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1 Introduction

Local quantum field theories possess an energy-momentum tensor, a fact which allows

us to consider them on a spacetime with geometry other than that of Minkowski space.

Investigation of the theory on a compact Euclidean manifold, where even the value of the

partition function can be a meaningful observable, can yield valuable information about

the same theory on flat space. Conversely, we can use our knowledge of the behavior of

the theory on flat space to characterize the manifold. In either approach, it is usually

advantageous to preserve some of the symmetries of the flat space theory. Specifically,

preserving supersymmetry allows us to take advantage of the attendant simplifications in

the computation of BPS observables, including the partition function.

Four-dimensional Euclidean manifolds preserving rigid supersymmetry for N = 1 the-

ories were considered in [1–4]. The analysis in [2] applies to theories which possess a

conserved U(1)R current, in addition to the energy-momentum tensor. In this work, we

use the results of [2] to calculate BPS observables of such theories on a manifold, M , which

is the total space of an elliptic fiber bundle over a compact oriented Riemann surface Σ.

M always has the topology S1×M3, where M3 is a principal U(1)-bundle over Σ. As such,

the supersymmetric partition function on M can be thought of as a type of super-trace

over the Hilbert space of the theory quantized on the spatial manifold M3. Such an object

is known as an index. Familiar examples include the Witten index [5], where M is the

four-torus, and the superconformal index [6, 7], where M is topologically S1 × S3. These

count, with appropriate signs and fugacities, the supersymmetric vacua of a theory and

(a subset of) the local BPS operators of a CFT, respectively. The connection between the

partition function on a general M and the flat space theory is less direct.

Our computational approach is based on localization: a technique which allows us

to reduce a supersymmetry preserving Euclidean path integral to a smaller integral over

the set of fixed points of a supercharge. For a 4d gauge theory with gauge group G, the

moduli space of such fixed points, for our chosen supercharge, will be M0
G: the space of

flat G-connections on M . More generally, the space of fixed points of a supercharge acting

on supersymmetry multiplets is a superspace. The fermionic coordinates are associated

with supersymmetric fermionic modes, those with vanishing action in the localizing term,

in the bosonic background. We will argue that in the present context these occur only on

Kähler manifolds. M is Kähler if and only if M ≃ T 2×Σ. To avoid dealing with fermionic

fixed points, we will therefore further restrict ourselves to nontrivial circle bundles as M3.
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This rules out the Witten index. Localization has been applied to the computation of the

superconformal index in [8, 9] and to the manifold T 2 × S2 in [10].

The data which parametrizes the Euclidean path integral comes from the action for the

N = 1 theory, including background deformations, the metric onM , and other information

related to the background supergravity fields. The general form of the computation shows

that the supersymmetric partition function on M depends only on a finite subset of these

parameters, in agreement with the general results of [11, 12]. We will leverage those

results to simplify some of the data from the outset. Specifically, we avoid choosing a

metric altogether and specify the geometry of M by choosing a complex structure and a

holomorphic isometry. We will then argue for the existence of a compatible metric. Our

approach is similar to the one used to perform localization on Seifert manifolds in [13, 14].

The result for the partition function onM should reduce to that of the manifolds considered

in [14], essentially our M3 although possibly with a somewhat restricted metric, in an

appropriate limit.

In section 2 we examine the topology and complex structure of M and review, fol-

lowing [2], how supersymmetry on M is realized. In section 3 we discuss the multiplet

structure and supersymmetric actions on M . In section 4 we construct the localizing term

and discuss its fixed points. We also set up the computation of the fluctuation determinants

which are then computed using the equivariant index theorem in section 5. Our final result

for the partition function on M of a gauge theory with gauge group G, given in section 6,

is of the schematic form

ZG,r,Mg,d
(τcs, ξFI, af ) =

∫

M0
G(g,d)

e−Sclassical(τcs,ξFI)Zg,dgauge (τcs)Z
g,d,r
matter (τcs, af ) , (1.1)

where τcs, ξFI, r and af signify the dependence on the complex structure, Fayet-Iliopoulos

terms, R-charges and background flat connections for the flavor symmetry group, respec-

tively. The integers g ≥ 0 and d > 0 are the genus of Σ and the first Chern class of

M3 → Σ. The functions Zgauge and Zmatter are the fluctuation determinants associated

with gauge and matter multiplets.

2 Setup

New minimal supergravity can be used to construct supersymmetric actions for theories

with 4d N = 1 supersymmetry which have a conserved U(1)R symmetry on any Hermitian

four-manifold M . The results of [2, 4] imply that on such a manifold one may preserve

two supercharges of opposite R-charge if one assumes that the metric on M supports a

holomorphic Killing vector K with holomorphic coefficients. Such a vector represents a

torus isometry acting onM , though it may incorporate additional circle actions under spe-

cial circumstances. Manifolds of this type are therefore elliptic fibrations over a Riemann

surface. However, as shown in [11], a complex manifold with this topology does not neces-

sarily support such a vector. As well as constraining the topology further, we will assume

throughout that our manifolds do.
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2.1 Topology of M

We will restrict ourselves to studying the case when M is the total space of a principal

elliptic fiber bundle over a compact oriented Riemann surface Σ

T 2 →M
π−→ Σ . (2.1)

This is equivalent to requiring that the torus action induced by K is free.1 The structure

of such a total space has the following classification (see Corollary 1.5 of [15])

1. M is diffeomorphic to S1 ×M3 where M3 is a principal U(1)-bundle

S1 →M3 → Σ . (2.2)

2. The topology of M is completely determined by the genus, g, of the base space Σ,

and the value, d, of the first Chern class of the U(1)-bundle whose total space is M3.

3. M can be constructed as a quotient

M = Θ⋆/ 〈τ〉 , (2.3)

by a multiplicative cyclic group generated by a number

τ ∈ C
⋆ , |τ | > 1 , (2.4)

where Θ⋆ is the compliment of the zero section in the total space of a degree d line

bundle on Σ.

4. M is Kähler if and only if d vanishes, in which case it is diffeomorphic to T 2 × Σ.

5. The integer cohomology of M with d > 0 is given by

H0 (M,Z) ≃ Z , H1 (M,Z) ≃ Z
2g+1 , H2 (M,Z) ≃ Zd ⊕ Z

4g ,

H3 (M,Z) ≃ Zd ⊕ Z
2g+1 , H4 (M,Z) ≃ Z ,

(2.5)

such that

Tor
(

H2 (M,Z)
)

= π∗
(

H2 (Σ,Z)
)

≃ Zd . (2.6)

We will restrict ourselves mostly to the case d > 0.

2.2 Supersymmetry on M

This section is a review of the relevant facts about Killing spinors and vectors on a Hermi-

tian manifold M from [2]. Our conventions, which differ somewhat from [2], are summa-

rized in appendix A. We begin by discussing the general class of manifolds which admit two

Killing spinors of opposite R-charge, then specialize to the fiber bundles described in the

previous section. The question of finding an appropriate metric on these spaces is deferred

until the end of section 2.3.
1A free action is one where all isotropy groups are trivial. A less stringent condition is for a circle (or

torus) action to be fixed point free while having finite isotropy groups. Total spaces with fixed point free

actions are more complicated and will not be considered here.
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2.2.1 Killing spinors and spinor bilinears

The Killing spinor equations on M are read off from the variation of the gravitinos of the

new minimal supergravity [16]

δψµ = (∇µ − i (Aµ − Vµ)− iV νσµν) ǫ = 0 ,

δψ̃µ = (∇µ + i (Aµ − Vµ) + iV ν σ̄µν) ǫ̃ = 0 ,
(2.7)

where ǫ and ǫ̃ are Killing spinors of R-charge 1 and −1. Namely, ǫ and ǫ̃ are sections of

L⊗S+ and L−1⊗S−, respectively, where L is an R-symmetry line bundle, S+ a left-handed

spinor bundle and S− a right-handed spinor bundle.

The background fields Aµ and Vµ are complex in general. The real part of Aµ is the

connection on the R-symmetry line bundle L. Vµ is a conserved current

∇µV
µ = 0 . (2.8)

The complex conjugated spinor ǫ† (ǫ̃†) satisfies the same Killing spinor equation as ǫ (ǫ̃)

upon replacing Aµ → −Āµ and Vµ → −V̄µ in (2.7).

The Killing spinor equations onM preserve two supercharges of opposite R-charge and

handedness ǫ, ǫ̃. They have the property that everywhere on M their norm do not vanish

|ǫ|2 6= 0 , |ǫ̃|2 6= 0 . (2.9)

We will regard ǫ and ǫ̃ as commuting spinors below.

We can use the spinors ǫ, ǫ̃ to define real, (anti-)self-dual two-forms

Jµν = − 2i

|ǫ|2 ǫ
†σµνǫ , J̃µν = − 2i

|ǫ̃|2 ǫ̃
†σ̄µν ǫ̃ , (2.10)

which are integrable almost complex structures2 [2, 3]

JµρJ
ρ
ν = J̃µρJ̃

ρ
ν = −δµν . (2.12)

The two-forms defined by

Pµν = ǫσµνǫ , P̃µν = ǫ̃σ̄µν ǫ̃ , (2.13)

satisfy the relations

J ρ
µ Pρν = iPµν , J̃ ρ

µ P̃ρν = iP̃µν . (2.14)

Pµν (P̃µν) is a section of L2 ⊗ Λ2
+ (L−2 ⊗ Λ2

−). Λ2
+ (Λ2

−) is the bundle of (anti-)self-dual

two-forms.

One can also construct a vector field by combining ǫ and ǫ̃

Kµ = ǫσµǫ̃ . (2.15)

2It follows from the Fiertz identity of commuting spinors

(ǫ1ǫ2)(ǫ̃3ǫ̃4) =
1

2
(ǫ1σ

µ
ǫ̃4)(ǫ2σµǫ̃3) . (2.11)

The rest of the relations also follow from this identity.
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It follows from (2.7) that Kµ is a holomorphic Killing vector

∇µKν +∇νKµ = 0 , JµνK
ν = J̃µνK

ν = iKµ , (2.16)

and hence
K†µKµ 6= 0 , KµKµ = 0 ,

|Re (K) |2 = |Im (K) |2 6= 0 , Re (K)µ Im (K)µ = 0 .
(2.17)

We will restrict attention to the generic case where K commutes with its conjugate
[

K,K†
]

= 0 . (2.18)

This is enough to show that M is a torus fibration, with a torus isometry action induced

by the real and imaginary parts of K, over a Riemann surface Σ [2]. We will take the torus

action to be free and hence M is the total space of a principal torus bundle. The orbits

of K need not close, but may be part of a larger U(1)3 group of isometries [11]. Since the

metric on M is, by definition, constant along the fibers (though the size of the fibers can

vary with position on the base), an extra U(1) implies that there exists a Killing vector

for the quotient metric on Σ. Riemann surfaces supporting such a metric exist only for

g ≤ 1. The extra Killing vector is unique (up to rescaling) for g = 0 and is one of the two

translations of the torus, or a linear combination thereof, for g = 1. Note that fixed points

for the action of such vectors exist only for g = 0.

We also introduce independent vectors3

K̄µ = −ζσµζ̃ , Y µ = ǫσµζ̃ , Ȳ µ = ζσµǫ̃ , (2.19)

where ζ and ζ̃ are defined by

ζ ≡ ǫ†

|ǫ|2 , ζ̃ ≡ ǫ̃†

|ǫ̃|2 , ζǫ = ζ̃ ǫ̃ = 1 . (2.20)

These vectors satisfy the following:

KµK̄µ = Y µȲµ = 2 ,

KµKµ = K̄µK̄µ = Y µYµ = Ȳ µȲµ = KµYµ = KµȲµ = K̄µYµ = K̄µȲµ = 0 .
(2.21)

The metric, complex structures and two-forms are written in terms of the vectors as

gµν =
1

2

(

KµK̄ν +KνK̄µ + YµȲν + Yν Ȳµ
)

,

Jµν =
i

2

(

KµK̄ν −KνK̄µ + YµȲν − Yν Ȳµ
)

,

J̃µν =
i

2

(

KµK̄ν −KνK̄µ − YµȲν + Yν Ȳµ
)

,

Pµν =
1

2
(KµYν −KνYµ) ,

P̃µν =
1

2

(

KµȲν −Kν Ȳµ
)

.

(2.22)

It follows that K,Y (K̄, Ȳ ) are (anti-)holomorphic vectors.

3Note that K† 6= K̄ in general, however the two can be made equal using a conformal transformation of

the metric. We hope this will not cause too much confusion.
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We can decompose arbitrary spinors as

ψα = (ζψ) ǫα − (ǫψ) ζα ,

ψ̃α̇ =
(

ζ̃ψ̃
)

ǫ̃α̇ +
(

ǫ̃ψ̃
)

ζ̃α̇ ,
(2.23)

from which we can recover

ǫ̃σ̄µλ = (ζλ)Kµ + (ǫλ)Y µ ,

ǫσµλ̃ =
(

ζ̃λ̃
)

Kµ −
(

ǫ̃λ̃
)

Ȳ µ .
(2.24)

2.2.2 The complex manifold M

Introducing complex coordinates w, z such that K = ∂w, the metric onM can be written as

ds2 = Ω(z, z̄)2
(

(dw + h(z, z̄)dz)(dw̄ + h̄(z, z̄)dz̄) + c(z, z̄)2dzdz̄
)

. (2.25)

The Hermitian manifold M admits a Chern connection that is compatible with the metric

and the complex structure

∇c
µgνρ = 0 , ∇c

µJνρ = 0 . (2.26)

The second condition is equivalent to

∇µJνρ − (Γc)σ[µν]Jσρ − (Γc)σ[µρ]Jνσ = 0 , (2.27)

where (Γc)σ[µν] is the Christoffel symbol whose lower indices are anti-symmetrized. Rotating

the three indices and taking an appropriate summation, one obtains the Christoffel tensor

represented by the complex structure

(Γc)σ[µν] =
1

2
Jρλ(∇µJνλ +∇λJµν −∇νJλµ) . (2.28)

Since the symmetric part is the usual Christoffel symbol of the Levi-Civita connection, the

spin connection takes the form

(ωc)mnµ = emν
(

∂µe
νn + (Γc)νµσe

σn
)

,

= ωmnµ +
1

2
enρe

νnJρλ(∇µJνλ +∇λJµν −∇νJλµ) .
(2.29)

Now we rewrite the Killing spinor equation (2.7) by using the Chern connection

(

∇c
µ − iAcµ

)

ǫ = 0 , (2.30)

where we defined

Acµ = Aµ +
1

4

(

δνµ − iJ ν
µ

)

∇ρJ
ρ
ν −

3

2
κKµ . (2.31)

κ is an undetermined scalar function satisfying

Kµ∂µκ = 0 . (2.32)

– 6 –
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To determine the connection Acµ in terms of the Chern connection, consider p = P̃12 ∈
L−2 ⊗ KM , where KM = Λ2,0 is the canonical bundle of (2, 0)-forms. Since p is a bilinear

of two Killing spinors, it satisfies
(

∇c
µ + 2iAcµ

)

p = 0 . (2.33)

The fact that p is globally well-defined implies the line bundle L−2 ⊗ KM is topologically

trivial. Also, the fact that the Christoffel symbols of mixed indices with and without bar

vanish leads to

∇c
ip = ∂ip−

p

2
∂i log g , ∇c

īp = ∂īp , (2.34)

where we used g ≡ det gµν = (det gij̄)
2. Using them in (2.33), we obtain

Ac = − i

8

(

∂ − ∂̄
)

log g +
i

2

(

∂ + ∂̄
)

log s , (2.35)

where s ≡ pg−1/4 is a nowhere vanishing function. The R-symmetry gauge field is alterna-

tively given by [10]

Aµ = −1

4
Jµ

ν∂ν log
√
g − 1

4
(δνµ − iJµ

ν)∇ρJ
ρ
ν +

i

2
∂µ log s+

3

2
κKµ . (2.36)

Note that

Aw =
i

2
∂w log s . (2.37)

Since the Ricci form is given by

R = i∂∂̄ log
√
g = − i

4
d(∂ − ∂̄) log g , (2.38)

the field strength of Acµ is proportional to the first Chern class c1(M) =
[

R
2π

]

up to an

exact two-form [17]
[

F (Ac)
]

= π [c1(M)] . (2.39)

We may choose the vielbein in the Hermitian coordinates (2.25) to be

e1 = Ω(dw + hdz) , e2 = Ω c dz , (2.40)

leading to Killing spinors of the form

ǫα =
1√
s

(

0

1

)

, ǫ̃α̇ =

√
sΩ

2

(

0

1

)

. (2.41)

Using the Killing spinors (2.41) and the sigma matrices in the Hermitian coordinates (A.25),

the vectors become
K = ∂w ,

K̄ =
4

Ω2
∂w̄ ,

Y =
4

Ω2cs
(∂z − h∂w) ,

Ȳ =
s

c

(

∂z̄ − h̄∂w̄
)

.

(2.42)

At this point we set Ω = 2 to have K† = K̄ for simplicity. This choice of Ω is irrelevent

for the computation of the partition function.

– 7 –
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2.2.3 The integrability conditions

The condition [∇µ,∇ν ]ǫ =
1
2Rµνρσσ

ρσǫ and the Killing spinor equation yields the integra-

bility condition

1

2
Rµνρσσ

ρσǫ = −V ρVρσµνǫ+ i
(

FAµν − F Vµν
)

ǫ

+ i (∇µ + iVµ)V
ρσνρǫ− i (∇ν + iVν)V

ρσµρǫ ,
(2.43)

where FA,Vµν are the field strength of the vector fields Aµ, Vµ. Contracting both sides with

ǫ†σµν from the left, we obtain

R− 6V µVµ = −2FAµνJ
µν , (2.44)

while a contraction with ǫσµν yields

FAµνP
µν = 0 . (2.45)

Similarly, the integrability condition for ǫ̃ gives equalities

R− 6V µVµ = 2FAµν J̃
µν , FAµνP̃

µν = 0 . (2.46)

The integrability conditions for two supercharges with opposite R-charge leads to other

interesting relations between the space-time curvatures and the background field strengths.

They are given in the following forms [17]

(Cµνρσ)
2 =

8

3
Re (Fµν)2 ,

ǫµνρσRµναβR
αβ

ρσ =
8

3
Re [ǫµνρσFµνFρσ] ,

Im (Fµν)2 = Im [ǫµνρσFµνFρσ] = 0 ,

(2.47)

where F is the field strength of the background U(1) gauge field

F = dA , Aµ = Aµ − 2Vµ . (2.48)

2.3 Complex structure and R-symmetry background

The supergravity background may require including an R-symmetry background on M ,

possibly incorporating a nontrivial line bundle L. The condition given in [2] is that

L−2 ×KM is trivial, where KM is the canonical line bundle on M . We will determine the

topological class of L when we examine the complex structure. Note that the R-symmetry

gauge field, A, is in general complex. However, only the real part of A can be a connection

for a nontrivial line bundle.

For g ≥ 1 and d ≥ 1 all complex structures of M are deformation equivalent [18]. The

canonical bundle is a pullback from the base [19]

KM = π⋆KΣ , (2.49)

and hence satisfies [15]

c1 (KM ) = π⋆c1 (KΣ) = 2g − 2 mod d ∈ Zd ⊂ H2 (M,Z) . (2.50)

– 8 –
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We also have

c1 (KM ) mod 2 = w2 (TM ) = 0 ∈ H2 (M,Z2) , (2.51)

where w2 (TM ) is the second Stiefel-Whitney class of M .

The condition on the R-symmetry line bundle yields

− 2c1 (L) + 2g − 2 = 0 mod d . (2.52)

We will ignore 2-torsion and only consider the solution

c1 (L) = g − 1 mod d . (2.53)

There is a subtlety associated with the case of g = 0. The total space is then diffeo-

morphic to

M ≃ S1 × L (d, 1) , (2.54)

where L (r, s) is a (three-dimensional) lens space. For d ≥ 3 the complex structure moduli

space of M has two deformation equivalence classes I, II [18]. From the fact that the usual

lens space index has a (topologically) trivial R-symmetry bundle, we conclude that the

topological classification of the canonical bundle in this case is

KM =

{

topologically trivial I ,

π⋆KΣ II ,
(2.55)

so that

c1 (KM ) =

{

0 I ,

−2 ∈ Zd II ,
(2.56)

and our solution for the R-symmetry line bundle is

c1 (L) =

{

0 I ,

−1 ∈ Zd II .
(2.57)

An example of this phenomenon is that the spaces S1 × L (d, 1) and S1 × L (d,−1) are

diffeomorphic but have, in the language of [11], topologically distinct canonical bundles for

d ≥ 3 with first Chern classes given by the two solutions above. In order to have chiral fields

valued in well-defined line bundles, one must make the following restriction on theR-charges

r

(

−χ (Σ)

2
mod d

)

∈ Z . (2.58)

For instance, in the complex structure II, the R-charges are quantized in units of d − 1.

Note that there is no restriction for the complex structure of type I, and for manifolds with

base space T 2. The case g = 0 and d = 0, where M is diffeomorphic to T 2 × S2 and which

we consider only briefly, is very different. One is forced to include flux for the R-symmetry

gauge field on S2 and all chiral fields must have integer R charges.

In order to use the results about supersymmetry from the previous section, we must

show that M admits a compatible Hermitian metric which supports K. When g ≥ 2 the

– 9 –
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orbits ofK are tori and the fibration is holomorphic [10]. We take this to mean that a metric

with an appropriate Killing vector can be constructed on M by averaging any Hermitian

metric along the fibers. The Killing vectorK, which simply points along the fiber directions,

should be holomorphic in the given complex structure. For g = 0, appropriate metrics were

constructed in [11]. It should be noted that there is no guarantee that a complex manifold

with g = 0 and a complex structure of type II will admit the necessary holomorphic Killing

vector.4 We currently have nothing to say about the case g = 1.

Note that even when the R-symmetry line bundle is determined to be topologically

trivial it may be holomorphically nontrivial. We will need to evaluate the determinant of

the gauge invariant operator

δK = LK − irKµAµ − iqfK
µaµ , (2.59)

and note that

KµAµ = Aw , (2.60)

is a holomorphic line bundle modulus for A. For the cases where KM is a pullback from

the base, the modulus on the base is given by 1/2 that of the base canonical bundle. We

know from the explicit form of the lens space partition function that this remains true even

in the special component of the complex structure moduli space (I) given above. This is

due to the fact that one can reach this component by orbifolding S3 × S1, to which the

above argument applies, without changing the other supergravity fields [11]. We do not

explicitly include a holonomy for A around the S1, but treat all spinors as periodic. The

holonomy in the fiber direction is constrained by the topological class of the R-symmetry

bundle. As explained in section 4.2.1, the solution (2.53) for the Chern class of L implies

a holonomy in the fiber direction of size

exp

(

2πi
c1 (L)

d

)

= exp

(

2πi
g − 1

d

)

. (2.61)

This holonomy is not included when working with the alternative complex structure I.

3 N = 1 supersymmetry algebra and multiplets

The supersymmetry transformations of the new minimal supergravity [16] satisfy the fol-

lowing commutation relations in the rigid limit [1, 2]

{δǫ, δǫ̃} =
1

2
δK ,

{δǫ, δǫ} = {δǫ̃, δǫ̃} = 0 ,

= [δK , δǫ] = 0 ,

= [δK , δǫ̃] = 0 ,

(3.1)

4The combined results of [18] and [11] do not seem to rule out this possibility. That is, one may take

q = 1 and r = ±1 with λ = 0, in the language of [18], and the metric and Killing vector (4.7) and (4.8)

respectively from [11]. In the language of [11] the options correspond to s = ±1 which produce the correct

Chern classes, assuming the formulas there hold beyond their specified region 1 ≤ s < r.
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where δǫ and δǫ̃ are the supersymmetry transformations with respect to supercharges ǫ and

ǫ̃, respectively. δK is the R-covariant Lie derivative

δK = LAK = LK − ir KµAµ , (3.2)

and LK is the Lie derivative along the Killing vector Kµ given by (2.16). The equalities in

the third line of (3.1) follow from the fact that Killing spinors are R-covariantly constant

along the Killing vector K

LAK ǫ = LAK ǫ̃ = 0 . (3.3)

The most general multiplet, denoted by S, whose transformation law realizes the super-

symmetry algebra (3.1) consists of 16+16 bosonic and fermionic degrees of freedom [20–22]

S =
(

C,χ, χ̃,M, M̃, aµ, λ, λ̃,D
)

. (3.4)

If the bottom component C has R-charge r, aµ and D have the same R-charge and M and

M̃ have charge r − 2 and r + 2, while
(

χ, λ̃
)

and (χ̃, λ) have charge r − 1 and r + 1. They

transform under the supercharge δ = δǫ + δǫ̃ as

δC =
i

2
(ǫχ− ǫ̃χ̃) ,

δχ =Mǫ− 1

2
(aµ + iDµC)σ

µǫ̃ ,

δχ̃ = M̃ ǫ̃− 1

2
(aµ − iDµC)σ̄

µǫ ,

δM =
1

2
ǫ̃σ̄µDµχ+

1

2
ǫ̃λ̃ ,

δM̃ =
1

2
ǫσµDµχ̃+

1

2
ǫλ ,

δaµ = −1

2
Dµ (ǫχ+ ǫ̃χ̃)− 1

2

(

ǫσµλ̃+ ǫ̃σ̄µλ
)

,

δλ =
1

2
(σµνFµν + iD)ǫ ,

δλ̃ =
1

2
(σ̄µνFµν − iD)ǫ̃ ,

δD =
i

2
Dµ

(

ǫσµλ̃− ǫ̃σ̄µλ
)

− 1

2
V µ
(

ǫσµλ̃+ ǫ̃σ̄µλ
)

+ i
r

8
(R− 6VµV

µ) (ǫχ+ ǫ̃χ̃) ,

(3.5)

where the covariant derivatives are defined by

DµC = (∂µ − irAµ)C ,

Dµχ =

(

∇µ − i (r − 1)Aµ −
i

2
Vµ

)

χ ,

Dµχ̃ =

(

∇µ − i (r + 1)Aµ +
i

2
Vµ

)

χ̃ .

(3.6)

The field strength Fµν is given by

Fµν = Dµaν −Dνaµ , Dµaν = (∂µ − irAµ)aν . (3.7)
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Given two general multiplets S1,S2, we can construct a new general multiplet S whose

components are given by [20, 21]

C = C1C2 , χ = C1χ2 + C2χ1 , χ̃ = C1χ̃2 + C2χ̃1 ,

M = C1M2 + C2M1 −
i

2
χ1χ2 , M̃ = C1M̃2 + C2M̃1 +

i

2
χ̃1χ̃2 ,

aµ = C1a
2
µ + C2a

1
µ +

i

2
(χ1σµχ̃2 − χ̃1σ̄µχ2) ,

λ =

(

C1λ2 − iM̃1χ2 +
i

2

(

a1µ + iDµC1

)

σµχ̃2

)

+ (1 ↔ 2) ,

λ̃ =

(

C1λ̃2 − iM1χ̃2 −
i

2

(

a1µ − iDµC1

)

σ̄µχ2

)

+ (1 ↔ 2) ,

D = C1D2 + C2D1 + 2(M1M̃2 + M̃1M2)− a1µa
µ
2 −DµC1D

µC2

− 1

2

(

2χ1λ2 + 2χ̃1λ̃2 + χ1σ
µDµχ̃2 + χ̃1σ̄

µDµχ2 + (1 ↔ 2)
)

− iVµ (χ1σ
µχ̃2 − χ̃1σ̄

µχ2) .

(3.8)

3.1 Vector multiplet

A vector multiplet V has no R-charge. Its embedding in a general multiplet, in Wess-

Zumino gauge, is

V =
(

0, 0, 0, 0, 0, aµ, λ, λ̃,D
)

, (3.9)

which transforms under the supersymmetry as

δaµ = −1

2

(

ǫσµλ̃+ ǫ̃σ̄µλ
)

,

δλ =
1

2
(σµνFµν + iD) ǫ ,

δλ̃ =
1

2
(σ̄µνFµν − iD) ǫ̃ ,

δD =
i

2

(

ǫσµDµλ̃− ǫ̃σ̄µDµλ
)

,

(3.10)

where
Fµν = ∂µaν − ∂νaµ − i[aµ, aν ] ,

Dµλ = ∇µλ− i

(

Aµ −
3

2
Vµ

)

λ− i[aµ, λ] ,

Dµλ̃ = ∇µλ̃+ i

(

Aµ −
3

2
Vµ

)

λ̃− i[aµ, λ̃] .

(3.11)

3.2 Chiral multiplet

A chiral multiplet Φi of R-charge ri and gauge charge qi is an irreducible representation

whose embedding in a general multiplet is given by

Φi =
(

φi,−iψi, 0,−iF i, 0, iDµφ
i, 0, 0,

ri
4
(R− 6VµV

µ)φi
)

, (3.12)
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which transforms as

δφi =
1

2
ǫψi ,

δψi = ǫF i + σµǫ̃Dµφ
i ,

δF i =
1

2
ǫ̃σ̄µDµψ

i + iqiǫ̃λ̃φ
i ,

(3.13)

where
Dµφ

i = (∂µ − iriAµ − iqiaµ)φ
i ,

Dµψ
i =

(

∇µ − i (ri − 1)Aµ −
i

2
Vµ − iqiaµ

)

ψi .
(3.14)

An anti-chiral multiplet Φ̃ī of R-charge rī and gauge charge qī is embedded in a general

multiplet

Φ̃ī =
(

φ̃ī, 0, iψ̃ī, 0, iF̃ ī,−iDµφ̃
ī, 0, 0,−rī

4
(R− 6VµV

µ) φ̃ī
)

, (3.15)

and transforms as

δφ̃ī =
1

2
ǫ̃ψ̃ī ,

δψ̃ī = ǫ̃F̃ ī + σ̄µǫDµφ̃
ī ,

δF̃ ī =
1

2
ǫσµDµψ̃

ī − iqīǫλφ̃
ī ,

(3.16)

where
Dµφ̃

ī = (∂µ − irīAµ − iqīaµ) φ̃
ī ,

Dµψ̃
ī =

(

∇µ − i (rī + 1)Aµ +
i

2
Vµ − iqīaµ

)

ψ̃ī .
(3.17)

There is another useful (anti-)chiral multiplet constructed from a vector multiplet, Wα

(W̃α). They have R-charge r = 1 and −1, respectively, and the components are given by

Wα =
(

λα, (σµν)βαF
µν + iDεβα, (σ

µDµλ̃)α

)

,

W̃ α̇ =
(

λ̃α̇, (σ̄µν)
β̇α̇Fµν − iDεβ̇α̇, (σ̄µDµλ)

α̇
)

.
(3.18)

3.3 Real linear multiplet

A real linear multiplet does not have R-charge (r = 0). Its embedding in a general

multiplet is

J =
(

J, j, j̃, 0, 0, jµ + 2VµJ,−σµDµj̃,−σ̄µDµj,−∇µ∇µJ − 2Vµj
µ
)

. (3.19)

The vector component jµ is a conserved current

∇µj
µ = 0 . (3.20)

The transformation law of a linear multiplet is given by

δJ =
i

2

(

ǫj − ǫ̃j̃
)

,

δj = −1

2
(jµ + i∇µJ + 2VµJ)σ

µǫ̃ ,

δj̃ = −1

2
(jµ − i∇µJ + 2VµJ)σ̄

µǫ ,

δjµ = −∇ν
(

ǫσµνj + ǫ̃σ̄µν j̃
)

.

(3.21)
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3.4 Supersymmetric Lagrangians

One can construct an invariant action by integrating the D-term of a general multiplet

with no R-charge

LD = D − Vµa
µ , (3.22)

or the F -terms of a chiral multiplet of r = 2 and an anti-chiral multiplet of r = −2

LF = F + F̃ . (3.23)

Invariance follows from the transformation laws (3.5) and (3.13).

The D-term of a Kähler potential K whose arguments are chiral and anti-chiral mul-

tiplets Φi and Φ̃i with charges (ri, qi = 1) and (rī, qī = −1) gives the kinetic Lagrangian

of the matter multiplets. Also, the F -terms of superpotentials W (Φ) and W̃
(

Φ̃
)

become

interactions of the matters. Using the multiplication law (3.8), the matter Lagrangian is

obtained in [20, 23]

Lmatter = −
[

K
(

Φ, Φ̃
)]

D
− [W (Φ)]F −

[

W̃
(

Φ̃
)]

F̃
,

= −
(

1

2
R− 3V 2

µ

)(

1

4
riKiφ

i − 1

4
rīKīφ̃

ī

)

+Kij̄

(

Dµφ
iDµφ̃j̄ − F iF̃ j̄

)

− iV µ
(

KiDµφ
i −KīDµφ̃

ī
)

− F iWi − F̃ īW̃ī −KaDa

+
1

2
Kij̄ψ̃

j̄ σ̄µDµψ
i +

1

4
Kijj̄F̃

j̄ψiψj +
1

4
KijjF

jψ̃īψ̃j̄

+
1

4
Wijψ

iψj +
1

4
W̃ijψ̃

īψ̃j̄ − 1

16
Kijijψ

iψjψ̃īψ̃j̄ − i
(

λaKa
i ψ

i − λ̃aKa
ī ψ̃

ī
)

,

(3.24)

where we denote Ki = ∂φiK(φ) and so on, and defined

Ka = φ̃ī T aīj̄ Kj̄ = Ki T
a
ij φ

j , (3.25)

and T a is a generator of a gauge group. This action agrees with the Lagrangian derived from

the rigid limit of the new minimal supergravity [1] up to the difference of the conventions.

Here the covariant derivative and the Christoffel symbol are defined by

Dµψ
i =

(

∇µ − i (ri − 1)Aµ −
i

2
Vµ

)

ψi − iT aija
a
µψ

j + Γijkψ
jDµφ

k ,

Γijk = K īiKījk ,

Dµφ
i = (∂µ − iriAµ)φ

i − iT aija
a
µφ

j .

(3.26)

– 14 –



J
H
E
P
1
2
(
2
0
1
4
)
1
5
0

Similarly, the Lagrangian of the gauge sector is given by using the field strength chiral

multiplet (3.18) as [23]

Lgauge =
1

2

[

fAB(Φ)W
AWB

]

F
+

1

2

[

f̃AB(Φ̃)W̃
AW̃B

]

F̃
,

= Tr

[

1

4

(

fAB + f̃AB

)

FAµνF
B µν − 1

8

(

fAB − f̃AB

)

εµνρκFAµνF
B
ρκ

+ fABλ
AσµDµλ̃

B + f̃ABλ̃
Aσ̄µDµλ

B − 1

2

(

fAB + f̃AB

)

DADB

+
1

2
fAB,i

(

F iλAλB − iDAψiλB + FAµνψ
iσµνλB

)

+
1

2
f̃AB,̄i

(

F̃ īλ̃Aλ̃B + iDAψ̃īλ̃B + FAµνψ̃
īσ̄µν λ̃B

)

−1

8
fAB,ijλ

AλBψiψj − 1

8
f̃AB,ij λ̃

Aλ̃Bψ̃īψ̃j̄
]

,

(3.27)

where fAB(Φ) and f̃AB
(

Φ̃
)

are functions of the matter fields, and A,B label the types of

gauge groups. The field strength and the covariant derivatives are defined by (3.11).

4 Localization

So far we have described the N = 1 supersymmetry multiplets and Lagrangians on Her-

mitian manifolds that admit at least one supercharge by taking the rigid limit of the new

minimal supergravity. The most general supersymmetric action, which we denote S, is

given by the spacetime integral of the Lagrangians (3.24) and (3.27). To compute the

partition function on a Hermitian manifold M by localization, we add a δ-exact term δV

to the action and compute the deformed partition function

Z(t) =

∫

Dφ e−S−tδV . (4.1)

Since Z(t) does not depend on the parameter t, we let t be large while choosing a positive

semi-definite δV . The integral localizes to the field configurations for which δV vanishes.

We will construct such a localizing term below and perform the localization calculation

around the fixed point with the equivariant index theorem in section 5.

4.1 Localization and fixed points

We consider manifolds with two supercharges ǫ and ǫ̃ of opposite R-charges. We will use a

linear combination of the two supercharges δ = δǫ + δǫ̃ which is not nilpotent, but satisfies

{δ, δ} = δK . (4.2)

We will find a localizing term of the form δV .
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4.1.1 Localizing terms

To find a localizing term, we use the normalized complex conjugates of the Killing

spinors (2.20). The R-charges for ζ and ζ̃ are −1 and +1 so as to be consistent with

the normalization conditions. They are invariant under the R-covariant Lie derivative

along K,

LAK ζ = LAK ζ̃ = 0 . (4.3)

This property is useful to construct localizing terms as follows. Let Ψ and Ψ̃ be fermionic

functions of fields with R-charge +1 and −1. Consider a Lagrangian density v =
(

ζΨ+ ζ̃Ψ̃
)

whose R-charge vanishes. Then the spatial integral of δv will be a localizing term because

it is δ-closed up to a total derivative

δ2v =
1

2

(

ζ δKΨ+ ζ̃ δKΨ̃
)

=
1

2
δKv = (total derivative) . (4.4)

The last equality follows from the fact that v is a scalar function of zero R-charge and K

is a Killing vector.

For the gauge sector, we choose the fermionic functions (Ψ, Ψ̃) to be

Ψgauge =
1

2
(−Fµνσµν + iD)λ , Ψ̃gauge =

1

2
(−Fµν σ̄µν − iD)λ̃ , (4.5)

and obtain the localizing term

L(loc)
gauge =

1

2
FµνF

µν + λσµDµλ̃+ λ̃σ̄µDµλ−D2 . (4.6)

A positive definite contour is achieved by taking aµ real and rotating

D → −iD . (4.7)

We will implicitly substitute −iD for D in all later equations. The field configurations to

which the path integral localizes are those which satisfy

Fµν = 0 , D = 0 . (4.8)

The localizing term (4.6) is nothing but the Lagrangian of the gauge sector (3.27) with

fAB = f̃AB = δAB. The first condition leads to a flat connection of the gauge field which

will be described in detail in section 4.2.1.

We can fix the gauge freedom by imposing the covariant gauge ∇µaµ = 0

Lg.f. = c̄∇µD
µc+ b∇µaµ , (4.9)

where c and c̄ are ghost fields and b is a Lagrange multiplier. As is explained in [24, 25],

the gauge fixing term does not change the locus of fixed points where the bosonic part

of (4.6) vanishes.

Next, we move onto the matter sector coupled to the gauge field. We consider a

localizing term for the matter sector with a chiral multiplet Φ = (φ, ψ, F ) of R-charge r
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and gauge charge q and an anti-chiral multiplet Φ̃ =
(

φ̃, ψ̃, F̃
)

of R-charge −r and gauge

charge −q. We choose the fermionic functions
(

Ψ, Ψ̃
)

to be

Ψmatter=−1

2

(

φσµDµψ̃+ψF̃−2iqφ̃λφ
)

, Ψ̃matter=−1

2

(

φ̃σ̄µDµψ+ψ̃F+2iqφ̃λ̃φ
)

, (4.10)

which yields the localizing term

L(loc)
matter = Dµφ̃D

µφ− iV µ
(

φ̃Dµφ− φDµφ̃
)

+ iqφ̃Dφ− r

4
(R− 6VµV

µ)φφ̃

+
1

2
ψ̃σ̄µDµψ − iq

(

φ̃λψ − ψ̃λ̃φ
)

− FF̃ ,
(4.11)

where we used the integrability conditions (2.44) and (2.46) and removed a total derivative

term. This agrees with the matter Lagrangian (3.24) with a canonical Kähler potential

K = Φ̃Φ and without superpotentials. Every covariant derivative is also covariant with

respect to the gauge field for the matter fields with gauge charges.

The bosonic part of the δ-exact Lagrangian is positive definite if we choose the contour

of the path integral for φ̃ and F̃ to be

φ̃ = φ† , F̃ = −F † . (4.12)

Then the field configuration of the matter sector localizes to

φ = 0 , F = 0 , (4.13)

where we used the condition (4.24) for the gauge sector.

The classical contributions from the gauge and matter Lagrangians (3.27) and (3.24)

vanish on the zero loci (4.8) and (4.13). A classical contribution from a Fayet-Illiopolous

term for an abelian gauge multiplet is discussed in 6.1.

4.1.2 Cohomological derivation

Our constructions of the localizing terms are somewhat heuristic and one may wonder if

there are other choices. Here we present an alternative derivation of the fixed points based

on the cohomological forms of the supersymmetry transformations. This approach is taken

by [13, 14] for N = 2 Chern-Simons-matter theories on Seifert three-manifolds.

For the vector multiplet (3.10), we introduce new variables (Λ+
µ ,Λ

−
µ ) defined by

Λ+
µ ≡ −1

2
ǫσµλ̃ , λ̃ = Λ+

µ (ζσ
µ) ,

Λ−
µ ≡ −1

2
ǫ̃σ̄µλ , λ = Λ−

µ

(

σµζ̃
)

,

(4.14)

which satisfy the supersymmetry transformation

δǫaµ = Λ+
µ , δǫ̃aµ = Λ−

µ ,

δǫΛ
+
µ = 0 , δǫ̃Λ

+
µ =

1

4
KνF+

νµ +
1

4
KµD ,

δǫΛ
−
µ =

1

4
KνF−

νµ −
1

4
KµD , δǫ̃Λ

−
µ = 0 ,

δǫD = −DµΛ+
µ , δǫ̃D = DµΛ−

µ ,

(4.15)
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where F±
µν is the (anti)self-dual part of the field strength

F±
µν ≡ Fµν ±

1

2
εµνρσF

ρσ . (4.16)

For the chiral multiplets, we introduce the bosonic variables (ψ+, ψ−) and (ψ̃+, ψ̃−)

made of the fermions satisfying

ψ = ǫψ+ − ζψ− , ψ+ = ζψ , ψ− = ǫψ ,

ψ̃ = ǫ̃ψ̃+ − ζ̃ψ̃− , ψ̃+ = ζ̃ψ̃ , ψ̃− = ǫ̃ψ̃ .
(4.17)

We rewrite the supersymmetry transformations of the chiral multiplet (3.13) of gauge

charge q in the cohomological forms as

δǫφ = ψ− , δǫ̃φ = 0 ,

δǫψ− = 0 , δǫ̃ψ− = LAKφ ,
δǫψ+ = F , δǫ̃ψ+ = LȲ φ ,

δǫF = 0 , δǫ̃F =
1

2
LAKψ+ − 1

2
LȲ ψ− − iqȲ µΛ+

µ φ ,

(4.18)

where the vectors Y µ, Ȳ µ are defined in (2.19). Similarly the anti-chiral multiplet (3.16) of

gauge charge −q with the new variables transforms as

δǫφ̃ = 0 , δǫ̃φ̃ = ψ̃− ,

δǫψ̃− = LAK φ̃ , δǫ̃ψ̃− = 0 ,

δǫψ̃+ = LY φ̃ , δǫ̃ψ̃+ = F̃ ,

δǫF̃ =
1

2
LAK ψ̃+ − 1

2
LY ψ̃− + iqY µΛ−

µ φ̃ , δǫ̃F̃ = 0 .

(4.19)

The localizing terms with respect to the supercharge δ = δǫ + δǫ̃ are given in this

representation as

vgauge = (δǫ̃Λ
+
µ )

†Λ+µ + (δǫΛ
−
µ )

†Λ−µ ,

vmatter = (δǫ̃ψ+)
†ψ+ + (δǫ̃ψ̃+)

†ψ̃+ + 4(δǫ̃ψ−)
†ψ− ,

(4.20)

leading to the same fixed loci on the integration contour (4.12) as in the previous subsection

Fµν = 0 , D = 0 ,

φ = 0 , F = 0 .
(4.21)

Note that the saddle points

D =
1

2
εµνρσK

µK̄νF ρσ , (4.22)

are off the contour of integration.
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4.1.3 Single supercharge case

In general, a Hermitian manifold admits a single supercharge ǫ [2]. The supersymmetry

transformation δǫ is nilpotent δ
2
ǫ = 0. It is straightforward to construct a δǫ-exact term for

the gauge sector
L(loc)
gauge = δǫ (ζ (−Fµνσµν + iD)λ) ,

=
(

F−
µν

)2
+ 2λσµDµλ̃+D2 .

(4.23)

A similar δ-exact term can be derived with a supercharge ǫ̃ of opposite R-charge. In either

way, the gauge sector localizes to a (anti-)self-dual field strength configuration

F±
µν = 0 , D = 0 . (4.24)

The same result can be derived from the cohomological forms (4.20) by setting either ǫ or

ǫ̃ to zero.

The matter sector localizes to the same configuration φ = F = 0 as the case with

two supercharges of opposite R-charge because only one supercharge ǫ̃ appears in the

cohomological localization term (4.20). If a supercharge ǫ exists on a Hermitian manifold,

the following localization term yields the same fixed points

vmatter =
(

δǫψ̃+

)†
ψ̃+ + (δǫψ+)

†ψ+ + 4
(

δǫψ̃−

)†
ψ̃− . (4.25)

4.2 Index theorem ingredients

The quantum fluctuations around the zero locus of the localizing terms in the previous

section contribute to the partition function. We will use the equivariant index theorem for

transversally elliptic operators to compute the one-loop determinant [24, 26]. To this end,

we rewrite the localizing terms as

v = (ϕ̂o, ϕo)

(

Dôe Dôê

Doe Doê

)(

ϕe
ϕ̂e

)

, (4.26)

where ϕe,o are bosonic and fermionic fields, respectively, and ϕ̂e,o are their δ variations

δϕe,o = ϕ̂o,e ,

δϕ̂o,e = R · ϕe,o .
(4.27)

Dôe,ôê,oe,oê are differential operators and R is a symmetry of the theory. The one-loop

determinant is given by the following expression [24]:

Zone-loop =
detCokerDoe R
detKerDoe R

. (4.28)

For the matter sector, we identify

Doe = LȲ , (4.29)

acting on the sections φ, and

R = δK . (4.30)
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In complex coordinates, the relevant vectors are given by (2.42), hence

Doe =
s

c

(

∂z̄ − h̄ (z, z̄) ∂w̄ − irAz̄ + irh̄ (z, z̄)Aw̄ − iqfaz̄ + iqf h̄ (z, z̄) aw̄
)

. (4.31)

We check that this commutes with the symmetry generated by

[δǫ, δǫ̃] = δK = LK − irKµAµ − iqfK
µaµ , (4.32)

indeed

[δK , Doe] = irFAz̄w̄ + iqfF
a
z̄w̄ = 0 . (4.33)

Note that this remains true if we allow a flux F azz̄.

The leading symbol of Doe is just Ȳ
µ. The equations (2.21) imply that this is non-zero

on the subspace spanned by the (non-vanishing) vectors

Re (Y µ) , Im (Y µ) , (4.34)

which form a basis for the subspace orthogonal to K, K̄. Hence Doe is transversally elliptic.

Note that this subspace need not be two-dimensional. We will show in section 5 that the

correct fluctuation determinant is recovered by viewing Doe as the pullback of the Dirac

operator on the base manifold Σ, or the ∂̄ operator twisted by the square root of the

canonical bundle, acting on sections with R-charge r − 1. This can be argued for by

considering the form of the vector Ȳ µ in local coordinates. However, we do not have a

completely satisfactory derivation of this fact.

For the gauge sector,

Doe = ιY ιȲ d , (4.35)

is considered as a differential operator acting on the connection aµ, where ι is the interior

product and d the exterior derivative. The commutator of this operator with δK contains

the same types of terms as the matter sector operator above and therefore vanishes on the

moduli space. To prove transversal ellipticity one must consider the combined supersym-

metry and BRST complex. We describe this complex in section 5. We will also find that

to recover the correct fluctuation determinant, this operator should be identified with the

pullback of the exterior derivative on Σ.

4.2.1 The bosonic moduli space

We have shown that the bosonic part of the localization locus is the moduli space of flat

G-connections on M . The partition function on M contains an integral over this space,

which may have many connected components. Background deformations associated with

flavor symmetries are just flat background gauge fields.

Flat connections are specified by holonomies. The formula for the one-loop determi-

nants given by the equivariant index theorem implies that we must determine how such

holonomies affect the operators Doe and δK . Since the equivariant index depends only on

discrete parameters specifying the spaces (bundles) which Doe maps, we should find out

how to associate a bundle on Σ to every holonomy. The operator δK depends on continuous

data related to holomorphic moduli. nontrivial moduli arise when there is a holonomy in

one or more of the directions corresponding to the circle actions of the Killing vector K.
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What remains is to determine the allowed bundles and continuous moduli. The manifoldM

admits a much larger space of flat connections then that which Doe and δK can “measure”.

An element of the moduli space of flat connections which deforms neither Doe nor δK (and

which does not give a classical contribution) will still contribute to the normalization of

parts of the partition function on M .

The moduli space of flat connections on M is given by

M0
G (M) = Hom (π1 (M) , G) /G , (4.36)

where the holonomy associated to a generator a ∈ π1 (M) is given by

σ (a) ∈ G , σ ∈ Hom(π1 (M) , G) , (4.37)

and the quotient is taken with G acting on all σ (•) by conjugation. The first step in

characterizing this space is to compute the fundamental group of M . Note that

M ≃M3 × S1 ⇒ π1 (M) = π1 (M3)× Z . (4.38)

M3 is a circle bundle of degree d over Σ with the Euler characteristic

χ (Σ) = 2− 2g . (4.39)

For g = 0 it is a lens space L (d, 1) with

π1 (M3) = Zd . (4.40)

For g ≥ 1 we have

π1
(

S1
)

= Z , π2 (Σ) = 1 , (4.41)

and hence the following short exact sequence holds

1 → Z → π1 (M3) → π1 (Σ) → 1 .

There is an explicit presentation for π1 (M3) with generators ai, bi, h with i ∈ 1, . . . , g and

relations [27]

[ai, h] = [bi, h] = 1 ,

g
∏

i=1

[ai, bi] = hd , (4.42)

(all other commutators vanish) which reduces to (4.40) when g = 0 and whose

abelianization is

H1 (M3,Z) = Zd × Z
2g . (4.43)

The fundamental group of M can therefore be described by generators

ai, bi, h, x, i ∈ 1, . . . , g , (4.44)

and relations

[ai, h] = [bi, h] = [ai, x] = [bi, x] = [x, h] = 1 ,

g
∏

i=1

[ai, bi] = hd . (4.45)

For g = 0, this implies hd = 1. The relevant space of holonomies in this case is

described in [28].
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The above description of π1 (M3) is related to the central extension of π1 (Σ) considered

by Atiyah and Bott in [29] in relation to Yang-Mills connections on Σ. The group element

hd plays the role of ΓR. Following [29], we will characterize the set of solutions to (4.36)

given the relations (4.45) for the case G = U(N).5

The space (4.36) for G = U(N) is the space of equivalence classes of unitary represen-

tations of π1 (M). Any such representation is the direct sum of irreducible representations,

and within each summand σ (h) and σ (x) are scalar matrices by Schur’s lemma. Since there

are no further constraints on σ (x) it may be any such unitary matrix whose eigenvalue

we denote

exp (2πixa) . (4.46)

The possibilities for σ (h) are more restricted and, in fact, discrete.

Given that the generators x and h commute, we can use G to simultaneously diago-

nalize the associated holonomies. Denote by λa the diagonal entries of the matrix σ (h).

We define

λa = exp (2πiha) . (4.47)

Consider an N -dimensional unitary representation of π1 (M), R, whose decomposition

contains p irreducible representations Rj of size Nj

p
∑

j=1

Nj = N ,

R ≃ R1 ⊕R2 ⊕ · · · ⊕Rp .

(4.48)

This induces a symmetry breaking pattern

U(N) → U(N1)×U(N2)× · · · ×U(Np). (4.49)

Consider the restriction to a particular factor in (4.49). Taking the determinants on both

sides of
g
∏

i=1

[ai, bi] = hd , (4.50)

we get the condition

dNjhj(a) ∈ Z , (4.51)

where we have introduced the notation j (a) for the a’th eigenvalue which lies in the j’th

representation Rj . The full set of solutions is

hj(a) =
mj

dNj
, mj ∈ 0, . . . , dNj − 1 . (4.52)

We denote by Mg
Nj ,mj

the space of irreducible representations satisfying

g
∏

i=1

[ai, bi] = e
2πi

mj
Nj
1Nj . (4.53)

5See also [30] section 6.2. For an example involving G with finite, but non trivial, π1 (G) see [28].
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Such representations exist for all Nj ,mj when g ≥ 2, and for mj = 0, Nj = 1 or mj 6= 0 and

gcd (Nj ,mj) = 1 for g = 1 [29]. Some of the representations Rj may coincide. When the

set of representations is discrete, we denote by nl the multiplicity of the l’th representation.

To understand the interpretation of the solutions above we appeal to the analysis

of Yang-Mills connections on Σ given in [29]. Translating the data, a particular σ (h)

above corresponds to a homomorphism of the central extension of π1 (Σ) with a symmetry

breaking pattern (4.49). The image of the additional generator J (in the notation of [29])

g
∏

i=1

[ai, bi] = J , (4.54)

in each block is

σ (J) = e
2πi

mj
Nj
1Nj . (4.55)

According to [29], the set of unitary representations of (4.54) is isomorphic to the space of

unitary Yang-Mills connections on Σ. Such connections are actually H-connections

H ≡ U(N1)×U(N2)× · · · ×U(Np). (4.56)

Elements of this space are flat H-connections twisted by constant curvature line bundles

with first Chern classes

c1 (U(Nj)) = mj . (4.57)

The pullback of such a connection on Σ, augmented with a holonomy σ (x), is our desired

flat connection on M . Note that only the overall Chern class

c1 (U(N)) =
∑

j

mj mod d , (4.58)

is a bundle invariant on M . This class resides in the torsion part of H2 (M,Z).

Having described the moduli space, we now consider how a set of holonomies associated

to generators of π1 (M) deforms the operator δK . Recall that δK includes a term (aµ is the

G-connection, not the generator)

aw = Kµaµ . (4.59)

Since δK is supposed to be a torus action, we should expand the field on which it acts in

eigenspaces using the weights of the G-representation.6 We will use this decomposition to

diagonalize the action of the commuting holonomies associated to h and x. For g ≥ 2,

there is no isometry action on the base and the holonomies associated with ai, bi do not

deform δK , while for g = 0, x, h are the only holonomies. In the notation of section 5,

ρ (aw) = ρaxa + τρaha . (4.60)

6In general, such a decomposition need not correspond to the decomposition in terms of weights. This

is because the holonomies for a group which is not simply-connected may commute without belonging to

the same Cartan torus. See [28] for examples. This does to apply to G = U(N).
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For g = 1, we have the possibility of having both an isometry action and nontrivial

holonomies for a flat connection on Σ. We could therefore consider

ρ (aw) = ρaxa + τρaha + zAρaAa + zBρaBa , (4.61)

where zA, zB are related to the complex structure of the fibration and of the base, and

A,B are holonomies on the torus. We will not consider this possibility.

The space (4.36) has multiple connected components, some of which correspond to

different underlying bundles on Σ. The discrete parameters used to identify the different

components can contribute to the discrete data used to define Doe. We have been working

under the assumption that all relevant bundles on the total space M are pullbacks of

bundles on the base Σ. Moreover, Doe is the pullback of an operator defined only on Σ. A

bundle on M will be treated as a collection of complex vector bundles on Σ. The vector

bundles have the Chern classes specified by (4.57). A field charged under G with weight ρ

is valued in a line bundle on Σ with first Chern class ρama, where the index a runs over

the entire Cartan.

4.2.2 Gaugino zero modes

The moduli space of zero modes of the localizing term is in general a superspace, incorpo-

rating the moduli space of flat connections on M and the fermion zero modes that appear

in that background. The flat U(N)-connections we consider, and the R-symmetry bundle,

are such that

c1
2 = c2 = 0 , (4.62)

and hence do not contribute to the index theorem for the Dirac operator on M . The Dirac

operators acting on the gauginos and quarks are also deformed by the Chern connection,

however, this is irrelevant for the index, as is the imaginary part of the R-symmetry

connection. The computation of the Euler number and the signature of M performed

in [17] shows that

χ (M) = σ (M) = 0 , (4.63)

which is sufficient to determine that the anomaly associated with the Dirac operator van-

ishes. We will try to determine the conditions under which zero modes nevertheless exist

for the gauginos.

Consider the supersymmetry equation

δaµ = −1

2

(

ǫσµλ̃+ ǫ̃σ̄µλ
)

. (4.64)

The right hand side defines the fermionic fiber ϕ̂o over the base supermanifold where the

equivariant localization takes place. We will make the simplifying assumption that gaugino

zero modes can only occur in the base manifold ϕo and hence

− 1

2

(

ǫσµλ̃0 + ǫ̃σ̄µλ0

)

= 0 . (4.65)

Then, decomposing λ, λ̃ as in (2.23) and contracting (4.65) with K̄, Y, Ȳ we get

ǫλ0 = ǫ̃λ̃0 = 0 , (4.66)
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and
ǫ†λ0
|ǫ|2 = − ǫ̃

†λ̃0
|ǫ̃|2 ≡ a . (4.67)

All potential zero modes are of the form

λ0 = aǫ , λ̃0 = −aǫ̃ . (4.68)

From the Killing spinor equations, one deduces

σµ
(

∇µ + i

(

Aµ +
1

2
Vµ

))

ǫ̃ = 0 ,

σ̄µ
(

∇µ − i

(

Aµ +
1

2
Vµ

))

ǫ = 0 .

(4.69)

From the equations of motion for the gauginos arising from the D-term for the gauge

multiplet we get7

σµDµλ̃ = σµ
(

∇µ + i

(

Aµ −
3

2
Vµ

))

λ̃ = 0 ,

σ̄µDµλ = σ̄µ
(

∇µ − i

(

Aµ −
3

2
Vµ

))

λ = 0 .

(4.70)

Obviously, for V = 0, λ0 ∝ ǫ and λ̃0 ∝ ǫ̃ are a solution.

Assume now that V 6= 0 and that putative zero modes are defined by (4.65). Using

the properties of the supergravity background discussed in section 2, one can show that

this implies

∂µa = ia∇νJνµ . (4.71)

Since a nontrivial solution to a homogenous first order differential equation on a path

connected space is nowhere vanishing, we may write

∇µ∂µ log a = i∇µ∇νJνµ = 0 , (4.72)

hence, on a compact manifold, we have

a = const , (4.73)

and

a 6= 0 ⇔ ∇µJµν = 0 . (4.74)

In turn, ∇µJµν = 0 implies that we may choose V = 0, and this is possible if and only ifM

is Kähler [11]. Therefore, with our assumptions, gaugino zero modes exist only for Kähler

manifolds, in which case they satisfy

λ0 ∝ ǫ , λ̃0 ∝ ǫ̃ . (4.75)

We will restrict attention to non-Kähler manifolds or, equivalently, d > 0 in section 2.1.

7We neglect the gauge quantum numbers, which we assume have to vanish in order for the zero mode

to arise: the gauginos must be in the same Cartan as the holonomies.
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5 One-loop determinants and index theorem

In this section, we will evaluate the one-loop partition function (4.28) using the equivariant

index theorem for the differential operator Doe. We closely follow the argument of [24, 26,

31]. The interested reader is referred to [32–35] for more details of the Atiyah-Singer index

theorem and to [36–38] for the Atiyah-Bott localization formula and its applications.

5.1 Equivariant index theorem

The one-loop determinants (4.28) can be obtained from the R-equivariant index of the

differential operator

ind(Doe) = TrKerDoee
R − TrCokerDoee

R . (5.1)

Once the index is calculated, the partition function is read off from the weight wα and the

multiplicity cα of a representation α of R:

ind(Doe) =
∑

α

cαe
wα −→ Zone-loop =

∏

α

w−cα
α . (5.2)

The fields ϕe and ϕo are regarded as sections of bundles Ee and Eo on a manifold X. The

differential operator D = Doe acts on the complex

Γ(Ee)
D−→ Γ(Eo) . (5.3)

Let T = U(1)n be the maximal torus of the isometry R and eR = t = (t1, t2, · · · , tn).
Using the Atiyah-Bott localization formula, the index is represented as a sum over the set

of fixed points F of T action:

indT (D) =
∑

p∈F

TrEe(p)t− TrEo(p)t

detTXp(1− t)
. (5.4)

To illustrate how it works, consider X = CP
1 and the equivariant index of the Dol-

beault operator D = ∂̄ acting on the complex

∂̄ : Ω0,0 → Ω0,1 , (5.5)

under T = U(1) action z → tz around the fixed point z = 0 at the north pole. Ω0,0 and

Ω0,1 are generated by T -invariant functions f(z, z̄) and fz̄(z, z̄)dz̄, around the north pole.

Since under U(1) action f → f and fz̄ → tfz̄, we obtain TrΩ0,0t = 1 and TrΩ0,1t = t.

The tangent bundle TX is generated by ∂z and ∂z̄ with T eigenvalues t−1 and t, and

detTXz=0(1−t) = (1−t)(1−t−1). Then the north pole z = 0 contributes to the index (5.4) by

indT (∂̄)|z=0 =
1

1− t−1
=

∞
∑

k=0

t−k . (5.6)

This result can be understood as a counting of U(1) invariant holomorphic functions on C

which is the kernel of the Dolbeault operator ∂̄

f(z) =
∞
∑

k=0

ckz
k . (5.7)

Under U(1) action z → tz, the coefficients transform as ck → t−kck so as to f(z) = f(tz).

The index is nothing but the summation of the weight t−k of the holomorphic functions.
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On the other hand, the other fixed point at the south pole z = ∞ can be treated

by introducing a different patch w = 1/z. In this patch, Ω0,0 and Ω0,1 are generated by

f(w, w̄) and fw̄(w, w̄)dw̄ , and the tangent bundle TX is generated by ∂w and ∂w̄ with T

eigenvalues t and t−1. Thus the contribution to the index from the south pole w = 0 is

indT (∂̄)|w=0 =
1

1− t
. (5.8)

The sum of the two gives the total index

indT (∂̄) =
1

1− t−1
+

1

1− t
= 1 . (5.9)

We can twist the Dolbeault complex by the holomorphic line bundle O(n) with the

first Chern class c1 = n. Now the complex is

∂̄ : Ω0,0(O(n)) → Ω0,1(O(n)) . (5.10)

We define the action of T on the fiber of O(n) in the z patch to be tn/2. In this patch,

Ω0,0(O(n)) and Ω0,1(O(n)) are generated by φ(z) and φz̄(z)dz̄ with T eigenvalues tn/2 and

t1+n/2 for φ(z) and φz̄(z). The index at z = 0 is tn/2 times the untwisted index (5.6)

indT (∂̄;O(n))|z=0 =
tn/2

1− t−1
. (5.11)

In the w-patch, a section φ ∈ Ω0,0(O(n)) transforms under the coordinate change by

φ(z) = znφ̃(w) . (5.12)

It follows that Ω0,0(O(n)) and Ω0,1(O(n)) are generated by φ̃(w) and φ̃w̄(w)dw̄ with T

eigenvalues t−n/2 and t−1−n/2 for φ̃(w) and φ̃w̄(w). The index from the south pole is

indT (∂̄;O(n))|w=0 =
t−n/2

1− t
, (5.13)

and the total index is

indT (∂̄;O(n)) =
tn/2

1− t−1
+
t−n/2

1− t
,

=











tn/2
∑n

k=0 t
−k , n ≥ 0 ,

0 , n = −1 ,

−tn/2∑−n−2
k=0 tk+1 , n < −1 .

(5.14)

A Dirac operator DDirac acting on spinor bundles

DDirac : S
+ → S− , (5.15)

is isomorphic to the Dolbeault complex by twisting by the square root of the canonical

bundle K on Kähler manifolds

DDirac =
1

2

(

∂̄ + ∂̄∗
)

: Ω0,even
(

X,K1/2
)

→ Ω0,even
(

X,K1/2
)

. (5.16)
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The Dirac operator on CP
1 of the twisted complex

DDirac : S
+ ⊗O(n) → S− ⊗O(n) , (5.17)

is equal to the Dolbeault complex

∂̄ : Ω0,0
(

O(n)⊗K1/2
)

→ Ω0,1
(

O(n)⊗K1/2
)

, (5.18)

and the equivariant index is similarly calculated as

indT (DDirac;O(n)) = t−1/2 tn/2

1− t−1
+ t1/2

t−n/2

1− t

=
t−1/2

(

tn/2 − t−n/2
)

1− t−1
,

(5.19)

where the factor t−1/2 (t1/2) comes from the canonical bundle at z = 0 (w = 0).

Next we consider a manifold X on which a compact Lie group U acts freely. Let

Y = X/U be the quotient and π : X → Y be the associated U -principal bundle. Given a

T -equivariant operator DY for a complex of vector bundles EY on Y , a U × T equivariant

operator DX and a complex of vector bundles EX are obtained as pullbacks by π∗:

EX = π∗EY , DX = π∗DY . (5.20)

We can compute the U ×T equivariant index for the complex (EX , DX) by using the index

on Y as

indU×T (DX) =
∑

α∈RU

indT (DY ⊗Wα)χα , (5.21)

where RU is the set of irreducible representations of U , χα the character of the represen-

tation α, and Wα the vector bundle over Y associated to the U -principal bundle.

Let us apply the index formula to our four-manifold M with U = U(1)2 and the base

Riemann surface Y = Σ. Irreducible representations of U are parametrized by two integers

α = (n, l) and the character is χα = xnyl where x, y are constant. The vector bundle

Wα depends on how U = U(1)2 is fibered over Y . We consider the Dirac operator as a

T -equivariant operator DY = DDirac for the matter sector. Then the index formula (5.21)

yields the index for a U × T equivariant operator DX on X

indU×T (DX) =
∑

n,l∈Z

indT (DDirac ⊗Wn,l)x
nyl . (5.22)

5.2 Lens space

A torus fibration over a Riemann surface Σ is characterized by two first Chern classes for

each circle. We consider the case where one of the circle is nontrivially fibered over a two-

sphere, i. e., M = S1 ×L(d, 1) with the lens space L(d, 1). Since the fibration is nontrivial,

the vector bundle Wα is the line bundle O(dl) over Y = S2, where we choose y to be the

equivariant parameter for the U(1) fiber of degree d for the lens space.
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5.2.1 Matter sector

The Dirac operator of the matter sector acts on the fermion of R-charge r − 1 and the

gauge representation ρ. The integers n and l are physically interpreted as the Kaluza-

Klein momenta along the trivial circle and the nontrivial fiber circle. The twisted complex

is given by

DDirac : S
+ ⊗O(dl + ρ(m))⊗ Lr−1 ⊗ Eρ → S− ⊗O(dl + ρ(m))⊗ Lr−1 ⊗ Eρ , (5.23)

where L and Eρ are the R-symmetry line bundle and the gauge bundle of ρ representation,

respectively. We also take into account the effect of holonomy which shift the degree of the

circle line bundle by ρ(m). We already know the equivariant index of the Dirac operator

and we can calculate and rewrite it as follows:

indG×U×T (Dmatter) =
∑

n,l∈Z

t−r/2
t(dl+ρ(m))/2 − t−(dl+ρ(m))/2

1− t−1
xnydl+ρ(m)u ,

=
∑

n,l∈Z

xnu (pq)r/2
q−(dl+ρ(m)) − pdl+ρ(m)

1− pq
,

(5.24)

where we introduced the new variables p, q

t = (pq)−1 , y = (p/q)1/2 , (5.25)

and u = ρ(g) with the equivariant parameter g for the gauge symmetry. In the first line, we

multiplied t−(r−1)/2 as the index of the R-symmetry bundle for a fermion of R-charge r−1.

To encode the index to the one-loop partition function with (5.2), we employ a dictio-

nary between the elliptic gamma function and the equivariant index

∑

n,l∈Z

xnu
pl

1− q
↔ eiπE(u/p,1/p,q)Γ(u; p, q)−1 , (5.26)

where E is a phase factor arising from the regularization of the infinite product [8, 10, 39–41]

E(u, p, q) = w3

3τσ
+

2− τ2 − σ2

12τσ
w , w = z − τ + σ

2
, (5.27)

with p = e2πiσ, q = e2πiτ and u = e2πiz. One may confirm this by rewriting the infinite

summation and expanding 1/(1− q) as follows

∑

n∈Z

xnu
∑

i∈Z

pi

1− q
=
∑

n∈Z

xnu
∞
∑

i=0

[

pi
q−1

q−1 − 1
+ p−(i+1) 1

1− q

]

,

=
∑

n∈Z

xnu
∞
∑

i,j=0

[

p−(i+1)qj − piq−(j+1)
]

,

↔ eiπE(u/p,1/p,q) Γ(z/p; 1/p, q) .

(5.28)

In the final line, we used the rule (5.2) between the index and the one-loop determinant,

that is

∑

n∈Z

∞
∑

i,j=0

xnu
[

piqj − p−(i+1)q−(j+1)
]

↔ eiπE(u,p,q)Γ(u; p, q) , (5.29)

where Γ is the elliptic Gamma function defined by (B.9).
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It follows that the one-loop partition function of a chiral multiplet of R-charge r on

S1 × L(d, 1) is given by

Z
(r,ρ)
matter(m,u) = eiπE

(r)(ρ(m),u) Γ
(

u(pq)r/2qd−ρ(m); qd, pq
)

Γ
(

u(pq)r/2pρ(m); pd, pq
)

, (5.30)

with

E(r)(m,u) = E
(

u(pq)r/2qd−m, qd, pq
)

− E
(

u(pq)r/2pm−d, p−d, pq
)

. (5.31)

This agrees with the lens index obtained in [28, 42] by the orbifold projection up to the

phase factor. To make contact with their results, the phase factor can be cast into

eiπE
(r)(ρ(m),u) = eiπE

(r)
0 (u) I(r)

0 (ρ(m), u) , (5.32)

where I(r)
0 is the “zero point energy” depending on the holonomies m that appeared

in [28, 42]

I(r)
0 (m,u) =

(

(pq)
1−r
2 u−1

)
m(d−m)

2d

(

p

q

)
m(d−m)(d−2m)

12d

, (5.33)

and E(r)
0 (u) is the remaining phase independent of m

E(r)
0 (u) =

(2z+(r−1)(σ+τ))
(

4z2+2d2στ+r2(σ+τ)2+4z(r−1)(σ+τ)−2r(σ+τ)2 + 2
)

24dστ
,

(5.34)

if u = e2πiz. Whenm = 0, the zero point energy I(r)
0 vanishes and only the “supersymmetric

Casimir energy” E(r)
0 remains [8].

5.2.2 Gauge sector

The relevant differential operator for the gauge sector is the de Rham operator whose

complex is

d : Ω0 d−→ Ω1 d−→ Ω2 . (5.35)

Here we consider the equivariant index on X = S2 with respect to T = U(1) acting on

the complex coordinate z around the north pole as z → tz. The complexification of the de

Rham complex is isomorphic to the Dirac complex

DDirac = d+ d∗ : Ω1 → Ω0 ⊕ Ω2 , (5.36)

namely, the relation between the indices is indT (d) = −indT (DDirac).

The Dirac operator acts on the gaugino of R-charge −1 in the vector multiplet. The

complex is obtained from that of the matter sector in (5.23) by setting r = 0 and replacing

the representation ρ with an adjoint representation α. Therefore, the index of the gauge

sector is equal to the minus of the index of the matter sector with the replacements:

indG×U×T (Dgauge) = −indG×U×T (Dmatter)
∣

∣

r=0,ρ→α
. (5.37)

Combining with the relation (5.37), we end up with the one-loop partition function of

the gauge sector

Zgauge(m) =
∏

α∈AdG

e−iπE
(0)(α(m),v)

(

Γ
(

vqd−α(m); qd, pq
)

Γ
(

vpα(m); pd, pq
))−1

, (5.38)
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where v ≡ α(g) and p, q are defined in (5.25). AdG is the adjoint representation of

the gauge group. Again, this is equal to the lens index of the gauge sector [28, 42] up

to the phase factor because of the relation (5.32) between the phase E(0) and the zero

point energy.8

5.3 T
2 × S

2

Let us make comments on the case with g = 0 and d = 0, i.e., M = T 2×S2. This manifold

is Kähler and there exists gaugino zero modes that prevents us from the complete analysis

of the partition function as we will describe below.

On T 2 × S2, the metric is given by (2.25) with

Ω = 1 , h = h̄ = 0 , c =
2

1 + |z|2 . (5.39)

The R-symmetry background gauge field (2.34) has nontrivial field strength through S2

Ac =
i

2

z̄dz − zdz̄

1 + |z|2 +
i

2
d log s , (5.40)

whose first Chern class is c1(L) = −1 as is consistent with (2.53) in the discussion of

section 2.3. Namely, the R-symmetry line bundle is a line bundle O(−1) of degree −1.

For the matter sector, we consider the Dirac operator on S2 acting on a fermionic field

of R-charge r − 1

DDirac : S
+ ⊗O(−(r − 1))⊗ Eρ → S− ⊗O(−(r − 1))⊗ Eρ . (5.41)

The total index of the matter sector on T 2 × S2 reads

indG×U×T (DX) =
∑

n,l∈Z

t−r/2 − t−1+r/2

1− t−1
xnylρ(g) ,

=



















∑

n,l∈Z

∑

|r|
2

k=−
|r|
2

tkxnylρ(g) , r ≤ 0 ,

0 , r = 1 ,

−∑n,l∈Z

∑

r
2
−1

k=− r
2
+1 t

kxnylρ(g) , r > 1 ,

(5.42)

where the R-charge r is quantized to be integer [10]. Decoding it with the rule (5.2), we

obtain the one-loop partition function of the matter sector on T 2 × S2

Z
(r,ρ)
matter =











∏

|r|
2

k=−
|r|
2

∏

n,l∈Z(2πiξ)
−1 (n+ lτ + kσ + ρ(a))−1 , r ≤ 0 ,

∏

r
2
−1

k=− r
2
+1

∏

n,l∈Z(2πiξ) (n+ lτ + kσ + ρ(a)) , r > 1 ,

=











∏

|r|
2

k=−
|r|
2

−i η(τ)
ϑ1(kσ+ρ(a)|τ)

, r ≤ 0 ,

∏

r
2
−1

k=− r
2
+1 i

ϑ1(kσ+ρ(a)|τ)
η(τ) , r > 1 ,

(5.43)

8In addition to the phase E(0), our partition function (5.38) differs from that of the literatures [28, 42] by

a term which arises from the gauge fixing. We compensate the term by the measure of the matrix model.
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where the new parameters are introduced by9

t = e2πiσ̂ , x = e2πiξ , y = e2πiτ̂ , g = e2πiâ ,

τ =
τ̂

ξ
, σ =

σ̂

ξ
, a =

â

ξ
,

(5.44)

and the infinite products are regularized with the identity [43]

∏

n,l∈Z

(n+ lτ + z) = i
ϑ1(z|τ)
η(τ)

. (5.45)

Our results (5.43) for the matter sector agree with those of [10] that are derived by

reducing the four-dimensional theory to N = (0, 2) theories on T 2. They point out that

the partition functions for r > 1 and r ≤ 0 are the contribution from the Fermi and chiral

multiplets of the N = (0, 2) theories, respectively.

The one-loop partition function of the gauge sector on T 2 × S2 is obtained similarly

by using the result (5.43) for the matter sector and the relation (5.38)

Zgauge =
∏

α∈AdG

i
ϑ1 (α(a)|τ)

η(τ)
, (5.46)

where η and ϑ1 are the Dedekind’s eta and Jacobi’s theta functions defined by (B.1)

and (B.2). Naively, the gauge sector partition function (5.46) can be interpreted as contri-

butions of the vector multiplets of N = (0, 2) theories in two-dimensions [44, 45].

The partition function (5.46), however, is zero because ϑ1(α(a)|τ) vanishes for the

Cartan generators with α = 0. Also, there are the gaugino zero modes on T 2 × S2, which

our derivation assumed not to exist so far. To fix this, we go back to the infinite product

form (5.43) for the Cartan generators, remove them and use the zeta-function regularization
∏

n,l∈Z, n,l 6=0

(n+ lτ) = 2πi η2(τ) . (5.47)

Thus the one-loop partition function of the gauge sector is given by

Zgauge =
(

2πiη2(τ)
)rankG ∏

α∈AdG

i
ϑ1 (α(a)|τ)

η(τ)
. (5.48)

The gaugino zero modes λ0 and λ̃0 from n = l = α = 0 give rise to the measure Dλ0Dλ̃0
that should be taken into account in the path integral.

The one-loop partition function for the matter sector (5.43) is no longer legitimate in

the presence of the gaugino zero modes because of the interaction of the form φ̃λ0ψ. To

simplify the discussion, let us consider a rank-one gauge theory and try to write down the

resulting partition function on T 2 × S2. After localizing the gauge sector, we end up with

the one-loop partition function Zgauge and the measure of the path integral given by the

complex holonomy a around the torus. Then, using the localizing action (4.11) for the

matter of R-charge r and gauge charge q, the resulting partition function takes the form

ZT 2×S2 ∼
∫

d2aZgauge(a)

∫

Dλ0Dλ̃0DφDψDψ̃ e−Sloc(φ,ψ,ψ̃,λ0,λ̃0) , (5.49)

9In the second equality of (5.43), we throw away the factor
∏

n,l∈Z
(2πiξ)±1 which would become one

after the zeta-function regularization.
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with the matter action around the fixed points (4.13)10

Sloc =

∫

T 2×S2

d4x
√
g

[

Dµφ
†Dµφ+

r

2
φ̃φ+

1

2
ψ†σ̄µDµψ − iφ†λ0ψ + iψ̃λ̃0φ

]

. (5.50)

Decomposing the fields with the spherical harmonics of S2, Sloc gives actions of long, chiral

and Fermi multiplets of N = (0, 2) theories on T 2 independent of each other. Since the

gaugino zero modes make the path integral subtle, we have to carry out the path integral

along the line of the careful analysis in [44, 45] where the auxiliary D field in the gauge

sector is kept as a regulator by the end of computations. We will not pursue this interesting

issue in this paper and leave it for future investigation.

5.4 Elliptic fibration over Riemann surface

We have considered the case with base S2 so far. Now we move to Riemann surfaces with

genus g ≥ 1 where there is no U(1) equivariant symmetry for g ≥ 2. Thus, we use the

usual Atiyah-Singer index theorem instead of the equivariant one.

The index of the Dirac operator DDirac : S+ ⊗ E → S− ⊗ E acting on the spinor

bundles twisted by a vector bundle E is given by

ind(DDirac;E) =

∫

X
Â(TX) ch(E) , (5.51)

where Â and ch are the A-roof genus and the Chern character. The formula reduces on

Riemann surfaces X = Σ to

ind(DDirac;E) =

∫

Σ
1 · c1(E) = deg(E) . (5.52)

For the matter sector, the complex is twisted by the R-symmetry line bundle L, which

has the first Chern class (2.53)

c1(L) = −χ(Σ)
2

= g − 1 mod d . (5.53)

The Dirac operator acts on the fermion of R-charge r− 1 in ρ representation (5.23), whose

index is inferred as

ind(Dmatter) =
∑

ρ∈R

∑

n,l∈Z

(

−(r − 1)
χ(Σ)

2
+ dl + ρ(m)

)

xnydl−(r−1)
χ(Σ)
2 u , (5.54)

where the shift of the exponent of y comes from the holonomy along the fiber direction of

the R-symmetry line bundle (2.61). The one-loop partition function follows as

Z
(r,ρ)
matter =

∏

ρ∈R

∏

n,l∈Z

(

n+ τd

(

l − (r − 1)
χ(Σ)

2d

)

+ ρ(aw)

)−(r−1)
χ(Σ)
2

+dl+ρ(m)

, (5.55)

where we used the same parametrization (5.44). ρ(aw) is the holonomy given by (4.60) for

g > 1 and (4.61) for g = 1, respectively.

10We use the fact that Vµ = 0 and R = −2 for T 2 × S2.
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Similarly for the gauge sector, the Dirac operator acts on the gaugino of R-charge −1,

and the one-loop partition function is given by

Zgauge =
∏

α∈AdG

∏

n,l∈Z

(

n+ τd

(

l +
χ(Σ)

2d

)

+ ρ(aw)

)
χ(Σ)
2

+dl+ρ(m)

. (5.56)

6 The generalized index

The result for the partition function on M is a function of the following parameters:

1. g — the genus of Σ, and d — the Chern class of the circle bundle M3. As usual

χ (Σ) = 2− 2g.

2. The part of the complex structure moduli space of M specified by the complex num-

bers σ and τ . In the case g = 0 and d ≥ 3 there is also a discrete choice between

complex structures I and II.

3. The gauge group G and the matter representation R in the group G×F , where F is

the flavor symmetry group.

4. A choice of non-anomalous R-symmetry under which a chiral superfield has a charge

denoted by r. The restriction on r is

r

(

−χ (Σ)

2
mod d

)

∈ Z . (6.1)

This does not apply to g = 0 in the special component I. We denote by χd (Σ) the

unique integer representing

− χ (Σ)

2
mod d , (6.2)

in the range 0, . . . , d− 1.

5. For every U(1) factor of G, a Fayet-Iliopoulos term ξ which may be quantized. This

also requires a choice of element W ∈ H1,2 (M) which determines κ. We denote

κM =

∫

M

√
g κ . (6.3)

We describe this contribution in the next subsection.

6. The moduli space of flat F -connections on M .

We state the final result only for G = U(N).

• g = 0: defining p = e2πiσ, q = e2πiτ and u = e2πiz,

Z
(r,ρ)
matter (z,m) = eiπ(E(u(pq)

r/2qd−m,qd,pq)−E(u(pq)r/2pm−d,p−d,pq))

· Γ
(

u(pq)r/2qd−m; qd, pq
)

Γ
(

u(pq)r/2pm; pd, pq
)

,

Zgauge (z,m) = e−iπE
(0)(α(m),v)

(

Γ
(

uqd−m; qd, pq
)

Γ
(

upm; pd, pq
))−1

,

(6.4)
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with

E(u, p, q) = w3

3τσ
+

2− τ2 − σ2

12τσ
w , w = z − τ + σ

2
, (6.5)

and

E(0)(m,u) = E
(

uqd−m, qd, pq
)

− E
(

upm−d, p−d, pq
)

. (6.6)

Here, z and m will specify a connection, consisting of a continuous holonomy around

the S1 and a discrete holonomy on the fiber respectively, on the group G × F . The

summation and integration are over the gauge part of this connection, x and m̃, and

the flavor part is denoted as af . The partition function is given by

Z0,d (σ, τ, ξ, af ) = (6.7)

1

|W|

∫

M0
G(0,d)

e−iξa
U(1)
w κM

∏

α∈AdG

Zgauge (α (z) , α (m))
∏

ρ∈RG×F

Z
(r,ρ)
matter (ρ (z) , ρ (m)) ,

where
∫

M0
G(0,d)

=
N
∏

a=1





∑

m̃a∈0,...,d−1

∫ 1

0

xa
2π



 , (6.8)

and

|W| =
∏

l

nl! , (6.9)

is the residual Weyl factor. In this case nl are the multiplicity of the different

values for ma.

The partition function above is applicable in the complex structure I, the one usually

used to define the lens space. To recover the partition function in the complex

structure II we need only to replace m by m + (r − 1)(d − 1) in the matter sector,

and by m+1 in the gauge sector. This replacement takes into account the additional

R-symmetry flux on Σ.

• g ≥ 1: here, aw will denote a connection for the group G × F . The summation and

integration are over the gauge part, and the flavor part is denoted as af . An index a

into the Cartan is such that xa = xj(a). For a given weight ρ ∈ R, we define

ρ (aw) = ρa
(

xa + τ
ma

dNj(a)

)

, ρ (m) = ρama , (6.10)

Z
(r,ρ)
matter (z,m) =

∏

n,l∈Z

(

n+ τ

(

l + (r − 1)
χd(Σ)

d

)

+ z

)(r−1)χd(Σ)+dl+m

,

Zgauge (z,m) =
∏

n,l∈Z

(

n+ τ

(

l − χd(Σ)

d

)

+ z

)−χd(Σ)+dl+m

.

(6.11)

The partition function is given by

Zg,d (τ, ξ, af ) = (6.12)

1

|W|

∫

M0
G(g,d)

e−iξa
U(1)
w κM

∏

α∈AdG

Zgauge (α (aw) , α (m))
∏

ρ∈RG×F

Z
(r,ρ)
matter (ρ (aw) , ρ (m)),
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where, in the notation of section 4.2.1, the measure over the moduli space is

∫

M0
G(g,d)

=
∑

partitions N

p
∏

j=1





∑

mj∈0,...,dNj−1

∫

Mg
Nj,mj

∫ 1

0

dxj
2π



 . (6.13)

The outermost sum runs over partitions of N such that
p
∑

j=1

Nj = N , Nj ≥ 1 , (6.14)

and

|W| =
∏

l

nl! , (6.15)

is the residual Weyl factor.

6.1 Classical contributions

Classical contributions corresponding to flat connections can not come from the standard

kinetic terms for either the matter or gauge multiplet as these are δ-exact. The same is

true for the renormalized D-terms in the effective action. In fact, the entire field strength

multiplet, and anything constructed out of it, will vanish. The superpotential does not

contribute because chiral multiplet fields are all required to vanish. Any classical contri-

bution would have to come from D-terms constructed out of the vector superfield V or

topological terms such as the discrete theta angles discussed in [46].

A simple gauge invariant term constructed out of V , which appears only for abelian

factors of the gauge groupG, is the Fayet-Iliopoulos term. In superspace, this term is simply

ξV . (6.16)

On curved space, the appropriate D-term is then11

ξ

∫

(D − iV µaµ) , (6.17)

where

Vµ = −1

2
∇νJνµ + κKµ . (6.18)

D vanishes on the moduli space and we can integrate by parts to get rid of the term

involving the complex structure. What remains is

− iξ

∫

κKµaµ = −iξaw
∫

κ , (6.19)

which depends on aµ only through the holomorphic modulus aw.

Alternatively, we could use the expression for Vµ as the dual of the field strength Hµνρ

for the supergravity two-form Bµν . If H is exact then there is a well-defined two-form B

such that

V = ⋆H = ⋆dB , (6.20)

and the FI term vanishes on the moduli space

ξ

∫

V µaµ ∝ ξ

∫

dB ∧ a = −ξ
∫

B ∧ F a = 0 . (6.21)

11The factor of i appears because of our rotation of the integration contour of D.
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To get a contribution, we must take some nontrivial H ∈ H3 (M,Z). In fact following [11],

the contribution is due to W ∈ H1,2 (M) given by12

H =
i

2
dJ +W , ∂W = 0 , (6.22)

since as we have seen only aw contributes.

6.2 Operators

We can attempt to deform the indices by supersymmetric operators which are annihilated

by the supersymmetry transformation δ. Since the moduli space over which we integrate

involves flat connections, it makes sense to insert supersymmetric Wilson loops.

One would like to insert

WR = TrR

[

P exp

(

i

∫ √
g Kµaµ

)]

, (6.23)

where R denotes a representation of the gauge group and P is the possibly ambiguous path

ordering symbol. This is the would-be analogue of the (supersymmetric) light-like Wilson

loop in Minkowski space. It is obviously BPS. The integration is over all of M , which is

why we cannot make use of the usual path ordering. The operator is thus more like a

smeared Wilson loop.

In the abelian case, this operator is also locally gauge invariant because K is co-closed

(and P is unnecessary). However, then we must worry about invariance under large gauge

transformations. When M = S3 × S1 the situation is better since the relevent large gauge

transformations are generated by functions into the group which “wrap” the S1. One can

ensure invariance by normalizing K to have unit holonomy around this cycle. In fact, the

FI term is an example of this construction. The “charge” of the Wilson loop is determined,

in that case, by the class of H and the (quantized) FI parameter ξ. The evaluation of the

expectation value of a charge q abelian Wilson loop corresponds to an insertion, into the

sum and integration of the index, of

exp
(

iqaU(1)
w

)

, (6.24)

where a
U(1)
w is the gauge U(1)-connection.

When the gauge group is non-abelian but simply-connected we must try to fix the

ambiguity in the definition of WR in some other way. The main point of such an exercise

would be to recover, at the appropriate point in the complex structure moduli space, the

supersymmetric 3d Wilson loop of the form

W3d
R = TrR

[

P exp

(∮

dτ (iaµẋ
µ + σ |ẋ|)

)]

, (6.25)

where σ is the scalar in the 3d vector multiplet which comes from reducing the 4d vector field

along the “time” circle and ẋµ points along the fiber ofM3 → Σ. When such an observable

12The convention in [11] is that K is anti-holomorphic, hence the difference in the relevant cohomology

class.
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is well-defined, the result, at an arbitrary complex structure, would be an insertion of the

expression

WR =
∑

ρ∈R

uρ , (6.26)

where ρ is a weight in R and

uρ = exp (2πiρ (aw)) . (6.27)

7 Discussion

We have arrived at an expression for the partition function of a 4dN = 1 gauge theory, with

a conserved R-symmetry current, on M ≃ S1 ×M3 and M3 a nontrivial circle bundle over

a compact oriented Riemann surface Σ. The parameters entering the partition function

are split between

1. Parameters and deformations of the theory

(a) The gauge group G.

(b) The representation of the matter multiplets R.

(c) A set of admissible Fayet-Iliopoulos terms ξ, one for each independent U(1)

factor in G.

(d) An element of the moduli space of flat connections onM of the flavor symmetry

group F .

2. Parameters of M

(a) The genus, g, of the underlying Riemann surface.

(b) The first Chern class, d, of the circle bundle whose total space is M3.

(c) A point in the complex structure moduli space on M admitting a holomorphic

Killing vector K. This may include a discrete choice in the case g = 0.

(d) A choice of W ∈ H1,2 (M).

The final result is given in (6.12).

Our derivation included some assumptions regarding the geometry of M . Primarily,

we assumed that M admits a Hermitian metric with a holomorphic Killing vector K with

holomorphic coefficients. K is a complex linear combination of commuting generators

embedded in the compact isometry group for the metric on M . The coefficients in this

linear combination, with a fixed embedding, are the only metric parameters to which the

partition function is sensitive. We did not provide a way of restricting the range of these

parameters to the space of admissible metrics or, indeed, prove that some finite range exists.

It would be interesting to find out what restrictions one can put given the final result.

We have argued that gaugino zero modes are absent once M3 is restricted such that

d > 0. This argument relied on the assumption that the action in the localizing term

for the fiber ϕ̂0 is non-degenerate. We have not considered possible zero modes for the
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fields in the chiral multiplets. Such zero modes could exist for specific choices of g, d and

specific representations R. It is sometimes possible to lift such zero modes using the flavor

symmetry deformations.

The final result for the partition function includes an integral over the moduli space

of flat G-connections on M . There exists an alternative approach for integrating over the

gauge zero modes using abelianization (cf. [47]). This was used in a very similar context

in [14] and in [48] and results in a greatly simplified integral. Another possibility is the use

of Higgs branch localization. This was implemented for the superconformal index in [9, 49].

Exact results of the type presented here can be used in a number of ways. A very

common, but technically challenging, application is to duality. Since the partition function

is independent of the RG flow, we can compare the result for putative IR dual theories.

Partition functions on manifolds of varying topologies can be used to study refinements of

duality involving global aspects of the theory as demonstrated in [28]. One can also use

them to explore the mapping of operators. As shown in [50], the “high temperature” limit

of the generalized indices, where the size of the S1 factor shrinks, can be determined in

terms of the a and c type conformal anomalies of the theory.

Our results involve some of the simplest examples of manifolds of the supersymmetry

preserving type found in [2]. The methods we have used can also be applied to manifolds

where K acts with finite isotropy groups. The fluctuation determinants can still, in princi-

ple, be computed using the index theorem. Alternatively, computing the partition function

for a background preserving only one supercharge would require integrating over the in-

stanton moduli space and would likely include having to deal with gaugino zero modes.
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A Conventions

A.1 Spinors and Fierz identities

Our convention is close to [51] except the two-component part. The metric is given

by δmn (m,n = 1, · · · , 4) whose sign is (+ + ++) (Euclidean signature). The totally

antisymmetric Levi-Civita tensor εmnpq has ε1234 = 1. The gamma matrices satisfy

{γm, γn} = 2δmn and γ5 = γ1γ2γ3γ4 with γ25 = 1. All of them are hermitian and 4 × 4

matrices. Under the rotation group SO(4) = SU(2)L × SU(2)R, left- and right-handed

spinors ζα, ζ̃
α̇ are SU(2)L and SU(2)R doublets, respectively. The four-component Dirac

spinor ζ can be decomposed into one left-handed and one right-handed spinors by chirality

projection operators

ζα =

(

1 + γ5
2

ζ

)

α

, ζ̃α̇ =

(

1− γ5
2

ζ

)α̇

. (A.1)
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The indices are raised and lowered by multiplying anti-symmetric tensors εαβ and εαβ
(ε12 = ε21 = 1) from the left

ζα = εαβζβ , ζα = εαβζ
β . (A.2)

An analogous convention holds for dotted spinors. With these spinors, the inner products

are defined by

ψχ ≡ ψαχα ,

ψ̃χ̃ ≡ ψ̃α̇χ̃
α̇ .

(A.3)

The hermitian conjugate of the spinors are defined by

(

ζ†
)α

= (ζα) ,
(

ζ̃†
)

α̇
=
(

ζ̃α̇
)

. (A.4)

We also define the hermitian conjugation for two anti-commuting spinors by

ζ1ζ2 ≡ ζ†2ζ
†
1 . (A.5)

We choose the representation of the gamma matrices as

γm =

(

(σm)αβ̇
(σ̄m)α̇β

)

, γ5 =

(

1

−1

)

, (A.6)

where the sigma matrices are

(σm)αβ̇ = (−i~σ, 1) , (σ̄m)α̇β = εα̇γ̇εβδ(σm)δγ̇ = (σm)βα̇ = (i~σ, 1) . (A.7)

In this representation, the charge conjugation matrix C for Dirac spinors is given by

C =

(

−εαβ
−εα̇β̇

)

, C−1 =

(

−εαβ
−εα̇β̇

)

. (A.8)

The Dirac conjugate spinor defined by ζ̄ = ζTC is then decomposed to ζ̄ = (ζα, ζ̃β̇).

The sigma matrices satisfy the identities

(σm)αβ̇(σm)γδ̇ = 2εαγεβ̇δ̇ , (σm)αβ̇(σn)
αβ̇ = 2gmn ,

σmσ̄n + σnσ̄m = 2gmn , σ̄mσn + σ̄nσm = 2gmn ,

σmσ̄nσl = εmnlkσk + δmnσl + δnlσm − δmlσn ,

σ̄mσnσ̄l = −εmnlkσ̄k + δmnσ̄l + δnlσ̄m − δmlσ̄n .

(A.9)

We can define the anti-symmetric matrices

σmn =
1

4
(σmσ̄n − σnσ̄m) , σ̄mn =

1

4
(σ̄mσn − σ̄nσm) , (A.10)

which satisfy

σmn = −1

2
εmnpqσ

pq , σ̄mn =
1

2
εmnpqσ̄

pq , (A.11)
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and

(σmn)αβ = (σmn)βα , (σ̄mn)α̇β̇ = (σ̄mn)β̇α̇ . (A.12)

There are additional identities including the anti-symmetric matrices

σmσ̄n = 2σmn + δmn , σ̄mσn = 2σ̄mn + δmn , σmσ̄mn =
3

2
σn , σ̄mσmn =

3

2
σ̄n ,

tr(σmnσlk) =
1

2
(εmnlk + δmkδnl − δmlδnk) ,

tr(σ̄mnσ̄lk) =
1

2
(−εmnlk + δmkδnl − δmlδnk) , (A.13)

σmnσlk =
1

4
(εmnlk + δmkδnl − δmlδnk)−

1

2
(δmlσnk + δnkσml) +

1

2
(δmkσnl + δnlσmk) ,

σ̄mnσ̄lk =
1

4
(−εmnlk + δmkδnl − δmlδnk)−

1

2
(δmlσ̄nk + δnkσ̄ml) +

1

2
(δmkσ̄nl + δnlσ̄mk) .

From CγmC
−1 = −γTµ and λ̄A = λBCBA, it follows

λ̄γm1 · · · γmnχ = (−1)nχ̄γmn · · · γm1λ ,

λ̄γ5χ = χ̄γ5λ , λ̄γ5γmχ = χ̄γ5γmλ .
(A.14)

It follows from the definition that the product of spinors satisfy

ψαχβ = ψβχα + εαβψχ ,

ψ̃α̇χ̃β̇ = ψ̃β̇χ̃α̇ − εα̇β̇ψ̃χ̃ ,

ψαχβ =
1

2
εαβψχ− 1

2
(σmn)αβψσmnχ ,

ψ̃α̇χ̃β̇ = −1

2
εα̇β̇ψ̃χ̃− 1

2
(σ̄mn)α̇β̇ψ̃σ̄mnχ̄ ,

ψαχ̃α̇ =
1

2
σmαα̇ψσmχ̃ ,

(A.15)

The Fierz identities we will often use are

(ψ1ψ2)
(

ψ̃3ψ̃4

)

=
1

2

(

ψ1σ
mψ̃4

)(

ψ2σmψ̃3

)

,

(ψ1ψ2)(ψ3ψ4) = −(ψ1ψ3)(ψ2ψ4)− (ψ1ψ4)(ψ2ψ3) ,

(ψ̃1ψ̃2)(ψ̃3ψ̃4) = −(ψ̃1ψ̃3)(ψ̃2ψ̃4) + (ψ̃1ψ̃4)(ψ̃2ψ̃3) .

(A.16)

A.2 Spin connection and Lie derivatives

The spin connection for a given vielbein is defined by

ω mn
µ (e) = emν ∇µe

νn , (A.17)

and the Riemann tensor is given using the spin connection by

R mn
µν (e) = ∂µω

mn
ν − ∂νω

mn
µ + ω ml

µ ω n
νl − ω ml

ν ω n
µl . (A.18)

The Ricci scalar is then

R(e) = eνme
µ
nR

mn
µν (e) . (A.19)

This convention yields a negative Ricci curvature for a round sphere.
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The covariant derivatives for spinors are defined by

∇µζ = ∂µζ +
1

2
ω mn
µ σmnζ , ∇µζ̃ = ∂µζ̃ +

1

2
ω mn
µ σ̄mnζ̃ . (A.20)

The commutator of two covariant derivatives yields the integrability conditions

[∇µ,∇ν ]ζ =
1

2
R mn
µν σmnζ , [∇µ,∇ν ]ζ̃ =

1

2
R mn
µν σ̄mnζ̃ . (A.21)

The Lie derivative of a spinor along a vector X = Xµ∂µ is given by

LXζ = Xµ∇µζ +
1

2
∇µXνσ

µνζ ,

LX ζ̃ = Xµ∇µζ̃ +
1

2
∇µXν σ̄

µν ζ̃ .

(A.22)

The Weyl tensor is define by

Cµνρσ = Rµνρσ +
1

2
(gµρRνσ + gνσRµρ − gµσRνρ − gνρRµσ) +

R

6
(gµσgνρ − gµρgνσ) . (A.23)

A.3 Hermitian coordinates

The holomorphic coordinates of R4 are given by

z1 = −x2 + ix1 , z2 = x4 + ix3 , (A.24)

and the Levi-Civita tensor becomes ε11̄22̄ = 1
4 . The sigma matrices in these coordinates

are obtained from (A.7) by coordinate transformation

σ1 = −σ̄1 =
(

0 0

−1 0

)

, σ1̄ = −σ̄1̄ =
(

0 1

0 0

)

,

σ2 = σ̄2̄ =

(

0 0

0 1

)

, σ2̄ = σ̄2 =

(

1 0

0 0

)

,

(A.25)

and the anti-symmetric matrices (A.10) are given by

σ11̄ = σ̄11̄ = σ22̄ = −σ̄22̄ =
1

4

(

−1 0

0 1

)

,

σ12 = σ̄12̄ =
1

2

(

0 0

−1 0

)

, σ1̄2̄ = −σ̄1̄2 =
1

2

(

0 1

0 0

)

.

(A.26)

B Special functions

The Dedekind’s eta function is defined by

η(τ) = q1/24
∞
∏

n=1

(1− qn) , (B.1)

where q = e2πiτ .
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The Jacobi’s theta functions are defined as follows:

ϑ1(z|τ) = 2q1/8 sin(πz)
∞
∏

n=1

(1− qn)(1− yqn)
(

1− y−1qn
)

,

ϑ2(z|τ) = 2q1/8 cos(πz)
∞
∏

n=1

(1− qn)(1 + yqn)
(

1 + y−1qn
)

,

ϑ3(z|τ) =
∞
∏

n=1

(1− qn)
(

1 + yqn−1/2
)(

1 + y−1qn−1/2
)

,

ϑ4(z|τ) =
∞
∏

n=1

(1− qn)
(

1− yqn−1/2
)(

1− y−1qn−1/2
)

,

(B.2)

with q = e2πiτ and y = e2πiz. Also we define

ϑ0 (z|τ) =
∞
∏

n=0

(1− yqn)
(

1− y−1qn
)

. (B.3)

There is a general formula for an infinite product

∏

n∈Z

n+ a

n+ a+ b
= eπib

1− exp (2πia)

1− exp (2πi (a+ b))
. (B.4)

The elliptic gamma function is defined as (within some range of convergence) [40]

Γ (z, τ, σ) =
∏

l1,l2≥0

1− e2πi((l1+1)τ+(l2+1)σ−z)

1− e2πi(l1τ+l2σ+z)
, (B.5)

or in an alternative region by

Γ (z, τ, σ) = exp



− i

2

∞
∑

j=0

sin (πj (2z − τ − σ))

j sin (πjτ) sin (πjσ)



 , (B.6)

hence

Γ (z, τ, σ) = eπi(τ+σ−2z)
∏

n∈Z| l1,l2≥0

n+ (l1 + 1) τ + (l2 + 1)σ − z

n+ l1τ + l2σ + z
. (B.7)

Alternatively, using the variables

u = e2πiz , p = e2πiσ , q = e2πiτ , (B.8)

it is written as

Γ (u; p, q) =
∏

l1,l2≥0

1− u−1pl1+1ql2+1

1− u pl1ql2
. (B.9)
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