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1 Introduction

Gauge theories in 5d are non-renormalizable and so seem to require a UV completion.

However, in the N= 1 supersymmetric case, and for specific gauge and matter content,

it is possible that the theory flows to a UV fixed point removing the necessity for a UV

completion [1–3]. This follows since for 5d N= 1 gauge theories the low-energy prepotential

on the Coulomb branch is at most cubic, and receives only one-loop corrections. Thus, the

effective coupling takes the following rough form:

1

g2
eff(φ)

=
1

g2
0

+ c|φ| (1.1)

where g2
0 is the bare Yang-Mills coupling and c is the full Chern-Simons coupling which

includes both the classical value and one-loop corrections. If the matter content is such

that the right hand side of (1.1) is positive everywhere on the Coulomb branch, then one

can take the limit g2
0 →∞ and a fixed point may exist.

The simplest example is an SU(2) gauge theory with Nf < 8 flavors which exhibits an-

other feature of 5d gauge theories, enhancement of symmetry. Besides the flavor symmetry,

every non-abelian gauge group has an associated conserved current given by: j ∼ Tr? F∧F ,

which is topologically conserved. The particles charged under it are instantons which are

particles in 5d. In the SU(2) gauge theories with Nf < 8 flavors it is believed that there

is an enhancement of the classical global symmetry U(1) × SO(2Nf ) to ENf+1 [1]. This

stems from a string theory description as well as from their index which forms characters

of ENf+1 [4–7].

In the case of pure SU(2) there is another theory, dubbed Ẽ1, with no enhanced

symmetry. This theory differs from the case with the E1 symmetry by a discrete θ an-

gle as π4(SU(2)) = Z2 [2]. This discrete parameter also exist for general USp(2N) as
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Figure 1. (a) The brane web for SU(2)× SU(2). (b) Going along the Coulomb branch of the left

SU(2) the right one eventually becomes strongly coupled. The arrow shows the D-string becoming

massless at that strong coupling point. (c) Doing an S-duality transformation results in the web

for SU(3) + 2F and one can continue past the singularity.

π4(USp(2N)) = Z2. If fundamental flavors are present then this angle can be changed by

switching the mass sign for an odd number of flavors, and so is no longer physical.

In some cases a fixed point may exist even though the effective coupling blows up, and

thus there is a singularity, away from the origin of the Coulomb branch. Quiver theories

provide such an example as in these theories when going along the Coulomb branch of

one group, the other one will eventually become strongly coupled, and a singularity is

encountered. However, it is argued in [8, 9] that the theory may still have a fixed point,

and the singularity is due to a state becoming massless. Then the theory is better described

in terms of a dual theory, and thus one achieves a continuation past infinite coupling.

A concrete realization of this is given by using brane webs [8, 10]. These can be used

to describe such quiver theories as for example the web of figure 1. Going on the Coulomb

branch, by expanding one of the faces of the web, one sees that the other face shrinks, and

eventually a strong coupling singularity is encountered. Nevertheless, one can now do an

S-duality resulting in the web of figure 1 (c). Note, that at that point a D-string becomes

massless implying that an instanton of the quiver theory becomes massless.

Hence, this suggests that quiver theories can exist as microscopic 5d theories, and that

their strong coupling singulaities can be resolved by switching to a dual weakly coupled

description. A simple example of this is the SU(2) × SU(2) theory with a hypermultiplet

in the bifundamental representation, whose dual is SU(3) with two fundamental hypers

shown in 1. For a complete characterization of the duality we also need to state the SU(3)

Chern-Simons level and the θ angle for each SU(2).1 As worked out in [11], the angles for

the SU(2)×SU(2) theory are (π, π) and the Chern-Simons level for the SU(3) is 0. We will

denote these as SU0(3) + 2F and SUπ(2) × SUπ(2) where a bifundamental is understood

to exist whenever a × is written.

A natural question then is can we find evidence for this duality. One can test these

duality conjectures by comparing the superconformal indices [12] of the two theories which

must match if the theories are dual. Indeed, This was done in [11] for this case, as well as

1Although there is a massless bifundamental one cannot absorb the θ angles into it’s mass sign. This is

clear from the point of view of one SU(2) as switching the mass sign is identical to switching it for an even

number of fundamentals which doesn’t effect the θ angle.
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several generalizations, finding complete agreement. In this paper we continue to explore

this subject motivating several additional dualities, and interesting cases of enhancement

of symmetry. The main tool is the superconformal index which we calculate to reveal the

full global symmetry, and compare it between proposed dual theories.

This article is organized as follows. Section 2 reviews the definitions and the methods

for calculating the 5d superconformal index. In section 3 we discuss the generalization of

the duality for SU(2)× SU(2) by adding two flavors, that is 1F + SU(2)× SU(2) + 1F and

SUπ(2)×SU(2)+2F . Section 4 concentrates on symmetry enhancement in SU(2)×USp(6).

Section 5 deals with generalizations by adding an SU(3) group, that is to theories of the form

SU(2)× SU(3)× SU(2). Section 6 comprises our conclusions. Finally, in the appendix we

discusse the identification of the gauge theory from the web, particularly the determination

of the CS levels and θ angles.

2 The superconformal index

The superconformal index is a characteristic of superconformal field theories [12]. It is

a counting of the BPS operators of the theory where the counting is such that if two

operators can merge to form a non-BPS multiplet they will sum to zero. Thus it achieves

being a characteristic of a superconformal theory as besides this merging the numbers of

BPS operators cannot change under continuous deformations. Besides directly counting

the operators the index can also be evaluated by a functional integral where the theory is

considered on Sd−1 × S1.

Specifically for 5d field theories the theory is considered on S4×S1. Then the represen-

tations of the superconformal group are labeled by the highest weight of its SOL(5)×SUR(2)

subgroup. We will call the two weights of SOL(5) as j1, j2 and those of SUR(2) as R. Then

following [4] the index is:

I = Tr (−1)F x2 (j1+R) y2 j2 qQ . (2.1)

Here x, y are the fugacities associated with the superconformal group, while the fugacities

collectively denoted by q correspond to other commuting charges Q, generally flavor and

topological symmetries.

The index can be evaluated from the previously mentioned path integral using the

method of localization. In the case at hand the localization procedure was done in [4].

The result is that the index can be divided into two parts. The first is the perturbative

part coming from the one loop determinant one gets when evaluating the saddle point. It

depends on the field content of the theory. We will only be interested in hypermultiplets

and vector supermultiplets which contribute:

fvector(x, y, α) = −
x
(
y + 1

y

)
(1− xy)

(
1− x

y

)∑
R

e−iR·α (2.2)

fmatter(x, y, α) =
x

(1− xy)
(

1− x
y

) ∑
w∈W

Nf∑
i=1

(
eiw·α+imi + e−iw·α−imi

)
(2.3)
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where mi are the fugacities associated with the i’th flavor and α are gauge fugacities. The

sum in (2.2) is over the roots of the Lie groups and the first sum in (2.3) is over the weights

of the appropriate flavor representations.

This builds what is called the one particle index. In order to evaluate the full pertur-

bative contribution one needs to put this in a plethystic exponent which is defined as:

PE[f(·)] = exp

[ ∞∑
n=1

1

n
f(·n)

]
(2.4)

where the · represents all the variables in f (which in our case are just the various fugacities).

The second part comes from instantons. At the north or south pole of S4 the local-

ization conditions are somewhat more lax than elsewhere on the sphere, and point-like

instantons (anti-instantons) localized at the north (south) pole are consistent with the lo-

calization conditions. Therefore they must also be included in the index. This is done by

integrating over the full instanton partition function.

Finally in order to calculate the full index we take the perturbative result given by (2.4)

with the one particle index as f . This needs to be multiplied by the instanton contributions

and integrated over the gauge group.

The contributions of the instantons are expressed as a power series in the instanton

number k:

Z inst = 1 + aZ1 + a2Z2 + . . . , (2.5)

where we have called the U(1)inst. fugacity a. These express the contributions of insantons

localized at the north pole. Likewise there will be contributions of the south pole, which

is just the complex conjugate of that for the north pole. So the full instanton contribution

is given by |Z inst|2. Thus, calculating the instanton contributions reduces to calculating

Zk which is generically the hardest part of the computation. We will expand the index in

a power series in x, and calculate to a finite order. This has the advantage as Zk ≈ xc(k)

where c is an increasing function of k. Hence, to a finite order in x only finitely many

instantons are needed.

The partition functions Zk are the 5d version of the Nekrasov partition function for

the k instantons [13] which is expressed as an integral over what is called the dual gauge

group.2 The contributions to the integrand come from the gauge degrees of freedom and

from flavors charged under the group. The exact form of these, for the group and matter

contents that we will need, can be found in [4, 7, 11]. As these are quite lengthy we will

not reproduce them here.

The integral can then be evaluated using the residue theorem once supplemented with

the appropriate pole prescription which determines which poles should be taken. The

poles can be classified depending on whether they originate from the contributions of the

2We can think of a k instanton as k D0-branes immersed inside a stack of D4-branes. Then one can

construct the instanton moduli space as the subspace describing the deformations of the D0-branes inside

the D4-branes. This in turn can be identified with the Higgs branch in the D0-branes world volume theory.

In this presentation the dual gauge group is identified with the gauge group on the D0-branes. Therefore

its rank grows with k.
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gauge group, matter content, or are poles at zero or infinity. The prescription for gauge

group associated poles can be found in [4, 7, 11]. Matter representations other than the

fundamental also add poles to the integral, and the correct prescription for dealing with

them can be found in [7]. Finally, there can be poles at zero or infinity whose prescription

will be mentioned shortly.

There are several problems encountered when calculating instanton contributions. The

most pertinent to our case are two issues that appear for U(N) groups and are thought to

occur because of the failure of the U(1) part to decouple. First, there is a sign discrepancy

between the U(N) and SU(N) results of (−1)κ+
Nf
2 where κ is the bare Chern-Simons level.

Second, there are sometimes contributions from decoupled states that must be removed.

A thorough discussion of these problems can be found in [5–7, 11].

The first problem was dealt with by changing the signs by a factor of (−1)κ+
Nf
2 .

Dealing with the second one requires identifying the decoupled states and removing their

contributions. This can be easily achieved if there is a brane web description where it is

manifested by the existence of parallel external legs. There is a decoupled D-string state

associated with these legs which is the state we need to mod out.

From a field theory perspective this is seen as a lack of invariance under the super-

conformal group x→ 1
x , and under flavor symmetries if these are not realized explicitly in

the integrand. For example, in the case of SU(2) × SU(2) + 2F , which we discuss later,

the integrand shows a global U(1) bifundamental symmetry, which is the correct global

symmetry for U(2)×U(2)+2F , but the bifundamental global symmetry is actually SU(2).

The invariance under both the superconformal group and the full classical global symmetry

is only achieved once these states are modded out.

The removal of these states is generally achieved by:

Zc = PE

 x2
∑
qimi

(1− xy)
(

1− x
y

)
Z (2.6)

where the sum runs over the decoupled states, and mi, qi are their flavor and topological

charges respectively.

The previously mentioned poles at zero or infinity are related to these decoupled states

and only appear where these states are present. As a result these poles can be either

included or not, and the change is then absorbed in the removal factor. The expression (2.6)

is valid when all these poles, that are within the contour, are included.

We used a brane web description to determine the number of such decoupled states

where there is one for every pair of parallel external branes. We then used the web as well

as the constraints coming from x→ 1
x invariance for the 1-instanton to fully determine mi.

Then the full partition function is determined via (2.6). As a consistency check we verified

that all the partition functions we used are invariant under x→ 1
x , and form characters of

the classical global symmetry.

Finally, in the case of SU(2), there are two different ways one can calculate the index

depending on whether one uses the expressions for U groups or for USp groups which stems

from the fact that SU(2) = USp(2). Since the moduli space is realized differently in both
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cases the dual gauge groups and integrands are different even though the final results must

agree. We denote these two different approaches as the U and USp formalisms. With the

exception of section 5, we have employed the U formalism to calculate SU(2) instantons.

In the U formalism the group is regarded as U(2) and reduction to SU(2) is done by setting

the overall U(1) fugacity to 1. As previously explained, one also has to remove additional

remnants of this U(1), such as decoupled states, to get the correct result.

In the U formalism one can naturally add a CS level. This again follows because

the theory considered is U(2) where such a term is possible in contrary to SU(2). When

reducing to SU(2) one finds that this CS level determines the θ angle of the SU(2), where

in general changing the CS level by one changes the θ angle by π. By explicitly comparing

the resulting partition function with the one evaluated with the USp formalism, where a

θ angle can be naturally accommodated, one finds that CS level 0 corresponds to θ = 0

while CS level 1 corresponds to θ = π. The addition of flavor shifts this identification

by 1
2 . So, for example, for Nf = 2 CS level 0 corresponds to θ = π and for Nf = 3 CS

level 1
2 corresponds to θ = π and CS level −1

2 corresponds to θ = 0. When flavors are

present the difference between the angles can be undone by redefining the flavor fugacities.

Nevertheless, it can be important if the flavors are provided by bifundamentals.

3 Adding more flavor

In this section we consider the extension of the duality between SUπ(2) × SUπ(2) and

SU0(3) + 2F by adding additional flavors. The generalization to one extra flavor, that is

to SUπ(2) × SU(2) + 1F , was already considered in [11], where the dual was proposed to

be SU± 1
2
(3) + 3F . We extend this to the case of two extra flavors.3 We now have a choice

on the SU(2) × SU(2) side of whether to have the two flavors under the same group or

one under each. The starting point for the two cases are the brane webs shown in figure 2

and 3. Examining their S-duals we conjecture that:

SUπ(2)× SU(2) + 2F ⇔ SU±1(3) + 4F (3.1)

1F + SU(2)× SU(2) + 1F ⇔ SU0(3) + 4F . (3.2)

In both cases, the classical global symmetries do not agree, but there is an instanton

driven enhancement leading to the same quantum symmetries. The classical global symme-

try of SUπ(2)× SU(2) + 2F consists of the topological symmetries, UI1(1) for the flavored

group and UI2(1) for the unflavored group, and the flavor symmetries which are SUM (2) for

the bifundamental and SUF1(2)×SUF2(2) = SO(4) for the two flavors. The classical global

symmetry of 1F +SU(2)×SU(2)+1F consists of two topological U(1)’s, two flavor U(1)’s,

and the SUM (2) of the bifundamental. Both SU(3) theories have a topological UT (1), a

baryonic UB(1) and an SU(4) flavor symmetry.

In the case of (3.1), the 1-instanton of the flavored SU(2) gauge group leads to an

enhancement of UI(1) × SUM (2) × SUF1(2) → SU(4). This can be understood as this

3The case of 2F+SU(2)×SU(2)+2F was also considered in [14] where the proposed dual was SU0(3)+6F .

The theories studied in this section should be related to this duality by integrating out 2 flavors.
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Figure 2. (a) The brane web for SUπ(2) × SU(2) + 2F . (b) The S-dual web which describes

SU1(3) + 4F . The dotted lines show the D1-strings corresponding to decoupled states.

Figure 3. (a) The brane web for 1F + SU(2)× SU(2) + 1F . (b) The S-dual web which describes

SU0(3) + 4F . The dotted lines show the D1-strings corresponding to decoupled states.

gauge group sees effectively 4 flavors and so, ignoring the gauging of the first SU(2) for

a moment, leads to an E5 = SO(10) global symmetry. However, an SU(2) inside this

SO(10) is actually a gauge symmetry leading to the breaking SO(10)→ SO(4)× SO(6)→
SUG(2)× SUF2(2)× SU(4) where SUG(2) is the unflavored SU(2) gauge group. Thus, the

quantum global symmetry is U(1)× SU(2)× SU(4).

This doesn’t match the global symmetry of the SU(3) theory, but on that side there

is an enhancement of a combination of UI(1) and UB(1) to SU(2). The appropriate com-

bination is the diagonal if κ = 1 and the anti-diagonal if κ = −1. This enhancement is

related by flow, when the flavors are given a mass, to the enhancement in SU±3(3) found

in [11]. Thus, this theory also has U(1) × SU(2) × SU(4) global symmetry. Note that in

this example both theories have undergone symmetry enhancement, where the enhanced

symmetry on one side is realized perturbativly on the other side.

In the case of (3.2) there is an enhancement of the bifundamental SU(2) and two U(1)’s,

which are combinations of the topological and flavor ones for both groups, to SU(4). As we

will show from the index calculation, this is brought by the (1,0) + (0,1) + (1,1)-instantons,

and is similar to the enhancement to SU(4) of the SU0(2) × SU0(2) theory found in [11].

There is no enhancement on the SU(3) side and so the symmetries match, both theories

having a U(1)2 × SU(4) global symmetry.

– 7 –
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The discrete symmetries of the two theories also match. In particular, in (3.2) there

is a symmetry of exchanging the two groups which has no analog in the SU(3) theory.

However, that theory has charge conjugation symmetry with no analog on the quiver

side. The duality identifies the two discrete symmetries, similarly to the case without the

flavors [11].

3.1 Index calculation

In the rest of this section we calculate the indices for these 4 theories and compare them,

giving further support to the above discussion.

We start with the case of SUπ(2)×SU(2)+2F . We use q, t for the instanton fugacities

(t for the flavored group), z for the bifundamental SUM (2), and c, l for the SU(2)× SU(2)

flavor symmetry. As can be seen from figure 2, There is a problem with parallel branes so

we removed the two decoupled states by:

Zc = PE

 x2t
(
zc+ 1

zc

)
(1− xy)

(
1− x

y

)
Z . (3.3)

These match the two decoupled D-strings seen in figure 2 (a). The flavor charges arise

due to fermionic zero modes. Using (3.3) we calculate the index of this theory. We worked

to order x5 which requires the contributions from the (1,0)+(0,1)+(2,0)+(1,1)+(0,2)+(1,2)

instantons. Other instantons do not contribute as they enter at higher order in x, or else

they carry gauge charges and form gauge invariants only at higher orders. We find:

IndexSU(2)2+(0,2)F = 1+x2

(
5+

1

c2
+c2+

1

l2
+l2+

1

z2
+z2+

(
c+

1

c

)(
t+

1

t

)(
z+

1

z

))
(3.4)

+x3

((
y+

1

y

)(
6+

1

c2
+c2+

1

l2
+l2+

1

z2
+z2+

(
c+

1

c

)(
t+

1

t

)(
z+

1

z

))
+

(
c+

1

c

)(
q+

1

q

)(
l+

1

l

)
+

(
qt+

1

qt

)(
l+

1

l

)(
z+

1

z

))
+O

(
x4
)

where we have presented the results only to order x3 to avoid over cluttering, although we

calculated to order x5.

One can read the resulting global symmetry from the x2 terms. There are the perturba-

tive currents spanning the classical U(1)×U(1)×SU(2)×SU(2)×SU(2) symmetry, and then

there are also the 8 states coming from the (0,1)-instanton. These provide the necessary

currents to enhance U(1) × SU(2) × SU(2) to SU(4) suggesting that the global symmetry

is made of a U(1) (spanned by q), an SU(2) (spanned by l) and an SU(4) (spanned by z, c

and t). Indeed, as we will show, the index can be written in characters of SU(4), at least

to the order we are working in.

Next we turn to the SU0(3) + 4F theory. There are no problems with either parallel

branes or signs. We use a for the instanton fugacity, and span the UF (4) by:
bz 0 0 0

0 b
z 0 0

0 0 pc 0

0 0 0 p
c

 . (3.5)
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We separate the index into a perturbative contribution, which is identical also in the

SU±1(3) + 4F case, and an instanton contribution. The perturbative contribution is:

Indexpetr.
SU(3)+4 = 1 + x2

(
5 +

1

c2
+ c2 +

1

z2
+ z2 +

(
c+

1

c

)(
p

b
+
b

p

)(
z +

1

z

))
(3.6)

+ x3

((
y +

1

y

)(
6 +

1

c2
+ c2 +

1

z2
+ z2 +

(
c+

1

c

)(
p

b
+
b

p

)(
z +

1

z

))
+

(
c+

1

c

)(
b2p+

1

b2p

)
+

(
z +

1

z

)(
bp2 +

1

bp2

))
+O

(
x4
)
.

Next are the instanton contributions. For SU0(3)+4F only the 1-instanton contribute

at this order for which we find:

Indexinst.
SU0(3)+4 = x3

(
a+

1

a

)(
p

b
+
b

p
+

(
z +

1

z

)(
c+

1

c

))
+O

(
x4
)

(3.7)

where we labeled the SU(3) instanton fugacity by a.

It is now apparent that there is no enhancement in the SU0(3) + 4F (no x2 term

in (3.7)) so this theory cannot be dual to SU(2)× SU(2) + 2F . This is in accordance with

the web picture which suggests the dual to be SU±1(3)+4F . The two theories differ by the

contributions of their instantons. In the SU±1(3) + 4F there are parallel external branes

and one must mod out the decoupled U(1) state by:

ZcSU1(3)+4F = PE[
bpax2

(1− xy)(1− x/y)
]ZSU1(3)+4F (3.8)

where we have chosen a positive Chern-Simons level (the expression for the negative case

can be generated by charge conjugating the result for the positive case).

Using these we can calculate the instanton contribution for this theory where to this or-

der we get contributions from the 1-instanton, entering at x2, and the 2-instanton, entering

at x4. We find:

Indexinst.
SU1(3)+4 = x2

(
abp+

1

abp

)
+ x3

((
abp+

1

abp

)(
y +

1

y

)
+

(
p

a
+
a

p

)(
z +

1

z

)
+

(
b

a
+
a

b

)(
c+

1

c

))
+O

(
x4
)
. (3.9)

Note the x2 instanton contribution which enhances the diagonal instanton-baryonic

symmetry to SU(2). Now comparing the x2 terms one can see that the indices indeed

match to that order if we take t = b
p and l =

√
abp. Furthermore, the matching of the

x3 terms demands q =
√

a
b3p

. With this mapping we find that the two indices match

to order x5.
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As suggested by the duality, the index can be written in characters of the quantum

symmetry U(1)× SU(2)× SU(4):

IndexSU1(3)+4 = 1+x2
(
1+χ0[3,1]+χ0[1,15]

)
+x3

(
χy[2]

(
2+χ0[3,1]+χ0[1,15]

)
(3.10)

+ χ1[2,4] + χ−1[2, 4̄]
)

+ x4
(
χy[3](2 + χ0[3,1] + χ0[1,15])

+ χy[2]
(
χ1[2,4] + χ−1[2, 4̄]

)
+ χ0[1,84] + χ0[1,20] + χ0[1,15] + 2

+ χ0[5,1] + χ0[3,1] + χ0[3,15]
)

+ x5
(
χy[4]

(
2 + χ0[3,1] + χ0[1,15]

)
+ χy[3]

(
χ1[2,4] + χ−1[2, 4̄]

)
+ χy[2]

(
χ0[1,84] + χ0[1,45] + χ0[1, 4̄5]

+ χ0[1,20] + 4χ0[1,15] + 3 + χ0[5,1] + 4χ0[3,1] + 2χ0[3,15]
)

+χ1[2,36]+χ−1[2, 3̄6]+χ1[2,4]+χ−1[2, 4̄]+χ1[4,4]+χ−1[4, 4̄]
)
+O

(
x6
)

where we have used the notations χy[d] for the character of the d dimensional representation

of SUy(2), and χq[d1, d2] for the character of a state in a d1 dimensional representation of

SUF (2), a d2 dimensional representation of SU(4) and with charge q under the remaining

U(1). In terms of the classical U(1)’s, the remaining U(1) is spanned by
√
a
bp which we

have normalized to be charge one (this is in terms of the SU(3) variables where in the

SU(2)×SU(2) case it is spanned by q
√
t). Finally, we note that for the 20 and 84 of SU(4)

the dimension is not enough to fix the representation so we should add that these are the

ones corresponding to the Cartan weights (0, 2, 0) and (2, 0, 2) respectively.

Next we turn to the 1F + SU(2) × SU(2) + 1F theory which the previous argument

suggests should be dual to SU0(3) + 4F . As we are used to by now, there are decoupled

D-strings that must be removed, the exact form depending on the chosen U(2) CS terms

which is reflected in the web. We use the web shown in figure 3 so the required correction is:

Zc1F+SU(2)×SU(2)+1F = PE

x2
(
tz
√
l + q

√
j

z +
√
jlqt

)
(1− xy)(1− x/y)

Z1F+SU(2)×SU(2)+1F (3.11)

where we have used z again for the bifundamental fugacity, t and q for the instanton

fugacities and l and j for their respective flavors. In the field theory this corresponds to

taking κ =
(

1
2 ,

1
2

)
. There is also another web, not related by an SL(2,Z) transformation

to the one in figure 3, with a different spectrum of decoupled states which corresponds

to the case of κ =
(

1
2 ,−

1
2

)
in the field theory (this is similar to the flavorless case with

θ1 = θ2 = 0 [11]). We have checked that both methods give the same results at least to

the order we are working in.

The decoupled states in (3.11) correspond to the three possible different D-strings

connecting the three parallel NS5-branes in 3 (a). The charges of these states under the

instanton and bifundamental symmetries can be inferred by examining their behavior under

changing of the positions of the external NS5-branes (where moving the first and last branes

corresponds to changing the coupling constants of the two groups and moving the middle

one is related to changing the bifundamental mass). The additional flavor charges arise

from fermionic zero modes.
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To order x5 we get contributions from the (1,0)+(0,1)+(1,1)+(2,0)+(0,2)+(2,1)+

(1,2)+(2,2)-instantons. We find:

IndexSU(2)2+(1,1)F = 1 + x2

(
5 + z2 +

1

z2
+

(
z +

1

z

)(
1√
jq

+
√
jq +

1

t
√
l

+ t
√
l

)
+ qt

√
jl +

1

qt
√
jl

)
+ x3

((
y +

1

y

)(
6 + z2 +

1

z2
+ qt

√
jl +

1

qt
√
jl

+

(
z+

1

z

)(
1√
jq

+
√
jq+

1

t
√
l
+t
√
l

))
+

(
j+

1

j

)(
l+

1

l

)(
z+

1

z

)
+

(√
j

q
+

q√
j

)(
l+

1

l

)
+

(
t√
l
+

√
l

t

)(
j+

1

j

)
+

(
z+

1

z

)(
qt√
lj

+

√
lj

qt

))
+O

(
x4
)
. (3.12)

The classical U(1)4×SU(2) global symmetry is clearly visible from the x2 terms. In addition

there are extra states coming from the (1,0)+(0,1)+(1,1)-instantons which provide enough

states to enhance U(1)×U(1)×SU(2)→ SU(4). This is most apparent by setting c2 = qt
√
jl

and p2

b2
= q
√
j

t
√
l

which equates the x2 terms in (3.12) with the ones in (3.6). Further setting

a2 = qt√
j3l3

and b3 = t
√
j

q
√
l

also equates the x3 terms in (3.6), (3.7). With these identifications

the two indices match to order x5.

The index can be written in characters of the global U(1) × U(1) × SU(4) symmetry

where it reads:

IndexSU0(3)+4F = 1+x2
(
2+χSU(4)[15]

)
+x3

(
χy[2]

(
3+χSU(4)[15]

)
+

1

b
3
2 p

3
2

χSU(4)[4] (3.13)

+ b
3
2 p

3
2χSU(4)[4̄] +

(
a+

1

a

)
χSU(4)[6]

)
+ x4

(
χy[3]

(
3 + χSU(4)[15]

)
+ χy[2]

(
1

b
3
2 p

3
2

χSU(4)[4] + b
3
2 p

3
2χSU(4)[4̄] +

(
a+

1

a

)
χSU(4)[6]

)
+χSU(4)[84]+χSU(4)[20]+2χSU(4)[15]+3

)
+x5

(
χy[4]

(
3+χSU(4)[15]

)
+ χy[3]

(
1

b
3
2 p

3
2

χSU(4)[4] + b
3
2 p

3
2χSU(4)[4̄] +

(
a+

1

a

)
χSU(4)[6]

)
+χy[2]

(
χSU(4)[84]+χSU(4)[45]+χSU(4)[4̄5]+χSU(4)[20]+6χSU(4)[15]+6

)
+

1

b
3
2 p

3
2

(
χSU(4)[36] + χSU(4)[4]

)
+ b

3
2 p

3
2
(
χSU(4)[3̄6] + χSU(4)[4̄]

)
+

(
a+

1

a

)(
χSU(4)[64] + χSU(4)[6]

))
+O

(
x6
)

where the notation χSU(4)[d] stands for the d dimensional representation of SU(4). For the

remaining U(1)’s we have used the notation of the SU(3) theory though they can be easily

mapped to the corresponding quiver ones. Like in the previous case some of the SU(4)

representations are ambiguous, and are the same as stated above.
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4 Enhancement of symmetry in SU(2) × USp(6)

In this section we explore enhancement of symmetry in theories of the form SU(2)×USp(2+

2M). The cases M = 0, 1 where covered in [11], and for M > 2 one doesn’t expect a UV

fixed point to exist [1], so we concentrate on the case M = 2, that is SU(2)× USp(6). As

we are mainly interested in symmetry enhancement, we take the SU(2)’s θ angle to be 0,

and leave the USp(6)’s angle unspecified for the moment.

There are several problems with calculating the instanton contributions for this the-

ory. First, for USp(6) we must use the USp formalism and one then encounters problems

when evaluating digroup instantons [11]. As a result, we will ignore their contributions

seeing what we can learn just from states neutral under the USp(6) topological symmetry.

Thus, we consider only instantons of the SU(2) theory. These are essentially identical to

instantons of SU(2) + 6F with part of the SO(12) global symmetry identified with the

USp(6) gauge symmetry. We use the USp formalism to take the SU(2) instantons into

account, but the Sp formalism suffers from a problem here.4 Specifically, the result one

finds for the 2-instanton partition function of USp(2)+ 6F is not x→ 1
x invariant similarly

to what happens in the problem with parallel legs in the U formalism. This can be fixed

by correcting the partition function by:

ZcUSp(2)+6F = PE

[
x2q2

(1− xy)(1− x/y)

]
ZUSp(2)+6F (4.1)

where we have denoted the instanton fugacity by q. Using this one can recover the index

for USp(2) + 6F as predicted in [4] and evaluated by [5–7].

We evaluate the index to order x5, requiring the contributions of the (1,0)+(2,0)+

(3,0)+(4,0)-instantons. The lowest order terms in the index are:

IndexSU(2)×USp(6) = 1 + x2

(
3 + z2 +

1

z2
+

(
q +

1

q

)(
z3 + z +

1

z
+

1

z3

)
+ q2 +

1

q2

)
+ x3

(
y+

1

y

)(
4+z2+

1

z2
+

(
q+

1

q

)(
z3+z+

1

z
+

1

z3

)
+q2+

1

q2

)
+O

(
x4
)
. (4.2)

One can see the conserved currents of the classical global symmetry as well as instanton

contributions are exactly the ones necessary to enhance UI(1)× SUM (2)→ G2, where the

spanning is such that: 7 = z2 + 1 + 1
z2

+
(
z + 1

z

) (
q + 1

q

)
. Using this it is possible to show

that the index can be written in G2 characters as:

IndexSU(2)×USp(6) = 1 + x2(1 + χ[14]) + x3χy[2](2 + χ[14]) (4.3)

+ x4(χy[3](2 + χ[14]) + χ[77](0,2) + χ[27] + χ[14] + χ[7] + 2)

+ x5
(
χy[4](2 + χ[14]) + χy[2]

(
χ[77](3,0) + χ[77](0,2) + χ[27]

+ 4χ[14] + 2χ[7] + 3)) +O
(
x6
)
.

4The U formalism is quite inconvenient for Nf > 4 as one finds, in addition to decoupled states similar

to the cases with less flavors, also ones charged under the gauge symmetry. It is not yet known how to

remove these contribution from the Nekrasov partition function.
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Figure 4. The brane web for SUπ(2) × SU0(3) × SU0(2). (a) The web at a generic point on the

moduli space. (b) The web deformed as to exhibit the quiver structure.

Figure 5. The brane web for SUπ(2)× SU−1(3)× SUπ(2). (a) The web at a generic point on the

moduli space. (b) The web deformed as to exhibit the quiver structure.

where we employed the notation χ[d] for the d-dimensional representations of G2. As

there are two 77 dimensional representations of G2, both appearing in the index, we have

added their Cartan weights. This strongly suggests that the theory has an enhancement

of symmetry to G2.

So far we have not considered states charged under the instanton U(1) of the other

group, and thus the results are independent of the USp(6)’s θ angle. Including these

states requires dealing with the problems of digroup instantons in the USp formalism. We

postpone this for future study.

5 Inserting an SU(3) group

In this section we concentrate on generalizations where we add an SU(3) group between

the two SU(2)’s so that the gauge group is SU(2)×SU(3)×SU(2). Next, we need to choose

the level of the SU(3) CS term. There are two possible choices for which there is a brane

web without self intersecting branes. These are the level 0 case, shown in figure 4 (a), and

the ±1 case, shown in figure 5 (a). Figures 4 + 5 (b), show the web after a large mass has

been given to the bifundamentals. From this the gauge content becomes evident, and it is

possible to read the CS level, as explained in the appendix.

A natural question is then whether there are more discrete parameters, particularly

the θ angles. Each SU(2) group has such a discrete parameter, but there are massless

flavors in the theory, the two bifundamentals. The bifundamentals imply the θ angles can
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Figure 6. The brane web for 1F + SU1(3)× SU−1(3) + 1F . (a) The web at a generic point on the

moduli space which is clearly the S-dual of the one in figure 4. (b) The web deformed as to exhibit

the quiver structure.

be absorbed into their mass sign by doing charge conjugation. However, this changes the

sign of the SU(3) CS level, and also changes both angles simultaneously. Thus, when the

CS level is zero there is a single discrete parameter given by the relative angle, θ1 − θ2.

When the CS level is non-zero both angles are physical, but a theory with CS level and

angles (θ1, κ, θ2) is related by charge conjugation to one with (θ1 + π,−κ, θ2 + π) and so is

physically equivalent.

This is also reflected in the brane webs, which one can deform so as to change both

angles. However, it is not possible to change one of them, while keeping the SU(3) CS term

fixed. The angles can now be determined from the webs in figures 4, 5 (b) as explained in

the appendix. One can also draw webs corresponding to other choices of the angles, but

these don’t appear to have gauge theory duals, and will not be considered here.

Next, we can do S-duality to both theories leading to the webs depicted in figures 6, 7.

From these we conjecture the following dualities:5

SUπ(2)× SU0(3)× SU0(2)⇔ 1F + SU1(3)× SU−1(3) + 1F (5.1)

SUπ(2)× SU−1(3)× SUπ(2)⇔ SU0(2)× SU0(4) + 2F . (5.2)

In the case of (5.1), the classical global symmetries match, where in both cases it is

U(1)5 consisting of topological, baryonic and bifundamental U(1)’s. Nevertheless, in both

cases we will show that there is an enhancement of U(1) × U(1) → SU(2) × SU(2). In

the theory on the right this follows since each SU±1(3) sees 4 flavors leading to the same

enhancement as in section 3. For the theory on the left the enhancement is brought about

by the instantons of each SU(2) group. Concentrating on one of these for a moment, this

SU(2) gauge group sees 3 flavors. If we ignore the gauging of SU(3), we would get an

enhanced SU(5) symmetry. However, as an SU(3) inside it is actually a gauge symmetry

only the commutant U(1) × SU(2) is realized as a global symmetry. The same thing also

occurs in the other SU(2) gauge group leading to the said enhancement. Thus, the quantum

global symmetry of these theories is U(1)3 × SU(2)2.

5We thank Davide Gaiotto for suggesting the first duality to us.
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Figure 7. The brane web for SU0(2)×SU0(4) + 2F . (a) The web at a generic point on the moduli

space which is clearly the S-dual of the one in figure 5. (b) The web deformed as to exhibit the

quiver structure.

In the case of (5.2), the classical global symmetries do not match, but the quantum

symmetries match. In the theory on the left, The classical global symmetry is again U(1)5.

Like the previous case, the SU(2) instantons lead to an enhancement of U(1) × U(1) →
SU(2)×SU(2), but now there is one more enhanced SU(2) coming from the middle SU±1(3)

(which sees effectively 4 flavors).

The theory on the right has classical global symmetry of U(1)4 × SU(2). In addition

there is an enhancement of U(1) × U(1) → SU(2) × SU(2) coming from the instantons of

the SU(2) group. This follows as the SU(2) sees 4 flavors and, ignoring the gauging of

SU(4), gives an enhancement to E5 = SO(10). However, part of this symmetry is actually

the gauge SU(4) = SO(6) and not a global symmetry. There are two possible embeddings

of SO(6) inside the SO(10) depending on whether the latter is broken to SO(4)× SO(6) or

SO(2)×SO(6)×SO(2) which are in one to one correspondence with the SU(2) θ angle. The

choice SO(4)×SO(6) corresponds to the θ = 0 case, and indeed gives the said enhancement.

Overall, the quantum symmetry in both theories is SU(2)3 ×U(1)2.

Finally, the discrete symmetries also match. In (5.2), the SU(2) × SU(3) × SU(2)

theory is invariant under exchanging the two end groups which has no analogue in the

SU(2) × SU(4) theory. However, this theory is charge conjugation invariant while the

SU(2)×SU(3)×SU(2) theory is not. The duality should identify these symmetries. In (5.1),

both theories are invariant under a combination of charge conjugation and exchanging the

two end groups.

5.1 Index calculation

Now we want to test these conjectures by comparing the superconformal indices of the

theories. As explained in section 2, The calculation is done from the U perspective with

a correction for the sign and parallel legs problem. The θ angles are taken into account

by the U(2) CS term. We start with the SU(2) × SU(3) × SU(2) theory of (5.1). We use

the fugacity spanning shown in figure 8. As there are many instantons involved we worked

only to order x4. We also break the index into several parts depending on the contributing
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Figure 8. The fugacity allocations for SUπ(2)× SU0(3)× SU0(2). The two circles are the SU(2)’s,

the square is the SU(3) and the lines are the bifundamentals. The letter above the lines are the ones

for the appropriate bifundamental fugacity, and the ones inside the circles are for the topological

fugacities.

sector so as to make the results more presentable. We find:

Indexpert.
SU(2)×SU(3)×SU(2) = 1 + 5x2 + 6x3

(
y +

1

y

)
(5.3)

+ x4

(
6

(
1 + y2 +

1

y2

)
+ 12 +

b2

z2
+
z2

b2

)
+O

(
x5
)

for the perturbative part.

Next we add the instantonic contributions starting with instantons of combined order 1:

the (1,0,0)+(0,1,0)+(0,0,1)-instantons. Their contribution is:

Index1−inst.
SUπ(2)×SU0(3)×SU0(2) = x2

(
q

z
3
2

+
z

3
2

q
+tb

3
2 +

1

tb
3
2

)
+x3

((
y+

1

y

)(
q

z
3
2

+
z

3
2

q
+tb

3
2 +

1

tb
3
2

)

+

(
l+

1

l

)(
b

z
+
z

b

))
+x4

((
1+y2+

1

y2

)(
q

z
3
2

+
z

3
2

q
+tb

3
2 +

1

tb
3
2

)

+

(
y+

1

y

)(
l+

1

l

)(
b

z
+
z

b

)
+4+5

(
q

z
3
2

+
z

3
2

q
+tb

3
2 +

1

tb
3
2

)

+
q

tz
3
2 b

3
2

+
tz

3
2 b

3
2

q
+
q
√
z

b2
+

b2

q
√
z

+

√
b

tz2
+
tz2

√
b

)
+O

(
x5
)
. (5.4)

One can see that these provide the states necessary to enhance U(1)×U(1)→ SO(4).

To the order we are working, we also need the contributions of the (1,1,0)+(1,0,1)+(0,1,1)+

(2,0,0)+(0,0,2)+(1,1,1) instantons. These provide:

Indexhigher inst.
SUπ(2)×SU0(3)×SU0(2) = x3

(
√
bltz +

1√
bltz

+
lq

b
√
z

+
b
√
z

lq
+

√
blqt√
z

+

√
z√
blqt

)
(5.5)

+x4

((
y+

1

y

)(√
bltz+

1√
bltz

+
lq

b
√
z

+
b
√
z

lq
+

√
blqt√
z

+

√
z√
blqt

)

+

(
qt
√
b√
z

+

√
z√
bqt

)(
b

z
+
z

b

)
+b3t2+

1

b3t2
+
q2

z3
+
z3

q2

)
+O

(
x5
)
.
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Figure 9. The fugacity allocations for 1F+SU1(3)×SU−1(3)+1F . The two circles are the SU(3)’s

and the line is the bifundamental.

This completes the index to this order. Next we shall compare it with the one for

1F + SU1(3)× SU−1(3) + 1F starting with the perturbative part:

Indexpert.
1F+SU1(3)×SU−1(3)+1F = 1 + 5x2 + x3

(
6

(
y +

1

y

)
+B3 +

1

B3
+
Bf

p
+

p

Bf

)
+ x4

(
6

(
y2 + 1 +

1

y2

)
+

(
y +

1

y

)(
B3 +

1

B3
+
Bf

p
+

p

Bf

)
+ 14 +

B2p

f
+

f

B2p

)
+O

(
x4
)

(5.6)

where the fugacities are allocated as in figure 9.

Next are the instanton contributions. To the orders we are working in we only need

the (1,0)+(0,1)+(1,1) instantons which contribute:

Indexinst.
1F+SU1(3)×SU−1(3)+1F = x2

(
AB

3
2

√
f

+

√
f

AB
3
2

+aB
3
2
√
p+

1

aB
3
2
√
p

)

+x3

((
y+

1

y

)(
AB

3
2

√
f

+

√
f

AB
3
2

+aB
3
2
√
p+

1

aB
3
2
√
p

)

+
A

B
3
2
√
f

+
B

3
2
√
f

A
+
a
√
p

B
3
2

+
B

3
2

a
√
p

+
aA
√
p

√
f

+

√
f

aA
√
p

)

+x4

((
y2+1+

1

y2

)(
AB

3
2

√
f

+

√
f

AB
3
2

+aB
3
2
√
p+

1

aB
3
2
√
p

)

+

(
y+

1

y

)(
A

B
3
2
√
f

+
B

3
2
√
f

A
+
a
√
p

B
3
2

+
B

3
2

a
√
p

+
aA
√
p

√
f

+

√
f

aA
√
p

)

+ 2+5

(
AB

3
2

√
f

+

√
f

AB
3
2

+aB
3
2
√
p+

1

aB
3
2
√
p

)
+
A2B3

f
+

f

A2B3

+ a2B3p+
1

a2B3p
+
A
√
f

p
√
B

+
p
√
B

A
√
f

+
af√
Bp

+

√
Bp

af
+

A

a
√
fp

+
a
√
fp

A
+

(
aAB2+

1

aAB2

)(
B
√
p

√
f

+

√
f

B
√
p

))
+O

(
x5
)
. (5.7)

One can see that the instantons provide exactly the needed states to bring about the

enhancement of U(1) × U(1) → SO(4) as required for the two theories to be dual. The
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matching now requires b
3
2 t = AB

3
2√
f

, q

z
3
2

= aB
3
2
√
p.6 At order x3 one can see that setting

l =
√
p

B2
√
f

, b
z =

B
√
p√
f

render the two equal. With this the indices also match to order x4

completing the matching.

Note that there is one U(1) combination left undetermined as there is no state charged

under it to this order. The index can be written in terms of SO(4) characters as:

IndexSUπ(2)×SU0(3)×SU0(2) = 1 + x2 (3 + χ[3,1] + χ[1,3])+x3

(
χy[2] (4 + χ[3,1] + χ[1,3])

+
lb

z
+
z

lb
+

(
z

1
4 l
√
qt

b
1
4

+
b
1
4

z
1
4 l
√
qt

)
χ[2,2]

)
(5.8)

+ x4 (χy[3](4 + χ[3,1] + χ[1,3])

+ χy[2]

(
lb

z
+
z

lb
+

(
z

1
4 l
√
qt

b
1
4

+
b
1
4

z
1
4 l
√
qt

)
χ[2,2]

)
+ χ[5,1]

+ 3χ[3,1] + χ[1,5] + 3χ[1,3] + 7 + χ[3,3]

+

(
√
qt
(z
b

) 5
4

+
1√
qt

(
b

z

) 5
4

)
χ[2,2]

)
+O

(
x5
)

where we used χ[d1, d2] for the SO(4) representation of dimension d1 under one SU(2) and

d2 under the other. For the U(1)’s we have used the SUπ(2) × SU0(3) × SU0(2) notation

though they can be easily transformed to the SU(3)2 ones using the above relations. The

three last U(1)’s seem to be l, b
z and qt.

Next we turn to the theory in (5.2), SUπ(2)×SU−1(3)×SUπ(2). We use the fugacities

and CS choices shown in figure 10. Again we divide the index into a perturbative part, one

instanton part and higher instantons. The perturbative part is just given by (5.3). The

one instanton part, including the (1,0,0)+(0,1,0)+(0,0,1) instantons, is:

Index1−inst.
SUπ(2)×SU−1(3)×SUπ(2) = x2

(
q

z
3
2

+
z

3
2

q
+

t

b
3
2

+
b
3
2

t
+

l

bz
+
bz

l

)
(5.9)

+ x3

(
y +

1

y

)(
q

z
3
2

+
z

3
2

q
+

t

b
3
2

+
b
3
2

t
+

l

bz
+
bz

l

)

+ x4

((
1 + y2 +

1

y2

)(
q

z
3
2

+
z

3
2

q
+

t

b
3
2

+
b
3
2

t
+

l

bz
+
bz

l

)

+ 5

(
1 +

q

z
3
2

+
z

3
2

q
+

t

b
3
2

+
b
3
2

t
+

l

bz
+
bz

l

)
+
qb

3
2

tz
3
2

+
tz

3
2

qb
3
2

+
q
√
z

b2
+

b2

q
√
z

+

√
bt

z2
+

z2

t
√
b

+

√
bl

tz
+

tz√
bl

+
bq

l
√
z

+
l
√
z

bq
+
t
√
b

q
√
z

+
q
√
z

t
√
b

)
+O

(
x5
)
.

6It can also be the other way because of the discrete symmetries.
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Figure 10. The fugacity allocations for SUπ(2) × SU−1(3) × SUπ(2). The two circles are the

SU(2)’s, the square is the SU(3) and the lines are the bifundamentals. The letter above the lines

are the ones for the appropriate bifundamental fugacity, and the ones inside the circles are for the

topological fugacities.

One can see that there are enough states to bring about the enhancement of U(1) ×
U(1)×U(1)→ SU(2)× SU(2)× SU(2).

To the order we are working in the (1,1,0)+(1,0,1)+(0,1,1)+(2,0,0)+(0,0,2)+(1,1,1)

instantons are also needed. They contribute:

Indexhigher inst.
SUπ(2)×SU−1(3)×SUπ(2) = x4

(
t2

b3
+
b3

t2
+
q2

z3
+
z3

q2
+

l2

b2z2
+
b2z2

l2
+

lq

bz
5
2

+
bz

5
2

lq

+ blqz
3
2 +

1

blqz
3
2

+ zltb
3
2 +

1

zltb
3
2

+
lt

zb
5
2

+
zb

5
2

lt
+

qt

b
3
2 z

3
2

+
b
3
2 z

3
2

qt
+
lqtb

3
2

√
z

+

√
z

lqtb
3
2

+
lqtz

3
2

√
b

+

√
b

lqtz
3
2

)
+O

(
x5
)
. (5.10)

Next we want to compare it against the index of SU0(2)× SU0(4) + 2F . We again use

B for the bifundamental fugacity, a for the SU(2) instanton symmetry, A for the SU(4)

instanton symmetry and span the U(2) group by:

(
fp 0

0 f
p

)
. (5.11)

We separate it into the perturbative and instanton contributions where the perturba-

tive part is:

Indexpert.
SU(2)×SU(4)+2F = 1 + x2

(
5 + p2 +

1

p2

)
+ x3

(
y +

1

y

)(
6 + p2 +

1

p2

)
+ x4

((
1+y2+

1

y2

)(
6+p2+

1

p2

)
+14+

(
f2+

1

f2

)(
B2+

1

B2

)
+ p4 + 5p2 +

5

p2
+

1

p4

)
. (5.12)
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To the order we are working in the only instantons contributing are the (1,0)+(2,0)+

(0,1)+(1,1), and their contribution is:

Indexinst.
SU0(2)×SU0(4)+2F = x2

(
a+

1

a

)(
B2+

1

B2

)
+x3

(
y+

1

y

)(
a+

1

a

)(
B2+

1

B2

)
+x4

((
1+y2+

1

y2

)(
a+

1

a

)(
B2+

1

B2

)
+3

+

(
a2+1+

1

a2

)(
B4+1+

1

B4

)
+

(
5+p2+

1

p2

)(
a+

1

a

)(
B2+

1

B2

)
+

(
a+

1

a

)(
f2+

1

f2

)
+

(
A+

1

A

)(
Bf+

1

Bf

)
+

(
Aa+

1

Aa

)(
f

B
+
B

f

))
+O

(
x5
)
. (5.13)

One can see that the instantons provide enough states to enhance U(1) × U(1) →
SO(4) which together with the perturbative SU(2) give three SU(2)’s matching the global

symmetry of SUπ(2)× SU−1(3)× SUπ(2). The matching requires us to identify: p2 = l
bz ,

aB2 = t

b
3
2

and a
B2 = q

z
3
2

.7 This matches the indices to order x3. Further identifying
√
aAf =

√
qtlb

3
2 z

1
4 and

√
aA
f =

√
tqlz

3
2 b

1
4 matches the indices also to order x4 and thus

completes the matching.

The index can be written in SU(2)3 characters as:

IndexSU(2)×SU(4)+2F = 1 + x2 (2 + χ[3,1,1] + χ[1,3,1] + χ[1,1,3])

+ x3χy[2] (3 + χ[3,1,1] + χ[1,3,1] + χ[1,1,3])

+ x4

(
χy[3] (3 + χ[3,1,1] + χ[1,3,1] + χ[1,1,3]) + 5

+ χ[5,1,1] + χ[1,5,1] + χ[1,1,5] + 2χ[3,1,1] + 2χ[1,3,1]

+ 2χ[1,1,3] + χ[3,3,1] + χ[1,3,3] + χ[3,1,3]

+

(
f2 +

1

f2

)
χ[2,1,2] +

(√
aAf +

1√
aAf

)
χ[2,1,1]

+

(√
aA

f
+

f√
aA

)
χ[1,1,2]

)
+O

(
x5
)

(5.14)

where again the notation χ[d1, d2, d3] represents the representation dimensions under each

SU(2) where the first is spanned by a
B2 and the last by aB2. The index is written for

SU(2) × SU(4) + 2F though it can be easily mapped to the SUπ(2) × SU−1(3) × SUπ(2)

theory by the above relations. The two remaining U(1)’s seem to be spanned by f and A
√
a.

5.2 Two extra nodes

We now turn to generalizations of these dualities by the addition of an extra SU(3) group.

Concentrating only on cases with gauge theory duals and without crossing external legs,

we find 3 distinct cases. In one case, depicted in figure 11, the dual is an SU1(4)×SU−1(4)

7The last two can again be exchanged by discrete symmetries.
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Figure 11. (a) The brane web for SUπ(2) × SU− 1
2
(3) × SU 1

2
(3) × SU0(2). (b) The S-dual web

describing 2F + SU−1(4)× SU1(4) + 2F .

Figure 12. (a) The brane web for SUπ(2) × SU 1
2
(3) × SU− 1

2
(3) × SU0(2). (b) The S-dual web

describing 1F + SU−1(3)× SU0(3)× SU1(3) + 1F .

gauge theory with 2 fundamentals for each group. In another case, shown in figure 12, the

dual is an SU1(3)×SU0(3)×SU−1(3) gauge theory with a fundamental hypermultiplet for

each edge group. These two are the generalizations of (5.1).

There is also a generalization of (5.2), illustrated in figure 13, where the dual is an

SU(5)× SU(3) gauge theory with 3 fundamentals for the SU(5) and one for the SU(3). In

all cases the dual is an SU(2)×SU(3)×SU(3)×SU(2) gauge theory differing by the choices

of θ angles and CS terms. These can in turn be read from the web suggesting the following

dualities:

SUπ(2)× SU− 1
2
(3)× SU 1

2
(3)× SU0(2)⇔ 2F + SU1(4)× SU−1(4) + 2F (5.15)

SUπ(2)× SU 1
2
(3)× SU− 1

2
(3)× SU0(2)⇔ 1F + SU1(3)× SU0(3)× SU−1(3) + 1F (5.16)

SU0(2)× SU 1
2
(3)× SU 1

2
(3)× SU0(2)⇔ 3F + SU0(5)× SU0(3) + 1F . (5.17)

Interestingly, the difference between dualities (5.15) and (5.16) is in the orientation

of the CS terms relative to the SU(2) θ angles. By changing the mass sign of all the

bifundamentals, we can change both θ angles and the sign of the CS terms. Thus, we

expect 8 physically different SU(2)× SU(3)× SU(3)× SU(2) theories with minimal SU(3)
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Figure 13. (a) The brane web for SU0(2) × SU 1
2
(3) × SU 1

2
(3) × SU0(2). (b) The S-dual web

describing 3F + SU0(5)× SU0(3) + 1F .

CS terms ±1
2 . These are distinguished by the orientations of the CS levels and θ angles

relative to one another and themselves. The remaining 5 appear not to posses gauge theory

duals and won’t be considered here.

In the rest of this section we begin exploring these dualities by matching the lowest

order terms of the superconformal indices. Besides giving support for the dualities, the

calculation also reveals the quantum global symmetry, and shows the profound effect of

changing the sign of the CS level relative to the θ angles. Due to the large rank and the

considerable number of instantons required, the calculation is quite complicated, and we

only carried it to order x3.

We begin with case (5.15). Starting with the SU(4)2 theory, using the fugacity spanning

shown in figure 14, we find:

ISU(4)2 = 1 + x2

(
7 + c2 +

1

c2
+ z2 +

1

z2
+
dA

H2
+
H2

dA
+

a

bH2
+
bH2

a

)
+ x3

((
y +

1

y

)(
8 + c2 +

1

c2
+ z2 +

1

z2
+
dA

H2
+
H2

dA
+

a

bH2
+
bH2

a

)
+

(
z +

1

z

)(
c+

1

c

)(
dH

b
+

b

dH

))
+O

(
x4
)

(5.18)

where to this order there are perturbative contributions, and (0,1)+(1,0) instanton con-

tributions. One can see that there appears to be an enhancement of the instantonic-

baryonic-bifundamental symmetries of the two groups to SU(2) so that the theory has an

SU(2)4 ×U(1)3 global symmetry. Indeed the index can be concisely written as:

ISU(4)2 = 1 + x2 (3 + χ[3,1,1,1] + χ[1,3,1,1] + χ[1,1,3,1] + χ[1,1,1,3])

+ x3

((
y +

1

y

)
(3 + χ[3,1,1,1] + χ[1,3,1,1] + χ[1,1,3,1] + χ[1,1,1,3])

+

(
dH

b
+

b

dH

)
χ[2,2,1,1]

)
+O

(
x4
)

(5.19)

where we used χ[d1, d2, d3, d4] for the characters of the di dimensional representation under

SUi(2) (i = 1, 2 are the perturbative SU(2)’s while i = 3, 4 are the instantonic ones).
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Figure 14. The fugacity allocation for 2F + SU1(4) × SU−1(4) + 2F . The two circles are the

SU(4)’s and the line is the bifundamental.

Figure 15. The fugacity allocation for SU(2) × SU(3) × SU(3) × SU(2). The two circles are the

SU(2)’s, the squares the SU(3)’s, and the lines are bifundamentals.

Next is the SU(2)×SU(3)×SU(3)×SU(2) theory. We use the fugacity allocation shown

in figure 15, with the CS level and θ angles chosen to be, from left to right,
(
π,−1

2 ,
1
2 , 0
)
.

We will separate the index into a perturbative part, that is identical in all three cases, and

the instanton contributions. The perturbative part is:

Ipert.
SU(2)×SU(3)×SU(3)×SU(2) = 1 + 7x2 + x3

(
8

(
y +

1

y

)
+B3

2 +
1

B3
2

)
+O

(
x4
)
. (5.20)

In this case, we get contributions of the (1,0,0,0)+(0,1,0,0)+(0,0,1,0)+(0,0,0,1)+

(0,1,1,0) instantons. The full instanton contribution is:

I inst.
(π,− 1

2
, 1
2
,0) = x2

 I1

B
3
2
1

+
B

3
2
1

I1
+
I2B

3
2
2

B1
+

B1

I2B
3
2
2

+B3B
3
2
2 I3+

1

B3B
3
2
2 I3

+I4B
3
2
3 +

1

I4B
3
2
3


+x3

(y+
1

y

) I1

B
3
2
1

+
B

3
2
1

I1
+
I2B

3
2
2

B1
+

B1

I2B
3
2
2

+B3B
3
2
2 I3+

1

B3B
3
2
2 I3

+I4B
3
2
3 +

1

I4B
3
2
3


+

I2

B
3
2
2 B1

+
B

3
2
2 B1

I2
+
I3B3

B
3
2
2

+
B

3
2
2

I3B3
+
B3I2I3

B1
+

B1

B3I2I3

+O
(
x4
)
. (5.21)

We see that the instantons provide sufficient conserved currents to enhance four U(1)’s

to four SU(2)’s so that the global symmetry matches the one of the SU(4)2 theory. Fur-

thermore, setting z2 =
I2B

3
2
2

B1
, c2 = B3B

3
2
2 I3, dA

H2 = I4B
3
2
3 , a

bH2 = I1

B
3
2
1

and dH
b =

√
I2I3B3

B1B3
2

renders the two indices equal.8 The discrete symmetries also match as both theories are

invariant under a combination of charge conjugation and a reflection of the groups.

Next we move to the case of SU(3)3. To order x3, we get contributions of the

(1,0,0)+(0,1,0)+(0,0,1)+(1,1,0)+(0,1,1)+(1,1,1) instantons. Using the fugacity spanning

8Because of the low order of the calculation and the discrete symmetries there are several possible

mappings for all three dualities besides the one shown. Resolving this ambiguity might require going to

higher orders.
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Figure 16. The fugacity allocation for SU(3)3. The three circles are the SU(3)’s and the lines are

bifundamentals.

shown in figure 16, we find:

ISU(3)3 = 1+x2

7+a3F
3
2

2

√
p+

1

a3F
3
2

2
√
p

+
a1

F
3
2

1

√
f

+
F

3
2

1

√
f

a1
+

(
a2+

1

a2

)F 3
2

2 F
3
2

1 +
1

F
3
2

2 F
3
2

1


+
a2a3
√
p

F
3
2

1

+
F

3
2

1

a2a3
√
p

+
a1a2F

3
2

2√
f

+

√
f

a1a2F
3
2

2


+ x3

(y +
1

y

)8 + a3F
3
2

2

√
p+

1

a3F
3
2

2
√
p

+
a1

F
3
2

1

√
f

+
F

3
2

1

√
f

a1

+

(
a2 +

1

a2

)F 3
2

2 F
3
2

1 +
1

F
3
2

2 F
3
2

1

+
a2a3
√
p

F
3
2

1

+
F

3
2

1

a2a3
√
p

+
a1a2F

3
2

2√
f

+

√
f

a1a2F
3
2

2

+ F 3
2 +

1

F 3
2

+ F 3
1 +

1

F 3
1

+
a3
√
p

F
3
2

2

+
F

3
2

2

a3
√
p

+
a1F

3
2

1√
f

+

√
f

a1F
3
2

1

+

(
a2 +

1

a2

)F 3
2

2

F
3
2

1

+
F

3
2

1

F
3
2

2

+ F
3
2

1

√
pa2a3 +

1

F
3
2

1
√
pa2a3

+
a1a2

F
3
2

2

√
f

+
F

3
2

2

√
f

a1a2

+
a1a2a3

√
p

√
f

+

√
f

a1a2a3
√
p

)
+O

(
x4
)
. (5.22)

One can see that the instantons provide additional conserved currents forming an

enhanced SU(3) × SU(3) global symmetry. These are spanned by: (3,1) =
a
2
3
1 a

1
3
2 F

1
2
2

f
1
3 F

1
2
1

+

a
1
3
2 F1F

1
2
2 f

1
6

a
1
3
1

+ f
1
6

a
2
3
2 a

1
3
1 F2F

1
2
1

, (1,3) =
a
2
3
2 a

1
3
3 p

1
6

F
1
2
2 F1

+
a
1
3
3 F2F

1
2
1 p

1
6

a
1
3
2

+
F

1
2
1

p
1
3 a

2
3
3 a

1
3
2 F

1
2
2

. The index can then be

written as:

ISU(3)3 = 1 + x2 (3 + χ[8,1] + χ[1,8]) (5.23)

+x3

(y+
1

y

)
(4+χ[8,1]+χ[1,8])+

F1a
1
3
1 a

1
3
2 a

1
3
3 p

1
6

F2f
1
6

χ[3, 3̄]+
F2f

1
6

F1a
1
3
1 a

1
3
2 a

1
3
3 p

1
6

χ[3̄,3]


+O

(
x4
)

where we have used χ[d1, d2] to denote the characters of the representations under the

SU(3)× SU(3) global symmetry.
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Next we compare it with the index of the SU(2)×SU(3)×SU(3)×SU(2) theory. Since

these theories differ merely by the choice of CS level, being
(
π, 1

2 ,−
1
2 , 0
)

in this case, only

the instanton part is different. We find:

I inst.
(π, 12 ,−

1
2
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(5.24)
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One can see that the instantons provide the conserved currents to form an SU(3) ×
SU(3) global symmetry. Particularly, setting: I4B

3
2
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√
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3
2
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3
2
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3
2
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F
3
2
1

, renders the two indices equal.

The discrete symmetries also match as both theories are invariant under a combination

of charge conjugation and group reflection.

Next we move to the final case of SU(3)×SU(5). We use the fugacity spanning shown

in figure 17. For the SU(3)× SU(5) theory we find:

ISU(3)×SU(5) = 1+x2

(
7+fd+

f2

d
+
d2

f
+
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+
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f +

1

d
+
d

f

))
+O

(
x4
)
. (5.25)

One can see that the SU(3) 1-instanton provides the conserved currents to form two

enhanced SU(2)’s as expected from SU0(3) with 6 flavors. The full global symmetry is
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Figure 17. The fugacity allocation for 1F + SU(3)× SU(5) + 3F . The circle is the SU(3), the oval

the SU(5), and the line is a bifundamental.

then, SU(3)× SU(2)2 ×U(1)3, and the index can be written as:

ISU(3)×SU(5) = 1 + x2 (3 + χ[8,1,1] + χ[1,3,1] + χ[1,1,3])

+ x3

((
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1

y
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B
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B
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)
+O

(
x4
)

(5.26)

where we used χ[dSU(3), dSU1(2), dSU2(2)] for the characters of the appropriate representations.

Next we compare it with the index of the SU(2)×SU(3)×SU(3)×SU(2) theory. Again

this differs from the previous cases only by the instanton part. We find:
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These provide the conserved currents to form an enhanced SU(3) × SU(2)2 symme-

try. This is most clearly visible by noting that setting: I1B
3
2
1 = a

√
F
Z5 , I4B

3
2
3 = a

√
Z5

F ,

I3B3B
3
2
2 = f2

d , I2B1

B
3
2
2

= d2

f ,
B

1
3
3 I

1
3
3

B2
2I

1
3
2 B

1
3
1

= B
FZ , equates the indices of the of the two theories.

The discrete symmetries also match: group reflection of the SU(2)× SU(3)× SU(3)×
SU(2) theory is mapped to charge conjugation in the SU(3)× SU(5) theory.

6 Conclusions

In this article we have continued to explore duality and symmetry enhancement in 5d gauge

theories. A summery of the dual pairs studied in this article with their global symmetry

is shown in table 1.

We provided evidence for the duality between SU(2) × SU(2) theories with two ad-

ditional fundamentals and SU(3) + 4F . In this duality the difference between the flavors

under each group is mapped to the SU(3)’s Chern-Simons level. This leads us to conjecture
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Theory 1 Theory 2 Global symmetry

SUπ(2)× SU(2) + 2F SU±1(3) + 4F U(1)× SU(2)× SU(4)

1F + SU(2)× SU(2) + 1F SU0(3) + 4F U(1)2 × SU(4)

SUπ(2)× SU0(3)× SU0(2) 1F + SU1(3)× SU−1(3) + 1F U(1)3 × SU(2)2

SUπ(2)× SU−1(3)× SUπ(2) SU0(2)× SU0(4) + 2F U(1)2 × SU(2)3

SUπ(2)× SU− 1
2
(3)× SU 1

2
(3)× SU0(2) 2F + SU1(4)× SU−1(4) + 2F U(1)3 × SU(2)4

SUπ(2)× SU 1
2
(3)× SU− 1

2
(3)× SU0(2) 1F + SU1(3)× SU0(3)× SU−1(3) + 1F U(1)3 × SU(3)2

SU0(2)× SU 1
2
(3)× SU 1

2
(3)× SU0(2) 3F + SU0(5)× SU0(3) + 1F U(1)3 × SU(2)2 × SU(3)

Table 1. Summary of the dualities studied in this article. Theory 1 and 2 stands for the two dual

theory, and the last column specifies the quantum global symmetry.

that Nf1F + SU(2)× SU(2) +Nf2F is dual to SU±(Nf1−Nf2 )(3) + (Nf1 +Nf2)F which was

argued to flow to a fixed point when Nf1 +Nf2 +2|Nf1−Nf2 | ≤ 6 [3]. It is interesting if this

has an analog on the quiver side, or that maybe it is possible that even theories violating

the inequality exist where the duality allows a continuation past infinite coupling.

We have also explored symmetry enhancement in the SU0(2)×USp(6) theory suggest-

ing that it has an enhanced G2 symmetry. It is interesting to extend the calculation also

to states charged under the USp(6) topological symmetry. Another interesting direction

is to study the higher N generalizations USp(2N) × USp(2(N + M)), particularly in the

context of AdS/CFT. These theories have an AdS6 dual [9], and it is interesting if we can

understand some of their properties such as dualities and lack of a UV fixed point when

M > 2 also from this perspective.

We have also studied dualities of theories of the form SU(2)×SU(3)×SU(2) and their

generalization by inserting additional SU(3) groups finding 3 different dual pairs. Their

webs can be generalized to an arbitrary number of SU(3) groups. This leads us to conjecture

3 dualities for SU(2) × SU(3) × . . . SU(3) × SU(2) with N SU(3) groups, but differing by

their Chern-Simons levels. In one case the allocation is
(
π, 1

2 , 0, . . . , 0,−
1
2 , 0
)
, and the dual

is 1F + SU−1(3)× SU0(3) . . .× SU0(3)× SU1(3) + 1F where we have N + 1 SU(3) groups.

Changing the relative level between the two end SU(3)-SU(2) pairs we get the allocation(
π,−1

2 , 0, . . . , 0,
1
2 , 0
)
, and the dual is now NF +SU−1(N +2)×SU1(N +2)+NF . Finally,

there is a generalization of the second case where the dual theory is (N+1)F+SU0(N+3)×
SU0(N + 1) + (N − 1)F , and the CS allocation is

(
0, 1

2 , 0, . . . , 0,
1
2 , 0
)
. It will be interesting

to test these conjectures by index calculations.

Finally, there are additional choices, without a gauge theory dual, that we have not

studied. The web and index calculation suggests that these should have interesting en-

hanced symmetries. It will be interesting to also study these theories.
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Figure 18. The brane web for SUκ(N). The parenthesis express the (p, q)-charges where p is

the D5-brane charge. The (0,-1)-brane determines a choice of SL(2,Z) frame. The other external

branes then determine the rank and level of the theory as shown in the figure.

A Determining gauge theory parameters from the web

Throughout this paper we encounter various webs describing quivers of SU gauge theories

with different CS terms. In this section we explain how these can be determined from the

web. The starting point is the web for pure SUκ(N) shown in figure 18. When flavors

are involved the CS level can be determined by integrating out the flavors. In the web,

this corresponds to separating the flavor brane from the web which can be done in two

different ways depending on the chosen direction. This is illustrated in figure 19. In the

gauge theory this corresponds to whether one gives a positive or negative mass.

Thus, given a web for SU(N) with Nf flavors one can determine the CS level by

integrating the flavors in different directions and inferring the original CS level from the

resulting one. Figure 19 illustrates this in a simple example from which one also learns

that integrating the flavor from bellow the web corresponds to giving a positive mass

while integrating from above corresponds to a negative mass. Therefore, given a web for

SU(N) with Nf flavors one can determine the CS level by integrating out the flavors. Then

comparing the resulting web with the one in figure 18, doing an SL(2,Z) transformation if

necessary, determines the CS level of the pure SU(N) one has in the IR. By the preceding

arguments this is related to the original one by:

κorg = κIR +
Na −Nb

2
(A.1)

where Na(Nb) is the number of flavors integrated from above (below).

This can be easily generalized to the case of quiver theories. Then there are deforma-

tions, corresponding to giving large masses to the bifundamentals, where the web decom-

poses into a series of individual gauge theories connected through one of their external legs.

In this presentation it is easy to read the gauge and matter content, and determine the CS

level through the previous method, remembering that now a bifundamental is integrated

out. We will see several examples of this in section 5.

Finally, this method can also be used to determine the θ angle for SU(2) groups, using

the connection between the θ angle and the U(2) CS level. In the pure case there are 3

different SU(2) webs not related by an SL(2,Z) transformation corresponding to different

U(2) CS levels [11, 15]. These are also given from the general web of figure 18. Using these

we can determine the U(2) CS levels from the web and then translate this to the θ angles.
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Figure 19. Two webs for SU(3) with a single fundamental flavor. The middle webs show a low

value of the flavor mass (compared to the mass of the W-bosons). These can be deformed by giving

large masses to the flavor resulting in the upper and lower webs which differs by the sign of the

mass. One can see that the resulting pure SU(3) in the upper web in (a) has a CS level of −1 while

the one in the lower web has CS level 0. This shows that the CS level of the theory of the web in (a)

is − 1
2 . Applying the same procedure on (b) shows it’s CS level is 1

2 . From this we also determine

that integrating a flavor from above, as in the upper webs, corresponds to a negative mass while

integrating from below corresponds to a positive mass.
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