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1 Introduction

Local quantum field theories possess an energy-momentum tensor, a fact which allows
us to consider them on a spacetime with geometry other than that of Minkowski space.
Investigation of the theory on a compact Euclidean manifold, where even the value of the
partition function can be a meaningful observable, can yield valuable information about
the same theory on flat space. Conversely, we can use our knowledge of the behavior of
the theory on flat space to characterize the manifold. In either approach, it is usually
advantageous to preserve some of the symmetries of the flat space theory. Specifically,
preserving supersymmetry allows us to take advantage of the attendant simplifications in
the computation of BPS observables, including the partition function.

Four-dimensional Euclidean manifolds preserving rigid supersymmetry for N’ = 1 the-
ories were considered in [1-4]. The analysis in [2] applies to theories which possess a
conserved U(1)p current, in addition to the energy-momentum tensor. In this work, we
use the results of [2] to calculate BPS observables of such theories on a manifold, M, which
is the total space of an elliptic fiber bundle over a compact oriented Riemann surface X.
M always has the topology S* x M3, where M3 is a principal U(1)-bundle over ¥. As such,
the supersymmetric partition function on M can be thought of as a type of super-trace
over the Hilbert space of the theory quantized on the spatial manifold M3. Such an object
is known as an index. Familiar examples include the Witten index [5], where M is the
four-torus, and the superconformal index [6, 7], where M is topologically S* x S3. These
count, with appropriate signs and fugacities, the supersymmetric vacua of a theory and
(a subset of) the local BPS operators of a CFT, respectively. The connection between the
partition function on a general M and the flat space theory is less direct.

Our computational approach is based on localization: a technique which allows us
to reduce a supersymmetry preserving Euclidean path integral to a smaller integral over
the set of fixed points of a supercharge. For a 4d gauge theory with gauge group G, the
moduli space of such fixed points, for our chosen supercharge, will be M%: the space of
flat G-connections on M. More generally, the space of fixed points of a supercharge acting
on supersymmetry multiplets is a superspace. The fermionic coordinates are associated
with supersymmetric fermionic modes, those with vanishing action in the localizing term,
in the bosonic background. We will argue that in the present context these occur only on
Kihler manifolds. M is Kéhler if and only if M ~ T2 x . To avoid dealing with fermionic
fixed points, we will therefore further restrict ourselves to nontrivial circle bundles as Ms.



This rules out the Witten index. Localization has been applied to the computation of the
superconformal index in [8, 9] and to the manifold 72 x S? in [10].

The data which parametrizes the Euclidean path integral comes from the action for the
N =1 theory, including background deformations, the metric on M, and other information
related to the background supergravity fields. The general form of the computation shows
that the supersymmetric partition function on M depends only on a finite subset of these
parameters, in agreement with the general results of [11, 12]. We will leverage those
results to simplify some of the data from the outset. Specifically, we avoid choosing a
metric altogether and specify the geometry of M by choosing a complex structure and a
holomorphic isometry. We will then argue for the existence of a compatible metric. Our
approach is similar to the one used to perform localization on Seifert manifolds in [13, 14].
The result for the partition function on M should reduce to that of the manifolds considered
in [14], essentially our Mjz although possibly with a somewhat restricted metric, in an
appropriate limit.

In section 2 we examine the topology and complex structure of M and review, fol-
lowing [2], how supersymmetry on M is realized. In section 3 we discuss the multiplet
structure and supersymmetric actions on M. In section 4 we construct the localizing term
and discuss its fixed points. We also set up the computation of the fluctuation determinants
which are then computed using the equivariant index theorem in section 5. Our final result
for the partition function on M of a gauge theory with gauge group G, given in section 6,
is of the schematic form

_ ) d
ZG,T,ngd (Tcsa £F17 af) — /MO » e Sclassmal(’T'cs,gFI)Zgéillge (TCS) Zg{aé:er (TCS> af) , (11)
G 9,

where 7, {1, 7 and ay signify the dependence on the complex structure, Fayet-Iliopoulos
terms, R-charges and background flat connections for the flavor symmetry group, respec-
tively. The integers ¢ > 0 and d > 0 are the genus of ¥ and the first Chern class of
M3z — ¥. The functions Zgauge and Zmatter are the fluctuation determinants associated
with gauge and matter multiplets.

2 Setup

New minimal supergravity can be used to construct supersymmetric actions for theories
with 4d N/ = 1 supersymmetry which have a conserved U(1)z symmetry on any Hermitian
four-manifold M. The results of [2, 4] imply that on such a manifold one may preserve
two supercharges of opposite R-charge if one assumes that the metric on M supports a
holomorphic Killing vector K with holomorphic coefficients. Such a vector represents a
torus isometry acting on M, though it may incorporate additional circle actions under spe-
cial circumstances. Manifolds of this type are therefore elliptic fibrations over a Riemann
surface. However, as shown in [11], a complex manifold with this topology does not neces-
sarily support such a vector. As well as constraining the topology further, we will assume
throughout that our manifolds do.



2.1 Topology of M

We will restrict ourselves to studying the case when M is the total space of a principal
elliptic fiber bundle over a compact oriented Riemann surface X

M5y, (2.1)

This is equivalent to requiring that the torus action induced by K is free.! The structure
of such a total space has the following classification (see Corollary 1.5 of [15])

1. M is diffeomorphic to S! x Mz where Mj is a principal U(1)-bundle

St Mz — %, (2.2)

2. The topology of M is completely determined by the genus, g, of the base space X,
and the value, d, of the first Chern class of the U(1)-bundle whose total space is Ms3.

3. M can be constructed as a quotient
M=0%/(r), (2.3)
by a multiplicative cyclic group generated by a number
TeCr, 7] > 1, (2.4)

where ©* is the compliment of the zero section in the total space of a degree d line
bundle on .

4. M is Kéhler if and only if d vanishes, in which case it is diffeomorphic to 72 x X.

5. The integer cohomology of M with d > 0 is given by

HY(M,Z)~ 7, HY(M,Z) ~ 7% H?>(M,7Z) ~Z;® 7Y, 25)
H? (M,Z) ~Zq® 2297, H*(M,Z)~7, '
such that
Tor (H* (M, Z)) = 7* (H*(8,2)) ~ Zg. (2.6)

We will restrict ourselves mostly to the case d > 0.

2.2 Supersymmetry on M

This section is a review of the relevant facts about Killing spinors and vectors on a Hermi-
tian manifold M from [2]. Our conventions, which differ somewhat from [2], are summa-
rized in appendix A. We begin by discussing the general class of manifolds which admit two
Killing spinors of opposite R-charge, then specialize to the fiber bundles described in the
previous section. The question of finding an appropriate metric on these spaces is deferred
until the end of section 2.3.

LA free action is one where all isotropy groups are trivial. A less stringent condition is for a circle (or
torus) action to be fixed point free while having finite isotropy groups. Total spaces with fixed point free
actions are more complicated and will not be considered here.



2.2.1 Killing spinors and spinor bilinears

The Killing spinor equations on M are read off from the variation of the gravitinos of the

new minimal supergravity [16]

0y =(Vy—i(Ay —Vy) —iVVo,,)e=0,

g . . i (2.7)
S = (Vu+i(A, = V) +iV¥6,,)E=0,

where € and € are Killing spinors of R-charge 1 and —1. Namely, € and € are sections of
L®S, and L™'®S_, respectively, where L is an R-symmetry line bundle, S a left-handed
spinor bundle and S_ a right-handed spinor bundle.

The background fields A, and V,, are complex in general. The real part of A, is the
connection on the R-symmetry line bundle L. V,, is a conserved current

V. VE=0. (2.8)

The complex conjugated spinor €' (¢f) satisfies the same Killing spinor equation as € (¢)
upon replacing 4, — —A, and V,, — —V,, in (2.7).

The Killing spinor equations on M preserve two supercharges of opposite R-charge and
handedness €, €. They have the property that everywhere on M their norm do not vanish

el #0,  Jd?#0. (2.9)
We will regard € and € as commuting spinors below.
We can use the spinors €, € to define real, (anti-)self-dual two-forms
2i ~ 20 4
S = _WGTUILlf? S = _W Ouv€, (2‘10)

which are integrable almost complex structures? [2, 3]

JHT6, = JrJh, = =5k, (2.12)
The two-forms defined by
P, =eoe, Pzw = €0,,€, (2.13)
satisfy the relations o i
Py = 1Py, L Ppy = 1Py . (2.14)

P, (P,) is a section of L? A% (L2 ® A%). A% (A%) is the bundle of (anti-)self-dual
two-forms.
One can also construct a vector field by combining € and €

K" = eote. (2.15)

2Tt follows from the Fiertz identity of commuting spinors

(cre2)(Esés) = %(610”&1)(620“53). (2.11)

The rest of the relations also follow from this identity.



It follows from (2.7) that K* is a holomorphic Killing vector

V.K, +V,K,=0, JLK"=J'K"=iK", (2.16)
and hence
K"K, #0, K'K, =0, 2.17)
Re (K)|? = [Im (K) > #0, Re (K)"Im (K), =0. '

We will restrict attention to the generic case where K commutes with its conjugate
[K, KT} —0. (2.18)

This is enough to show that M is a torus fibration, with a torus isometry action induced
by the real and imaginary parts of K, over a Riemann surface ¥ [2]. We will take the torus
action to be free and hence M is the total space of a principal torus bundle. The orbits
of K need not close, but may be part of a larger U(1)? group of isometries [11]. Since the
metric on M is, by definition, constant along the fibers (though the size of the fibers can
vary with position on the base), an extra U(1) implies that there exists a Killing vector
for the quotient metric on ». Riemann surfaces supporting such a metric exist only for
g < 1. The extra Killing vector is unique (up to rescaling) for g = 0 and is one of the two
translations of the torus, or a linear combination thereof, for ¢ = 1. Note that fixed points
for the action of such vectors exist only for g = 0.
We also introduce independent vectors®

P = _(CohC, YH = ed”(, YH = Cote, (2.19)

where ( and 5 are defined by

T
6 ~
TR

Ce=Cé=1. (2.20)

These vectors satisfy the following:
KRy = Vi =2, (2.21)
K'K, = K"K, = Y"Y, = Y"Y, = K'Y, = K'Y, = K'Y, = K"Y,, = 0. ’

The metric, complex structures and two-forms are written in terms of the vectors as

1 _ _ _ _
G = 5 (KMKV + KKy +Y,.Y, + Y’/YM) )
P - B _ _
S = 9 (K#K,, - KK, + Y)Y, - Y”Y#) )
Sy = % (KMKV - KVKM - YMYV + Y'/YM) ’ (2.22)
1
P = 5 (K, Y~ K,Y,).
- 1
P = 2 (K5 - T,

It follows that K,Y (K,Y) are (anti-)holomorphic vectors.

3Note that KT # K in general, however the two can be made equal using a conformal transformation of
the metric. We hope this will not cause too much confusion.



We can decompose arbitrary spinors as

Yo = (CV) €a — (V) Ca s 2.23
o= (06) @+ (W) o, -

from which we can recover
€t = (CA) KF + (eN) YH,
- . N 2.24
et = (&) K — () 7. 22

2.2.2 The complex manifold M

Introducing complex coordinates w, z such that K = 0,,, the metric on M can be written as
ds® = Q(z,2)* ((dw + h(z, 2)dz)(dw + h(z, 2)dz) + c(z, Z)dedz) . (2.25)

The Hermitian manifold M admits a Chern connection that is compatible with the metric
and the complex structure
Vigvp =0, Vidvp=0. (2.26)

The second condition is equivalent to

Vidvp — (Fc)ﬁw] Jop — (FC)@p] Jve =0, (2.27)

where (Fc)ﬁw] is the Christoffel symbol whose lower indices are anti-symmetrized. Rotating
the three indices and taking an appropriate summation, one obtains the Christoffel tensor

represented by the complex structure
1
() = 57" (Vidir + Vs = Vida) (2.28)

Since the symmetric part is the usual Christoffel symbol of the Levi-Civita connection, the
spin connection takes the form

(W)™ = et (Due”™ 4 (T);,e7™)
(2.29)

1
=W+ ie;‘e”"Jp/\(VMJ,,A + Vadw — Vida) -

Now we rewrite the Killing spinor equation (2.7) by using the Chern connection
(V5 —iA5)e=0, (2.30)

where we defined ) 3
A=At 5 (O =i,/ ) VT, = SREG. (2.31)

k is an undetermined scalar function satisfying

K", =0. (2.32)



To determine the connection Az in terms of the Chern connection, consider p = lf’lg €
L=2 ® Ky, where Ky = A?Y is the canonical bundle of (2, 0)-forms. Since p is a bilinear
of two Killing spinors, it satisfies

(VS +2iA5) p=0. (2.33)

The fact that p is globally well-defined implies the line bundle L2 ® K is topologically
trivial. Also, the fact that the Christoffel symbols of mixed indices with and without bar
vanish leads to

Vip = 0ip — g&- logg,  Vip=0p, (2.34)
where we used g = det g, = (det g;5)?. Using them in (2.33), we obtain
Acz—é(8—5)logg+%(6+5)log s, (2.35)
where s = pg~/4 is a nowhere vanishing function. The R-symmetry gauge field is alterna-
tively given by [10]
1 1 L i 3
A, = _ZJ”V&/ log /g — 1 (0", — i)V, Py, + 58# log s+ §KK”' (2.36)
Note that .
i
Ay = iaw log s. (2.37)
Since the Ricci form is given by
R =i00log /g = —%d(a —0)logyg, (2.38)
the field strength of Aj, is proportional to the first Chern class a(M) = [%] up to an
exact two-form [17]
[F(Aﬂ = 7 [er (M)]. (2.39)
We may choose the vielbein in the Hermitian coordinates (2.25) to be
el = Q(dw + hdz), e =Qcdz, (2.40)

leading to Killing spinors of the form

ea:\}§<(1)>, gd:*/ig (2) (2.41)

Using the Killing spinors (2.41) and the sigma matrices in the Hermitian coordinates (A.25),

the vectors become

K =0y,
_ 4
K = 50,
4 (2.42)
Y:QTCS(az—h(?w),

Y =2 (0: = hdg) -

At this point we set Q = 2 to have KT = K for simplicity. This choice of Q is irrelevent
for the computation of the partition function.



2.2.3 The integrability conditions
The condition [V, V,]e = %prgap"e and the Killing spinor equation yields the integra-

bility condition

1
*R/,u/pg-apo-ﬁ = —VprO'HZ/E +Z (Flf’/ — F/YV) €

2 (2.43)

+1(V,+1iV,) VPo,,e —i(V, +iV,) VPo,e,

where F ,fbv are the field strength of the vector fields A4,,V,,. Contracting both sides with
efoh from the left, we obtain

A
R—6V"V, = =2F;, J", (2.44)
while a contraction with eo*” yields
A

F,P" =0. (2.45)

Similarly, the integrability condition for € gives equalities

A Juv A puv

R —6VHV, =2F, J", F, P =0. (2.46)

The integrability conditions for two supercharges with opposite R-charge leads to other
interesting relations between the space-time curvatures and the background field strengths.
They are given in the following forms [17]

8
(C"prcr)2 = gRe (*F,ul/)2>
8
E;uzpaleaﬁRpaaﬁ _ gRe [Euupa]:uu]:po] ’ (2.47)

I (Fuy)? = Tm 677 F Fopo] = 0,
where F is the field strength of the background U(1) gauge field
F=dA, A, =A,—-2V,. (2.48)
2.3 Complex structure and R-symmetry background

The supergravity background may require including an R-symmetry background on M,
possibly incorporating a nontrivial line bundle L. The condition given in [2] is that
L=2 x Ky is trivial, where ICj; is the canonical line bundle on M. We will determine the
topological class of L when we examine the complex structure. Note that the R-symmetry
gauge field, A, is in general complex. However, only the real part of A can be a connection
for a nontrivial line bundle.

For ¢ > 1 and d > 1 all complex structures of M are deformation equivalent [18]. The
canonical bundle is a pullback from the base [19]

Ky = mKs:, (2.49)
and hence satisfies [15]

a (Ky) =7"c1 (/CE):2g—2m0dd€ZdCH2(M,Z). (2.50)



We also have
1 (Kar) mod 2 = wo (Tyy) =0 € H? (M, Zs), (2.51)

where ws (Thy) is the second Stiefel-Whitney class of M.
The condition on the R-symmetry line bundle yields

—2¢1 (L) +29g—2=0mod d. (2.52)
We will ignore 2-torsion and only consider the solution
c1(L)=g—1modd. (2.53)

There is a subtlety associated with the case of ¢ = 0. The total space is then diffeo-
morphic to
M~ S' % L(d1), (2.54)

where L (r, s) is a (three-dimensional) lens space. For d > 3 the complex structure moduli
space of M has two deformation equivalence classes I, II [18]. From the fact that the usual
lens space index has a (topologically) trivial R-symmetry bundle, we conclude that the
topological classification of the canonical bundle in this case is

topologically trivial I,
Ky — opologically trivia (2.55)
s 1I,
so that
0 I,
c1 (Ky) = (2.56)
—2€Zqg 11,

and our solution for the R-symmetry line bundle is

0 I
e (L) = 2.57
L) {—1eZd 1. 250

An example of this phenomenon is that the spaces S x L (d,1) and S* x L (d,—1) are
diffeomorphic but have, in the language of [11], topologically distinct canonical bundles for
d > 3 with first Chern classes given by the two solutions above. In order to have chiral fields
valued in well-defined line bundles, one must make the following restriction on the R-charges

r (—X(;) mod d> €Z. (2.58)

For instance, in the complex structure II, the R-charges are quantized in units of d — 1.
Note that there is no restriction for the complex structure of type I, and for manifolds with
base space T2. The case g = 0 and d = 0, where M is diffeomorphic to 72 x S? and which
we consider only briefly, is very different. One is forced to include flux for the R-symmetry
gauge field on S? and all chiral fields must have integer R charges.

In order to use the results about supersymmetry from the previous section, we must
show that M admits a compatible Hermitian metric which supports K. When g > 2 the



orbits of K are tori and the fibration is holomorphic [10]. We take this to mean that a metric
with an appropriate Killing vector can be constructed on M by averaging any Hermitian
metric along the fibers. The Killing vector K, which simply points along the fiber directions,
should be holomorphic in the given complex structure. For g = 0, appropriate metrics were
constructed in [11]. It should be noted that there is no guarantee that a complex manifold
with ¢ = 0 and a complex structure of type II will admit the necessary holomorphic Killing
vector. We currently have nothing to say about the case g = 1.

Note that even when the R-symmetry line bundle is determined to be topologically
trivial it may be holomorphically nontrivial. We will need to evaluate the determinant of
the gauge invariant operator

Ok = Lx —irKM'A, —iqrK"a,, (2.59)

and note that
KFA, = Ay, (2.60)

is a holomorphic line bundle modulus for A. For the cases where Kjs is a pullback from
the base, the modulus on the base is given by 1/2 that of the base canonical bundle. We
know from the explicit form of the lens space partition function that this remains true even
in the special component of the complex structure moduli space (I) given above. This is
due to the fact that one can reach this component by orbifolding S® x S', to which the
above argument applies, without changing the other supergravity fields [11]. We do not
explicitly include a holonomy for A around the S', but treat all spinors as periodic. The
holonomy in the fiber direction is constrained by the topological class of the R-symmetry
bundle. As explained in section 4.2.1, the solution (2.53) for the Chern class of L implies
a holonomy in the fiber direction of size

exp <2m' a ;L)> — exp <2m'g ; 1) . (2.61)

This holonomy is not included when working with the alternative complex structure I.

3 N =1 supersymmetry algebra and multiplets

The supersymmetry transformations of the new minimal supergravity [16] satisfy the fol-
lowing commutation relations in the rigid limit [1, 2]

1
{0c,0¢} = §5K7

{56)56} = {5€75€} = 0’ (31)
- [5K76€] = 07
= [5K,5€] = 07

“The combined results of [18] and [11] do not seem to rule out this possibility. That is, one may take
g =1 and r = +£1 with A = 0, in the language of [18], and the metric and Killing vector (4.7) and (4.8)
respectively from [11]. In the language of [11] the options correspond to s = £1 which produce the correct
Chern classes, assuming the formulas there hold beyond their specified region 1 < s < 7.

,10,



where 0. and ¢ are the supersymmetry transformations with respect to supercharges € and

€, respectively. 0 is the R-covariant Lie derivative
o = L = Lx —ir KMA,, | (3.2)

and L is the Lie derivative along the Killing vector K* given by (2.16). The equalities in
the third line of (3.1) follow from the fact that Killing spinors are R-covariantly constant

along the Killing vector K
EKE—EKG— (33)

The most general multiplet, denoted by S, whose transformation law realizes the super-
symmetry algebra (3.1) consists of 16+ 16 bosonic and fermionic degrees of freedom [20-22]

S = (C,X,x, M, M, a, ), A, D) : (3.4)

If the bottom component C' has R-charge 7, a, and D have the same R-charge and M and
M have charge r — 2 and r + 2, while (X» )\) and (x, A) have charge r — 1 and r + 1. They
transform under the supercharge § = o, + ¢ as

1
dox = Me — i(a“ +1iD,C)ole,

~ 1
6% = Mé ~ S (a, — iDC)"e,
1, 1.
oM = Rl D, x + 56)\,
~ 1 1
oM = §EUMDM)~( + 56)\, (3.5)

1 1 ~
Sa,, = —QDN (ex+&0) — 5 (couh+ @)

oA == (WFWHD)

[ \O)

SA = ~ (6" F,, —iD)E,

)

- 1 -
0D = §Du <60“)\ - €5“)\) - §V“ (ea“)\ + €5’”)\> + zg (R—6V, V") (ex + €X) ,
where the covariant derivatives are defined by

D,C = (0, —irA,)C,

i
(V“ DA = 2V“> o (3.6)
(vu (r+1)A, + ;V)
The field strength F)},, is given by
Fu = Dua, — Dyay, , D,a, = (0, —irAy)a, . (3.7)

— 11 —



Given two general multiplets S, 2, we can construct a new general multiplet S whose

components are given by [20, 21]

C =C1Cq, x = Cix2 + Caxi s X = Cix2 + Cax1,
M = Cy My + CoMy — S X1X2; M = Ci1 My + CoM; + JX1Xz,

i o
ap = Craj, + Caay + 5 (X10:%2 = X10uX2)

A= <Cl)\2 — iMl)(Q + % (CL}L + z‘DHC’l) O’u)~(2> + (1 &~ 2) ,

2
D =C{Dy+ CyDq + 2(M1M2 + MlMQ) — atag — DMCIDMCQ

5\ = (Clj\g —iMixs — ! (ai — z’DHC’l) 5‘”){2) + (1 — 2) ,

1 % - -
— 5 (2)(1)\2 + 2X1 A2 + XlO"u_DMXQ + XlO"uDMXQ + (1 > 2))
— iV (x10" X2 — X16"x2) -
3.1 Vector multiplet

A vector multiplet ¥V has no R-charge. Its embedding in a general multiplet, in Wess-
Zumino gauge, is

Y= (o,o,o,o,o,au, A D) , (3.9)

which transforms under the supersymmetry as

1 -
da, = —3 (eau)\ + €6M>\) ,

1
A= - (6" Fu +iD)e,
] f (3.10)
0N = 3 (6" F,, —iD)E,
— 3 B ) _ g5k
6D = 5 (ea D\ —éo Du)‘) ,
where
F = 0pay, — Opay, —ilay, ay],
. 3 .
DM)\ZVMA—Z (AH_QVM> )\—Z[au,)\], (311)
- - 3 -
D=V, A+i (A# 2Vu> A —ifay,, Al

3.2 Chiral multiplet

A chiral multiplet ® of R-charge r; and gauge charge ¢; is an irreducible representation

whose embedding in a general multiplet is given by

Pt — (¢ —i)?, 0, —iF",0,iD,4,0,0, % (R — 6V, V") ¢i) , (3.12)
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which transforms as )
6¢Z = 561/}1 )
Sy’ = eF' + g"eD,¢" (3.13)
1 ) -
OF" = iéﬁuD,ﬂ/ﬂ + iqieNQ"

where

Duﬁbi = (au - iTiAp - iq?lau) QSZ >

; . i ‘ ; (3.14)
D' = (Vu —i(ri—1)A, — §Vu — zqiau> Y.

An anti-chiral multiplet &' of R-charge r; and gauge charge ¢; is embedded in a general

multiplet
~ ~T ~ ~ ~7 7"*. ~
& — <¢z, 0,i0",0,iF", =iD,g", 0,0, =" (R = 6V, V") ¢Z) : (3.15)
and transforms as g
o' = EF" + 5"eD,¢" (3.16)
1

SF = 560’LDM1;g — iq;e/\qu,

where - —
D, ¢" = (0, — ir; A, — igau) ¢,

Dy = <vu —i(r;+1) A, + %Vu - i%du) v

There is another useful (anti-)chiral multiplet constructed from a vector multiplet, W,

(3.17)

(Wa) They have R-charge r = 1 and —1, respectively, and the components are given by

Wo = (Aas ()30 F™ + iDega, (0" Dyda )
S . . : (3.18)

e — (X", (G )P 1 — iDePo (Er“D#)\)a) .
3.3 Real linear multiplet

A real linear multiplet does not have R-charge (r = 0). Its embedding in a general
multiplet is

J =(1,4,7,0,0, 4, + 2V, J, —o*D,j, —6"D,j, =V , V"] — 2V, j") . (3.19)
The vector component j, is a conserved current
Vit =0. (3.20)

The transformation law of a linear multiplet is given by

6J=%(6J—€3)=

1 :
0j = —5 U+ iV, +2V,0) 0¥, (3.21)
-1
0] = —5 U — iVl +2V,J)o"e,

5ju = —V" (€0 + i) -
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3.4 Supersymmetric Lagrangians

One can construct an invariant action by integrating the D-term of a general multiplet
with no R-charge

Lp =D —-V,a", (3.22)
or the F-terms of a chiral multiplet of » = 2 and an anti-chiral multiplet of r = —2
Lpr=F+F. (3.23)

Invariance follows from the transformation laws (3.5) and (3.13).

The D-term of a Kahler potential K whose arguments are chiral and anti-chiral mul-
tiplets ® and ®' with charges (r;,q; = 1) and (r;,¢; = —1) gives the kinetic Lagrangian
of the matter multiplets. Also, the F-terms of superpotentials W (®) and W(i)) become
interactions of the matters. Using the multiplication law (3.8), the matter Lagrangian is
obtained in [20, 23]

Luaer = = [K (2.8)] |~ w(@)r = [7(3)]

I e A N W N SN ] i _ i
- <2R 3VM> <4rsz¢ 477Ki¢>+K,-j(DM¢D¢ FF)

D

— vk (KiDucﬁ - K;Dﬂ) — F'W, — F'W/; — K°D® (3.24)
1 ~a i 1 ~ : - 1 - ~g ~
S KgPat Dt + Ky Pl + Iy FIgi)

1 0,7 1= 7177 1 i05,70,77 : afra,)i Narra,7i
Wi + S Wi — K g — i (A K — XK
where we denote K; = 0, K (¢) and so on, and defined
Ka — ¢2 % KE — Ki T;; , (3.25)

and T is a generator of a gauge group. This action agrees with the Lagrangian derived from
the rigid limit of the new minimal supergravity [1] up to the difference of the conventions.
Here the covariant derivative and the Christoffel symbol are defined by

7 . i i ma a, g i j
Dyt = <Vu —i(ri —1) A, — 2Vu> V' —iThau’ + ijWDu¢k,
é‘k - Kiinjka

Dy¢' = (0 — iriAy) ¢ — iT{ale) .

(3.26)
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Similarly, the Lagrangian of the gauge sector is given by using the field strength chiral
multiplet (3.18) as [23]

£gauge = % [fAB((I))WAWB]F + % [fAB((i))WAWB}
1
8

P )
1 < -
=Tr {4 (fAB + fAB) o FBm — (fAB - fAB) S P o
- _ 1 .
+ fapAta' DB + fapAiat D AP — 3 <fAB + fAB) DADP
1 . ‘ ) (3.27)
t 5 fapi (FANT —iDAIAE + Fiy'o )P)
1z FISANB L AT iy
+5Fan; (F MAP 4 iDAGAE 4 FA Jior /\B>
1 P SAXB G
_ngB,z‘j/\A/\B¢ P — ngB,Tj/\A/\B¢ W] ,
where f4p(®) and f ‘AB (é) are functions of the matter fields, and A, B label the types of
gauge groups. The field strength and the covariant derivatives are defined by (3.11).

4 Localization

So far we have described the N' = 1 supersymmetry multiplets and Lagrangians on Her-
mitian manifolds that admit at least one supercharge by taking the rigid limit of the new
minimal supergravity. The most general supersymmetric action, which we denote S, is
given by the spacetime integral of the Lagrangians (3.24) and (3.27). To compute the
partition function on a Hermitian manifold M by localization, we add a d-exact term JV
to the action and compute the deformed partition function

Z(t) = /D¢ e STV (4.1)

Since Z(t) does not depend on the parameter ¢, we let ¢ be large while choosing a positive
semi-definite V. The integral localizes to the field configurations for which §V vanishes.
We will construct such a localizing term below and perform the localization calculation
around the fixed point with the equivariant index theorem in section 5.

4.1 Localization and fixed points

We consider manifolds with two supercharges € and € of opposite R-charges. We will use a
linear combination of the two supercharges § = d. + d: which is not nilpotent, but satisfies

{0,0} = 0k . (4.2)

We will find a localizing term of the form dV.
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4.1.1 Localizing terms

To find a localizing term, we use the normalized complex conjugates of the Killing
spinors (2.20). The R-charges for ¢ and 5 are —1 and +1 so as to be consistent with
the normalization conditions. They are invariant under the R-covariant Lie derivative
along K,

Lec=L2l=0. (4.3)
This property is useful to construct localizing terms as follows. Let ¥ and ¥ be fermionic
functions of fields with R-charge +1 and —1. Consider a Lagrangian density v = (C U+4( i/)

whose R-charge vanishes. Then the spatial integral of v will be a localizing term because
it is d-closed up to a total derivative

6%v = % (( oW + féK\T/> = %6;(1) = (total derivative) . (4.4)

The last equality follows from the fact that v is a scalar function of zero R-charge and K
is a Killing vector.
For the gauge sector, we choose the fermionic functions (¥, ¥) to be

1 , o
Usauge = 5(_FWUW +iD)\, Veauge = 5(_FWUM —iD)A, (4.5)
and obtain the localizing term

E(loc) _ EF

gange = 5 P P+ AG* DA + A" D\ — D?. (4.6)

A positive definite contour is achieved by taking a, real and rotating
D — —iD. (4.7)

We will implicitly substitute —iD for D in all later equations. The field configurations to
which the path integral localizes are those which satisfy

Fu,=0, D=0. (4.8)

The localizing term (4.6) is nothing but the Lagrangian of the gauge sector (3.27) with
fap = f ‘A = 0ap- The first condition leads to a flat connection of the gauge field which
will be described in detail in section 4.2.1.

We can fix the gauge freedom by imposing the covariant gauge V#a, = 0

Lyt =&V, D'c+bVFay, (4.9)

where ¢ and ¢ are ghost fields and b is a Lagrange multiplier. As is explained in [24, 25],
the gauge fixing term does not change the locus of fixed points where the bosonic part
of (4.6) vanishes.

Next, we move onto the matter sector coupled to the gauge field. We consider a
localizing term for the matter sector with a chiral multiplet ® = (¢, 4, F') of R-charge r
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and gauge charge ¢ and an anti-chiral multiplet ® (gzg o, F ) of R-charge —r and gauge
charge —g. We choose the fermionic functions ( , ) to be

1 S . 1 S
nnatter == (00" Db+ F ~2i9020),  Frmatrer =3 (90" Dytp+0F+2i330), (4.10)
which yields the localizing term

L8 = DudD"6 — V" (3D, — 6D,u6) +iadDé — = (R = 6V, V") 66

1- . . (4.11)
+ 500" Dyt — iq ($M6 — PAd) -

where we used the integrability conditions (2.44) and (2.46) and removed a total derivative
term. This agrees with the matter Lagrangian (3.24) with a canonical Kéhler potential
K = ®® and without superpotentials. Every covariant derivative is also covariant with
respect to the gauge field for the matter fields with gauge charges.

The bosonic part of the §-exact Lagrangian is positive definite if we choose the contour
of the path integral for ¢ and F to be

p=¢!, F=-F" (4.12)
Then the field configuration of the matter sector localizes to
$p=0, F=0, (4.13)

where we used the condition (4.24) for the gauge sector.

The classical contributions from the gauge and matter Lagrangians (3.27) and (3.24)
vanish on the zero loci (4.8) and (4.13). A classical contribution from a Fayet-Illiopolous
term for an abelian gauge multiplet is discussed in 6.1.

4.1.2 Cohomological derivation

Our constructions of the localizing terms are somewhat heuristic and one may wonder if
there are other choices. Here we present an alternative derivation of the fixed points based
on the cohomological forms of the supersymmetry transformations. This approach is taken
by [13, 14] for N' = 2 Chern-Simons-matter theories on Seifert three-manifolds.

For the vector multiplet (3.10), we introduce new variables (A}, A) defined by

1 - -
A: =—3 €ouN, A= AZ(CO’M) ,
1 ) (4.14)
A, = —565'#)\, A=A, (a“() ;
which satisfy the supersymmetry transformation
deay, = A: , deay = A,
1 1
+ _ AT T + 4 =
o0, =0, oeh, = 4K”FW + 4K#D,
o o B (4.15)
56A’u - ZK FV,“ - ZK'LLD’ 5€A,u - 0,
0D = —D”A:, 0eD = D"A,,
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where Fjﬁ, is the (anti)self-dual part of the field strength

1
Fi =Fu+ 5 S 77 (4.16)

For the chiral multiplets, we introduce the bosonic variables (¢4, 1_) and (¢, 1)_)
made of the fermions satisfying

PG b0 e, @
b= —Cb,  Py=Ch, Po=é.

We rewrite the supersymmetry transformations of the chiral multiplet (3.13) of gauge
charge ¢ in the cohomological forms as

56¢:w—7 5€¢:07
Sy =0, S = Lo,
Sepy = F, Sethy = Ly o, (4.18)
1 1 B
6 F =0, 0cF = §c¢;¢+ = 5Lyt - iqY"Af o,

where the vectors Y#, Y# are defined in (2.19). Similarly the anti-chiral multiplet (3.16) of
gauge charge —g with the new variables transforms as

56(5207 6€(Z~5:1;_,
5572)7 = Eéé? 5€127 - O’
561;"' - »CY(£7 661/;+ - F7 (419)
1, 1. - . -
F = JLkG — Jorl bia NG, G =0,

The localizing terms with respect to the supercharge § = 6. + d; are given in this
representation as

Vgange = (5gA;)TA+H + (56A;)TA—M ,

Sl (4.20)
Umatter = (0ct04) 10y + (6001 by + 4(0ev- )T,

leading to the same fixed loci on the integration contour (4.12) as in the previous subsection

F.=0, D=0,
“; y . (4.21)
Note that the saddle points
1 _
D= §5NVPUK“K”F"”, (4.22)

are off the contour of integration.

,18,



4.1.3 Single supercharge case

In general, a Hermitian manifold admits a single supercharge € [2]. The supersymmetry
transformation 6. is nilpotent 62 = 0. It is straightforward to construct a d.-exact term for
the gauge sector

LEe = 0 (C(—Fuot +iD) N), o)
= (F,,)" + 200" DA + D?. '
A similar d-exact term can be derived with a supercharge € of opposite R-charge. In either

way, the gauge sector localizes to a (anti-)self-dual field strength configuration
F. =0, D=0. (4.24)

The same result can be derived from the cohomological forms (4.20) by setting either € or
€ to zero.

The matter sector localizes to the same configuration ¢ = F = 0 as the case with
two supercharges of opposite R-charge because only one supercharge € appears in the
cohomological localization term (4.20). If a supercharge € exists on a Hermitian manifold,
the following localization term yields the same fixed points

Umatter = (csez/h)T Uy + () ey +4 (M?_)T b (4.25)

4.2 Index theorem ingredients

The quantum fluctuations around the zero locus of the localizing terms in the previous
section contribute to the partition function. We will use the equivariant index theorem for
transversally elliptic operators to compute the one-loop determinant [24, 26]. To this end,
we rewrite the localizing terms as

. Dse Dge e
v = (Pos Po) (D D ) (; ) (4.26)

where ¢, , are bosonic and fermionic fields, respectively, and ¢, , are their § variations

5906,0 - @o,e 5 (4 27)
5850,6 =R- Pe,o -

Dge pé,0e,0¢ are differential operators and R is a symmetry of the theory. The one-loop
determinant is given by the following expression [24]:

det cokerD,. R

Zone-loop = detkon,. R (4.28)
For the matter sector, we identify
Doe = Ly, (4.29)
acting on the sections ¢, and
R =6k . (4.30)
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In complex coordinates, the relevant vectors are given by (2.42), hence
D,e = s (0z — h(2,2) Og — ir Az +irh (2,2) Ag — iqraz +iqrh (2,2) ag) . (4.31)
c

We check that this commutes with the symmetry generated by

[56, (55] = (5[{ = ﬁK — iT‘KuAM — iqu“au, (4.32)

indeed
[0k, Doe] = irFiy 4 iqpF2; = 0. (4.33)

Z0
Note that this remains true if we allow a flux F%.
The leading symbol of D, is just Y. The equations (2.21) imply that this is non-zero
on the subspace spanned by the (non-vanishing) vectors

Re(Y*),  Im(Y"), (4.34)

which form a basis for the subspace orthogonal to K, K. Hence D,, is transversally elliptic.
Note that this subspace need not be two-dimensional. We will show in section 5 that the
correct fluctuation determinant is recovered by viewing D,. as the pullback of the Dirac
operator on the base manifold 3, or the 0 operator twisted by the square root of the
canonical bundle, acting on sections with R-charge » — 1. This can be argued for by
considering the form of the vector Y in local coordinates. However, we do not have a
completely satisfactory derivation of this fact.
For the gauge sector,
Doe = tytyd, (4.35)

is considered as a differential operator acting on the connection a,, where ¢ is the interior
product and d the exterior derivative. The commutator of this operator with dx contains
the same types of terms as the matter sector operator above and therefore vanishes on the
moduli space. To prove transversal ellipticity one must consider the combined supersym-
metry and BRST complex. We describe this complex in section 5. We will also find that
to recover the correct fluctuation determinant, this operator should be identified with the
pullback of the exterior derivative on X.

4.2.1 The bosonic moduli space

We have shown that the bosonic part of the localization locus is the moduli space of flat
G-connections on M. The partition function on M contains an integral over this space,
which may have many connected components. Background deformations associated with
flavor symmetries are just flat background gauge fields.

Flat connections are specified by holonomies. The formula for the one-loop determi-
nants given by the equivariant index theorem implies that we must determine how such
holonomies affect the operators D, and dx. Since the equivariant index depends only on
discrete parameters specifying the spaces (bundles) which D, maps, we should find out
how to associate a bundle on ¥ to every holonomy. The operator dx depends on continuous
data related to holomorphic moduli. nontrivial moduli arise when there is a holonomy in
one or more of the directions corresponding to the circle actions of the Killing vector K.
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What remains is to determine the allowed bundles and continuous moduli. The manifold M
admits a much larger space of flat connections then that which D,. and §x can “measure”.
An element of the moduli space of flat connections which deforms neither D, nor dx (and
which does not give a classical contribution) will still contribute to the normalization of
parts of the partition function on M.

The moduli space of flat connections on M is given by

MY (M) = Hom (7 (M), G) /G, (4.36)
where the holonomy associated to a generator a € m (M) is given by
o(a) €qG, o € Hom (m (M), G), (4.37)

and the quotient is taken with G acting on all o (e) by conjugation. The first step in
characterizing this space is to compute the fundamental group of M. Note that

M~M;xSY = 1 (M)=m (M3)xZ. (4.38)
M3 is a circle bundle of degree d over 3 with the Euler characteristic
x(X)=2-2g. (4.39)
For g = 0 it is a lens space L (d, 1) with
w1 (M3) =Zq. (4.40)

For g > 1 we have
m (S =2, m(E)=1, (4.41)

and hence the following short exact sequence holds
1—=Z—>m(Ms) —>m(2)—1.

There is an explicit presentation for my (Ms3) with generators a;,b;, h with i € 1,..., ¢ and

relations [27]
g

lai,h] = [bi,h] =1, []laibi] = n?, (4.42)
i=1
(all other commutators vanish) which reduces to (4.40) when ¢g=0 and whose
abelianization is

Hy (M3,7) = Zq x 7% . (4.43)
The fundamental group of M can therefore be described by generators
a;,bi, h,x, 1€1,...,9, (4.44)

and relations

g
lai, B] = [bi, h] = [as, 2] = [bi, 2] = [2,8] =1, ]]las bi] = % (4.45)
i=1
For g = 0, this implies h* = 1. The relevant space of holonomies in this case is

described in [28].
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The above description of 71 (M3) is related to the central extension of 71 (X)) considered
by Atiyah and Bott in [29] in relation to Yang-Mills connections on Y. The group element
h? plays the role of I'g. Following [29], we will characterize the set of solutions to (4.36)
given the relations (4.45) for the case G = U(N).?

The space (4.36) for G = U(N) is the space of equivalence classes of unitary represen-
tations of my (M). Any such representation is the direct sum of irreducible representations,
and within each summand o (h) and o (z) are scalar matrices by Schur’s lemma. Since there
are no further constraints on o (z) it may be any such unitary matrix whose eigenvalue
we denote

exp (2miz,) . (4.46)

The possibilities for o (h) are more restricted and, in fact, discrete.

Given that the generators x and h commute, we can use G to simultaneously diago-
nalize the associated holonomies. Denote by A, the diagonal entries of the matrix o (h).
We define

Ao = €xp (27ihy) . (4.47)

Consider an N-dimensional unitary representation of m (M), R, whose decomposition
contains p irreducible representations 2R of size NV;

> Nj=N,

j=1 (4.48)
9%:9%1@9%2@~--€B9%p.

This induces a symmetry breaking pattern

U(N) — U(Ny) x U(Ng) x -+ x U(Np). (4.49)
Consider the restriction to a particular factor in (4.49). Taking the determinants on both
sides of
g
[ai, bi] = h, (4.50)
i=1
we get the condition
dehj(a) €7, (4.51)

where we have introduced the notation j (a) for the a’th eigenvalue which lies in the j’th
representation 2R;. The full set of solutions is
m;

hj(a) = de ) m; € 0,...,de —1. (4.52)

We denote by M?Vj,m]- the space of irreducible representations satisfying

2mi oL
[ai, bl] =e N :lle . (453)
1

g
1=

®See also [30] section 6.2. For an example involving G' with finite, but non trivial, 71 (G) see [28].
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Such representations exist for all N;, m; when g > 2, and for m; = 0, N; = 1 or m; # 0 and
ged (Nj,mj) =1 for g =1 [29]. Some of the representations JR; may coincide. When the
set of representations is discrete, we denote by n; the multiplicity of the {’th representation.

To understand the interpretation of the solutions above we appeal to the analysis
of Yang-Mills connections on ¥ given in [29]. Translating the data, a particular o (h)
above corresponds to a homomorphism of the central extension of 71 (X) with a symmetry
breaking pattern (4.49). The image of the additional generator J (in the notation of [29])

in each block is
o(J)=e Mily;. (4.55)

According to [29], the set of unitary representations of (4.54) is isomorphic to the space of
unitary Yang-Mills connections on Y. Such connections are actually H-connections

H =U(N;) x U(Ny) x -+ x U(N,). (4.56)

Elements of this space are flat H-connections twisted by constant curvature line bundles
with first Chern classes

The pullback of such a connection on ¥, augmented with a holonomy o (), is our desired
flat connection on M. Note that only the overall Chern class

a1 (U(N)) = ij mod d, (4.58)
J

is a bundle invariant on M. This class resides in the torsion part of H2 (M, Z).

Having described the moduli space, we now consider how a set of holonomies associated
to generators of 7y (M) deforms the operator dx. Recall that dx includes a term (a, is the
G-connection, not the generator)

aw = Ka,, . (4.59)

Since 0 is supposed to be a torus action, we should expand the field on which it acts in
eigenspaces using the weights of the G-representation.® We will use this decomposition to
diagonalize the action of the commuting holonomies associated to h and xz. For g > 2,
there is no isometry action on the base and the holonomies associated with a;, b; do not
deform Jp, while for g = 0, x, h are the only holonomies. In the notation of section 5,

p(ay) = p*xq + 7% . (4.60)

In general, such a decomposition need not correspond to the decomposition in terms of weights. This
is because the holonomies for a group which is not simply-connected may commute without belonging to
the same Cartan torus. See [28] for examples. This does to apply to G = U(N).
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For ¢ = 1, we have the possibility of having both an isometry action and nontrivial
holonomies for a flat connection on >. We could therefore consider

plaw) = p o+ 7p"he + 20" A + 27 p* By, (4.61)

where z4, 2B are related to the complex structure of the fibration and of the base, and
A, B are holonomies on the torus. We will not consider this possibility.

The space (4.36) has multiple connected components, some of which correspond to
different underlying bundles on ¥. The discrete parameters used to identify the different
components can contribute to the discrete data used to define D,.. We have been working
under the assumption that all relevant bundles on the total space M are pullbacks of
bundles on the base Y. Moreover, D, is the pullback of an operator defined only on . A
bundle on M will be treated as a collection of complex vector bundles on ¥. The vector
bundles have the Chern classes specified by (4.57). A field charged under G with weight p
is valued in a line bundle on ¥ with first Chern class p®m,, where the index a runs over

the entire Cartan.

4.2.2 (Gaugino zero modes

The moduli space of zero modes of the localizing term is in general a superspace, incorpo-
rating the moduli space of flat connections on M and the fermion zero modes that appear
in that background. The flat U(V)-connections we consider, and the R-symmetry bundle,
are such that

c?=c=0, (4.62)

and hence do not contribute to the index theorem for the Dirac operator on M. The Dirac
operators acting on the gauginos and quarks are also deformed by the Chern connection,
however, this is irrelevant for the index, as is the imaginary part of the R-symmetry
connection. The computation of the Euler number and the signature of M performed
in [17] shows that

X(M)=0(M)=0, (4.63)

which is sufficient to determine that the anomaly associated with the Dirac operator van-
ishes. We will try to determine the conditions under which zero modes nevertheless exist
for the gauginos.

Consider the supersymmetry equation

1 -
da, = ) (6(;'#)\ + €5ﬂ)\> . (4.64)

The right hand side defines the fermionic fiber ¢, over the base supermanifold where the
equivariant localization takes place. We will make the simplifying assumption that gaugino
zero modes can only occur in the base manifold ¢, and hence

1 ~
-5 (oo + éa,00) = 0. (4.65)
Then, decomposing A, A as in (2.23) and contracting (4.65) with K,Y,Y we get

edo =g =0, (4.66)
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and

) TN
€' \o €M\
— = =a. 4.67
T o
All potential zero modes are of the form

Ao = ae, Ao = —aé. (4.68)

From the Killing spinor equations, one deduces

1
(5 (0 ) )=,
_ . 1
at (VM—Z<AM+2VM>>6:0.

From the equations of motion for the gauginos arising from the D-term for the gauge

(4.69)

multiplet we get”
< 3
a'DyA = ot <Vu +1 <Au — 2Vu>> A=0,

D\ = ot (Vu—z'<Au— ;’Vu>> A=0.

Obviously, for V=10, A\g € and Ao o € are a solution.

(4.70)

Assume now that V' # 0 and that putative zero modes are defined by (4.65). Using
the properties of the supergravity background discussed in section 2, one can show that
this implies

Opa =1aV"J,, . (4.71)

Since a nontrivial solution to a homogenous first order differential equation on a path
connected space is nowhere vanishing, we may write

V#o,log a =iVIV"J],, =0, (4.72)
hence, on a compact manifold, we have
a = const , (4.73)

and
a#0 & ViJ, =0. (4.74)

In turn, V#J,,, = 0 implies that we may choose V' = 0, and this is possible if and only if M
is Kéhler [11]. Therefore, with our assumptions, gaugino zero modes exist only for Kéhler
manifolds, in which case they satisfy

Ao X €, Ao X €. (4.75)

We will restrict attention to non-Kéhler manifolds or, equivalently, d > 0 in section 2.1.

"We neglect the gauge quantum numbers, which we assume have to vanish in order for the zero mode
to arise: the gauginos must be in the same Cartan as the holonomies.
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5 One-loop determinants and index theorem

In this section, we will evaluate the one-loop partition function (4.28) using the equivariant
index theorem for the differential operator D,.. We closely follow the argument of [24, 26,
31]. The interested reader is referred to [32-35] for more details of the Atiyah-Singer index
theorem and to [36-38] for the Atiyah-Bott localization formula and its applications.

5.1 Equivariant index theorem

The one-loop determinants (4.28) can be obtained from the R-equivariant index of the
differential operator

ind(Doe) = Trgern,, €™ — TrCokerD,, €~ - (5.1)
Once the index is calculated, the partition function is read off from the weight w, and the
multiplicity ¢, of a representation a of R:

1nd Z Cq€ o — Zone—loop = H w;Ca : (52)

The fields ¢, and ¢, are regarded as sections of bundles F, and F, on a manifold X. The
differential operator D = D, acts on the complex
D
I(E.) — T'(E,). (5.3)
Let T = U(1)" be the maximal torus of the isometry R and e® = t = (t1,ta, - ,ty,).
Using the Atiyah-Bott localization formula, the index is represented as a sum over the set
of fixed points F' of T action:

TI‘E (p TI'EO( )
indp (D Z detrx (=) (5.4)

To illustrate how it works, consider X = CP' and the equivariant index of the Dol-
beault operator D = 0 acting on the complex

d: Q00 % (5.5)

under 7' = U(1) action z — tz around the fixed point z = 0 at the north pole. Q%° and
001 are generated by T-invariant functions f(z, z) and fs(z, z)dz, around the north pole.
Since under U(1) action f — f and f; — tfs, we obtain Trgoot = 1 and Trgoat = t.
The tangent bundle TX is generated by 9. and 0; with T eigenvalues ¢~ and ¢, and
detyx._,(1—t) = (1—t)(1—t~1). Then the north pole z = 0 contributes to the index (5.4) by

= i tk, (5.6)
k=0

This result can be understood as a counting of U(1) invariant holomorphic functions on C
which is the kernel of the Dolbeault operator O

= chzk. (5.7)
k=0

Under U(1) action z — tz, the coefficients transform as ¢, — t~%¢;, so as to f(z) = f(tz).
The index is nothing but the summation of the weight ¢t~ of the holomorphic functions.

ind7(0)],—0 = 1
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On the other hand, the other fixed point at the south pole z = oo can be treated
by introducing a different patch w = 1/z. In this patch, Q%9 and Q%! are generated by
f(w,w) and fg(w,w)dw , and the tangent bundle T'X is generated by 9, and g with T
eigenvalues ¢ and ¢~!. Thus the contribution to the index from the south pole w = 0 is

= 1
ind w=0 = —— . .8
indr(9)lw—o = 17— (5.8)
The sum of the two gives the total index
indp(9) = ——— 41— (5.9)
mer) =y = T T :

We can twist the Dolbeault complex by the holomorphic line bundle O(n) with the
first Chern class ¢; = n. Now the complex is

8: Q(0(n)) — Q*1(O(n)). (5.10)

We define the action of T on the fiber of O(n) in the z patch to be #*/2. In this patch,
QY0(O(n)) and QO1(O(n)) are generated by ¢(z) and ¢z(z)dz with T eigenvalues t"/? and
t147/2 for ¢(2) and ¢z(z). The index at z = 0 is t"*/? times the untwisted index (5.6)

tn/2
1—t1

ind7(9; O(n))|,=0 = (5.11)

In the w-patch, a section ¢ € Q%°(O(n)) transforms under the coordinate change by
¢(z) = 2"p(w). (5.12)
It follows that Q%0(O(n)) and Q%'(O(n)) are generated by ¢(w) and ¢g(w)dw with T

eigenvalues t~™/2 and t~1="/2 for ¢(w) and ¢g(w). The index from the south pole is
t—n/2
1—t’

ind7(9; O(n)) |lw=o = (5.13)

and the total index is
tn/2 t—n/2
1 T
2y R n>0, (5.14)
= 0, n=-1,
23R < 1

ind7(9; O(n)) =

A Dirac operator Dpjac acting on spinor bundles
Dnpirac : St S5~ s (515)

is isomorphic to the Dolbeault complex by twisting by the square root of the canonical
bundle I on Kéahler manifolds

Dpirac = % (5 i 3*) . 0seven (X,K1/2> _, Ueven (X, IC1/2> ‘ (5.16)
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The Dirac operator on CP' of the twisted complex
Dpirac : ST®0(n) = S~ ®@0(n), (5.17)
is equal to the Dolbeault complex
b Qo0 (O(n) ® ICl/Z) Ol (O(n) ® /c1/2) , (5.18)

and the equivariant index is similarly calculated as

1/2 tn/? L 2t—n/2
ind7 (Dpirac; O(n)) =t~/ ——
1—¢1 1—t 519
75—1/2 (tn/Q _ t—n/?) ( ’ )
N 1—¢1 ’

where the factor t=1/2 (t1/2) comes from the canonical bundle at z = 0 (w = 0).

Next we consider a manifold X on which a compact Lie group U acts freely. Let
Y = X/U be the quotient and 7 : X — Y be the associated U-principal bundle. Given a
T-equivariant operator Dy for a complex of vector bundles Fy on Y, a U x T equivariant
operator Dx and a complex of vector bundles Ex are obtained as pullbacks by 7*:

Ex =7Ey, Dx=m"Dy. (5.20)

We can compute the U x T equivariant index for the complex (Ex, Dx) by using the index
onY as
indy.r(Dx) = Y indr(Dy ® Wa) Xa (5.21)
acRy
where Ry is the set of irreducible representations of U, y, the character of the represen-
tation «, and W, the vector bundle over Y associated to the U-principal bundle.

Let us apply the index formula to our four-manifold M with U = U(1)? and the base
Riemann surface Y = . Irreducible representations of U are parametrized by two integers
a = (n,l) and the character is y, = 2™y' where z,y are constant. The vector bundle
W, depends on how U = U(1)? is fibered over Y. We consider the Dirac operator as a
T-equivariant operator Dy = Dpjpac for the matter sector. Then the index formula (5.21)
yields the index for a U x T equivariant operator Dx on X

indy,r(Dx) = Y indr(Dpirac ® Way) 2"y . (5.22)
nJleZ

5.2 Lens space

A torus fibration over a Riemann surface X is characterized by two first Chern classes for
each circle. We consider the case where one of the circle is nontrivially fibered over a two-
sphere, i.e., M = S' x L(d, 1) with the lens space L(d, 1). Since the fibration is nontrivial,
the vector bundle W, is the line bundle O(dl) over Y = S?, where we choose y to be the
equivariant parameter for the U(1) fiber of degree d for the lens space.
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5.2.1 Matter sector

The Dirac operator of the matter sector acts on the fermion of R-charge r — 1 and the
gauge representation p. The integers n and [ are physically interpreted as the Kaluza-
Klein momenta along the trivial circle and the nontrivial fiber circle. The twisted complex
is given by

Dpirac : ST @ O(dl+ p(m)) @ L' P @ B, — S~ ®@O(dl+p(m)) @ L' ' @ E,, (5.23)

where L and E, are the R-symmetry line bundle and the gauge bundle of p representation,
respectively. We also take into account the effect of holonomy which shift the degree of the
circle line bundle by p(m). We already know the equivariant index of the Dirac operator

and we can calculate and rewrite it as follows:
(dl+p(m))/2 _ 4—(dl+p(m))/2

t
indGXU><T(-Dmatter) — Z tir/Q 1 1 xnylerp(m)u’
n,lE€Z
—(di+p(m)) _ pdl+p(m) (5-24)
=Y e"u(pg)”?? - b :
n,l€Z P

where we introduced the new variables p, g

t=pg) ",  y=(/0)", (5.25)
and u = p(g) with the equivariant parameter g for the gauge symmetry. In the first line, we
multiplied t~("~1/2 as the index of the R-symmetry bundle for a fermion of R-charge r —1.

To encode the index to the one-loop partition function with (5.2), we employ a dictio-
nary between the elliptic gamma function and the equivariant index
!
> o
l—gq

nl€EZ

o emE@PYPOD (g p g) 7L, (5.26)

where & is a phase factor arising from the regularization of the infinite product [8, 10, 39—41]

3 2 2
w 2—71"—0 T+o
E(u,p,q) = , =z— , 5.27
(w,p,q) 310 + 1270 " w=s 2 ( )
with p = €™ ¢ = €™ and u = €*™*. One may confirm this by rewriting the infinite

summation and expanding 1/(1 — ¢) as follows

] e ]

nel €L nez =0
O T (D) 4 h—td 5.28
:Z‘””“Z [p (D) gi _ pig (g+1>], (5.28)

ne”L 4,j=0

o mEWPPOT (2 /pi1/p, q).

In the final line, we used the rule (5.2) between the index and the one-loop determinant,
that is

(0.)
Z Z 2 [piqj — p D =G+ o eiwf(u,p,q)p(u;p7 qQ), (5.29)
n€Zi,j=0

where T is the elliptic Gamma function defined by (B.9).
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It follows that the one-loop partition function of a chiral multiplet of R-charge r on
S x L(d, 1) is given by

matter

Z0) (m,u) = mET (plmw) <U(pQ)T/ 2gd=pm), qd,pq) r (U(pq)r/ *pP (m);pd,pq) , (5.30)

with
£ (m,u) =& (u(pq)r/ 2qd_m,qd,pq) ~& <U(pq)’”/ 2pm_d,p_d,pq) : (5.31)

This agrees with the lens index obtained in [28, 42] by the orbifold projection up to the
phase factor. To make contact with their results, the phase factor can be cast into
: s . (r)
e = T T (p(m), ) (5.32)
where I(()r) is the “zero point energy” depending on the holonomies m that appeared
in [28, 42]

m(d—m)(d—2m)

(r) e (b e 5.33
Zy (m,u) = ((pq) 2 u ) <q> : (5.33)

and Eér) (u) is the remaining phase independent of m

(2z+(r—=1)(o+71)) (42’2+2d207'+7"2(0'+7')2+42(7’—1)(0’+7’)—27’(0+7’)2 + 2)

24doT ’
(5.34)
)

vanishes and only the “supersymmetric

£ (u) =

if u = €2™*. When m = 0, the zero point energy I(()r

)

Casimir energy” é’ér remains [8].

5.2.2 Gauge sector

The relevant differential operator for the gauge sector is the de Rham operator whose
complex is

d:0° %ot 402 (5.35)
Here we consider the equivariant index on X = S? with respect to T = U(1) acting on

the complex coordinate z around the north pole as z — tz. The complexification of the de
Rham complex is isomorphic to the Dirac complex

Dpirac =d+d*: Q' - Q'@ Q2 (5.36)

namely, the relation between the indices is indr(d) = —ind7(Dpirac)-

The Dirac operator acts on the gaugino of R-charge —1 in the vector multiplet. The
complex is obtained from that of the matter sector in (5.23) by setting r = 0 and replacing
the representation p with an adjoint representation «. Therefore, the index of the gauge
sector is equal to the minus of the index of the matter sector with the replacements:

indGXUXT(Dgauge) = *indGXUXT(Dmatter)’TZO’pHa' (5.37)

Combining with the relation (5.37), we end up with the one-loop partition function of
the gauge sector

Zgauge(m) =[] e~ (a(m).0) (F (qufa(m); qd7pq) r (vpa(m);Pd7PQ))_l o (5.38)
a€AdG
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where v = «(g) and p,q are defined in (5.25). AdG is the adjoint representation of
the gauge group. Again, this is equal to the lens index of the gauge sector [28, 42] up
to the phase factor because of the relation (5.32) between the phase £©) and the zero
point energy.®

5.3 T2 x S?

Let us make comments on the case with ¢ = 0 and d = 0, i.e., M = T? x S?. This manifold
is Kéhler and there exists gaugino zero modes that prevents us from the complete analysis
of the partition function as we will describe below.

On T? x S2, the metric is given by (2.25) with

- 2

, 0, e=1m (5.39)

The R-symmetry background gauge field (2.34) has nontrivial field strength through S?

1 zdz —zdz i
A= ———— 4 —dl 5.40
2 T+ 2% (5.40)
whose first Chern class is ¢;(L) = —1 as is consistent with (2.53) in the discussion of

section 2.3. Namely, the R-symmetry line bundle is a line bundle O(—1) of degree —1.
For the matter sector, we consider the Dirac operator on S? acting on a fermionic field
of R-charge r — 1

Dbirac : ST @ O(=(r — 1)) ® E, » S~ @ O(~(r — 1)) ® E, . (5.41)

The total index of the matter sector on T2 x S? reads
t—T/Q _ t—1+7‘/2

indgxuxr(Dx) = Z 1 ="y p(g),

n,EZ
Irl
Yngez 2o tay'olg), <0, (5.42)
- 2
- 0, r=1,
r_1
- Zn,lEZ Z}?:—g+1 tkﬂcnylﬂ(g), r>1,

where the R-charge r is quantized to be integer [10]. Decoding it with the rule (5.2), we
obtain the one-loop partition function of the matter sector on T2 x 52

Irl
H,f_ Ir| Hn,leZ(27Ti§)_l (n+1r+ko+pla))”", r<0,
=7

Z(T7P)
1222 41 Mien(@i€) (n+ 17 + ko + pla), 7> 1,

matter —

(5.43)

I
Z ()
H;:—lg g Gere@m > T =0

H%_l j91(ko+p(a)lr)
k=—1+1

n(7) 7 >1,

®In addition to the phase £, our partition function (5.38) differs from that of the literatures [28, 42] by
a term which arises from the gauge fixing. We compensate the term by the measure of the matrix model.
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where the new parameters are introduced by”

t = 627ric} T = eZTri{ y = 6271'@'? g= e27ri&
7 & i (5.44)
T=—, o=, a=—,
3 3 3
and the infinite products are regularized with the identity [43]
9
H (n+lr+2z)=i 1(2[7) . (5.45)

n,lEZ 77(7—)

Our results (5.43) for the matter sector agree with those of [10] that are derived by
reducing the four-dimensional theory to A = (0,2) theories on T2. They point out that
the partition functions for » > 1 and r < 0 are the contribution from the Fermi and chiral
multiplets of the N' = (0, 2) theories, respectively.

The one-loop partition function of the gauge sector on T? x S? is obtained similarly
by using the result (5.43) for the matter sector and the relation (5.38)

Zyonge = || j(ela)lr) : (5.46)
acAdG 77(7_)
where 1 and ¢; are the Dedekind’s eta and Jacobi’s theta functions defined by (B.1)
and (B.2). Naively, the gauge sector partition function (5.46) can be interpreted as contri-
butions of the vector multiplets of A' = (0,2) theories in two-dimensions [44, 45].

The partition function (5.46), however, is zero because 91 (a(a)|r) vanishes for the
Cartan generators with o = 0. Also, there are the gaugino zero modes on 7?2 x S2, which
our derivation assumed not to exist so far. To fix this, we go back to the infinite product
form (5.43) for the Cartan generators, remove them and use the zeta-function regularization

H (n+17) = 2min(7). (5.47)
nl€Z, n,l#0

Thus the one-loop partition function of the gauge sector is given by

Zgage = (2min? (1) ] Jrlealn) (5.48)
acAdG T](T)
The gaugino zero modes A\g and Mo fromn=Il=a=0 give rise to the measure DDy
that should be taken into account in the path integral.

The one-loop partition function for the matter sector (5.43) is no longer legitimate in
the presence of the gaugino zero modes because of the interaction of the form ¢Agep. To
simplify the discussion, let us consider a rank-one gauge theory and try to write down the
resulting partition function on 7?2 x S?. After localizing the gauge sector, we end up with
the one-loop partition function Zg,uge and the measure of the path integral given by the
complex holonomy a around the torus. Then, using the localizing action (4.11) for the
matter of R-charge r and gauge charge ¢, the resulting partition function takes the form

Zpo o ~ / 420 Zgauge ) / DAgDAo DFDYD) ¢~ Sioc($::0:20.h0) (5.49)

In the second equality of (5.43), we throw away the factor [ ZEZ(Zm'{)ﬂ which would become one
after the zeta-function regularization.
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with the matter action around the fixed points (4.13)1°
- 1 .
Stoc = / d*z\/g [DMD% + gmﬁ + T Dy —ig' hov +iddod| . (5.50)
T2xS?

Decomposing the fields with the spherical harmonics of S2, Sj,. gives actions of long, chiral
and Fermi multiplets of A" = (0,2) theories on 72 independent of each other. Since the
gaugino zero modes make the path integral subtle, we have to carry out the path integral
along the line of the careful analysis in [44, 45] where the auxiliary D field in the gauge
sector is kept as a regulator by the end of computations. We will not pursue this interesting
issue in this paper and leave it for future investigation.

5.4 Elliptic fibration over Riemann surface

We have considered the case with base S? so far. Now we move to Riemann surfaces with
genus g > 1 where there is no U(1) equivariant symmetry for g > 2. Thus, we use the
usual Atiyah-Singer index theorem instead of the equivariant one.

The index of the Dirac operator Dpiac : ST ® E — S~ ® E acting on the spinor
bundles twisted by a vector bundle F is given by

ind(Dpirac; E) = /X A(TX) ch(E), (5.51)

where A and ch are the A-roof genus and the Chern character. The formula reduces on
Riemann surfaces X = ¥ to

ind(Dpiyac; E) = /2 1-c1(F) =deg(E). (5.52)

For the matter sector, the complex is twisted by the R-symmetry line bundle L, which
has the first Chern class (2.53)

cl(L):—X(ZE):g—l modd . (5.53)

The Dirac operator acts on the fermion of R-charge r — 1 in p representation (5.23), whose
index is inferred as

Z n x(2)
1nd matter Z Z ( 2) +dl + P( )> ydl (r=1)% 2 U, (554)
PERN,IEZ

where the shift of the exponent of y comes from the holonomy along the fiber direction of
the R-symmetry line bundle (2.61). The one-loop partition function follows as

> —(r=1) X2 ditp(m)
288 =TT TT (nt 7 (1= 0= 0252 ) + pta)) C6)

pERN,IEL

where we used the same parametrization (5.44). p(a,,) is the holonomy given by (4.60) for
g > 1 and (4.61) for g = 1, respectively.

We use the fact that V;, =0 and R = —2 for T? x S>.
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Similarly for the gauge sector, the Dirac operator acts on the gaugino of R-charge —1,
and the one-loop partition function is given by

Zege= ] ]I <n +7d (l n ;d)> + P(aw)> XD 4 1y p(m) | 536

aceAd G n,leZ

6 The generalized index

The result for the partition function on M is a function of the following parameters:

1. g — the genus of X, and d — the Chern class of the circle bundle Mj5. As usual
x(X)=2-2g.

2. The part of the complex structure moduli space of M specified by the complex num-
bers o and 7. In the case g = 0 and d > 3 there is also a discrete choice between
complex structures I and II.

3. The gauge group G and the matter representation R in the group G x F', where F' is
the flavor symmetry group.

4. A choice of non-anomalous R-symmetry under which a chiral superfield has a charge
denoted by r. The restriction on r is

r (—Xf) mod d> €Z. (6.1)

This does not apply to g = 0 in the special component I. We denote by x4 (X) the

unique integer representing

- X(QE) mod d, (6.2)

in the range 0,...,d — 1.

5. For every U(1) factor of G, a Fayet-Iliopoulos term £ which may be quantized. This
also requires a choice of element W € H%? (M) which determines x. We denote

g = /M Jik. (6.3)

We describe this contribution in the next subsection.
6. The moduli space of flat F-connections on M.

We state the final result only for G = U(N).

2mio 2miT 27rzz

e g=0: definingp=e""",g=c¢e and u =e
Z(Tvp)

matter eim (€ (upa) 2"~ q% pa) =€ (u(pa)™/p™ = p~%,pq))

T (U(pq)”2 d=m. g2, pq) r (U(pq)r/zpm;pd,pq) : (6.4)

. —1
Zgauge (2,m) = e~ € (@lm)0) (F (uqd 1%, pq) r (upm;pd,pq)) :

(va) =
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with

w? 272 _ 42 T+ o
E(U,p, Q) - 370 1270 w, w=z—- B s (65)
and
EO(m,u) =€ (uqd_m,qd,pq) -£ (uzom_d,p_d,pq) : (6.6)

Here, z and m will specify a connection, consisting of a continuous holonomy around
the S! and a discrete holonomy on the fiber respectively, on the group G x F. The
summation and integration are over the gauge part of this connection, x and m, and
the flavor part is denoted as ay. The partition function is given by

ZO,d (Ua T,E,af) = (67)

1
W . e —itan ™Mk H Zgange (€ (a(z),a H Zn:aiter (2),p(m)),
Mg (0.d) a€Ad G PR
where
N 1,
/ =11 / e, (6.8)
MELO0d) L i comd 170 27

and

W| = Hnl : (6.9)

is the residual Weyl factor. In this case m; are the multiplicity of the different
values for m,.

The partition function above is applicable in the complex structure I, the one usually
used to define the lens space. To recover the partition function in the complex
structure IT we need only to replace m by m + (r — 1)(d — 1) in the matter sector,
and by m+1 in the gauge sector. This replacement takes into account the additional
R-symmetry flux on X.

e g > 1: here, a, will denote a connection for the group G x F. The summation and
integration are over the gauge part, and the flavor part is denoted as ay. An index a
into the Cartan is such that x, = z;(4). For a given weight p € R, we define

Mg
plen) = (ratri ) () = g, (6.10)
. ) (r=1)xa(X)+dl+m
Zyitter (2m) = ll_e[Z <n +7 <l +(r - 1)“;)) + z) ,
L - 11
Zgauge(zam): H <n—|—7'<l— d )+Z> .
n,lE€Z
The partition function is given by
Zga(7,§a5) = (6.12)
1 T,
W 0 —ZEGU( ) H Zgauge w y & Zmaf‘;ter (Lw) P (m))v
M (9,d) a€AdG peiy’\ch
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where, in the notation of section 4.2.1, the measure over the moduli space is

/M%(g,d): Z ﬁ /Mg /d% : (6.13)

partitions N j=1 \m;€O0,.. 7dN

The outermost sum runs over partitions of /N such that
P
> Nj=N, N;j>1, (6.14)

and

W| = H ny! (6.15)
is the residual Weyl factor.

6.1 Classical contributions

Classical contributions corresponding to flat connections can not come from the standard
kinetic terms for either the matter or gauge multiplet as these are J-exact. The same is
true for the renormalized D-terms in the effective action. In fact, the entire field strength
multiplet, and anything constructed out of it, will vanish. The superpotential does not
contribute because chiral multiplet fields are all required to vanish. Any classical contri-
bution would have to come from D-terms constructed out of the vector superfield V or
topological terms such as the discrete theta angles discussed in [46].

A simple gauge invariant term constructed out of V, which appears only for abelian
factors of the gauge group G, is the Fayet-Iliopoulos term. In superspace, this term is simply

V. (6.16)
On curved space, the appropriate D-term is then'!
¢ / (D —iVPa,), (6.17)
where 1
V= —§V”Jw + kK, . (6.18)

D vanishes on the moduli space and we can integrate by parts to get rid of the term
involving the complex structure. What remains is

e / k K, = —i€ay / v (6.19)

which depends on a, only through the holomorphic modulus a,,.
Alternatively, we could use the expression for V), as the dual of the field strength H,,,,
for the supergravity two-form B,,,. If H is exact then there is a well-defined two-form B
such that
V =xH =*dB, (6.20)

and the FI term vanishes on the moduli space
{/V“auocf/dB/\a:—ffB/\F“:O. (6.21)

HThe factor of i appears because of our rotation of the integration contour of D.
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To get a contribution, we must take some nontrivial H € H3 (M, Z). In fact following [11],
the contribution is due to W € H%2 (M) given by'?

H:%dJ+W, oW =0, (6.22)
since as we have seen only a,, contributes.

6.2 Operators

We can attempt to deform the indices by supersymmetric operators which are annihilated
by the supersymmetry transformation 4. Since the moduli space over which we integrate
involves flat connections, it makes sense to insert supersymmetric Wilson loops.

One would like to insert

Wa = Trox [7? exp <z / \/gKﬂaMﬂ : (6.23)

where R denotes a representation of the gauge group and P is the possibly ambiguous path
ordering symbol. This is the would-be analogue of the (supersymmetric) light-like Wilson
loop in Minkowski space. It is obviously BPS. The integration is over all of M, which is
why we cannot make use of the usual path ordering. The operator is thus more like a
smeared Wilson loop.

In the abelian case, this operator is also locally gauge invariant because K is co-closed
(and P is unnecessary). However, then we must worry about invariance under large gauge
transformations. When M = S3 x S! the situation is better since the relevent large gauge
transformations are generated by functions into the group which “wrap” the S'. One can
ensure invariance by normalizing K to have unit holonomy around this cycle. In fact, the
FI term is an example of this construction. The “charge” of the Wilson loop is determined,
in that case, by the class of H and the (quantized) FI parameter . The evaluation of the
expectation value of a charge ¢ abelian Wilson loop corresponds to an insertion, into the
sum and integration of the index, of

exp (iqag(1)> , (6.24)

U(1)

where a,,  is the gauge U(1)-connection.

When the gauge group is non-abelian but simply-connected we must try to fix the
ambiguity in the definition of Wi in some other way. The main point of such an exercise
would be to recover, at the appropriate point in the complex structure moduli space, the

supersymmetric 3d Wilson loop of the form

WL — Try, [P exp ( 7{ dr (ia,i" + o \¢|))} , (6.25)

where o is the scalar in the 3d vector multiplet which comes from reducing the 4d vector field
along the “time” circle and #* points along the fiber of M3 — 3. When such an observable

2The convention in [11] is that K is anti-holomorphic, hence the difference in the relevant cohomology
class.
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is well-defined, the result, at an arbitrary complex structure, would be an insertion of the
expression

Wr=> u,, (6.26)

PER

where p is a weight in R and
up = exp (2mip (aw)) - (6.27)

7 Discussion

We have arrived at an expression for the partition function of a 4d ' = 1 gauge theory, with
a conserved R-symmetry current, on M ~ S x M3 and M3 a nontrivial circle bundle over
a compact oriented Riemann surface . The parameters entering the partition function
are split between

1. Parameters and deformations of the theory

(a) The gauge group G.
(b) The representation of the matter multiplets .

(¢) A set of admissible Fayet-Iliopoulos terms £, one for each independent U(1)
factor in G.

(d) An element of the moduli space of flat connections on M of the flavor symmetry
group F'.

2. Parameters of M

(a) The genus, g, of the underlying Riemann surface.
(b) The first Chern class, d, of the circle bundle whose total space is Ms.

(c) A point in the complex structure moduli space on M admitting a holomorphic
Killing vector K. This may include a discrete choice in the case g = 0.

(d) A choice of W € HY2 (M).

The final result is given in (6.12).

Our derivation included some assumptions regarding the geometry of M. Primarily,
we assumed that M admits a Hermitian metric with a holomorphic Killing vector K with
holomorphic coefficients. K is a complex linear combination of commuting generators
embedded in the compact isometry group for the metric on M. The coefficients in this
linear combination, with a fixed embedding, are the only metric parameters to which the
partition function is sensitive. We did not provide a way of restricting the range of these
parameters to the space of admissible metrics or, indeed, prove that some finite range exists.
It would be interesting to find out what restrictions one can put given the final result.

We have argued that gaugino zero modes are absent once M3 is restricted such that
d > 0. This argument relied on the assumption that the action in the localizing term
for the fiber g is non-degenerate. We have not considered possible zero modes for the
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fields in the chiral multiplets. Such zero modes could exist for specific choices of g,d and
specific representations 9R. It is sometimes possible to lift such zero modes using the flavor
symmetry deformations.

The final result for the partition function includes an integral over the moduli space
of flat G-connections on M. There exists an alternative approach for integrating over the
gauge zero modes using abelianization (cf. [47]). This was used in a very similar context
in [14] and in [48] and results in a greatly simplified integral. Another possibility is the use
of Higgs branch localization. This was implemented for the superconformal index in [9, 49)].

Exact results of the type presented here can be used in a number of ways. A very
common, but technically challenging, application is to duality. Since the partition function
is independent of the RG flow, we can compare the result for putative IR dual theories.
Partition functions on manifolds of varying topologies can be used to study refinements of
duality involving global aspects of the theory as demonstrated in [28]. One can also use
them to explore the mapping of operators. As shown in [50], the “high temperature” limit
of the generalized indices, where the size of the S' factor shrinks, can be determined in
terms of the a and ¢ type conformal anomalies of the theory.

Our results involve some of the simplest examples of manifolds of the supersymmetry
preserving type found in [2]. The methods we have used can also be applied to manifolds
where K acts with finite isotropy groups. The fluctuation determinants can still, in princi-
ple, be computed using the index theorem. Alternatively, computing the partition function
for a background preserving only one supercharge would require integrating over the in-
stanton moduli space and would likely include having to deal with gaugino zero modes.
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A Conventions

A.1 Spinors and Fierz identities

Our convention is close to [51] except the two-component part. The metric is given
by dpmn (m,n = 1,---,4) whose sign is (+ + ++) (Euclidean signature). The totally
antisymmetric Levi-Civita tensor €y,npq has 1234 = 1. The gamma matrices satisfy
{YmsYn} = 20mn and v5 = y1727374 with 42 = 1. All of them are hermitian and 4 x 4
matrices. Under the rotation group SO(4) = SU(2); x SU(2)g, left- and right-handed
spinors (q, fd are SU(2)7, and SU(2)r doublets, respectively. The four-component Dirac
spinor ¢ can be decomposed into one left-handed and one right-handed spinors by chirality

(14 o (1= \°
G (F) e () (A1)

projection operators
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The indices are raised and lowered by multiplying anti-symmetric tensors e and €af
(612 = £9; = 1) from the left

¢ =%y, o= €apC’. (A.2)

An analogous convention holds for dotted spinors. With these spinors, the inner products
are defined by

YX =Y Xa
VX = dax”

The hermitian conjugate of the spinors are defined by

(A.3)

(¢) =@, (&), = (&) (A.4)

We also define the hermitian conjugation for two anti-commuting spinors by
GG =l A5
G2 = (¢ - (A.5)

We choose the representation of the gamma matrices as

Ym = <(0m)d6 (O-m)aﬁ}) ) V5 = <1 _1> ) (A.6)

where the sigma matrices are
(0™)ap = (=0, 1), (™) = Ve (a™)55 = (6™)F = (i7,1). (A.7)

In this representation, the charge conjugation matrix C' for Dirac spinors is given by

_capB _
c:< c ), clz< Cob m)- (A.8)
_5a6 —&

The Dirac conjugate spinor defined by ¢ = ¢7'C is then decomposed to { = ({°, ¢ B)‘
The sigma matrices satisfy the identities

(Um)aﬁ(am)75 = 250‘7655 ’ (Um)aﬁ(an)aﬁ = 2977171 ’
OmOn + 0nOm = 29mn , OmOn + 0nOm = 29mn (A 9)
OmOn0l = EmnlkTk + Omn0Ol + OnlOm — OmiOn

TmOn0l = —Emnik0k + Omn01 + 0ni0m — OOy -

We can define the anti-symmetric matrices

1 1

Omn = Z(Uma'n - O'nﬁm) ) Omn = Z(ﬁman - 6n0m) ) (AlO)
which satisfy
1 _ 1 _
Omn = _§6mnpq0pq’ Omn = iem”pqo-pq7 (A'll)
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and

(Umn)aﬁ = (Umn)6a7 (5mn)d3 = (5mn)5d . (A12)
There are additional identities including the anti-symmetric matrices
3 3
o™g" =20"" 4 6M", g™ =2""+ 0", 0oy = 20> " Oy = 5(7” ,
1
tr(Omno) = §(Emnlk: + OmkOni — Omidnk)
1
tr(Tmnok) = 5(_5mnlk + OnkOnt — Omilnk) (A.13)
1 1 1
OmnOlk = Z(Emnlk + 5mk5nl - 5ml6nk) - 5(5ml0'nk + 5nk0'ml) + 5(5mkanl + 5nl0'mk) s
1 _ _ _ _
OmnOlk = 1(_5mnlk + 5mk5nl - 5ml5nk:) - 5(6ml0nk + 5nk0'ml) + 5(5mk0nl + 5nlamk) .

From Cv,,C~' = =71 and Ay = ABCga, it follows
o

My = YmaX = (= 1) XV - Y A

3 _ < B (A.14)
AYsX = XA, AY5TmX = XV5YmA -
It follows from the definition that the product of spinors satisfy
waXB = wﬁXa + EanXa
VaXs = YaXa — €450X
1 1
VaXp = 32ap¥x = 3(0" agomnx, (A.15)
- 1 ~_ 1, -~
YaXp = —5€ag¥X — 5(0"")45Y0mnX s
YaXa = *ngaiﬂam)@

2

The Fierz identities we will often use are
(P1eh2) (@3@4) = % (wlom@) <w20m77;3) ,
(1) (V3000) = —(1803) (Yatba) — (Y1000) (P20s) | (A.16)
(P102) (D3t0a) = —(193) (V2tha) + (1904) (Yod3) -
A.2 Spin connection and Lie derivatives

The spin connection for a given vielbein is defined by

w0, (€) = Ve, (A17)

and the Riemann tensor is given using the spin connection by

R, (e) = Opw,™™ — Opw,™" + wumlwy? — w,fnlwu? . (A.18)

The Ricci scalar is then
R(e) = ezle’TjRWm”(e) . (A.19)

This convention yields a negative Ricci curvature for a round sphere.
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The covariant derivatives for spinors are defined by
Vol = 9+~ ™ F = 9,0 4w ™G C A2
,uC = ,u( + §W“ OmnG , VMC = uC + iw” TmnG - ( . O)
The commutator of two covariant derivatives yields the integrability conditions

1 -1 o
Vi Vol = SR omnC s [V VIl = SR G (A.21)

The Lie derivative of a spinor along a vector X = X*d, is given by

1
Lx¢=X"V,(+ =V, X,0"(,

) 2 ) (A.22)
LxC=X"ViC+ 5V X5

The Weyl tensor is define by

1 R
C,Lu/pa = R,uz/po + 5 (g,upRlzo + gzzo'R,up - g,LLO'RI/p - gzlpR,uo') + g(g;wgl/p - g,upgl/a) . (A23)

A.3 Hermitian coordinates

The holomorphic coordinates of R* are given by
2= —x? ixt, 22 =zt +ia?, (A.24)

and the Levi-Civita tensor becomes €795 = i. The sigma matrices in these coordinates
are obtained from (A.7) by coordinate transformation

. 0 0 ) 0 1
01:_01:<—1 0)’ Ui:ﬁi:(o 0)’
(A.25)
. 0 0 ) 10
2T = g 1) 2T2= g o)

and the anti-symmetric matrices (A.10) are given by

4 0 1
(A.26)
10 0 . 1fo1
g12 =012 = 5| 4 A 12 = 70127 5 0 0
B Special functions
The Dedekind’s eta function is defined by
n(r)=¢" [ -q", (B.1)
n=1

where g = e2™7.
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The Jacobi’s theta functions are defined as follows:

91(2|7) = 2¢"Psin(mz) [T(1 = ¢")(1 —yg™) (1 -y~ 'q"),
n=1

Da(2l7) = 2¢"F cos(mz) [T(1 = ¢") (1 +yg™) (1+y'q"),
n=1

Osalr) =TT =) (1 4y 72) (197" 7?) |

n=1

Da(2|7) = ﬁ(l —-q") (1 - yq"_m) (1 — y_lq"_m) :
n=1

with ¢ = €™ and y = €*™*. Also we define
Oo (z7) = [T (0 —wa™) (1 -y 'q").
n=0

There is a general formula for an infinite product

n+a i 1 —exp(2mia)
11 b~ T—exp(2mi(a+b)
nezn—l—a+ exp (2m (a
The elliptic gamma function is defined as (within some range of convergence) [40]

1— e27ri((l1+1)7'+(lg+l)a—z)

r (Z, T, 0) = H 1 — e2mi(liT+l20+2) ’
11,1220

or in an alternative region by

i = sin (1) (22 — 7 — 7))
T = 5
(z,7,0) =exp | =3 JZZ:O jsin (7j7) sin (mjo)

hence

_ mi(t+o—22) n+ (ll + 1)T+ (l2 + 1)0_ z
I'(z,7,0)=¢ H Ry oy s )

n€Z|ly,l2>0
Alternatively, using the variables
u = 2T p= 2o g = e
it is written as |t et
P = [I =

l1,12>0

(B.2)

(B.4)

(B.8)

(B.9)
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