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1 Introduction

Jet quenching is an important signal of the production of dense QCD matter in the ultra-

relativistic heavy-ion collisions at RHIC [1, 2] and LHC [3–5]. Parton energy loss in QCD

matter is believed to be responsible for such a suppression of the yields of large p⊥ hadrons

and jets with respect to p+ p collisions (see [6] for a recent review).

The radiative energy loss and the p⊥-broadening of a high-energy parton in QCD

matter are closely related to each other. Energy loss is dominated by radiating a gluon

with the maximum energy ωc. The gluon picks up a transverse momentum broadening

〈p2
⊥
〉 = ωc

tc
within the coherent (formation) time tc. As a result, the energy loss of the

parton per unit length is given by [7]

− dE

dz
∼ αsNc

ωc

tc
= αsNc〈p2⊥〉. (1.1)

In a medium of length L the p⊥-broadening due to multiple scattering is given by 〈p2
⊥
〉 = q̂L

with q̂ being the transport coefficient. If one only considers multiple scattering, radiative

energy loss is dominated by one gluon with tc ≃ L and ωc ≃ q̂L2. In this case one has [8, 9]

− dE

dz
∼ αsNcq̂L. (1.2)

The radiative p⊥-broadening of a high-energy parton in QCD matter is first studied in

ref. [10]. Double logarithmic terms due to the recoil effect of one-gluon emission are found

in the kinetic region of single scattering. The complete result of such a double logarithmic

correction is obtained in ref. [11], which takes the form

〈p2⊥〉rad =
αsNc

8π
q̂L ln2

(

L

l0

)2

, (1.3)
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where l0 is the size of constituents of the matter. Moreover, the resummation of the double

logarithmic terms can be carried out to give [11]

〈p2⊥〉 = q̂L

√

4π

αsNc

1

ln L2

l20

I1

[
√

αsNc

π
ln

L2

l20

]

. (1.4)

The transport coefficient q̂ can be written as the expectation value of a gauge-invariant

operator, which is proportional to the gluon distribution function of the medium [7] and can

be studied non-perturbatively via simulations on a Euclidean lattice [12]. A renormalization

of q̂, based on the DGLAP evolution of the gluon distribution, has been proposed in ref. [13]

(see [14] for a recent development of such a proposal). More recently, refs. [15, 16] propose

another evolution equation for the renormalization of q̂, valid in the double logarithmic

approximation. This equation applies in the regime of multiple soft scattering while the

former one in ref. [13] is better suited for the study of the high-momentum tail of the

p⊥-broadening associated with a single hard scattering [16]. The solution q̂ren(L) to the

equation in [15, 16] is consistent with the result in eq. (1.4) provided it is rewritten as

〈p2
⊥
〉 = q̂renL. Based on such a proposal, eq. (1.1) is expected to hold for radiating an

arbitrary number of gluons in the double logarithmic approximation.

In this paper we give a detailed calculation of the double logarithmic correction to

the energy loss of a high-energy parton by radiating two or more gluons in QCD matter.

Our aim is to go beyond the parametric estimate in eq. (1.1) and to show explicitly how

the double logarithmic correction to radiative energy loss is related to the radiative p⊥-

broadening in eq. (1.3).

The paper is organized as follows. In section 2, we first give the general formalism,

as a generalization of that by BDMPS-Z [8, 9, 17, 18], for calculating parton energy loss

due to multiple gluon emission. Then, we give all the diagrams relevant for energy loss

due to two-gluon emission. The time-evolution of two gluons together with a dipole in the

medium is studied in section 3. In section 4 we evaluate the double logarithmic correction

to radiative energy loss in details. Our conclusion is presented in section 5.

2 Medium-induced energy loss due to two-gluon emission

2.1 Review of the generalized BDMPS-Z formalism for radiative energy loss

In this subsection we first give the general formalism for medium-induced energy loss of a

high-energy parton due to multiple gluon emission. The formalism, used to calculate the

radiative p⊥-broadening in refs. [10, 11], is a slight extension of the BDMPS-Z formalism [8,

9, 17, 18]1 by including virtual gluon emission. In this paper we choose to use the path

integral representation in the transverse coordinate space [11, 17, 18].

To calculate the medium-induced energy loss of a high-energy parton, one needs the

spectrum of n soft gluons. Since the gluons can be real or virtual, the spectrum shall be

1The interested reader is referred to refs. [19, 20] and references therein for different approaches used to

calculate parton energy loss.
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denoted by
∫

dωm+1dωm+2 · · · dωn
dI(m,n−m)

dω1dω2 · · · dωn
(2.1)

where the energyies of m (≤ n) real gluons are respectively denoted by ω1, ω2, · · · , ωm and

the energies of (n−m) virtual gluons are respectively denoted by ωm+1, ωm+2, · · · , ωn. The

spectrum can be calculated using the following steps2

1. Draw all the relevant graphs with m real gluons and (n−m) virtual gluons.

Inside the medium it is usually more convenient to draw graphs as a product of

amplitudes and their complex conjugates.

2. Obtain the contributions of each graph from the following Feynman rules

=

x(z2)=x2
∫

x(z1)=x1

Dxe
iω
2

∫ z2
z1

dt ẋ2

Pe
ig

∫ z2
z1

dtAa−(t,x(t))Ta
R , (2.2)

= δ(B− x1)δ(x2 − x1)
g

ω
T c
Rǫ

∗

⊥λ · ∇B, (2.3)

where T a
R is the SU(Nc) matrix in the representation R corresponding to the high-

energy parton, which can be either a quark (R = F ) or a gluon (R = A) represented

by the solid lines in the above graphs, and the gluon transverse polarization vector

ǫλ⊥ satisfies
∑

λ

ǫiλ⊥ǫ
∗j
λ⊥ = δij . (2.4)

In this paper vectors in the transverse plane are denoted by bold letters.

3. Put in the overall prefactor 1
(4π)n .

4. Integrate out the background medium.

The background medium is modelled by the background gluon field Aa−(t,x) with a

the color index. The ensemble average over the background field is defined by

〈Aa−(t1,x)A
b−(t2,y)〉 = δ(t1 − t2)δabn(t1)Γ(x− y), (2.5)

which is related to the transport coefficient q̂ by

g2CRn(t) [Γ(0)− Γ(x)] ≡ n(t) [σR(0)− σR(x)] ≃
1

4
q̂x2⊥ (2.6)

where n(t) is the number density of the scatterers and σR(x) is defined by [10]

σR(x) ≡
∫

d2q

(2π)2
eiq·x

dσR
d2q

=
αsCR

π

∫

d2q

(2π)2
eiq·x|A−(t,q)|2 (2.7)

with CR = Nc for gluons and CR = CF ≡ N2
c−1
2Nc

for quarks.

2In this paper, the calculation is done using lightcone gauge in ordinary space-time coordinates [10, 11].

One can carry out the same calculation using lightcone gauge in lightcone coordinates (see, e.g., [16]). In

this case, there are additional contributions from instantaneous Coulomb terms of the background propa-

gators [16], which, however, do not contribute to the double logarithmic correction to parton energy loss.

– 3 –



J
H
E
P
1
2
(
2
0
1
4
)
0
8
1

Figure 1. Forward scattering amplitudes at O(α2

s
). All the relevant graphs for calculating the

energy loss due to two-gluon emission can be obtained by cutting through these amplitudes.

2.2 Diagrams for the energy loss due to two-gluon emission

In this subsection we give all the graphs for the energy loss due to two-gluon emission,

which is denoted by ∆E2. In these graphs at least one of the two gluons is real. In terms

of the spectra defined in the previous subsection, ∆E2 is given by

∆E2 =

∫

dω1dω2 (ω1 + ω2)
dI(2,0)

dω1dω2
+

∫

dω1dω2ω1
dI(1,1)

dω1dω2
. (2.8)

All the graphs contributing to ∆E2 can be obtained by cutting through the forward ampli-

tudes in figure 1. The cuts of figure 1 (h) are not relevant for medium-induced energy loss

and shall be ignored. Besides, we shall also ignore the graphs obtained by cutting figure 1

(g) because the gluon-quark transition is suppressed compared to the soft gluon emission

at high energies. Then, we are left with 17 possible cuts of figure 1 (a) to (f).

Even in the same graph, different orderings in the 4 emission (absorption) times of

the two gluons give different contributions, which need to be dealt with separately. The

complete calculate of ∆E2 involves all the possible orderings in these 4 time variables. The

graph with one of such orderings is referred to as a diagram in this paper. It is easy to

show that there are a total of 78 different diagrams,3 which can be classified as follows

• 12 uncorrelated emissions: in these diagrams both of the two emission times of

one gluon are later than those of the other. The distribution of the uncorrelated

soft gluons is the QCD analog of that of the soft photons in QED, which has the

form of a Poisson distribution after all the uncorrelated multiple gluon emissions are

included [21]. And there is no double logarithmic correction proportional to ln2
(

L
l0

)2

from these diagrams.

• 26 fully-overlapping emissions: in these diagrams both of the two emission times of

one gluon lie in between those of the other gluon. In the following sections we shall

show that there is a double logarithmic correction to ∆E2 from these diagrams, which

is the same as that to 〈p2
⊥
〉 in ref. [11].

3There are 6 possible orderings in the 4 time variables for a graph with two real gluons while there are

only 4 for a graph with only one real gluon. Since there are respectively 5 graphs with two real gluons and

12 graphs with only one real gluon, one has 78 orderings in total.
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Figure 2. Time-evolution of two gluons and a dipole in the medium. The first gluon with energy

ω1 emitted off the quark at t = z1 lives until t = z4. The second gluon with energy ω2 is emitted at

t = z2 and absorbed at t = z3 either by the first gluon or by the dipole. The transverse coordinates

of the first and the second gluon are respectively denoted by x and B, and the dipole locates at 0.

Here, the time variables satisfy 0 < z1 < z2 < z3 < z4 < L.

• 40 partially-overlapping emissions: in these diagrams only one of the two emission

times of one gluon lies in between those of the other gluon. The evaluation of those

diagrams is the most difficult part to obtain the complete result of ∆E2. Fortunately,

unlike the fully-overlapping emissions the diagrams contributing to the double log-

arithmic terms ∝ ln2 L
l0

of 〈p2
⊥
〉 do not show up as subdiagrams of these diagrams.

Therefore, there is no double logarithmic correction the same as that in 〈p2
⊥
〉 from

these diagrams.

3 The time evolution of two gluons in the medium

In this paper we use a dipole-like picture4 to describe the whole process of two-gluon

emission in the QCD medium [11]. In our calculation we shall only include the fully-

overlapping emissions as illustrated in figure 2: the first gluon with energy ω1 emitted off

the quark at t = z1 lives until t = z4; and the second gluon with energy ω2 is emitted

at t = z2 > z1 and absorbed at t = z3 < z4 either by the first gluon or by the dipole.

In our case the energy of the high-energy parton E ≫ q̂L2 and, therefore, the change

of the transverse coordinates of the dipole can be neglected. Due to the homogeneity of

the medium in the transverse plane, our result should be independent of the transverse

coordinates of the dipole, which are chozen to be 0.

The time evolution of one gluon with energy ω1 together with the dipole inside the

medium is described by G(3) [8, 9, 17, 18]

G(3)(B2, z2,B1, z1;ω1)

≡
B(z2)=B2
∫

B(z1)=B1

DB exp

{∫ z2

z1

dξ

[

i
ω1

2
Ḃ2 +

Ncn(ξ)

CR

(σR(B, ξ)− σR(0⊥, ξ))

]}

. (3.1)

For the medium-induced energy loss the harmonic oscillator approximation is justified [8]

and one has

G(3)(B2, z2,B1, z1;ω) ≃ G(B2,B1, z2 − z1;ω1,Ω1), (3.2)

4Here, the dipole can be either a quark-antiquark pair or a gluon pair, representing the same high-energy

parton in the amplitude and in the conjugate amplitude. Our results are valid both for high-energy quarks

and gluons by choosing q̂ accordingly.
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Figure 3. Scattering of two gluons and a dipole off one scatterer. All the possible hookings of the

two gluon lines issued from the scatterer on the 4 partons are shown in this figure. In the cases

when one gluon line of the scatterer is hooked either on the quark line or on the antiquark line of

the dipole, the end of the gluon line is put in between the quark-antiquark pair. Here, a, b, c and d

are color indices, 0,x and B are the transverse coordinates, and ω1 and ω2 are the energies of the

two gluons.

where

Ωj =
1− i

2

√

q̂A
ωj

with j = 1, 2 and q̂A ≡ Nc

CR

q̂, (3.3)

and the propagator of the harmonic oscillator

G(B2,B1, z, ω,Ω) ≡
ωΩ

2πi sin(Ωz)
exp

{

iωΩ

2 sin(Ωz)

[(

B2
2 +B2

1

)

cos(Ωz)− 2B2 ·B1

]

}

. (3.4)

During z3 > t > z2 one needs to understand how the two gluons together with the

dipole evolve in the medium. Figure 3 shows all the possible diagrams for the scattering

of the two gluons and the dipole off one scatterer. Without any scattering one has the

color matrix (T d
A)ceT

e
R for the 4-body system. Including the scattering off one scatterer one

has Nc

2 (T d
A)ceT

e
R for each diagram in the figure, which gives the color factor Nc

2 for each

diagram. As a result the potential of the evolution Hamiltonian of the 4-body system can

be easily calculated, which takes the form

− iV (4)(t,x,B) =
Ncn(t)

2CR

[σR(x) + σR(B) + σR(B− x)− 3σR(0)] . (3.5)

Let us assume that the first gluon is emitted off the quark of the dipole. If the second

gluon is emitted off the first gluon or the quark, the propagator of the 4-body system is

given by

G(4)(x3,B3, z3;x2,B2, z2;ω1, ω2)

≡
x(z3)=x3,B(z3)=B3

∫

x(z2)=x2,B(z2)=B2

DxDBe
i
∫ z2
z1

dξ[ 12ω1ẋ
2+ 1

2
ω2Ḃ

2
−V (4)(ξ,x,B)]. (3.6)

– 6 –
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Otherwise, the propagator takes the form

Ḡ(4)(x3,B3, z3;x2,B2, z2;ω1, ω2)

≡
x(z3)=x3,B(z3)=B3

∫

x(z2)=x2,B(z2)=B2

DxDBe
i
∫ z2
z1

dξ[ 12ω1ẋ
2
−

1
2
ω2Ḃ

2
−V (4)(ξ,x,B)]

= G(4)(x3,B3, z3;x2,B2, z2;ω1,−ω2). (3.7)

In the harmonic oscillator approximation one has

G(4)(x3,B3, z3;x2,B2, z2;ω1, ω2)

≃
x(z3)=x3,B(z3)=B3

∫

x(z2)=x2,B(z2)=B2

DxDBe
∫ z2
z1

dξ
{

i
2
ω1ẋ

2+ i
2
ω2Ḃ

2
−

q̂A
8 [x2+B2+(B−x)2]

}

= G(x̃3, x̃2, z3 − z2,m1,K1)G(B̃3, B̃2, z3 − z2,m2,K2), (3.8)

where the new coordinates are defined as
(

x̃

B̃

)

=





1
−ω1+ω2+

√
ω2
1−ω1ω2+ω2

2

ω1

−1
2

ω1−ω2+
√

ω2
1−ω1ω2+ω2

2

2ω1





(

x

B

)

, (3.9)

and

m1 =
ω1

(

ω1 − ω2 +
√

ω2
1 − ω1ω2 + ω2

2

)

2
√

ω2
1 − ω2ω1 + ω2

2

, (3.10)

m2 =
2ω1

(

ω2 − ω1 +
√

ω2
1 − ω1ω2 + ω2

2

)

√

ω2
1 − ω2ω1 + ω2

2

, (3.11)

K2
1 = −

iq̂A

(

ω1 + ω2 −
√

ω2
1 − ω1ω2 + ω2

2

)

4ω1ω2
, (3.12)

K2
2 = −

iq̂A

(

ω1 + ω2 +
√

ω2
1 − ω1ω2 + ω2

2

)

4ω1ω2
. (3.13)

In the case ω1 ≫ ω2 one has

G(4)(x3,B3, z3;x2,B2, z2;ω1, ω2)

≃ G

(

x3,x2, z3 − z2, ω1,

√
3

2
Ω1

)

G(B̄3, B̄2, z3 − z2, ω2,Ω2), (3.14)

Ḡ(4)(x3,B3, z3;x2,B2, z2;ω1, ω2)

≃ G

(

x3,x2, z3 − z2, ω1,

√
3

2
Ω1

)

G∗(B̄3, B̄2, z3 − z2, ω2,Ω2), (3.15)

where

B̄2 ≡ B2 −
x2

2
, and B̄3 ≡ B3 −

x3

2
. (3.16)
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Figure 4. Diagrams with fully-overlapping emissions. 13 diagrams can be constructed from this

figure as follows. If the first gluon with energy ω1 is absorbed by the antiquark at t = z4, the ends

of the second gluon line with energy ω2 can be attached to the first gluon line or the diplole in 9

different ways. In contrast, the ends of the second gluon line can be attached to the first gluon line

or the dipole in 4 different ways if the first gluon is absorbed by the quark. These 13 diagrams and

their complex conjugates all contribute to ∆E2.

4 The double logarithmic correction to radiative energy loss

In this section we calculate the double logarithmic correction to radiative energy loss. The

double logarithmic correction comes from the diagrams with fully-overlapping emission

defined in section 2. All these diagrams can be constructed either from figure 4 or its

complex conjugate. First, we give all the contributions of these diagrams to ∆E2 in a

compact form in terms of G(3) and G(4) (Ḡ(4)) defined in the previous section. Next, we

shall show that they give a double logarithmic correction to radiative energy loss, which is

the same as that to the radiative p⊥-broadening in ref. [11].

4.1 Contributions from diagrams with fully-overlapping emission

In total, there are 26 diagrams with fully-overlapping emission. Let us denote the energies

of the two gluons respectively by ω1 and ω2 and their formation times respectively by

t1 ≡ z4 − z1 and t2 ≡ z3 − z2. And we assume that ω1 & ω2 and t1 & t2. As illustrated in

figure 4, there are respectively 4 or 9 diagrams in which the gluon with energy ω1 is virtual

or real. The 26 fully-overlapping emissions include these 13 diagrams and their complex

conjugates. And one can obtain the corrections to the energy loss from fully-overlapping

emissions by taking 2 times the real part of the contributions of these 13 diagrams.

There are some cancellations between the contributions from different diagrams. As

a consequence of the conservation of probability, moving one gluon emission (absorption)

vertex from the quark (antiquark) line to the antiquark (quark) line in a diagram only

changes the overall sign of the contribution of the diagram [10]. To see such a cancellation

easily, we use a diagramatic representation in which the integrations over all the time

variables and transverse coordinates in figure 4 are omitted. It is easy to see that we have

the following cancellation5

Ia =

∫

dω1dω2

{[

(ω1 + ω2)

( )

+ ω2

( )]

+

[

(ω1 + ω2)

( )

+ ω2

( )]

5The other 5 diagrams, integrated over ω1 and ω2, are cancelled by those with two virtual gluons. This

cancellation and that in (4.1) guarantee the conservation of probability.
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+

[

(ω1 + ω2)

( )

+ ω2

( )]

+

[

(ω1 + ω2)

( )

+ ω2

( )]}

=

∫

dω1dω2 ω1

{( )

+

( )

+

( )

+

( )}

. (4.1)

Therefore, only these 9 diagrams with the gluon of energy ω1 being real contribute to ∆E2.

The contributions to ∆E2 from these 9 diagrams and their complex conjugates can be

classified as follows

e1 ≡
2

(4π)2
Re

∫

dω1dω2ω1

[( )

+

( )

+

( )]

,

(4.2)

e2 ≡
2

(4π)2
Re

∫

dω1dω2ω1

[( )

+

( )

+

( )]

,

(4.3)

e3 ≡
2

(4π)2
Re

∫

dω1dω2ω1

[( )

+

( )

+

( )]

.

(4.4)

It is easy to show that the overall color factors for e1, e2 and e3 are respectively given by

NcCR, NcCR/2 and NcCR/2. In terms of G(3), G(4) and Ḡ(4), we get, from the Feynman

rules in section 2, the following compact expressions

e1 = 2α2
sNcCR Re

∫∫∫

▽x1 · ▽x4

[

G(3)(x4, z4,x3, z3;ω1)G
(3)(x2, z2;x1, z1;ω1)

]∣

∣

∣

x1=0=x4

×▽B2 · ▽B3G
(4)(x3,B3, z3;x2,B2, z2;ω1, ω2)

∣

∣

∣

B2=x2,B3=0

B2=x2,B3=x3

, (4.5)

e2 = α2
sNcCR Re

∫∫∫

▽x1 · ▽x4

[

G(3)(x4, z4,x3, z3;ω1)G
(3)(x2, z2;x1, z1;ω1)

]∣

∣

∣

x1=0=x4

×▽B2 · ▽B3G
(4)(x3,B3, z3;x2,B2, z2;ω1, ω2)

∣

∣

∣

B2=0,B3=x3

B2=0,B3=0
, (4.6)

e3 = α2
sNcCR Re

∫∫∫

▽x1 · ▽x4

[

G(3)(x4, z4,x3, z3;ω1)G
(3)(x2, z2;x1, z1;ω1)

]∣

∣

∣

x1=0=x4

×▽B2 · ▽B3Ḡ
(4)(x3,B3, z3;x2,B2, z2;ω1, ω2)

∣

∣

∣

B2=0,B3=x3

B2=0,B3=0
, (4.7)

where the short-hand notation
∫∫∫

≡
∫

dω1

ω2
1

dω2

ω3
2

∫ L

0
dz4

∫ z4

0
dz3

∫ z3

0
dz2

∫ z2

0
dz1

∫

d2x2d
2x3. (4.8)
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And the contributions from all the fully-overlapping emissions to the energy loss are

given by

∆E2 = e1 + e2 + e3. (4.9)

It is still too complicated to be evaluated analytically even in the harmonic oscillator

approximation. In the next subsection, we shall evaluate it in the double logarithmic

approximation following ref. [11].

4.2 ∆E2 in the double logarithmic approximation

The calculation of ∆E2 in eq. (4.9) is simplified in the double logarithmic region. The first

gluon with energy ω1, similar to that in the case with one-gluon emission, typically has

t1 ≡ z4−z1 ≃ L, ω1 ≃ q̂L2 and |x|2 ≃ 1
q̂L

. In the double logarithmic region [11], the second

gluon with energy ω2 typically has

|B|2 & |x|2, ω2 . ω1, and t2 .

√

ω2

q̂A
.

√

ω1

q̂A
≃ t1. (4.10)

In this region one can use the following approximation

G(4)(x3,B3, z3;x2,B2, z2;ω1, ω2) ≃ δ(x3 − x2)e
−

3
16

q̂Ax2
2t2G(B̄3, B̄2, t2, ω2,Ω2), (4.11)

Ḡ(4)(x3,B3, z3;x2,B2, z2;ω1, ω2) ≃ δ(x3 − x2)e
−

3
16

q̂Ax2
2t2G∗(B̄3, B̄2, t2, ω2,Ω2). (4.12)

By inserting (3.2), (4.11) and (4.12) into (4.9), we have

∆E2 ≃ 2α2
sNcCR

∫

dω1

ω2
1

dω2

ω3
2

∫ L

0
dz4

∫ L−z4

0
dz1

∫ z4

z1

dz3

∫ z3−z1

0
dt2

∫

d2x2e
−

3
16

q̂Ax2
2t2

×Re

{

▽x1 · ▽x4 [G(x4,x2, z4 − z3;ω1,Ω1)G(x2,x1, z3 − t2 − z1;ω1,Ω1)]|x1=0=x4

×
[

▽B2 · ▽B3G

(

B3 −
x2

2
,B2 −

x2

2
, t2;ω2,Ω2

)∣

∣

∣

∣

B2=x2,B3=0

B2=x2,B3=x2

+ Re▽B2 · ▽B3G

(

B3 −
x2

2
,B2 −

x2

2
, t2;ω2,Ω2

)∣

∣

∣

∣

B2=0,B3=x2

B2=0,B3=0

]}

.

(4.13)

In the double logarithmic region one has t1 . t2. Therefore, we can neglect the difference

between z3 and z2 and write

∆E2 ≃ 2αsNc

∫

dω1

ω2
1

∫ L

0
dz4

∫ L−z4

0
dz1

∫ z4

z1

dz3

∫

d2x2Re
{

S(x2, z3 − z1)

× ▽x1 · ▽x4 [G(x4,x2, z4 − z3;ω1,Ω1)G(x2,x1, z3 − z1;ω1,Ω1)]|x1=0=x4

}

,

(4.14)
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Figure 5. Kinetic region for double logarithmic correction [11]. The double logarithmic region is

enclosed by the following three curves: t2 = l0, ω2 = q̂Lt2 and ω2 = q̂t2
2
.

where

S(x2, z3 − z1) ≡ αsCR

∫

dω2

ω3
2

∫ z3−z1

0
dt2e

−
3
16

q̂Ax2
2t2

×
[

▽B2 · ▽B3G

(

B3 −
x2

2
,B2 −

x2

2
, t2;ω2,Ω2

)∣

∣

∣

∣

B2=x2,B3=0

B2=x2,B3=x2

+ Re▽B2 · ▽B3G
(

B3 −
x2

2
,B2 −

x2

2
, t2;ω2,Ω2

)∣

∣

∣

∣

B2=0,B3=x2

B2=0,B3=0

]

.

(4.15)

Now we are ready to show how the double logarithmic correction to radiative p⊥-

broadening shows up in the calculation of radiative energy loss. By dropping terms inde-

pendent of q̂,6 and keeping only the double logarithmic terms proportional to x22, we have

S(x2, z3 − z1) ≃ −αsNc

4π
q̂x22

∫

dω2

ω2

∫ z3−z1

0

dt2
t2

= −αsNc

32π
q̂x22 ln

2

(

z3 − z1
l0

)2

, (4.16)

where t2 and ω2 have been integrated over the double logarithmic region in figure 5 with

L replaced by z3 − z1. As we shall show below, one can simply replace z3 − z1 in (4.16) by

L in the double logarithmic approximation. Therefore, such a double logarithmic result is

exactly the same as that of radiative 〈p2
⊥
〉 and eq. (4.16) is the same as eq. (26) in ref. [11]

divided by L.

Let us evaluate the double logarithmic correction to radiative energy loss. Insert-

ing (4.16) into (4.14) and integrating out x2 gives

∆E2 ≃
α2
sN

2
c

4π2
q̂Re i

∫

dω1

ω1

∫ L

0
dz4

∫ L−z4

0
dz1

×
∫ z4

z1

dz3 ln
2

(

z3 − z1
l0

)2 Ω1 sin(Ω1(z4 − z3)) sin(Ω1(z3 − z1))

sin3(Ω1(z4 − z1))
. (4.17)

6In this way one calculates the medium-induced energy loss as explained in refs. [8, 9, 17, 18]. A

consequence of such a subtraction is that one drops the vacuum diagrams (including the UV divergent

ones) and, therefore, ignores the effects of running coupling. The consequences of running coupling to 〈p2⊥〉

or the renormalized q̂ is studied in [22], which is beyond the scope of this paper.
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Since the integrand on the right-hand side of the above equation is proportional to z3−z1 as

z3 → z1, the leading double logarithmic term from the integration over z3 can be obtained

simply by integration by parts, that is,

∆E2 ≃ α2
sN

2
c

4π2
q̂Re i

∫

dω1

ω1

∫ L

0
dz4

∫ L−z4

0
dz1 ln

2

(

z4 − z1
l0

)2

×
∫ z4

z1

dz3
Ω1 sin(Ω1(z4 − z3)) sin(Ω1(z3 − z1))

sin3(Ω1(z4 − z1))

=
α2
sN

2
c

8π2
q̂Re i

∫

dω1

ω1

∫ L

0
dt1(L− t1) ln

2

(

t1
l0

)2 Ω1 sin(Ω1t1)− Ω1t1 cos(Ω1t1)

sin3(Ω1t1)
.

(4.18)

Similarly, the leading double logarithmic term from the integration over t1 is of the form

∆E2 ≃
α2
sN

2
c

8π2
q̂ ln2

(

L

l0

)2

Re i

∫

∞

0

dω1

ω1

∫ L

0
dt1(L− t1)

Ω1 sin(Ω1t1)− Ω1t1 cos(Ω1t1)

sin3(Ω1t1)

=
α2
sN

2
c

16π2
q̂ ln2

(

L

l0

)2

Re i

∫

∞

0

dω1

ω1

1

Ω2
1

(

1− Ω1L

tan(Ω1L)

)

=
α2
sN

2
c

16π2
q̂L2 ln2

(

L

l0

)2

Re

∫

∞

0

dω̂

ω̂3

(

(1− i)ω̂

tan((1− i)ω̂)
− 1

)

=
αsNc

12
L× αsNc

8π
q̂ ln2

(

L

l0

)2

L =
αsNc

12
L〈p2⊥〉rad, (4.19)

where ω̂ ≡ 1
2

√

q̂AL2

ω
and recall that radiative energy loss due to one-gluon emission is given

by [9]

∆E1 = 2αsCRRe

∫

dω1

ω2
1

∫ L

0
dt(L− t)▽x1 · ▽x4 [G(x4,x1, t;ω1,Ω1) (4.20)

−G(x4,x1, t;ω1, 0)]|x1=0=x4 =
αsNc

12
q̂L2.

The resummation of the double logarithmic correction in eq. (4.19) can be carried out

in exactly the same way as that in the calculation of 〈p2
⊥
〉. For (n + 1)-gluon emission,

one has

S(x2, z3 − z1) ≃ −1

4
q̂x22

1

n!(n+ 1)!

[

αsNc

4π
ln2
(

z3 − z1
l0

)2
]n

, (4.21)

which gives

∆En+1 =
αsNc

12
L

q̂L

n!(n+ 1)!

[

αsNc

4π
ln2

L2

l20

]n

. (4.22)

Therefore, the total energy loss is given by

∆E =
∞
∑

n=0

∆En+1 =
αsNc

12
L

q̂L
√

αsNc

4π ln L2

l20

I1

[
√

αsNc

π
ln

L2

l20

]

=
αsNc

12
L〈p2⊥〉. (4.23)
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5 Conclusions

In this paper we calculate the double logarithmic correction to radiative energy loss of a

high-energy parton in the generalized BMDMPS-Z formalism [10, 11]. Radiative energy

loss per unit length due to one-gluon emission is given by [9]

− dE1

dz
=

αsNc

12
q̂L. (5.1)

In this case it is dominated by radiating one gluon with the maximum energy ωc ≃ q̂L2

and the formation time tc ≃ L. And within tc the gluon is of a typical size x2 ∼ 1
q̂L

.

The double logarithmic correction comes from the diagrams by adding a second gluon with

the two emission times both lie in between those of the first gluon of energy ωc. In the

kinetic region for the double logarithmic correction this second gluon has a smaller energy,

a shorter formation time and a larger size than the first gluon. It modifies the transverse

momentum broadening of the first gluon and, therefore, contributes to the radiative energy

loss according to the parametric estimate in eq. (1.1). Our detailed calculation confirms

this picture and we find that the double logarithmic correction to the energy loss due to

two-gluon emission satisfies

− dE2

dz
=

αsNc

12
〈p2⊥〉rad, (5.2)

where 〈p2
⊥
〉rad is given in eq. (1.3), which is obtained in ref. [11]. Moreover, the resummation

of the double logarithmic terms can be carried out to give

− dE

dz
=

αsNc

12
〈p2⊥〉, (5.3)

where 〈p2
⊥
〉 is given in eq. (1.4). Our result agrees with that by using the renormalized q̂

in refs. [15, 16].
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