
[µA

ν]
(N,1) →

∑
i,j

∂[µA(i,i+1)ν]∂
[µA

ν]
(j,j+1) (6.7)

Thus the kinetic matrix for the vectors takes the form

K =


1

. . .

+


1 1 · · ·
1 1 · · ·
...

...
. . .

 , (6.8)

and we see that
∑N−1

i=1 A(i,i+1), which is precisely the combination appearing in the
1

Λ4
4
∂A(∂2π)2 terms, is an eigenvector, with eigenvalue N .
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Therfore schematically we find

1

Λ4
4

∂A(∂2π)2 ∼ N
5
2

Λ4
4

∂Ã(∂2π̃)2 and
1

Λ8
4

(∂2π)4 ∼ N6

Λ8
4

(∂2π̃)4, (6.9)

for the terms with the largest coefficients, and where a tilde indicates a propagating mode.

Thus the cutoff decreases as Λ ∼ N−5/8 for the first terms and Λ ∼ N−3/4 for the latter,

which is interesting as it is marginally quicker than if one looks just at the Λ3 suppressed

terms for which one finds Λ ∼ N−1/2 [23, 25].

The fact that the strong coupling scale decreases as the number of sites is increased

is what prevents one from taking the continuum limit of the circle theory and arriving at

Einstein gravity compactified on a circle. And we now see that the problem is even more

severe if one formulates the theory in terms of metrics, rather than vierbeine.

It is worth now making contact with other work that has been done linking dimensional

deconstruction and multi-gravity. In [23] it is noted that taking higher dimensional GR and

naively discretising the metric in the dimension to be compactified will involve interaction

terms polynomial in g
(i+1)
µν − g(i)

µν (where g
(i)
µν is the effective lower dimensional metric at

position i in the discretised dimension), which will necessarily introduce a Boulware-Deser

ghost [3]. We have now shown that even when one uses interactions which are individually

ghost-free, constructing an extra gravitational dimension using metrics will introduce a

ghost (in essence ours is a ‘bottom up’ approach).

Secondly, in [20–22, 26] it is argued that the truncated KK theory corresponds not to

a single cyclic theory graph, but to a complete graph,5 in which the interaction strength for

a given link decays as a power law in the distance in the extra dimension between the two

sites (and thus the theory is non-local in the extra dimension). Given our results it would

be interesting to see if, and how, when built using metrics, such a construction could lead

to a cancellation of the terms sitting below Λ3.

7 Conclusions

In this paper we have answered a key question which remained concerning the consistency of

theories of multiple, interacting spin-2 fields: does a cycle of interactions, when formulated

using metrics, lead to the presence of a ghost (which is not present in the absence of the

cycle)? We have shown that, even when the individual interaction terms are ghost-free,

with a strong coupling scale of Λ3 = (m2MPl)
1/3, the cycle introduces higher-derivative

terms, suppressed by the lower scale Λ4 = (m3MPl)
1/4, which will inevitably lead to the

appearance of a ghost associated with that scale.

This was demonstrated in two ways: i) by using a plaquette construction to eliminate

the ‘extra’ Stückelberg field which is introduced due to the number of symmetry breaking

interactions being larger than the number of broken symmetries, and ii) by introducing a

reduced number of Stückelberg fields at the start. Both methods give the same form for

the dangerous terms which appear, confirming the validity of this result. We have also

5I.e. one in which every site is linked to every other.
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investigated the structure of interactions in the vielbein version of the theory and argued

why the same ghost does not appear, which it should not, since this version is known to

be ghost free [14].

This result is interesting not just intrinsically, but also for its relation to dimensional

deconstruction; the consequences on the latter of a ghost in the metric version we have

examined by considering cycles of general size N and we find that the previously noted

problem of a low strong coupling scale which decreases like N1/2 [23] is even more pro-

nounced when the ghost is taken into account. More specifically the cutoff of the theory

will in this case decrease like N3/4, a further impediment to taking the continuum limit

(and recovering the full KK theory), at least in the metric version.

Further work remains to be done exploring the link between cyclic theories and dimen-

sional deconstruction, and it would be especially interesting to see if and how the ghosts

which we have found here are present when one directly truncates the full KK theory.

Similarly it would be worthwhile and useful to investigate whether it is possible to remove

the ghosts via a suitable combination of cycles, and especially whether a complete graph

with interaction strengths which decay with distance in the compactified dimension, such

as described in [22], would lead to the cutoff of the theory returning to Λ3.
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A Necessity of plaquettes

In this appendix we will investigate the consequences of not eliminating one of the

Stückelberg fields via construction of a plaquette; for concreteness and simplicity we will

work in D = 4, with a trimetric theory in which all the interaction terms are the second

symmetric polynomial e2

(√
g−1f

)
= 1

2

(
tr
√
g−1f

2 − trg−1f
)

, and all Planck masses and

interaction strengths are equal.

After introducing the Stückelberg fields and expanding about a flat background

g(i)µν = ηµν + h(i)µν , Y µ
(i,j) = xµ +Aµ(i,j) + ∂µπ(i,j), (A.1)

the scalar-tensor interaction terms which will survive in the decoupling limit are

Lhπ =
3∑
i=1

2∑
n=0

α̂nh(i)µν

(
Xµν

(n)(π(i,i+1)) +Xµν
(n)(φ(i−1,i))

)
, (A.2)

where φ(i,j) is the dual galileon field associated with π(i,j), X
µν
(n)(π) are transverse tensors

involving n factors of ∂2π, and α̂n = (3−n)!
n!(2−n)! . (See appendix B and [25] for more details.)

We then perform a linearised conformal transformation to remove the scalar-tensor

mixing at quadratic order

h(i)µν → h(i)µν −
1

2
α1

(
π(i,i+1) + φ(i−1,i)

)
ηµν , (A.3)
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which leads to the pure scalar part of the action

Lπ = −1

2
α̂1

∑
i,n

αn
(
π(i,i+1) + φ(i−1,i)

) (
LTD

(n) (π(i,i+1)) + LTD
(n) (φ(i−1,i))

)
, (A.4)

where αn = (1− 1
2δn,1)(4−n)αn, and LTD

(n) (π) is the total derivative combination of n copies

of ∂2π. Finally we re-express terms involving the dual fields φ in terms of the π fields∑
n

αnπiLTD
(n) (φj) =

∑
n

βnπiLTD
(n) (πj), (A.5)∑

n

αnφiLTD
(n) (πj) =

∑
n

γnπiLTD
(n) (πj), (A.6)∑

n

αnφiLTD
(n) (φj) =

∑
n

δnπiLTD
(n) (πj), (A.7)

see [35] for more details. Having β1 = γ1 = −α1 and δ1 = α1 + 1
2α0, the Lagrangian is

then diagonalised at the quadratic level by the modes

χ1 = − 1√
2

(
π(1,2) − π(3,1)

)
(A.8)

χ2 = − 1√
6

(
π(1,2) − 2π(2,3) + π(3,1)

)
(A.9)

χ3 =
1√
3

(
π(1,2) + π(2,3) + π(3,1)

)
, (A.10)

of which the third is special since its eigenvalue of the kinetic and mass matrices is zero,

and hence it drops out of the action at quadratic order! This is an indication that it might

be acceptable to not use a plaquette since an appropriate combination corresponding to

the constraint (3.1) will then drop out leaving just two propagating modes. However this

means that χ3 must not reappear other than linearly in higher order interaction terms.

(It may appear linearly since in that case partial integration allows us to remove all the

derivatives acting on χ3, reducing its role to a Lagrange multiplier enforcing a constraint

on the dynamics of χ1 and χ2.) In particular, if it does appear as more than a Lagrange

multiplier then, due to its lack of a kinetic term, it will be infinitely strongly coupled.

Looking first just at terms in which χ3 appears quadratically, table 2 indicates the

conditions that must be satisfied by αn, βn, γn, δn for all of these terms to vanish.

Although we have explicit expressions for αn, βn and δn [35] we do not (yet) have an

explicit expression for γn, however we can still check the consistency of the last two sets

of conditions, which yield,

α3 + δ3 =
5

11
β3, (A.11)

α4 + δ4 = 0, β4 = 0 = γ4; (A.12)

whereas from the general expressions for an em interaction term,

αn = (1− 1

2
δn,1)

(D − n)!

(D −m− 1)!n!(D − n)!
(A.13)
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χ2 2(α2 + δ2)− (β2 + γ2) = 0

χ2
2 8(α3 + δ3) + 5(β3 + γ3) = 0

χ2
1 6(α3 + δ3) + (β3 + γ3)− 2β3 = 0

χ3
2 21(α4 + δ4)− 3

2(β4 + γ4) = 0

χ1χ
2
2 β4 − γ4 = 0

χ2
1χ2 16(α4 + δ4) + 3(β4 + γ4)− 4β4 = 0

χ3
1 2(α4 + δ4)− (β4 + γ4) + 6β4 = 0

Table 2. The row labelled χi1χ
j
2 indicates the condition derived from the vanishing of the coefficient

of the term χ3χ3,µνη
µνµ1ν1...µiνiρ1λ1...ρjλjχ1,µ1ν1 . . . χ1,µiνiχ2,ρ1λ1

. . . χ2,ρjλj
; certain terms do not

appear, e.g. χ1χ2, since they vanish regardless of the values of α, etc.

βn = (D − n)!
n∑
i=1

(−1)i

(D − i)!
αi (A.14)

δn = − 1

(n+ 1)!

n∑
i=0

(−1)i(i+ 1)

(n− i)!
αi, (A.15)

we find for D = 4, m = 2:

α3 = 0, δ3 = − 1

12
, β3 = 0 (A.16)

α4 = 0, δ4 = − 1

120
, β4 = 0. (A.17)

Thus the conditions (A.11) and (A.12) are not satisfied and χ3 will appear (at least)

quadratically in the action, and thus will be infinitely strongly coupled hindering the

analysis.

B Dual fields

In this appendix we briefly review the galileon duality [36] and its relation to multi-gravity

theories [35, 37]. The dRGT interaction terms possess a symmetry under interchange of

the two metrics

√
−g em

(√
g−1(f ◦ Y )

)
=
√
−(f ◦ Y ) eD−m

(√
(f ◦ Y )−1g

)
, (B.1)

and one can then gauge transform to get
√
−f eD−m

(√
f−1(g ◦ Y −1)

)
. This tells us that

interactions of f with the Stückelberg scalar π are equal to those of g with π, but with

m→ D −m, and

π → φ where x+ ∂φ = (x+ ∂π)−1. (B.2)

Since the interactions of g with the Stückelberg scalar lead to a galileon Lagrangian for

π, the interactions of f will lead to a galileon Lagrangian for φ. This is the essence of

the galileon duality : that the field redefinition (B.2) maps one galileon theory into another
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g f g f
Y = x+ ∂π Y −1 = x+ ∂φ

Figure 4. The galileon duality is equivalent to changing the direction of the Stückelberg link field.

galileon theory, and is equivalent to changing the direction of the Stückelberg link field, as

shown in figure 4.

The relation (B.2) can be extended to include the Stückelberg vector as well, in which

case

x+B + ∂φ = x+ Z̃ = Y −1 = (x+ Z)−1 = (x+A+ ∂π)−1. (B.3)

Solving this, and disentangling the vector and scalar parts one finds

φ =
∞∑
n=1

φn, with φn = −
n−1∑
i=1

1

i!
Zν1 . . . Zνi∂ν1...νiφn−i, (B.4)

Bµ =
∞∑
n=1

Bµ
n , with Bµ

n = −
n−1∑
i=1

1

i!
Zν1 . . . Zνi∂ν1...νiB

µ
n−i, (B.5)

and inital values for the recursion relations

φ1 = −π, φ2 =
1

2
π,µπ,µ, (B.6)

Bµ
1 = −Aµ, Bµ

2 = Zν∂νA
µ +Aν∂µν π. (B.7)

C Solution of equation (5.28)

Written in matrix notation, and ignoring terms which naively are suppressed by Λ2
2, equa-

tion (5.28) becomes (note that ω is antisymmetric, whilst A,B, and C are symmetric)

ω − (ωC + Cω +AωB +BωA) = T, (C.1)

which is a combination of the Sylvester and Stein equations. It can be solved by use of the

vectorisation operation (which turns an n × n matrix into a vector of length n2, made of

the concatenated columns of the matrix) and the identity

vec(XY Z) = (ZT ⊗X) vec(Y ), (C.2)

where ⊗ represents the Kronecker product. Application of these to (C.1) leads to

(1− (1⊗ C + C ⊗ 1 +A⊗B +B ⊗A)) vec(ω) = vec(T ), (C.3)

where 1 represents an identity matrix of the appropriate size. This can then be solved

as system of linear equations, and in particular if the matrix on the left hand side is not

singular (which we assume), we can multiply through by its inverse, which we then expand

in a power series

(1− (1⊗ C + C ⊗ 1 +A⊗B +B ⊗A))−1 =
∞∑
n=0

(1⊗C+C⊗1+A⊗B+B⊗A)n, (C.4)
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and re-write

1⊗C+C⊗1+A⊗B+B⊗A=
∂

∂a

∂

∂b

∂

∂c
(a(A+cB)+b(1+cC))⊗(a(A+cB)+b(1+cC))

∣∣∣
a=b=c=0

,

(C.5)

to get

vec(ω) =
∞∑
n=0

∂3

∂a1∂b1∂c1
. . .

∂3

∂an∂bn∂cn
(D1 . . . Dn)⊗ (D1 . . . Dn)

∣∣∣
a=b=c=0

vec(T ), (C.6)

where Di = (ai(A+ ciB) + bi(1 + ciC)). Finally turning each side back into a matrix gives

ω =

∞∑
n=0

∂3

∂a1∂b1∂c1
. . .

∂3

∂an∂bn∂cn
D1 . . . DnTDn . . . D1

∣∣∣
a=b=c=0

. (C.7)

D Terms in equation (5.28)

Tµν1 =−
(

1

2
X̃µλ

(2,0)+
1

18
X̃µλ

(0,3)

)
Gν(2,1)λ+

(
4

3
X̃µνλρ

(1,0) +
1

3
X̃µνλρ

(0,2)

)
G(2,1)λρ+

Λ2
2

18
X̃µλ

(0,3)Π
ν
(2,1)λ (D.1)

Aµν1 =
1

6
Πµν

(2,3), Bµν
1 =

1

6
Πµν

(2,3) (D.2)

Cµν1 =−Πµν
(2,1)−

2

3
Πµν

(2,3)−
1

72
(1+Π(2,1))

µ
λ

(
2Xλν

(0,1)+Xλν
(0,2)+Xλν

(0,3)+18Xλν
(1,0)+9Xλν

(2,0)

)
− 1

3
(1 + Π(2,3))

µ
λX

λν
(0,1) +

1

12
ηµν

(
LTD

(1,0) + 3LTD
(0,1) + LTD

(0,2)

)
(D.3)

Tµν3 =
1

2

(
X̃µλ

(1,2) + ηµλ
)
Gν(2,3)λ − 2X̃µνλρ

(1,1) G(2,3)λρ +
Λ2

2

2
X̃µλ

(1,2)Π
ν
(2,3)λ (D.4)

Aµν3 =−Πµν
(2,1), Bµν

3 = Πµν
(2,3) (D.5)

Cµν3 =−Πµν
(2,1) −

3

4
Πµν

(2,3) +
1

8
(1 + Π(2,3))

µ
λ

(
2Xλν

(0,1) +Xλν
(0,2) + 8Xλν

(1,0) +Xλν
(1,1) +Xλν

(1,2)

)
+ (1 + Π(2,1))

µ
λX

λν
(0,1) −

1

2
ηµν

(
3LTD

(0,1) + 3LTD
(1,0) + LTD

(1,1)

)
. (D.6)
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