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1 Introduction

With the large number of top quark pairs produced at the LHC, the study of the properties
of top quarks is becoming precision physics. Recently, the ATLAS and CMS collaborations
at CERN have reported first measurements of differential observables in top-quark pair
production, such as the transverse momentum and rapidity of the top quark as well as
the transverse momentum, rapidity, and invariant mass of the ¢t system [1-3]. These
measurements will become more and more accurate with higher statistics and will allow for
a much more detailed probe of the top quark production mechanism than what can obtained
from the total cross section. To reliably interpret the data, those precise measurements
have to be matched by equally accurate theoretical predictions. Those can be obtained by
computing these hadron collider observables at the next-to-next-to leading order (NNLO)
in perturbative QCD. At present, a fully differential NNLO calculation of the cross section
for top pair production including all partonic channels is still missing. Intermediate results
have recently become available in [4-22], and new developments were achieved in [23-27].
Most notably, the total hadronic cross section for ¢t production has been presented in [28].
It has been obtained using a combination of two well-known and tested procedures: the
NLO so-called FKS subtraction formalism [29] and the sector-decomposition approach [30,
31], leading to a numerical extraction and cancellation of the infrared e-poles.

In this paper we consider the hadro-production of a top-antitop pair and present those
O(a?) corrections to the partonic process qg — tt which are proportional to the number
of light quark flavours N;. While at O(a?) this partonic channel only contains a N; de-
pendence in the finite part of the virtual contributions, at O(a?) we must consider three
different ingredients: virtual-virtual, real-virtual and double real, with two, three and four
particles in the final state respectively. Individually, these contributions can contain both
ultraviolet and infrared singularities. While the ultraviolet divergencies are removed by
ultraviolet renormalisation, the infrared singularities can be made explicit using a sub-
traction formalism in which subtraction terms that approximate the infrared behaviour
of the real radiation matrix elements are added and subtracted. At NNLO, a systematic
procedure to construct these terms is provided by the antenna formalism [5, 7, 8, 32-37].

The double real contributions for the process considered in this paper were treated
in [5], where antenna subtraction terms were derived and their convergence to the real ra-
diation matrix elements in all single and double unresolved limits was shown. In this paper
we shall present the real-virtual and virtual-virtual contributions, employing the massive
extension of the antenna formalism to construct their corresponding subtraction terms. We
will show that the real-virtual subtraction terms correctly approximate the corresponding
matrix elements in all singular limits, and that all explicit infrared singularities are can-
celled analytically. Furthermore we also provide differential cross sections obtained with a



fully differential parton-level event generator containing the real-virtual and virtual-virtual
contributions presented in this paper together with the double real contributions of [5].

Employing a subtraction method, the NNLO partonic cross section to the ¢ production
cross section in a given partonic channel reads,

. B “RR .S .S
donnro = /d . (doNpro —doNNro) + / doynrLo
4

dd,
~RV VS ~VS ~MF,1
+ / (d6NNLO — dUNNLo) + / doynro + / doynTo
dds dds dds
+ / doNNro + / Aoy o (1.1)
dq>2 dq>2

where | 4o, represents the phase space integration for an m-parton final state. d&]‘% NLO
denotes the subtraction term for the four-parton final state which, by construction, behaves
like the double real radiation contribution d&ﬁ,ﬁ, 1o in all single and double unresolved
infrared limits. Likewise, d&l‘\/,}g\,LO is the one-loop virtual subtraction term coinciding
with the one-loop three-parton final state d&ﬁ,‘fv Lo in all single unresolved singular limits.
dé)—}(,% 10 denotes the virtual-virtual two-parton final state contribution, where no particles
can become unresolved and therefore no subtraction is needed. In addition, due to the
presence of initial-state partons that can emit collinear radiation, there are also two mass
factorisation counter-terms d&%{;ﬁo and d&%]l\?fo’ for the three and two-particle final state
respectively. Both are constructed as convolutions of Altarelli-Parisi splitting kernels with
lower order partonic cross sections: d&%ﬁfo involves the next-to-leading order (NLO)
real radiation cross sections, while d&%gﬁo contains the leading order (LO) and NLO
virtual partonic cross sections. Since there are no NLO real contributions to ¢t production
proportional to Nj, in this paper we do not need to consider (M F,1)-type counter-terms.
As mentioned above, the quark-antiquark channel contains a piece proportional to IV; in the
NLO virtual contributions, and therefore | 4, d&%ﬁfo is present and will be derived below.

The numerical implementation of the NNLO cross section requires the rearrangement
of the different terms in eq. (1.1) according to the multiplicity of the final states. After
this rearrangement is performed we have

donnNLO = / [d6 8% 1o — déynLo)
A,
+ [ (oo — ool
d%;
+/dq) [d6NNzo — 46K nro] 5 (1.2)
2

where the terms in each of the square brackets is finite, well behaved in the infrared singular
regions and can be implemented in a parton-level event generator computing the NNLO
cross section and related differential distributions numerically.

The double real subtraction term d&fm 1o contains distinct pieces corresponding to
different limits in different colour-ordered configurations. Some of these pieces ought to be
integrated analytically over the unresolved phase space of one particle and combined with



the three-parton final state integral, while the remaining terms are to be integrated over the
unresolved phase space of two particles and combined with the two-parton contribution.
This separation amounts to splitting the integrated form of d&f, ~NLo s explained in [8, 32,

33, 35, 36]
. S ~S,2
/ d6N N Lo :/ /dUNNLO+/ /dUNNLO‘ (1.3)
dd, ads J1 Ady J2

After performing this separation, the counterterms for the partonic channel considered in
this paper which must be added at the three and two-parton final states are

~T _ ~VS ~S1

A6y nNLON, = dGygnNLoN, — /1 do .2 NNLON (1.4)
U _ VS 5,2 ~MF2

dGggNNLON, = _/1d‘7qq,NNLO,Nz - /Zdaqq,NNLO,Nl —do NNLoN, (1.5)

While the construction of d&qsq, ~NNLo.n, has been presented in [5], the explicit derivation
of d&g@ NNLO.N, and d&%’ ~NrLo.n, Will be given here for the first time.

The NNLO antenna subtraction method, which we shall employ in this paper, can be
viewed as belonging to the class of so-called classical subtraction methods in which the
matrix elements, subtraction terms and especially the integrated subtraction terms are
evaluated analytically. As a result, at the real-virtual and virtual-virtual levels one obtains
an exact and analytic pole cancellation. The finite remainders at each of those levels can be
implemented in a parton-level Monte Carlo event generator containing the full kinematical
information on the final states on an event-by-event basis and enabling the description of
differential NNLO observables.

The general structure of the NNLO antenna subtraction terms that are required for
massless hadronic observables has been detailedly explained in [32, 33, 35-37]. For the
treatment of observables involving massive final states, further ingredients are needed,
namely, massive antennae and different phase space factorisations and mappings [5, 8].
The general structure of the subtraction terms, however, remains unchanged it will not be
repeated in this paper. We shall instead restrict ourselves to presenting those ingredients
of our computation which are new at the real-virtual and virtual-virtual levels focusing on
challenging aspects such as the correct subtraction in the subleading colour contributions
at each partonic level.

The plan of the paper is as follows: in section 2 we present the general structure of
the individual NNLO contributions related to the process q7 — tt. Section 3 deals with
the double real contributions proportional to the colour factors N;N. and N;/N,, and it
specifies how the integrated form of the double real subtraction term d&}%,NLO ought to
be added back to the three and two-parton phase space integrals. In section 4, we derive
the real-virtual contributions and explicitly construct their corresponding subtraction term
d&f, ~Lo» While in section 5 the two-parton final state contributions involving the two-loop
matrix elements and the counterterm d&% ~ro are derived. Section 4 also presents some
numerical tests checking the validity of the real-virtual subtraction term d&% NLO»> While in
section 5 we show that the explicit poles present at the two-parton level cancel analytically.
In section 6 we present differential distributions at NNLO in kinematical variables of the



top quark and the top-antitop system. Finally, section 7 contains our conclusions and an
outlook.

Included are also different appendices: appendix A presents the double real subtrac-
tion term d&% ;o derived in [5]. In appendix B we define the massive and massless
infrared singularity operators required to express the explicit infrared poles of several
ingredients in our calculation. Appendix C summarises the infrared factorisation of
tree-level and one-loop amplitudes, while appendix D presents the infrared limits of
the one-loop antennae present in the real-virtual subtraction term. Finally, appendix E
contains the expression for the integrated initial-final four-parton B-type massive antenna
required in our calculation at the virtual-virtual level.

2 General structure of the NNLO contributions to top pair production
in the gqq channel

At leading order (O(a?)), the partonic cross section for top-antitop pair production via the
quark-antiquark channel reads

. 7 5 4 2
quq,LO = NLq(gdq)Q(p&pél;plva) ’Mg(?)@v 4@7 2(77 1q)‘2j2( )(p3ap4)- (21)

In this equation, d®s(ps, ps;p1,p2) is a 2 — 2 phase space with p; and py denoting the
momenta of the incoming massless quark and antiquark respectively, and ps and p4 those
of the top and antitop. JQ(Q) (ps, p4) represents the measurement function that constructs
an experimental observable with a top-antitop quark pair in the final state. For the total

pe)

cross section, we have J5”(ps,ps) = 1 while for a generic differential distribution in a

given variable X, which is defined in terms of the momenta ps and p4 through the function
X (p3, pa) we take J5 (p3, ps) = 6(X — X (p3, pa))-

The tree-level matrix element MY(...) in eq. (2.1) is colour and coupling-stripped, and
it is related to the full tree-level amplitude for q1go — @3Q4 through the (trivial) colour

decomposition
0 2 1 0 5_ 1
Mq1q2_>Q3Q4 = g5 | Oigi Oigig — F5i3i45i2i1 M4(3Q74Q’ 2q) lq)' (2.2)
C

The hats in iq and ?q indicate that p; and ps are incoming momenta.
The normalisation factor N|% is given by

a7 _ i Oés('u) 2 0(6)2 (Nc2 - 1) (2 3)
LO ™ 95 27 C(e)? 4NZ ~ '
where s is the energy squared in the hadronic center-of-mass frame. Included in this
normalisation factor are the flux factor, as well as the sum and average over colour and
spin. The constants C'(¢) and C(e) are defined as:

_ @e—e’m C(e) = (4m)e 7, (2.4)



providing the useful relation

%) C(e)

2 _ —
g; = 4mas = ( Cle)

(2.5)

The NNLO corrections to the leading-order cross section in eq. (2.1) receive contri-
butions from partonic processes at tree, one-loop and two-loop levels. The double real
NNLO corrections that are proportional to the number of light quark flavors are due to
the partonic process ¢§ — QQq'q’ at tree level. They read

~RR RR, ) 0 2 7(4)
A6, NNLON, = NNquONld@4(p37p4,p5,p67p17p2)\/\/lq162_>@3@4q3%\ Jy " (P3, P4, D5, P6),

(2.6)

where d®, is the 2 — 4 phase space, and |M? is the square of the full

0132~ Q3Q4q5 75 |
coupling-stripped tree-level amplitude normalized to (N2 — 1). This factor is included in

the overall normalisation Ny N’gqo, which is given by
NRR ,4q qq Qg (:u) 2 C_’(G)Q
NNLO =NLo\ Tor ) Gl (2.7)

(4)

Given the fact that the measurement function J,’ allows the massless final state
fermions with momentum ps and pg to become unresolved, i.e. soft or collinear, eq. (2.6)
contains infrared divergences. These divergences are implicit, in the sense that they only
become explicit as poles in the dimensional regulator € after the integration over the phase
space is performed. The infrared behaviour of d&ngNLO’ N, can be captured with the
antenna subtraction term presented in [5], which is also recalled in appendix A. A more
detailed discussion on the structure of the double real contributions and their infrared
behaviour will be presented in section 3.

The mixed real-virtual contributions are given by the phase space integral of the one-
loop and tree-level amplitudes for the 2 — 3 process ¢ — QQg. They read

R 4RV dz; dzy
A6y nron = Nikio Ni /d¢3(P3,P4,P5,$1P1,$2p2)5(1 —x1)0(1 — x2)

1 () (3)
[2Re (Mq1q2—>Q3Q4gsMq1q2—>Q3Q4g5) :| JQ (p37p47p5)7 (28)
N
with the normalisation factor ]%qj\, Lo given by
qq,RV qq Qs (N) 2 qq,RR
Nyvro =Nio o Cle) = N¥xro Cle). (2.9)

The subscript N; on the interference of the tree-level and one-loop amplitudes indicates
that only those terms proportional to N; are to be kept.

The real-virtual contributions in eq. (2.8) contain explicit ultraviolet and infrared di-
vergences as well as implicit infrared ones. The explicit poles in € originate from the loop

integration in M? whereas the implicit singularities are due to the phase space

01G2—Q3Q4gs5’ ] k ..
integration over regions where the matrix elements diverge: the soft limit ps — 0 and the



collinear limits p1||ps, po||ps. While the ultraviolet poles are cancelled upon renormali-
sation, we employ a subtraction term d&% NNLO.N,; 1O deal with the infrared ones. This
subtraction term has the twofold purpose of canceling the explicit poles, whose structure
is well known [38], while simultaneously regularising the phase space integrand in the soft
and collinear limits. We shall present the explicit construction of dégq, NNLO,N, in section 4.

Finally, the double virtual contributions contain two terms: the interference of a two-
loop 2 — 2 matrix element with its tree-level counterpart, and a one-loop 2 — 2 amplitude
squared. Those can be written as,

“ d.%'l d$2
datyé‘,/NNLO,Nz NNLO o N, /dq)2(p37p471'1pl7332p2)5(1 —x1)8(1 — 22) (2.10)
2 0t 2 ( )
[QRe (MQ1Q2—>Q3Q4MQ1®—>Q3Q4> + |Mq1qz—>Q3Q4’ ] (P3; pa)
N,
where the normalisation factor ;{g’v‘g(/) is given by

qq,VV qq as(u) 2 qq,RR 2
NNLO TNLO\ "o C(e)* = Nikpo Cle)*. (2.11)

After ultraviolet renormalisation, these double virtual contributions have explicit in-
frared poles coming from the loop integration, but no implicit poles, since the measurement
function J2(2), does not allow any final state particle to be unresolved. The construction
of dc}% NNLO.N, to be associated with these virtual-virtual contributions and dealing with
the explicit infrared divergencies present in those will be presented in section 5.

In the expressions of the real-virtual and virtual-virtual contributions defined above
as d&(%YNN LO.N, and of d&%YNNLO’ Ny We have introduced a dependence on z; and zs,
the momentum fractions carried by the initial state quark-antiquark pair, through delta
functions. This trivial dependence on x7 and s is introduced in order to facilitate the
combination with the counterterms d&g:j’ NNLO.N, and d&%’ NNLO.N, respectively, whose
dependance on these two variables is not trivial. As we will see in sections 4 and 5, this
dependance on z1 and x3 is related to the fact that in the integrated subtraction terms
and mass factorisation counterterms there are contributions where the partons that enter
the hard scattering carry a fraction z; of the incoming momenta. In general, there are
three regions: the soft (x1 = x9 = 1), the collinear (z1 = 1, x93 # 1 and 21 # lay = 1)
and the hard (x1 # 1x9 # 1). The two delta functions in the above equations imply that
the real-virtual and the virtual-virtual corrections only contribute in the soft region. Their
corresponding subtraction terms denoted respectively as dﬁqTq, NNLO.N, and d&% NNLO.N;»
on the other hand, will contribute in all three regions.

3 Real-real contributions to gqg — tt: the N, part

The double real contributions to gg — tt that are proportional to the number of light quark
flavours and their corresponding subtraction terms were derived in [5]. It is the purpose of
this section to identify the parts of the integrated form of the subtraction term that must
be included in the counter-terms at the two and three parton levels.



Using the colour decomposition of [5] for the tree-level matrix element M° _

Q1 G2—Q3Q4qLa,’

eq. (2.6) can be re-written as
d6 R = NIEEE N, do ; 3.1
O04q, NNLO,N, = VNNLO Vi 4(p37p47p5?p6ap15p2) ( . )

x {NC [\M‘g(?@, 145124,673554,40) 1 + IME(30. 6735 24,40 1 5y, 101

1 . ) .
+or |:’M8(3Q74Q3 124,675 54, 1g)|* + IMG(3q, 6753 24, 145 5, 4|
C

24 _ 4
+ME(Bgs 145124, 403554, 64) P —3IME(30, 405 24, 1q;§5q’76q’)|2:| }J2( (93, Pas ps» D6)-

The different colour-ordered amplitudes in this equation can become singular in the 5|64
single collinear limit, as well as in the 5,,6; double soft limit and the 44||5,||6; and
3q\|5q/\|6(7 triple collinear limits. The subtraction term required to capture these limits is
recalled in the appendix A for completeness.

Following the labelling of the subtraction terms employed in the computation of
hadronic jet observables with the antenna formalism [35-37], we find that our double real
subtraction term can be split as

~S _ 325a ~5,b,4 ~5,b,3%3
do,a NNro.N, = 4005 nvron, T 9955 Nvo,n, T 4005 NN Lo, (3.2)

The (5, a)-type subtraction term, denoted by d&ng NLO.N> subtracts the single un-
resolved limits of d&fq],%N NLO.N, and it is built with products of a tree-level three-parton
antenna, generally denoted as X g and five-parton reduced matrix elements with remapped
momenta.

The (S, b)-type subtraction term, denoted by d&ng NLO.N;» takes care of the double
unresolved limits. Two different kinds of structures are involved in this subtraction term:

d&fé{’}é ~Lo,n, Which has the form X9 x|MYJ?, with X being a general four parton tree-level

antenna, and d&fé{j}\?}féo’ n, which has the form X, 9 x X9 x |[M3|?. The former subtracts the
double unresolved limits while introducing spurious single unresolved singularities, whereas
the latter removes these spurious limits ensuring that the four-parton antenna is only active
in the double unresolved regions.

The integrated form of d&fé?ﬁNLO’ n, is obtained by integrating the four-parton an-
tennae X inclusively over their corresponding antenna phase space. These integrated
subtraction terms are added back at the two-parton level, and therefore, recalling eq. (1.5),

for the present calculation we have
5,2 B ~S,b,4
/Qd%q,NNLo,Nl = /2d0qq,NNLO,Nz‘ (33)

On the other hand, the subtraction terms d&ng NLO.N, and d&fé?}\?;szio, N, are added
back in integrated form at the three-parton level. The integrated forms are obtained by
integrating the three-parton antennae Xg over the corresponding antenna phase space (in



the case of d&fébj\?f’;/iO n, the “outer” antenna is integrated). We therefore have

51 B .S, . 5,33
/1 40,5 NNLON, = /1 40,5 nNLoN, T /1 46,45 NNLON;- (3.4)

Before concluding this section we would like to make a few more remarks about the
double real subtraction terms.

As was pointed out in [5], the construction of d65§?}3NLO, ;» which is given in ap-
pendix A, requires three different B-type antennae: a massive final-final, a flavour-violating
initial-final, and an (massless) initial-initial antenna. While the leading-colour piece, that
is, the part proportional to N; N., only requires the initial-final antenna, a combination of
all three of them is needed in the subleading-colour part, propotional to N;/N.. The form
of this combination is non-trivial and it is derived in such a way that the subtraction term
correctly matches the double soft limit of the double real radiation matrix elements. The
integrated forms of the three different B-type antennae, which shall be used in section 5
for the construction of the double virtual counter-term, were derived in [6, 11, 39, 40].

. .S, L ) .
For the construction of d& 2. NNLO.N,> only one antenna function is needed: a massive

final-final E-type antenna. The same antenna function is employed in d65§?}3JXV3Lo, N, in order
to subtract the single collinear limits of the B-type four-parton antennae. The unintegrated

and integrated form of this massive E-type three-parton antenna has been derived in [4, 41].

4 Real-virtual contributions to qq — tt: the IN; part

In this section we shall present the real-virtual contributions to qg — tt proportional to
the number of light quark flavours together with their corresponding antenna subtraction
terms. In other words we will construct the phase space integrand of the following three-
parton contribution

~RV AT
/dq> {daqq,NNLO,Nl - quq,NNLo,N, . (4.1)
3

4.1 Real-virtual contributions

The real-virtual corrections to top pair production in the ¢ channel are obtained from the
interference of the one-loop and tree-level amplitudes for the partonic process qq — ttg.
The colour decomposition of the one-loop matrix-element reads,

M! =V2g2C(e) (4.2)

7132—Q3Q4g5
X{ [(T““”)isilfsigu/\/l%@@a 59> 1g352:40) + (T )izis6izin M3 (30, 1433 24, 5, 4@)]
1

A [(T%)igiﬁigil/\/ié(?)@» 59,4035 2, 1q) + (T )iz, 611, M3 (305 405 1 24, By iq)} },
C

where each of the sub-amplitudes has the following decomposition into primitives:

C 1 Sic
Maqzmw¢%q+MM%meM¢%q—ﬁMykq. (4.3)



SO

Figure 1. Sample Feynman diagrams for the N; part of the one-loop amplitude M}
The thick solid lines represent massive fermions.

q132—t3tags”

For the tree-level amplitude, the colour decomposition reads,

0 3
MQ1q2—>t3t4gs = \[295 (4-4)

X{ [(Ta5>i3i15i2i4Mg(3Qv Sg; iq; ) é(iv 4@) + (Tas)i2i45i3i1Mg(3Q7 iq; ;Q@ Sg; 4Q)]
1 , o i .
N {(T“°)i3¢45i2¢1M§(3Q, 59,4015 2 1g) + (T )iz, 6131, M3 (305 405 1 24, By 1q)} }
c
Interfering these one-loop and tree-level amplitudes given respectively in eq. (4.2) and
eq. (4.4), combining the result with the phase space and the measurement function, and
retaining only the terms multiplied by NV;, we have

R RV dz; dzo
dUﬁjYNNLO,Nl NqNLO N / 77d‘1)3 (P3, P4, P5; T1p1, T2p2)0 (1 — 21)6(1 — 22)

]
{0 1M 30,50 14204+ 1M 3 20500400 P
MO 0,50 40: 20 1) + MY (30, 4555245, 1)
+N | 5(Q7 9> Q11 4> q)""‘ 5(Qa Q114499 q)|
C
—2|./\/l (3Q74Q’2m1m5 )\2]} )(pd,p4 D5), (4.5)

where the overall factor Ni%/ LVO was given in eq. (2.9). Furthermore, in eq. (4.5) we have
defined the following amplitude

M[l}(3Qv4Qv2q’1q’5 ) Mg](?’c?»f)gviq;;% 4@)+M[”(3Qviq;;2675974f2)
1 A s 1 - -
= MU 30,59, 45320, 10) + MU (30,4055 24,54, 14),  (4.6)

where the gluon is photon-like.
The matrix elements in eq. (4.5) were not available in analytic form in the literature.
We computed them ourselves with an in-house program based on Qgraf [42]. Only eight

Feynman diagrams of the full one-loop amplitude M contribute to the IV; piece,

q132—Q3Qags
with topologies involving up to three massless loop propagators. Two sample Feynman
diagrams are presented in figure 1. After the reduction of all tensor integrals to scalars,
we find that all the one-loop amplitudes in d&%‘fN NLO.N, Can be written entirely in terms

of two massless bubbles with virtualities (p; + p2)? and (p3 + ps)?.

~10 -



These matrix elements contain explicit infrared and ultraviolet poles, and because of
their singular behavior in soft and collinear limits, they also yield implicit infrared singular-
ities upon phase space integration. The ultraviolet poles are removed after renormalisation,
for which we follow the scheme of [14-16, 22]: the heavy quark mass and wave function are
renormalised on-shell, while for the strong coupling, the MS scheme is employed.

In general, the explicit infrared pole structure of real-virtual contributions can be writ-
ten in terms of colour-ordered infrared singularity operators denoted as IZ(-JI-), with 4,7 the
partons involved in this operators which can be either massless or massive. For complete-
ness those are recalled in appendix B. In the context of this computation, it turns out to
be more convenient to write the pole parts explicitly, since the IZ(-jl.) operators involved are

IS; (€, 8i5) and I((Jlg% (€ 545), all of which yield the same explicit poles proportional to the

colour-ordered renormalisation constant by p = —1/3. For all colour orderings we have:
I 1
Poles (\My(. . .)12) = M (4.7)

With this, we can write the pole part of the real-virtual contributions as,
POZ@S (da—(%‘,/NNLO,Nl) =

§,RV dzidxs
NNLO Nl/ o1 d®3(ps3, pa, ps; v1p1, T2p2)0(1 — 21)6(1 — 22)

b[)VF A~ A N A
X? {Nc |:’Mg(3Q7 597 1‘1; ) 2‘?74(:2)‘2 + ‘Mg(3Q7 111; ; 21?7 5974Q)|2
1 PN N "
5 {!M%(?»Q, 59,45+ 23 1o)|* + I M5(30, 4455 24, 59, 1)
(4
M50, 4.2 10:5)| [ i) (48)

The implicit infrared singularities in eq. (4.5) are related to the fact the final state
gluon can become either soft or collinear to one of incoming particles. These implicit
divergences as well as the explicit poles are captured by the real-virtual subtraction term
d&g@ NNLO.N, which we shall construct below.

4.2 The real-virtual subtraction term: déT

The purpose of the real-virtual counter term d&% NNLO,N, 18 to cancel the explicit e-
poles of the real-virtual contributions d&f{N ~Nro.n, and to simultaneously subtract their
infrared limits in such a way that the difference d&fq‘fN NLON, — d&g;l NNLO,N, Can be safely
integrated numerically in four dimensions. The general structure of this subtraction term
was developed for hadronic (massless) jet observables in [35], and it remains unchanged
for processes involving massive fermions. For the leading-colour contributions to qq — tt
it has been applied in [8]. We shall not repeat it here.

As shown in eq. (1.4), the real-virtual subtraction term for the present calculation con-
tains singly integrated double real subtraction terms, as well as a pure virtual subtraction
term d&;/q:gN NLo.n,- The pieces of the integrated double real subtraction terms that must be
added back in this three-parton final state are specified in eq. (3.4). Regarding the purely
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virtual subtraction term d&%‘?}v NLO.N;» Only two of the four contributions discussed in [35]

are needed in the context of this paper: a term denoted as d&;/q:g]’\‘,l NLO.N;> which approxi-
mates the behaviour of the real-virtual contributions in their infrared limits, and another
term that we denote as d&g‘?]’\ﬁl NLO.N,> which is related to the ultraviolet renormalisation
of one-loop antennae. With all these ingredients put together, the real-virtual subtraction
term that will be presented in the remainder of this section takes the following form

AT VS,a .VS.d ~S,b3x3
dogg NNLON, = / dg: qq, NNLO N [df’ 4@ NNLO,N, T do 9@, NNLO,N, /1 do 04g,NNLO, Nl]

(4.9)

4.2.1 Explicit infrared singularity subtraction

We start the construction of d&fq% NNLO.n, Py showing that the explicit poles of the real-
virtual contributions are cancelled as

~ RV ~ S,
POlBS <d0-qq,NNLO,Nl + /1d0-qq?NNLO,Nl> = 0 (410)

The explicit poles of the real-virtual matrix elements were given in eq. (4.8). Those of the
singly integrated subtraction term fl d&féilN NLO,N, Can be obtained from its corresponding
unintegrated form given in eq. (A.1) by replacing in that expression the unintegrated
antennae by their integrated forms and relabeling the remapped momenta. We find

.S, RV dzy dxg
/do-qanNLO N, = quLONl/dCDiS p37p4ap5ax1p17$2p2) (4'11)

X{ 5 <5Qqq(€ $35, 21, 72) + EQqq(€s 545,561,$2)> (’Mg(3Q,5g,iq;;iq74Q)|2
MY, 30.5,40))
L (o 0 0 5 7 2
ton EQqq(€: 835, 71, T2) + EQyq(€, 845,71, 2) | | [IM5(3q,5¢,405 324, 1g)|
C

+‘Mg(3Qa4Q;;QQa5gaiq)| _2|M5(3Q74Q72Q71qa5 )|2>} ()(P3ap4ap5)

The integrated final-final massive three-parton E-type antenna function denoted by
5gqq was derived in [4]. It is given by

1
EQaa€: 5Qag 1, 72) = _41233,F(57 $Qqq)0(1 — x1)6(1 — z2)

sQua\ [ 6+3p—80*+3p° +6p" p’B+3p—p%)
(1 — 21)8(1 — 2Qag - - 1
(1 = @)l w2)< T > [ 6(1 — p?)? 3(1—p2)3 n(e”)

—i—é In(1 — pQ)} + O(e), (4.12)

with
o _ Mo (4.13)

p =
Eerm \/ $Qaa T mé

We omit the explicit functional dependence of the integrated antennae on p for conciseness.
Combining eqgs. (4.8), (4.11) and (4.12) we find that eq. (4.10) is satisfied.
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4.2.2 The implicit infrared substraction term: d&V*

As we mentioned before, the real-virtual subtraction term d&V_SN NLO.N, Teceives two dif-
qd, Yy

ferent contributions. It can be written as

VS VS,a VS,d
doygnvNro.N, = 405 nron, T 9945 NnLo,N,- (4.14)

. ~VS,d e ~MF,1
Since daqq’ NNLO.N, does not have any explicit infrared poles, and no dé& JI.NNLO,N, 1ass
factorisation counterterms terms are present, a way to see that no (V'S, b)-type subtraction

terms are needed, unlike in the general case [35], is by showing that
VS, ~S,b3x3
Poles (daqq,J\?NLO,NZ - /1d qq,NJXVLO Nz> =0, (4.15)

and that the implicit infrared singularities of fl ds®: a7, o NLO.N, are compensated by
f d A S b3x3

1994 NNLO,N,*
Construction of d&V %@, Following the general framework described in [35], in order to
subtract the single unresolved limits of the real-virtual contributions given in eq. (4.5) we

construct our subtraction terms of the type (V'S,a) with tree-level and one-loop antennae
multiplied by reduced matrix elements at one-loop and tree level respectively. For the

process under consideration we find
VS,a 9q,RV s dzy dao By 5 5
do . nnron, = Nawvro Vi 77(1 3(P3, P4, P5; T1p1, T2p2)0(1 — 21)8(1 — x2)

2~ S 2

{43030, LA (39001 1,20 TP 05 )
7[ S ~ 2 z

+AY (3,54 1) MS((35)q. 49, 20, 1) P 5 (D5 pa)

2 2 A 2
+A45(4g, 59, 29)l MY (3, (45) g, 24, 1) 257 (ps, i)

1 2 £ 2 2
+A5 (45,54, 20)IMS(3q, (45)5, 24, 1) IS (03, 1)

1 2 l ~ =
+ [24830.55 20) ML (35)0 40 26 1) P T3 (95, o)

+243 (39, 54, 20) I M3((35)0, 40, 245 L) P IS (052, pa)

+249(45, 54, 1) MU (3, (45) 5, 24, 1) 257 (p3, pgz)
~ ~ A = 2

+241 (45,5, 1) IMS(3q, (45)5, 24, 1) > 15 (3, piz)

~249(3q. 5g, 1) MU ((35)q. 46, 24 1) P57 (05, pa)

l A ~ ~ )
—243" (3. 5g. 1)IMY((35) . 49 24, 1) 2157 (pgz, pa)
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S 1 ~ S S
—243(44, 54, 20) MY 3. (45) . 24, 1) PTS (3, pyz)
1 A ~ 2 A 2
—243' (46,54, 20)| M3 (3q, (45) g, 2. 1) 1P IS (03, D)
~A8(30, 30, 4Q)IMi (e, (B)g, 25, 10) P57 (035, p75)
3(9Q, 9g, %40 4.1 Q> Qs 44 1q 2 \P35:P35
~ ~ A fay 2
— 43" (3, 54, 46)|MY((35)q, (45) 0, 24, 1) P17 (52, i)
~ ~ 1 ~ ~ 2 2
—A3(24, 54, 1)1 MY B0, 360, 24, 1) PISY (B3, )

AN (3,50, 1) MG 3o, 2. 1) J§)<p3,p4>}} (4.16)

This subtraction term contains three different three-parton tree-level A-type antennae: a
(massless) initial-initial A3(4, g,¢), a massive flavour-violating initial-final A3(Q, g, §) and a
massive final-final A3(Q, g, Q). All these antennae were derived and integrated in [4, 41, 43].
The one-loop antennae in eq. (4.16) are Aé’l((j,g,ﬁ), Aé’l(Q,g, ¢) and Aé’l(Q,g,Q). Only
the first of them has been already derived [44]. The remaining two are massive antennae
which we present for the first time together with their singular limits and infrared structure
in appendix D.

For the construction of d&;gsj\? NLO.N, > the U(1)-like sub-amplitude squared
]Mg](SQ,ZLQ,Qq, 14,5,)% in eq. (4.5) requires a special treatment, since the hard radia-
tions cannot be simply identified as the “colour neighbours” of the unresolved gluon. It is
crucial to notice here that the unresolved behaviour of the one-loop matrix elements Mg]
is “tree-level-like”. This can be seen in the fact that the INV; parts of the one-loop colour-
ordered soft factor and splitting functions are proportional to their tree-level counterparts
as shown in appendix C. Therefore, the subtraction terms for the one-loop matrix-element
]Mg](SQ,élQ,Qq, 14,5,)|? can be constructed following eq. (C.12) which characterises the
soft behaviour of tree-level subleading-colour contributions.

Because the renormalized one-loop reduced matrix elements |ME}1(3Q, 45, Qq, iq)|2 in
eq. (4.16) are finite, all explicit poles present in d&;%i;? NLO,N, COme from the one-loop Ail,)’l
antennae, which can be found in appendix D. We find

~VSa _
Poles (daqq,NNLO Nz) =

b dzq dx
_quNRLVO Ny ﬂ / 7172 d®3(ps, pa, ps; €11, T2p2)d(1 — 1)6(1 — x2)

A ~ ~ S 2
x{Nc {A8<3Q,5g, ) IMY((35)0, 4. B, 1) 212 (p i)
~ ~ S A~ 2
+ A4, 59, 20) | M(30, (45) 9, 24, 10) IS (93, )
1 o ~ S A
+N[2A2<3Q,5g,2q>|M2<<35>Q,4Q 20 T2 (o5, )

+24%(4g. 54, 1) M3 (Bqs (45) 9 24, 1) 2157 (93, piz)
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~249(3q. 54, 1)IMIU(35)0, 49, 20, 1) 25 (pgz. pa)
~24%(45. 54, 20)| M3(3q. (45)g, 24, 1) PI” (93, p55)
—A9(30.54,40)MY(35)q, (45) 9. 2, 19) P15 (p35, p35)
Ay, 5 q>|M2<éQ,4@,§q7iq>12J§2><ﬁ3754>]}. (4.17)

Furthermore, the integrated form of the double real subtraction term dc“rsquijvio N,

can be obtained from its unintegrated form by integrating the “outer” antennae in those
terms in eq. (A.2) which contain a product of two three-parton antennae. It reads

/dASb3x3
044, NNLO,N, —
1
dzi dz
~Nito Nl/12d®3 D3, P4, P55 T1P1, T2p2)0(1 — 21)0(1 — x2)
x5 (5Qqq(€ 835,71, T2) + 5Qqq(€ 845,$U1,$2)>
x4 N[ A%(30, 59, 1) IMO((35) 0 46, 25, 1) 21 (9es, 1)
c[43\9Q 995 1q 4 Qr*Q> 47> 1q 2 "\DP35, P4
+A3(45, 54, 24)| MY (3q, (45) 5, 24, 1) IS (p3. )
1 a 2 A 2
o |243(50.50. BBl gy 30, 1) P ()
+24%(40: 54, 1) M3 Bas (45) 9 24, 1) 2157 (93, pgz)
- ~ a3 < 2
~249(30, 59, 19)IM((35)0s 4, 24, 1¢) 2157 (D35, 1)
A~ ~ = A 2
~249(45, 59, 20) M3, (45)5, 24, 1¢) 2157 (93 p35)
— 4330, 54, 45)|M(35)q, (45) 5, 24, 1) 12157 (5, i)
3\9Q» g5 *Q 4 Q> Q149> 1q 2 "\P35, Pg5
A~ A~ ~ ~ = > 2) e~
ALy, 5,30 MG, D, 2. 1) S ’<p3,p4>] } (4.18)

Using the pole part of égqq as given above in eq. (4.12), one can show that eq. (4.15)
holds and that no further real virtual subtraction term (except d(};/;’\? ~Lo,n, derived below)
is necessary in the context of the calculation presented in this paper. In section 4.3 we

shall furthermore show that all implicit infrared singularities present in fl d&fngN LON,

are captured by fl dA;gqbz\%XVgLO Ny

4.2.3 Renormalisation scale dependent subtraction

In general, one-loop antennae are evaluated at the renormalisation scale |s;;i| (see appendix
C) while all one-loop matrix elements are evaluated at scale 2. To ensure the proper renor-
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malisation of the real-virtual subtraction terms, a contribution denoted as d&(‘l/;j\? NLO.N, is
required. It is given by

~VS,d RV dxq dajg
do; NNLoN, = NS N, / —— —— d®3(p3, pa, Ps; 1p1, T2p2)0(1 — 21)0(1 — 12)

o fonrtos (22 0 LMt L5

2 ~
~ SN 2
i rlog (£ ) Qg 50, 2 QG0 (81,2, L) P ()
1 Mz 0 2 0//5% Z 2
oy 2o () 330,50 2 MYBla, A )P IS (s, )
2 A
1 PPN
+aipton (1) AY4q.5,, 1)L M3(B0, (Bl 20 LRI v
2 ~
H 3 % 5 3 2
2o plog (1) 330,55, )M 4. 23 )P (1)
2 A
I 5 £ = 2
2t plog (1) 401,50 3 MG, (.30 18 0,
p? 0 TEY (2)
i rtog () 430305, 1) M. (B)g. 2. 1) P ()
2 A < - 2 oz
“tulog (1) 483,85, 1) M3Ge o B TP G| | (09

4.2.4 The real-virtual subtraction term déT

Putting everything together, the real-virtual counterterm term d&;%yNNLO’ n, takes the
following form

- dz; dz
AT RV 1 dzo
d6 g nnroN, = Nikro Ni / - d®s3(ps3, pa, ps; T1p1, T2P2)

1 IS IS
X{Nc{ - 5 (582%(6, 535,21, $2) + quq(e, 845,x1,$2)> (|Mg(3Qv 597 1qa ; 2(?74@)‘2
+Mg(?’QaIq%5§qv5ga4Q)|2)J2(3)(P37P47P5)

+[A§vl(3Q,5g,iq)5(1—x1)5(1—x2)|M ((35)0, 40, 24, 1,)2

+% (S%qq(6,835,x1,x2) +5%qq(6, 845,1‘1,,132))A3(3Q, q’i MO ((35)@4@,%7 i])|2
+A3(3, 59, 1)5(1 — 21)8(1 — 22)| ME(35) g, 45, 24, 1 )|g] 19 s a)
+[A§,J(4Q,5g,§q)5(1 — 21)8(1 — 22)| M (30, (35) . 5,501
5 (BBl 1,00) 4 £l s 1.2) ) 430050, 2 MYB0, (Bl s 1)
Y4050, )00 = 211301 — 22)| M 30 )30, 1) F| 47 0.
i rlog (1) A8(30,5 10301 — 220501 — 22) MUl .2y L) ()

~16 —



2 A 2 2
+bo.r log (”) A8(4g 59, 20)0(1 = 21)3(1 = 2) M§Be, (15), 24, q)|2J2(2)(P3,pgg)}

1 1
{ <quq(€7535,$17932)+5gqq(67545,5017962)> (|M (3Q75g74QM2 1,))?

5v)|2> IS (p3, pas ps)

+‘Mg(3Q74Q7 ; 257 5ga iq)|2 - 2|Mg(3Q74QQlja q

+2 [A%ﬂ(s@, Bgs20)8(1 — 21)5(1 — 22)|M((35)q, 49, 24, 1)
1 0 0 0 5 0//aF 5 T2
3 EQqq(€ 835, 11, T2) + EQuq(€; 845, 71, 72) | A3(3Q, 5y, 24) (M3 ((35)q, 40, 24, 19)]
+AY(30, 5y, 24)8(1 — 21)6(1 — 2)| M ((35)q

+
S S 2
’4Q72q71q)|2] IS (052, pa)

+2[A§’l<4Q,5g, )M (30, (B)g. 24, 1)1

1 a —~ a >

+3 (523(”(6’ 535,41, %2) + EQgq (€, 545, T1, xz)) A3(4g,54, 1) MY (3, (45) g, 24, 1g) |
Y 1 —~ A =

+AY (45, 5y, 1g)8(1 — 21)0(1 — 22)| MY (30, <45>Q,2q71q>|2] T2 (ps, pzz)

~2| A3 (39,59, 1g)8(1 — 1)3(1 — 22)|M3((35) . 46 245 L) 2

(el

Al

—_

3

<5602qq(6 535, 1, T2) + EQgq(€; 845,21, Iz)) A3(3q. 5, 1) M3((35)0, 40, 24,
+A9(39, 54, 1)0(1 — 21)8(1 — 22)| M ((35)q, 4., 24, iq>|2] I3 (p35.pa)

1 ~ — s .
5 (Ebugler s, 21,0 + gl 15, 00,02) ) 430450, 2 M B, (B B, )P

+AY (40,59, 29)8(1 — 21)(1 — 22) M (30, (45) 5, 24,

w] 2 (b, e

- [Aé%sQ, 5. 40)(1 — 21)5(1 — 22)MU(B5) 0 (). 3. 1)

1 — — A 2
(ggqq<€ 535, 01,2) + Egqq & 845@17"""2))A3<3Q,5g,4@>w2<<35>@,<45>@ 20, 10)?

+AY(30, 5y, 46)8(1 — 21)8(1 — 22)| M ((35)g, (45)

A8 50,260~ 220300 - a2 MYBa.Ig. By, T2

1 fay 2o ~ ~ o o
5 (Ebuglessun.or, ) + e ml,u))Agaq, 5y 20) M0, 30, 30, 1,)
+49(14,55, 2)5(1 = 21)8(1 - 22)| M 3o, g

1)1 757 (35, pa)

2 A 2
+2b07plog(|su |) 5(1— 21)8(1 — ) A3, 5y, 20)IMOA(35)0 45, 24, 1

235

2 ~ — 2
2o (T2 ) 43015, 10301 = )81~ 22) Mi(3e. (Bl . )75 (o)
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~2bo,r log (|S’“1‘:5|) A3(30.54, 1)0(1 = 21)3(1 — 22)|M((8)a. 4. 24: 1) *5” (b, pa)
~2bo. log (|S’j5|) A3(1:59:2)3(1 — 20)3(1 — 22) M (3q. (B)g. 2 iq>|2J§2)<p37ng>]
i rlog (L) A8(30,5,140)301 — )60~ 20 MUBle. B, L) ()
—bo,r log (;f;) AY(34, 59, 14)5(1—21)5(1—22)| MO (B, A, 24, 1) IS (@,,@)}}. (4.20)

The pole part of the terms proportional to the tree-level five-parton matrix elements squared
exactly cancels the explicit poles in € present in the real-virtual contributions d&%YN NLO.N,"
Furthermore, the content of the square brackets [...] is free of poles in e.

From all the terms in d@?q,NNLO,Np only those coming from d&;/q?ﬁNLO,NZ (eq. (4.16))
and d&(‘l/q%\?lNLO, ~, (eq. (4.19)) must be integrated and combined with the double virtual
contributions.

In the following section we shall show that the counter-term in eq. (4.20) approximates
the real-virtual contributions d&%YN NLO,Ni 8lven in eq. (4.5) in all single soft and collinear

limits.

4.3 Numerical tests of soft and collinear cancellations

The real-virtual contributions and their related subtraction terms presented above have
been implemented in a Fortran code. In this section we show the results of a series of
numerical tests devised in order to test how well the subtraction terms fulfill their purpose
of approximating the real-virtual contributions in all single unresolved regions. Since the
heavy quark mass regulates all final state collinear limits, we must consider only soft and
initial state collinear limits.

The tests were performed by using RAMBO [45] to generate phase space points in the sin-
gular regions, with the exact distance between each event and the singularity parametrized
with a control variable x. We quantify the level of real-virtual cancellations as

~ RV
Ao NNLO.N,

Opy = —1]. (4.21)

~T
do 4@, NNLO,N,

To demonstrate the consistency and stability of the subtraction terms we will show that
the dry distributions converge to zero in all relevant  — 0 limits. On the right-hand-side
of eq. (4.21) the consistent subtraction of explicit infrared singularities in the numerator
and denominator is implicitly understood. Each of the employed samples consists of about
10* points with v/§ = 1 TeV! and mqg = 173.5GeV.

Figure 2(b) shows the degree of cancellation dry in the soft region for samples of
10* phase space points for several values of the control variable z = (s — s34 — 2’m2Q) /s,
which describes the softness of the phase space points. As the singularity is approached
with smaller values of z, the subtraction term d&%, NNLO.N, converges to the real-virtual
contributions d&%YNNLO’ n, as expected. Similarly, figure 3(b) demonstrates the consistency
of the cancellation in the collinear region, parametrised by the control variable x = s15/s.

IFor simplicity, § will be denoted by s in this section.
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Figure 2. (a) Sketch of soft event limit. (b) Distribution of R for 10* soft phase space points with
three different values of x.

X=S15/S
10000 e k=1010 ||
e k=101
[ e N A e k=102
@ 1000 [ =
3 5
t 2 L
E I —
5
2 L
2 100 | [
2
) £
./ £
1 > < 2 3
10
. . A | .
108 107 10 10% 10
_ Sav
A7
(a) (b)

Figure 3. (a) Sketch of collinear event limit. (b) Distribution of R for 10% collinear phase space
points with three different values of x.

5 Virtual-virtual contributions to qq — tt: the N; part

In this section we present the double virtual contributions to gg — tt proportional to Nj.
We shall focus in particular in the double-virtual counter-term dc}g@ NNLO.N, with which
we construct the two-parton contribution

/d@ (63 o, — A0t nvton] - (5.1)
2
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5.1 The virtual-virtual contributions

Following the general structure given in eq. (2.10), the virtual-virtual contributions can be
written as

R dl’l d$2
A6y nvron = NNXroN Y /d<1>2 D3, - - P4} T1P1, T2P2)

perms

x6(1 = 21)8(1 — 22)| M3 (30, 40, 24, 1) > TS (p3,pa) | (5.2)

where we have abbreviated

,  (5.3)
N

q1q2—t3ta” " " qrgo—tsta

M 304020 ) = [2Re (M2 g yr MO ) + Mg ]

and the normalisation factor N X, was given in eq. (2.11).

For the N; part of the two-loop matrix element in eq. (5.3) we employ the analytic
results of [14]. The “one-loop squared” term has been computed analytically in [21]. We
re-derived it ourselves, also analytically, and use our own result in our event generator.
We further compared our one-loop amplitude squared with results provided by Roberto
Bonciani and found full agreement.

In general, NNLO double virtual contributions contain poles of up to order four, all
of which originate from the loop integrations. However, in the colour factors that we are
considering in this paper, i.e. N; N, and N;/N,, the deepest poles are of order three. Since
at this level no partons can become unresolved, the phase space integration of d&gq‘év NLO.N,
does not yield any additional singularities. As we shall see below, all explicit poles of the
double virtual contributions are captured and cancelled by those in the subtraction term
d&gq? NNLO.N;> which, as shown in eq. (1.5), contains mass factorisation counter-terms as
well as double real and real-virtual integrated subtraction terms.

5.2 The mass factorisation counterterm déM¥:2

We start the construction of the virtual-virtual subtraction term d&gq’ NNLO.N, Py deriving
the mass factorisation counter-term d&é‘q{f\}%\, LO.N,"

In general, for a given partonic process initiated by two partons ¢ and j with momenta
p1 and po, the mass factorisation counterterm d&f\;{ ]15”2\, o to be included at NNLO together
with the double virtual matrix elements contributions reads [33, 35, 36,

2
MF2 =~ vofas(p)\” [dz1 dxo @) .
do;; Nnro(P1,p2)=—C(e) (27r >/$1 g kglFijvkl(ml,$2)d0kz,Lo($1p17$2p2) (5.4)

s (i) d»””l d$2 ~V ~MF ~S
—C() o 21 19 ZFU (21, 2) [dakl,NLO+dUkl,NLO+ 1d0kl,NLO} (z1p1, T2p2),

with the kernels I‘l(]l)kl and I‘gi)kl given by

{0 (@1 22) = 60(1 — 21)T) (2) + 08(1 — 22)T) (1) (5.5)
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T (@1, 22) = 6i0(1 — 21)T) () + 038(1 — 22)T (1) + Ty (21)T) (22). (5.6)

To simplify the construction of the double virtual subtraction term d&% NLO» the split-

ting kernel I‘EJQ.)M can be written as suggested in [33] as

—(o 3 1
T (21, 22) = T, w) - ?Orgjl';)kz(fﬂla 22) + 5 [T ® Th) (21, 32), (5.7)
such that,
T ( _ (2 A _ 7=(2) A _
ik (T15 :EQ) =T (xl)éﬂé(l $2) + Fjl (xg)ézk(;(l $1). (5.8)

The kernel fz(-?)(z) is related to the usual Altarelli-Parisi splitting functions [46] as

@ 1 1 B0 50
For the partonic process q¢ — tt, the part of the mass factorisation counter-term
do é\q/—lf\ﬁv Lo that is proportional to /V; reads

qeMF2 ( ) =
043,NNLO,N;\P1,P2) =

Nl[—ae)“;ﬁf) JRetay

2
_ O dz; dz .
—C(e)2< (M)) /1QI‘EI?;’Q%V’](M,x2)d0qq,Lo($1p1,$2p2) , (5.10)

2 1 X9

1 ~V
T To qqzqq(xhx2)daqq,NLO,Nl(xlplax2p2)

where ng);&[é\fz] and d&é/@ ~Lo,n, denote the pieces proportional to NNy in I‘g?]?qq and d&;/@ NLO
respectively. Moreover, dd,g 10 is the leading order partonic cross section for the process
qq — tt.

Trading I‘ggqq for ffq);qq in eq. (5.7), d&%i}?\, o can be compactly written as the sum of

~MF2a B ~ . cas(p) [ drydes L,
daq@NNLO(pl,pz)__NlC(e) 2 /a:lg;QF‘(Iq);qq(:E1>$2)

as(p) boF .
0L 45 oo, )] (511

x |:da-;/t7,NLO,Nl (z1p1, x2p2) — Cle)

and

2
d&%ﬂ%&o(pl,m) =-N 0(6)2<a52(:)> /iil(f;I‘éa’q[éVl](m,$2)d&qq,Lo(961p1,w2p2)7
(5.12)
with the kernels I‘é}gqq and f((]?;(’][ém constructed as in egs. (5.5)—(5.7) using the expressions
given in the appendix of [33].
Note finally that the mass factorisation counter-term denoted in [33] as dGM#2° which
is necessary in the most general cases, is absent here. This is due to the fact that the one-

loop kernel I‘,%?qq does not contain any terms proportional to V.
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5.3 The virtual-virtual subtraction term déV

In addition to the mass factorisation counter-term derived above, the virtual-virtual sub-
traction term d&%NLO contains in general contributions originated from the integrated
double real and real-virtual subtraction terms. In the present case, it is given by

1Y _ _ [ g5504 dAMF2 dg V5 da V5
043, NNLO,N, — ) 04g,NNLO,N; — 994 NNLO,N;, — ) 04 NNLO,N, — ) 04 NNLO,N,
(5.13)
The integrated double real subtraction term f2 dafqb]f} NLO.N, 1D the equation above

is obtained by integrating the four-parton B-type antennae in the subtraction term
d&fquNLo N, given in eq. (A.2). Doing so we find

~S,b dl‘l d{L‘Q
/Qdaqq NNLON; = NLONl/d(I)Q (3, p4; T1p1, T2P2) (5.14)
X {Nc [Bq 00T (€, 813, 71, T2) + Bq 07 , (€, 834, T2, $1)}

o |28

N, (€, 833, 71, T2) +25q Qd'q (€, 814, T2, 71)

7.Qq'q’
—QBq 0 (€, 813, @1, T2) — 2Bq Q0d'd (€, S34, T2, 1)

ENEEN 2
BQq Q(e 534,21, T2) — quqq (e, slz,azl,m)} }|M2(3Q,4Q,2q, 1q)|2J2( )(pg,p4)

Similarly, the integrated real-virtual subtraction terms fl d6¥151\?NL0 N, and

A d(};ff]\‘,i ~NLo.N, are obtained from egs. (4.16) and (4.19) by integrating the tree-level and
one-loop three parton antennae over their corresponding phase space. We obtain

/ld&;;q]\?NLO N, = N¥Nzo Ni / %%dqb(p&p%flpl,xﬂb) (5.15)
X {Nc [(A;:é?g(e, S13, 1, %2) + A;:ng(e, S54, T2, :1:1)> \MZ(?)Q, 4o, éq, iq)lz
+ <A27Qg(e, S73, %1, T2) + .,427@9(6, S54, T2, :U1)> |/\/l£1” (3@,4g iq, iq)|2
1 1 1
+ﬁc [(ZquQg(e, $33, T2, 1) + 24,70, (€, 514, %1, T2)
—2Aq Qg(e S73,T1,T2) — ZA;:égg(e, S54, T2, T1)
2AQ’ Q(e $34, X1, T2) — 2,4;;9(6 312,1'1,962))]/\/12(3@4@,%, iq)|2
+ (2,427629(6, S5, T2,T1) + 2.,427@9(6, S14, T1,%2)
—2A27Qg(6, S73,T1,T2) — 2A27Qg(6, S54, T2, 1)

_2"4229@(6’ §34, L1, T2) = 2Aqq g<67 512, L1, x2)> \ML” (30 49 ét?v iq)’ﬂ }J2(2) (p3,p4),
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while for the integrated form of renormalisation scale dependent subtraction term we get

dxy dxs A
/qu%NNLO NﬁNNNLO Nibor 77(1(1)2(]937194; z1p1, 2p2) | MY (30, 45, 24, 1)
u2 p
X {Nc [(1055 <> AD 0g(€, S13, 71, 22) + log <) A 0o, 5?4,562,961))] (5.16)
513 524
1 7\ o 72\ o
+F 2log | — ) Ag 46 533, T2, 1) + 2log | — | Ag (€, 514, 71, 72)
c 533 514
2 12
—2log () .Ag Qg€ 813, 71, 72) — 2log < ) Ag’Qg(e, S54,T2,T1)
513 524

—log “ A% - (e, ) —1 " AL (€, 515 g
QQg\6 534, 1, T2 og G6.9 67812,9327331) 2 (p37p4)-

534 512
With the explicit expressions obtained for the integrated antennae, one can show an-

alytically that
POZGS (da']‘\/[%[lo - d&%NLO ) =0 (517)

demonstrating that we have correctly implemented all the subtractions terms at real-real,
real-virtual and virtual-virtual levels in leading (N;N,.) and subleading-colour (N;/N.) con-
tributions for the parton-level process qq — tt.

This pole cancellation provides furthermore a crucial check on the integrated forms of
the massless and massive four-parton B-type antennae derived in [6, 11, 39] and of the cor-
rect implementation of the one-and two-loop massive amplitudes. Finally, it also provides
a proof that the massive extension of the NNLO antenna formalism can be used to extract
and cancel the infrared singularities of the top-antitop pair production cross section eval-
uated at the NNLO level, enabling the construction of a fully differential event generator.

6 Numerical results: NINLO differential distributions

With the double real counter-terms derived in [5] and recalled in appendix A together with
the real-virtual and virtual-virtual subtraction terms presented above in sections 4 and 5, we
developed a Monte Carlo parton-level event generator based on the set up of eq. (1.2). This
program, written in Fortran following the structure of the program developed in [47] for the
calculation of the di-jet hadronic cross section at NNLO, allows us to produce the first differ-
ential distributions for top pair production including exact NNLO results, namely the O(a?)
corrections to the gg — tt process proportional to the number of light quark flavors IV;.
In this section we present differential distributions in the top quark transverse momen-
tum, the top quark rapidity, as well as in the rapidity and invariants mass of the top-antitop
system. We consider the ¢g initiated process only, convoluted with parton distribution func-
tions (PDFs) corresponding to proton-proton collisions, at leading order, next-to-leading
order, and next-to-next-to-leading order. The next-to-next-to leading order results denoted
as NNLO (1V;) in the figures 4-7 presented in this section are the sum of the full NLO cor-
rections and the purely fermionic NNLO corrections to gg — tt discussed in this paper.
We employ a hadronic center-of-mass energy /s = 7'TeV, a value of the top quark mass
given by my = 173.5 GeV, and the PDF sets MSTW2008LO90CL, MSTW2008NLO90CL
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Figure 4. Transverse momentum distribution of a single top quark do/dpk. for \/s = 7TeV at LO
(red), NLO (green), and NNLO (blue). The lower panel shows the ratios of LO, NLO and NNLO
cross sections.

and MSTW2008NNLO90CL for the computations at LO, NLO and NNLO respec-
tively [48]. We set the factorisation and renormalisation scales to be equal to the top
quark mass pug = ur = my.

In figure 4 we present the inclusive ¢t cross section as a function of the top quark
transverse momentum p% at LO, NLO, and NNLO together with the corresponding k-
factors. From the NNLO/NLO ratio we see that the NNLO contributions proportional to
N; decrease the cross section by 6 —7% depending on the value of the transverse momentum
ptT compared to the NLO result.

In figure 5 we show the inclusive ¢t cross section as a function of the top quark rapidity
y' at LO, NLO, and NNLO with the corresponding k-factors in the lower panel. The
NNLO/NLO ratio shows that the NNLO contributions proportional to IN; decrease the
cross section by 8% in the central region and 5% in the forward and backward regions.

Figure 6 contains the inclusive ¢t cross section as a function of the rapidity of the top-
antitop system ¢ at LO, NLO and NNLO together with their corresponding k-factors.
Once again we note an overall decrease in the cross section at NNLO, ranging from 2.5 to
8.5% with respect to the NLO result depending on the rapidity region considered.

In figure 7 we present the cross section as a function of the invariant mass of the tt
system at LO, NLO and NNLO, with all three ratios in the lower panel. As can be seen
from the NNLO/NLO ratio, the NNLO corrections proportional to the number of light
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Figure 5. Rapidity distribution of a single top quark do/dy® for \/s = 7TeV at LO (red), NLO
(green), and NNLO (blue). The lower panel shows the ratios of LO, NLO and NNLO cross sections.

quark flavours N; decrease the cross section over the entire m,; spectrum considered. The
decrease ranges from 6.5% in the low invariant mass region to almost 10% in the high
invariant mass region.

Naive power counting suggests that the leading-colour NNLO contributions considered
in this paper, i.e. the pieces proportional to N; N, should approximately account for 90%
of the NNLO corrections, with the remainder being given by the subleading-colour con-
tributions, proportional to N;/N.. At the level of the total cross section we find that the
subleading-colour pieces are opposite in sign to the leading-colour and represent 13% of
the full result, in agreement with this naive power counting expectation.

In order to assess the impact of the subleading-colour contributions, we studied the
NNLO corrections proportional to N;N. and N;/N. separately as a function of the top
quark transverse momentum and rapidity. The results of these studies are shown in
figures 8(a) and 8(b). We find that the subleading-colour piece has a different shape and
sign than the leading-colour part, and contributes more significantly in the forward and
backwards regions and less when the top quark is more centrally produced. In particular,
in the p} spectrum of figure 8(a) we find that at low transverse momenta, the size of
the N;/N. colour factor is of approximately 30% of the full colour result, while at high
transverse momenta its contribution is negligible.
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Figure 6. Rapidity distribution of the top-antitop system do/dy** for /s = 7TeV at LO (red),
NLO (green), and NNLO (blue). The lower panel shows the ratios of LO, NLO and NNLO cross
sections.

As a check of our numerical results, we compared the value of the total NNLO
correction proportional to N; with the result presented in [10]. In order to perform this
check we had to incorporate to our calculation the NNLO contributions proportional
to NpN;, with N}, the number of heavy quark flavours, since those are included in the
coefficient function F () of [10]. These contributions are rather simple, as they only enter
at the double virtual level, and they are finite. We employed the two-loop matrix elements
derived in [14], and computed the square of the one-loop matrix elements ourselves. With
the same input parameters and PDF sets used throughout the present section, we find that
the total NNLO correction to top pair production proportional to N; in the ¢¢ channel
is —0.5780 pb, whereas with the coefficient function F; () of [10] we obtain —0.5822 pb.
These two results agree within less that 1%, which represents a very strong check of both
completely independent calculations.

7 Conclusions
In this paper we presented the O(a?) light fermionic corrections to the partonic process

qq — tt. Those corrections are of three types: virtual-virtual, real-virtual and double real,
with two, three and four particles in the final state respectively. While the ultraviolet
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divergencies are removed by renormalisation, the infrared singularities are treated using
the massive extension of the NNLO antenna formalism.

The double real corrections had been derived in [5]. In this paper we presented the
real-virtual and virtual-virtual contributions and derived their related subtraction terms ex-
plicitly. We showed that the real-virtual subtraction terms correctly approximate the real-
virtual matrix elements in all their singular limits. Furthermore, combined with the inte-
grated forms of the subtraction terms, we show analytically that all explicit infrared singu-
larities are cancelled both at real-virtual and at the virtual-virtual levels. This analytic pole
cancellation provides us with a very strong check on the correctness of our result and on the
applicability of the antenna subtraction method to reactions involving massive final states.

The NNLO results of this paper are implemented in a Monte Carlo parton-level gen-
erator providing full kinematical information on an event-by event basis. This program,
written in Fortran, allowed us to produce NNLO differential distributions for top pair
production in the partonic channel under consideration for the first time. We studied the
impact of the NNLO corrections proportional to NN; for distributions in pr and rapidity
of the top quark as well as in the rapidity and invariant mass of the ¢ system and found
that those corrections are substantial. They reduce the cross section compared to the NLO
results, with the reduction varying considerably over the phase space. We also assessed the
separate sizes of the leading and subleading-colour N; contributions finding that they have
opposite signs, and that, at the level of the total cross section, the subleading-colour part
contributes with 13%. Its importance, however, varies substantially over different regions
of phase space. It can be as high as 30% for low transverse momenta of the top quark, and
negligible for high transverse momenta.

The results presented in this paper can be regarded as a major step towards the
computation of the complete cross section of top pair production including all partonic
channels in fully differential form. For the first time, we have presented exact NNLO
(N;) corrections to one partonic channel in this process and produced NNLO differential
distributions. Further work will include the computation of all remaining partonic channels.
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A The double real subtraction term for gqg — tt: the N, part

The double real corrections to the process qqg — tt proportional to the number of light
quark flavours are due to the tree-level partonic process q7 — ttq'qd. We derived the
corresponding subtraction terms in [5] and found that only two pieces are needed, namely
dsng NLON, and dc}jéf’NN LO.N;- The subtraction term dsqs(’;N NLO.N, capturing the single
unresolved limits of the real-real contributions read

~S
63 NNLON, = AT Ny APy (ps, pa, D5, Ps; DL, 2)
1 ~ ~ oA
x{NC[2E§<3Q,5¢,6¢><|M2<<35>Q,1q;;2q,(56>g,4Q>|2
+MS((35)q, (56) 1)1 ) I
5 g qva q» p357p47p56)
1 A~ -
+5E940:50.6) (|M3(30. 151123, (50). (B)o)P

M3, (56),. 1432 <4~5>Q>|2) 7 (pg,ng,pggﬂ

11 Y 5 (56)..1
+ﬁ iEg(3Q’5q/76ql) <|Mg((35)Qa4Q”ZQ’ (56)9’1q)|2

M) g, (36)g. 4 24 1)
2| MY(35)0 4y 2. 1 (56), >|2> I sz, P, )
1 ~ ~ ~ ~
+§Eg(4Q7 511/7 617’) <‘Mg(3Q7 (45)Q7 ) 2‘?7 (56)97 1q)|2
_{_’-/\/1(5)(3(;)’(56)9’(ZIE))C?;;QQ’L])‘2
2| MU(30. (45)g. 29, 1. (56), >|2> s ’(pg,p%,pgg)]} (A1)

d&fqu NLO.N, Captures the double unresolved limit. It reads

S,b RR,
daqq,NNLO,Nl = NNNI?O N d@4(p3,p4,p5,p6;p1,p2)

~ 1 —~ —~ A
| (B2030. 6150, 14) ~ 34305060 A3l GO0y, 1)

1 .
—5E8(4,5y, 67) A3 (30, <56>g71q>) IM((356)q: 40 20, L) J5” (55 pa)
+(B2(4Qa5q’76q/7i ) 7E3 (3Q75q 56 ) ( (56)97 )
L Eo s 64/)A3((45) 5, (56) IMS(3q, (456)5, 24, 1) 257 —
9 3( Q199 ) 3(( 4 Q q)| 2 (ps,P456)

1
7| (B3630.61.50.10) ~ 3 E4(30,50.61) 43(B)e. (500, 40)
L R0 5 6,403 (56),, (45)5) ) IMS((356), (456 27D (pe pre
9 3(40,5¢,6g)A3(3q, (56) g, ( ) )Qv q)‘ 5 (P36 Pi56)
A9

A o 1 —
+<Bé(1)(2<b6q/75q/a 1 ) - §E3(3Qa5q v6 ) ( (56)517 )
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58050004330 (30)5 1) ) ME((30)g: 1,20 )25 )
+2 (Bg(4Q, 5¢+6q,24) — %Eg(:aQ, 5¢,60)AS (40, (56) 4, 29)
5405, 6) AY(FD)g, <56>g,@q>)w2<3@, (456)g. 24, 1) 215 (p1. P55)
2 BBa. 05y 29) ~ 5 (30,5000 A%(B)e (00,20
5 3(40,5,,64) 4330, <€é>g,éq—>)|M2<<§56>Q74@,éq7 1)1 95" (pa5. 1)

R 1 —~ R
-2 32(46?7 5q’a 6!?’7 1q) - *E:(S)(?’C% 5q’>6¢7’)Ag(4Q» (56)97 1q)
2

1 — — ~ — PN
5 B8 1q:5y.03) AY(T)q. (50),, 1)) WS 3, () 2 IS .| | (4.2)

where the pieces containing B} antennae subtract the double soft and triple collinear limits,

while those of the form Ef x A subtract the single collinear limits of the B-type antennae,

as well as spurious double unresolved limits of the d(}ng NLO.N, subtraction term.

B Colour-ordered infrared singularity operators

The explicit pole structure of colour-ordered one-loop matrix elements can be written in
(1)
(4]
method, the pole part of one-loop antennae as well as that of integrated three-parton

terms of colour-ordered infrared singularity operators I:;’. Within the antenna subtraction
antennae can be also captured by these operators.

If only massless particles are involved, the following set of operators is sufficient
(in addition to the one-loop splitting kernels FZ(]l)(x)) to express the pole structure of a
QCD one-loop amplitude as well as that of a one-particle inclusive integral of a tree-level
amplitude [34, 43]:

Iqq)(ﬁ, S47) 2F?Ti g (":’jj’)_e 612 + 236] (B.1)
o=t (3) [3g] oo
Is(ziz)(ea Sgg) = _QI‘?Ti 5 <|Zg§|>_€ 612 + éj (B.3)
o) = s () & (B4
) = g () 5 (®5)
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When massive fermions are involved the following operators must also be considered [4]

e =i () [ 0-Ram(ER))] e

—e 2
(1) e (15dl 1 5 1 mQ
10 (e, s00) = — 2y B.
Qq(&5Qa) 2I'(1 —¢) < w2 22 T ae T ™" |sqql (B.7)
. 2
(1) e (lsqql 11T 1 Mg
I = — — 4+ — 4+ =1 B.
Qg (€ 5Q9) 2I'(1 —¢) < w? 22 T 2e o™ £ (B-8)
(1 _ e (lsqlly " 1
Loy r(€:5Qq) = (1 =0 ( .2 e’ (B.9)
with )
4m
rp=1- ——2 . (B.10)
SQQ T 2mq

C Infrared properties of tree-level and one-loop amplitudes

In this section we collect the single unresolved tree and one-loop factors needed in the
context of the computation presented in this paper.

C.1 Infrared limits of tree-level amplitudes

The factorisation properties of colour-ordered tree-level amplitudes in single soft and
collinear limits are well known [49, 50]. They involve universal unresolved factors that
are also encountered in the single unresolved limits of tree-level antennae. In the follow-
ing we shall recall the general factorisation of tree-level matrix elements in single soft and
collinear limits and present only those unresolved factors that are needed in the context of
this paper.

C.1.1 Collinear limits

When two massless colour-connected partons ¢ and j become collinear and cluster into a
parent particle k, a sub-amplitude squared factorises as

0 o o Pillj 1 0 9
Mo, (oot gy )| — ;Pij%k(z)p\/lm_l(. k) (C.1)
ij
The spin averaged Altarelli-Parisi splitting function P;;_,1(2) is different for the different
parton-parton splittings. The definition of the momentum fraction z in eq. (C.1) depends
on whether both collinear particles are in the final state, or if one of them is in the initial
state. In the final-final case we have

Di — 2Dk pj — (1 —2)py, (C.2)

whereas if p; is in the initial state and p; in the final state, we have

pj — Zpi pr — (1 — 2)p;. (C.3)
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In the calculation presented in this paper, only the collinear limit of an initial state
(anti)quark and a final state gluon must be considered. The corresponding splitting func-

tion is given by
1+ (1—2)%—e2?
z(1—2) '

Pig—q(2) = (C.4)

C.1.2 Soft limits

Colour-ordered tree-level amplitudes develop an implicit soft singularity when the four-
momentum of a final state gluon vanishes. When a gluon with momentum p; becomes
soft in a colour-ordered amplitude where it is colour-connected to two hard particles with
momenta p; and pg, the amplitude factorises as,

p;—0

Mgn( ey g, k,.. ) — e“(pj, )\)Ju(piapj,Pk)M%Lq( stk ) (05)

where €/ (p;, A) is the soft gluon’s polarisation vector, and the soft currents are given by

Ju(pis pj, pi) = eu(pis pj) — €u(Pr, ;) (C.6)
with
Pa )
" (pa,pp) = —=——. :
¢ \/ipa 4
After squaring eq. (C.5) we obtain the well-known formula
0 .. 2 pj—0 0 . 2
‘Mm( 07, k‘, .. )‘ — Sijk(mi, mk)]/\/lm_l( .1, k, .. )’ R (C8)
with the massive soft eikonal factor given by
28k 2m?2  2m?
Sijk(mi,my) = —— — 5+ — £, (C.9)
SijSjk Sij Sik

In multi-parton processes one often encounters certain subleading-colour contributions
that, in addition to colour-ordered amplitudes squared, contain interferences of different
colour-ordered amplitudes. Using eq. (C.5), we find that in their soft gluon limits, these
types of interferences factorise as

0 . 0 . + ;=0
Mo (ot gk )M (L g my )T
1
3 (Sijm(mismm) + Skji(mg, my) — Siji(ms, my) — Skjm (M, M)
xMO (i k. )MO (L m, )T (C.10)

In some cases we can employ decoupling identities and replace the subleading-colour inter-
ference terms by sub-amplitudes squared in which a gluon is U(1)-like, and does not have
any non-abelian couplings. In these cases, the factorisation in the soft limit at the ampli-
tude level is analogous to the soft photon factorisation of QED matrix elements. It reads

p;—0
Mgm(laamwj’y) ]—> Eu(pp)\)( Z e,u(pi,pj) - Z e,u(pk’?pj))Mgn—l(la"'am)v
ie{q} ke{q}
(C.11)
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where {q} is the set of all final state quarks and initial state antiquarks in the process,
and {q} stands for all final state antiquarks and initial state quarks. Squaring eq. (C.11)
and rearranging the result, we find the following factorisation for the amplitude squared:

. p;—0 1
icta} (R)ela}
ke{q} ik

—% Z Siji(ms, mk)> MO L (.,m) A (C.12)

(i,k)e{q}
i#k

We have employed this factorisation in the construction of the real-virtual subtraction
term for the colour-ordered amplitude squared |./\/l[5”(3Q, 45, 24, 14,5,)]% in eq. (4.5).

C.2 Infrared limits of one-loop amplitudes

Like at tree level, in their infrared limits the one-loop colour-ordered amplitudes undergo
well-known factorisations involving universal one-loop and tree-level soft and collinear fac-
tors [13, 51-62]. Those singular factors are also found in the single unresolved limits of
one-loop antennae.

Introducing the following notation

ML |2 = 2Re(M}E MOT), (C.13)
the factorisation of Ml |? in single soft and collinear limits can be generically written as
M = Sing(” M}, 1 * + Sing) M0,y [, (C.14)

where Singgl) is a one-loop single unresolved factor and |[M}, _,|? is a one-loop reduced sub-

amplitude squared. Following the decomposition of the one-loop colour-ordered amplitudes
into primitives, the one-loop unresolved factor can be decomposed as

C . . ]- . Sic
Sing{" = N, Sing{""" + N, Sing{""" + N, Sing{V " — v Sing{! ¥, (C.15)

In subleading-colour contributions involving interferences of one-loop and tree-level ampli-
tudes with different colour-orderings the factorisation in eq. (C.14) does not hold for the
soft limit. As was the case at tree level, multiple soft factors arise.

In the following, we shall explicitly present the one-loop singular factors that we en-
countered in the calculation presented in this paper.

C.2.1 One-loop collinear factors

In single collinear limits, the interference of a one-loop and a tree-level colour-ordered
matrix element factorises as in eq. (C.14), with Singgo) and Singgl) given by a tree-level and
a one-loop splitting function respectively. For the calculation presented in this paper only
the N; part of the one-loop initial-final splitting function denoted by qu g’[ivfj](z) is needed.

It is proportional to its tree-level counterpart, which was given in eq. (C.4), and reads

b
Py = o “éF Pigsi(2) (C.16)

49—4q
with z defined as in eq. (C.3).
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C.2.2 One-loop soft factors

As was the case at tree level, when a soft gluon is emitted between massive fermions in
the colour chain, the soft one-loop factor contains mass dependant terms. While at tree
level the massless soft factor can be obtained from the massive one by setting the massess
of the hard radiators to zero, this is no longer the case at the one-loop level: masses are
present in the arguments of logarithms and polylogarithms that diverge in the massless
limit. We must therefore consider separately the soft factors with: (a) two massless hard
radiators, (b) one massless and one massive hard radiator, (c) two massive hard radiators.
In the subleading-colour contributions to the real-virtual cross section and subtraction
terms presented in section 4 all these three cases arise.

When a gluon j becomes soft in a one-loop primitive amplitude where it is colour-
connected to the hard particles ¢ and k, the amplitude factorises as

p;i—0
MUV ik ) S e py N i pis o) MLk, L)

+ " (py, A)Jﬁl)’[X] (pi, pj, PR T, mk)M%,l(. coiky L), (CIT)

where X = lc,l, h, slc. The tree-level current J,,(p;, pj, pi) was given in eq. (C.6), and the
primitive one-loop currents Jﬁl)’[X] (pi, pj, Pk My, my;) take a different form depending on
whether m; and/or my, vanish. Restricting ourselves to the light quark currents J,Sl)’[l] we

have

bo,r

bo,

J;Sl)’[l](pupjvpkamwo) == J#(pl’p]7pk) (Clg)

b
T i, pj i sy i) = ==, i,y ) (C.20)

with b07F = —1/3.

The reason why the light-fermion one-loop currents Jlsl)’[l] are proportional to the tree-
level currents is that these contributions are absent in the bare currents, and only enter in
the renormalised ones, which are obtained as

1
Jl(jz,e%(pl,pj,pk,ml,mk) =0 Jibﬂe(pz,pg,pk,mz,mk) -

0,

Ju(pis Dj, Pr; My M)
(C.21)
The fact that the current Jﬁl)’[l] is proportional to the tree-level current is crucial for the
construction of our real-virtual subtraction terms presented in section 4. Indeed, it allows
us to use tree-level relations like those given in egs. (C.10) and (C.12) for the one-loop NN;
subtraction term at subleading colour.
Using these one-loop currents, the one-loop soft factors read,

SZ-(;,E’[X] (mi, my) = —27"" Re (J,S”’[X] (Pi> Pj» Prs M4, mk)Jy(pi,pj,pk)> : (C.22)
which, for the N, parts, yields
2b
$521(0,0) = ==2E8,54(0,0) (C.23)
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2b,
Sg;g’[l](mi,O) = — E’FSijk(mi,O) (C.24)
WL 2b F
Sz(}]z H(mz,m]) = — 2 Sijk(mi,mj) (025)

with, S;jx(ms, m;) given eq. (C.9).

D Infrared properties of the massive one-loop antennae Aé

Before presenting the infrared limits of the one-loop antenna functions appearing in the
real-virtual subtraction term d&;’:j, NNLO.N,> derived in section 4 and required to subtract
the single unresolved behaviour of the real-virtual contributions d(}(%YN NLO.N;» let us first
recall how one-loop antennae are defined in general.

D.1 One-loop antenna functions

Within the antenna formalism, the infrared limits of the real-virtual contributions are cap-
tured by three-parton one-loop antennae [34, 35]. These are generally denoted as X1 (i, j, k)
and depend on the antenna momenta p;, p;, pi as well as on the masses of the hard radiators
in the massive case. Those one-loop antenna functions are constructed with colour-ordered
one-loop three-parton and two-parton matrix elements as

M3 (i, 5, k) M3, K)?
Xl"k:Sl-- %—XO',',ICQ%, D.1
s 30 = S g~ 0D g .
where the tree-level antenna function, denoted by XJ(i, j, k), is given by
- Ml
X9, 4.k) = Siju1x 1o 5 (D.2)
Mkl

Sijk,1r denotes the symmetry factor associated with the antenna, which accounts both for
potential identical particle symmetries and for the presence of more than one antenna in
the basic two-parton process. Initial-final and initial-initial antennae can be obtained from
their final-final counterparts by the appropriate crossing of partons to the initial-state.
This procedure is straightforward at tree level but requires some care in the one-loop case,
since one-loop antennae contain polylogarithms or hypergeometric functions that must be
analytically continued to the appropriate kinematical region [44, 63].

In any of the three kinematical configurations, one-loop antenna functions like
one-loop amplitudes, can be conveniently decomposed into primitives according to their
colour factors as follows

1

X3, 5, k) = No X3 (i, 4, k) + Ni X3 (i, 5, k) + Nu X3 (i, 5, k) 5
C

X3, 4, k). (D.3)

The one-loop matrix elements in eq. (D.1) are renormalised in the scheme of [14-16, 22]
which we recalled in section 4. The renormalisation of the antennae is performed at the
scale p2 = |s;jk|. To ensure the correct subtraction of terms arising from renormalisation
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and to ensure that the antennae and real-virtual matrix elements are computed at the same
renormalisation scale, for the N; contribution we must substitute

1,1
ijk

1,
ijk

ik ((sige)) =0 = (1) ™) - (D.4)

As explained in section 4, this substitution gives rise to the real-virtual subtraction term
of type dgV(d),

After renormalisation, one-loop antennae contain explicit and implicit infrared singu-
larities. The structure of the former can be entirely captured by colour-ordered infrared
singularity operators, whereas the latter occur when massless partons in the antenna be-
come soft or collinear.

The one-loop three parton antennae encountered in the context of this paper are of
A-type. They involve either no masses, as the initial-initial antenna Aé’l(iq, 39, Qq), one
mass as the initial-final antenna Azl,)’l(lQ, 3, Qq), or two masses as the final-final antenna
Ail,)’l(lQ, 3, 2@)

D.2 Explicit infrared pole structure of A;’l one-loop antennae

In general, the explicit infrared poles of one-loop antennae can be written in terms of
massless and massive Igjl-) operators, which were all recalled in the appendix B. The poles
of the one-loop antennae required in the calculation presented in this paper are proportional
to their tree-level counterparts as

Poles (A§’l(1Q,3g,2Q)> — 2by £ AY(10, 34, 25) (D.5)
Poles (Al (10,34, 2, )) = 2b0.rA%(10,34,2,) (D.6)
Poles (43" (14,34:29)) = 2b0.rA3(14,34,29). (D.7)

D.3 Infrared limits of A:l,,’l one-loop antennae

We conclude this section on one-loop antennae by listing the infrared limits of the three
different A:l,)’l antenna functions employed in this paper.
The infrared limits of of the one-loop initial-initial antenna Aé’l( , 34, 24) are given by

Az A —0 1

AL, 3,27 5B, 0) (D.8)
14 5 pillps 1 _1p

Aé (145395 29) — slqugEiQ(Z) (D.9)
L3 5 p2llps 1 1

Ay'(1g,34,29) " 3523pqg£_]Q(Z). (D.10)

A (19,34, 2) =2 S5 (m2), 0) (D.11)
1,1 pallps 1 11
43"(19,30,29) =5 — Pl o 2). (D.12)



Finally, the massive final-final antennae Aé’l(lQ, 39, 2@) only have soft limits
1, =0 4(1),[I
A3 (10,34, 25) = SO (md), md,). (D.13)

The one-loop soft factors Sl and phl

ngQ(z:) have been given in appendix C.2.

E The integrated massive initial-final antenna B, ./ o

In [6] we have derived the integrated tree-level four-parton massive antenna B, o/ ex-

pressing our results in terms of the following variables

2 2 2
2pi -q Eczm

y=1 (E.1)

with E2 = y/(1 —y — 2)Q?. In the present paper, this integrated antenna is more easily
employed and combined with other integrated subtraction terms at the virtual-virtual level
if it is expressed in terms of

2 2
_Q +mg Q?

r = — ro — m (E2)

2pi - q

In terms of those variables, the pole part of the integrated four-parton antenna function

denoted by B, g, reads

1 1 /711
Bq,Qq’tz_’(€7 S,T1, .fz) = 5(1 — ZUQ) |: wé(l — .5[71) — 6*2 (726(1 — l‘l)

1 1 1/ 65 7
+*5(1 — a:l)G(l;xo) — 6’1)0(:131) + ﬁ(l + $1)> + ; (1086(1 — $1) — mé(l — .CCl)

11 1 11 1 2
—%5(1—.%'1)(;(1;xo)—g(S(l—xl)G(l,1;1‘0)+E’D0(.’L‘1)+§'D0(1‘1)G(1;xo)—gpl(afl)
17 5 (1—z1) (1+z?) 1421 1
— oA T1— G(0; G(l;21) — ———G(1;
36367 T 21 —zmo)? T A(I—my) COE)F (1) =335 G(Li2o0)
(1 +a7) 1 0
. E.
+6(1—x1)G Pkl +0(€e) |, (E.3)
where the functions denoted as G are two dimensional harmonic polylogarithms [64], and,
as usual,
In™(1 —
Dp(z) = <M> . (E.4)
1—-z) ),
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