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1 Introduction

Studies of jet substructure provide precision tests of perturbative QCD in high energy pro-

cesses. They originate from the studies of event shapes in e+e− collisions, which helped

test and confirm the gauge theory structure of QCD [1–9]. Recently, accurate event shape

calculations also allowed one of the most precise extraction of the strong coupling con-

stant [10–13]. However, at hadron colliders, due to the presence of beam remnants, un-

derlying event and pileup, the studies of event-wide inclusive observables become much

more complicated. Instead, investigation of exclusive jet substructure observables attracts

more attention, and considerable progress has been made in this direction [14]. One of

the goal of such studies is to help distinguish possible signals of new physics beyond the

Standard Model from large QCD backgrounds. An important problem, for example, is to

develop improved methods to distinguish quark-initiated from gluon-initiated jets [15, 16].

Advances in this area will have numerous applications in new physics searches.

Among the observables instrumental in quark-gluon discrimination, a classic jet sub-

structure observable called the jet shape [17] has been studied for more than two decades.

The integral jet shape is the average fraction of the transverse energy of the jet measured

within a subcone of size r, smaller than the size R of the jet, around the jet axis which is

conventionally chosen to be along the 3-momentum of the jet. The differential jet shape

is then the derivative with respect to r. The jet shape probes the transverse energy dis-

tribution inside a jet, which is very different for quark-initiated and gluon-initiated jets.

Typically, quark jets are more localized whereas gluon jets are more spread out. This can

be seen from the locations of the peaks of the differential jet shape distributions in figure 1,

shown here as an illustration. Historically, the jet shape was introduced and calculated

in QCD at leading-order in [17]. The observable was later resummed using the modified

leading logarithmic approximation [18]. The contributions from initial state radiation and
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non-perturbative effects were also examined. A phenomenological parameter Rsep [17, 18]

can be used to fit the data with the leading-order results. For more precise comparison

with the experimental data a next-to-leading order calculation is required, but the result

is not available at this time. Refs. [19, 20] give another resummation framework using

perturbative QCD and a comparison with the Tevatron and the LHC data.

On the other hand, the studies of jet shapes in heavy ion collisions have drawn consid-

erable attention in the high-energy nuclear physics community. One of the top priorities of

the heavy ion program at the LHC is to determine the properties of the hot, dense medium

which is produced in ultra-relativistic nuclear collisions and referred to as the quark-gluon

plasma (QGP). In such highly energetic collisions of ions, jets are produced and subse-

quently quenched as they propagate through the medium [21, 22]. The jet quenching

phenomena give strong evidence for the creation of the QGP [23–25] and build upon the

well-established leading particle suppression pattern. The modification of jet shapes pro-

vides unique information about the structure of the in-medium parton showers. The first

measurement of the modification of jet shapes in lead-lead (Pb+Pb) collisions with small

experimental uncertainties was performed by the CMS collaboration [26, 27]. On the the-

ory side, ref. [21] builds upon the jet shape calculations in proton-proton collisions [18]

and studies the medium modification of jet shapes using the Gyulassy-Levai-Vitev for-

malism [28, 29] in the soft gluon limit. Monte Carlo transport simulations of jet shapes

in Pb+Pb collisions at the LHC have also been recently performed [30, 31]. However, a

study going beyond these approximations and addressing the precision of the jet shape

calculations in a systematically improvable way is needed in both proton-proton and heavy

ion collisions.

In this paper, we focus on the jet shape calculations in proton-proton collisions using

soft-collinear effective theory (SCET) [32–36]. The calculations in heavy ion collisions

using SCET with Glauber gluon interactions in the medium [37, 38], and the full medium-

induced splitting functions [39, 40] and applications [41] will be discussed in a forthcoming

paper [42]. SCET is an effective field theory of QCD for processes with energetic light-

like and soft degrees of freedom with a systematic power counting. In events with highly

collimated jets, the power counting parameter λ ∼ mJ/Q, which is the ratio between the

jet mass and the jet energy, is small and the leading power contribution calculated in

SCET is a very good approximation of the full QCD result. SCET separates physics at

different energy scales, and the factorization of the hard, collinear and soft sectors is more

transparent. The hard, jet and soft functions involved in the factorization theorem of a

physical cross section, as well as their anomalous dimensions, can be calculated order by

order at each characteristic scale. Large logarithms of the ratio between hierarchical energy

scales are resummed through the renormalization-group evolution of these functions.

In the context of jet shape calculations, as we will see below, for small radii R the

observable depends mostly on the jet energy and the partonic origin of the jet. It is

not sensitive to the details of the underlying hard scattering processes as well as the soft

radiation in the whole event. The contribution from the soft radiation to the jet shape

is power suppressed. Therefore, the collinear sector is dominant in such calculations and

the factorized expression for the jet shape involves only the ratio between two jet energy
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Figure 1. The integral (left) and differential (right) jet shapes of quark and gluon jets of size

R = 0.3 in proton-proton collisions, plotted as an illustration of their differences. Jet shape contains

the information about the transverse energy distribution inside a jet. On average, quark jets are

more localized whereas gluon jets are more spread out.

functions, which we define and calculate at leading order (LO). We then identify two

characteristic jet scales, each proportional to the angular scale (r or R) within which we

measure the transverse energy. The logarithms of the ratio between the two jet scales are

exactly the logarithms of the form ln r/R, which we can resum through the renormalization-

group evolution of the jet energy functions between the two jet scales. With the two-loop

cusp anomalous dimension, the two-loop running of the strong coupling constant and the

one-loop anomalous dimension of the jet energy function, the jet shape is resummed to

next-to-leading logarithmic (NLL) accuracy.1 However, in this work we do not include the

contributions from initial state radiation and non-perturbative effects. We ignore power

suppressed terms of O(R) and focus on the resummation of large logarithms. Note that

terms of O(r/R) can still be large at r ≈ R and they are properly captured by the SCET

formalism. To systematically extend the precision to next-to-leading order (NLO) and

next-to-next-to leading logarithmic (NNLL) accuracy, we will need the two-loop jet energy

function and its two-loop anomalous dimension. At this order the issue about non-global

logarithms [44] and the way to resum them will also arise. We will leave these interesting

topics for future work.

The rest of the paper is organized as follows. In section 2 we give the definition of

the jet shape and discuss the choice of the jet axis, which is related to the form of the

factorized expression. In section 3 we discuss the power counting and the calculation of the

jet shape in SCET. We show that the contribution from soft particles to the jet shape is

power suppressed if we choose a soft-recoil free axis [45, 46] in the jet shape definition. The

factorized expression of the jet shape has a simple product form without recoil-momentum

convolution. This leads to the cancellation of the hard and soft functions in the factorized

1By NkLL we mean the resummed series includes terms of the form αn
s lnm r/R with 2n ≥ m ≥ 2n−2k+1.

We use this convention in the region of validity of r where αs ln
2 r/R . 1, which is the case in comparing

with both the CMS and ATLAS measurements, as we will see. However, in the region where αs ln r/R ∼

1, more terms should be resummed using the convention which is commonly referred to as counting in

the exponent. [43] gives a useful discussion about the counting of precisions in both perturbative QCD

and SCET calculations. Note that non-global logarithms affect the α2
s ln

2 r/R terms at NNLL in the

convention above.
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expression for the jet shape, which involves only the ratio of the jet energy functions. We

also give the operator definition of the jet energy function and calculate it at one-loop

for both quark and gluon jets reconstructed using the cone or the anti-kT algorithm [47].

The resummation of jet shapes is performed to NLL accuracy using the renormalization-

group techniques, and we estimate the uncertainties of our calculations by varying the

characteristic jet scales. In section 4 we compare our resummed jet shape results with the

pythia 8 simulations and the CMS measurements. We present our conclusion and give an

outlook in section 5.

2 The observable

In this section we will give the jet shape definition and discuss some of the related subtleties.

Before we can study any property of a jet, we need to precisely define what a jet is. This

is conventionally done using a jet algorithm with a parameter R, which characterizes the

size of the jet. Different jet algorithms will give jets with different substructures. For a

jet reconstructed using a jet algorithm, we first define a jet axis n̂. A natural choice of

n̂ is the direction of the 3-momentum of the jet. However, such axis is not necessarily

along the direction of the dominant energy flow within the jet. The factorized expression

for an observable referencing this axis will involve an intricate convolution over the recoil

momentum between the collinear and the soft sectors. On the other hand, there are choices

of n̂, e.g. the broadening axis or the winner-take-all axis [45, 46], which are soft-recoil free.

These axes absorb the recoil sensitivity and point along the collinear momentum which

gives a simpler factorized form without recoil-momentum convolution. We will come back

to this point in more details in section 3.

Given a jet with an axis n̂, its integral jet shape ΨJ(r) is defined as follows,

ΨJ(r) =

∑

i, din̂<r E
i
T

∑

i, din̂<RE
i
T

, (2.1)

which is the fraction of the transverse energy ET of the jet within an angular scale r from

the jet axis. The transverse energy is measured with respect to the beam direction. By

definition ΨJ(R) = 1. Here, din̂ is the distance metric between the i-th particle in the jet

and the jet axis n̂. It can be the Euclidean distance between the two directions along the

particle and the jet axis on the rapidity-azimuthal angle (y, φ) plane,

din̂ =
√

(yi − yjet)2 + (φi − φjet)2 . (2.2)

Note that, with this definition the jet shape is boost invariant along the beam direction.

So we can calculate the jet shape in the frame where the jet is central (yjet = 0). In that

frame, up to power corrections, the metric is equivalent to

din̂ = cos−1(n̂i · n̂) , (2.3)

which is the angle between the momentum of the i-th particle and the jet axis in 3-space.

Also, up to power corrections we can consider the energies instead of the transverse energies
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of particles in the central jet. So, in this paper,

ΨJ(r) =

∑

i, θin̂<r E
i

∑

i, θin̂<RE
i
≡ Er

ER
, (2.4)

setting yjet = 0. In experiment, we measure the averaged integral jet shape Ψ(r) (we will

drop the word averaged and refer to Ψ(r) as the integral jet shape from now on),

Ψ(r) =
1

NJ

NJ
∑

J=1

ΨJ(r) . (2.5)

The differential jet shape ψ(r) is defined to be its derivative,

ψ(r) =
dΨ(r)

dr
, (2.6)

which tells us how the energy inside the jet is distributed in r. Recall that the jet shape has

dependence on the jet algorithm and the parameter R used in the jet definition, which we

suppress here for notational simplicity. At the Tevatron mostly the iterative cone algorithm

was used, whereas at the LHC the anti-kT algorithm is used almost exclusively.

The jet shape is a function of r and R, which are parameters or angular coordinates.

In the jet shape calculations terms of the form αn
s ln

m r/R appear, which can become

large if r ≪ R. In this regime the fixed order expansion breaks down and the large

logarithms need to be resummed. The resummation was performed some time ago using

the modified leading logarithmic approximation (MLLA) [18], including the contributions

from initial state radiation and non-perturbative effects. A phenomenological parameter

Rsep, which can be thought of as the effective separation between the particles at leading

order, can be used to fit with the experimental data. In this paper we will not follow this

phenomenological approach.

In the next section we will calculate the jet shape using SCET. Large logarithms

come from the presence of multiple, hierarchical energy scales in the problem. This is the

situation in which effective field theory techniques are useful because the corrections to

the leading power contribution are suppressed by a small power counting parameter. The

key ingredient in this approach is the factorization, which separates physics into multiple,

single-scaled sectors. Large logarithms are then resummed by the renormalization-group

evolution of different pieces of physics between their natural scales.

3 Factorized expression for the jet shape

For concreteness, let us consider the shapes of jets from an N -jet configuration in e+e−

collisions without loss of generality, as we will see.2 Jets are reconstructed using either the

cone or the anti-kT algorithm with a parameter R that is parametrically small. At the

2The N jets are assumed to be energetic by passing a hard pT cut so that the power counting and

the factorized expression we will write down are valid. At hadron colliders, there are power-suppressed

contributions of O(R) from initial state radiation which we will neglect.
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Figure 2. Schematic event topology of N -jet production with collinear and soft radiation. Jets are

reconstructed using a jet algorithm with a parameter R. The energy Er inside a cone of size r in

J1 is measured, as well as its transverse momentum pT and rapidity y. An energy cutoff Λ outside

the jets is imposed to ensure the N -jet configuration.

LHC a typical R = 0.5 to 0.7 is chosen in the physics analyses of proton-proton collisions.

For heavy ion collisions, because of the underlying event contaminations a even smaller

R = 0.3 is chosen at CMS. In these cases jets are highly collimated and the process can

be accurately described by the soft-collinear effective theory (SCET). An energy cutoff Λ

outside the jets is imposed to ensure an N -jet configuration. We also measure the energy

Er inside a cone of size r in one jet (labeled by 1), as well as the transverse momenta pT i

and pseudo-rapidity yi of all the jets.

Before we write down the factorized expression for the jet shape in SCET, let us study

the power counting of the observable. In light-cone coordinates with p = (n̄ · p, n · p, ~p⊥)
where n = (1, n̂) and n̄ = (1,−n̂), the momentum scalings of the collinear and the soft

particles are

pc = Q(1, λ2, λ) , ps = Q(λ, λ, λ) , (3.1)

where Q is the center of mass energy of the e+e− collisions and λ is the power counting

parameter which describes how wide a jet is spread out. There is one collinear sector for

for each jet with the collinear direction n. The power counting parameter satisfies R & λ

so that most of the jet energy is included in the jet reconstruction. The jet energy E has

contributions Ec and Es from both the collinear and the soft sectors,

ΨJ(r) =
Er

ER
=

Ec
r + Es

r

Ec
R + Es

R

=
Ec

r

Ec
R

+O(λ) . (3.2)

Up to power corrections, the integral jet shape can be calculated using only the collinear

momenta, and the soft contributions can be neglected. This approximation works best when

R is not large. On the other hand, as was briefly discussed in section 2, soft radiation can

potentially alter the collinear momentum direction by an O(λ) amount. For r of O(λ) or

smaller, soft recoil can actually change Er by an O(1) amount which will spoil the simple

factorized expression. This can be remedied by choosing the recoil-free jet axes for the
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jet shape measurements.3 Such jet axes will always point along the collinear momentum

directions [45, 46]. To avoid the issue of recoil from the soft particles outside the jets, we

impose a constraint on the energy cutoff Λ by demanding Λ/Q≪ R. At hadron colliders,

because of dynamical threshold enhancement the partonic phase space where the jets have

small jet masses dominates in the cross section calculations [48–51]. The cross section of

jet configurations with large jet masses is suppressed because parton distribution functions

die off quickly when the momentum fraction of the parton is close to one. This will reduce

the recoil sensitivity of the jet axis and therefore it is less of an issue.

Detailed derivations and discussions about the factorized expression similar to the one

we will write down here can be found in [46, 52, 53]. The differential cross section for N -jet

production with jets pTi
and yi, an energy Er inside the cone of size r in one jet (labeled

by 1), and an energy cutoff Λ outside all the jets is the following,4

1

σ0

dσ

dErdpTi
dyi

= H(pTi
, yi, µ)Jω1

(Er, µ)Jω2
(µ) . . . JωN

(µ)Sn1n2...nN
(Λ, µ)

+O
(

Λ

Q

)

+O(R) . (3.3)

Here, H(pTi
, yi, µ) is the hard function which contains the information about the N -jet

productions at high scale Q and is independent of the jet shape measurements. It is

the square of the Wilson coefficient when we match QCD and SCET at the hard scale.

Jω(Er, µ) is a newly defined jet function, which is the probability of measuring an energy

Er inside a r cone for a jet of size R with ω = 2EJ = 2pT cosh y,

Jω(Er, µ) =
∑

Xc

〈0|χ̄ω(0)|Xc〉〈Xc|χω(0)|0〉δ(Er − Ê<r(Xc)) . (3.4)

Here, χω is the collinear jet field in SCET, and the operator Ê<r returns the energy of

the collinear particles Xc inside the r cone. By imposing an energy cutoff Λ outside the

jets, we are essentially restricting the collinear radiation to be all inside the jets up to

corrections of O(Λ/Q). All the other jet functions without the jet energy measurements

are the “unmeasured” jet functions [53]. Once we integrate out the collinear modes, we

are left with a soft sector which is described by soft Wilson lines along the jet directions.

The soft function is defined as follows,

Sn1n2...nN
(Λ, µ) =

∑

Xs

〈0|O†
s(0)|Xs〉〈Xs|Os(0)|0〉Θ(Λ− Ê>R(Xs)) , (3.5)

where Os(0) consists of N soft Wilson lines along the n1,2,...,N directions intersecting at the

origin 0. The operator Ê>R returns the energy of the soft particles Xs outside all N jets.

Note that the factorized form is a simple product of the hard, jet and soft functions without

any convolution. This is because the soft particles don’t contribute to the jet energy at

3This has not been implemented in experimental measurements to-date, and it introduces another power

correction when comparing our calculations with experiments.
4The functional dependence on r and R are suppressed for notational simplicity.
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leading power and we choose a recoil-free jet axis in the jet shape definition. All the jet

and soft functions have R dependence which we suppress for brevity.

Similarly, for the differential jet rate of N -jet production,

1

σ0

dσ

dpTi
dyi

= H(pTi
, yi, µ)Jω1

(µ)Jω2
(µ) . . . JωN

(µ)Sn1n2...nN
(Λ, µ)+O

(

Λ

Q

)

+O(R) , (3.6)

with the same hard, unmeasured jet (from 2 to N) and soft functions. The only difference

is that we don’t measure the energy of jet 1, so Jω1
(Er, µ) is replaced by the unmeasured jet

function Jω1
(µ). Now, the averaged energy inside the cone of size r in jet 1 with ω = ω1 is

〈Er〉ω1
=

∫

dErEr
1
σ0

dσ
dErdpTidyi

1
σ0

dσ
dpTidyi

=
H(pTi

, yi, µ)J
Er
ω1

(µ)Jω2
(µ) . . . JωN

(µ)Sn1n2...nN
(Λ, µ)

H(pTi
, yi, µ)Jω1

(µ)Jω2
(µ) . . . JωN

(µ)Sn1n2...nN
(Λ, µ)

=
JEr
ω1

(µ)

Jω1
(µ)

. (3.7)

Here,

JEr
ω (µ) =

∫

dErEr Jω(Er, µ) (3.8)

is referred to as the jet energy function. Note that all the hard, unmeasured jet, and soft

functions cancel in the calculations because of the product form of the factorized expression.

The integral jet shape needs another average over the jet production cross sections, with

proper phase space (PS) cuts on pT and y, and is therefore

Ψ(r) =
1

σtotal

∑

i=q,g

∫

PS

dpTdy
dσi

dpTdy
Ψi

ω(r) , (3.9)

where

Ψω(r) =
〈Er〉ω
〈ER〉ω

=
JEr
ω (µ)/Jω(µ)

JER
ω (µ)/Jω(µ)

=
JEr
ω (µ)

JER
ω (µ)

, (3.10)

which is the ratio between two jet energy functions, and ω = 2pT in the frame where the

jet is central (y = 0). As we can see, the jet shape does not depend on the hard and soft

functions nor on the information about the other jets. In other words, it is insensitive to

the hard process and the soft radiation and depends only on the partonic origin and the

energy of the jet.

From the factorized form we can already infer some non-trivial properties of the jet

and soft functions. By the renormalization-group invariance of the physical cross sections,

the anomalous dimension of the soft function should be independent of the energy cutoff

Λ to all orders in perturbation theory. Therefore the soft anomalous dimension can only

be a function of R and is independent of the renormalization scale µ. Also, the anoma-

lous dimension of the jet energy function JEr
ω (µ) is the same as the anomalous dimension

of the unmeasured jet function Jω(µ) which does not depend on r. This makes Ψω(r)

renormalization-group invariant. Furthermore, the R dependence in the anomalous di-

mensions of the jet and soft functions has to cancel because the hard function does not

depend on R.
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3.1 One-loop jet energy functions

Having set up the factorization framework, now we proceed to calculate the jet energy

function JEr
ω (µ) at O(αs) for both quark jets and gluon jets reconstructed using the cone

or anti-kT algorithm. At this order, the initial collinear particle with momentum l splits

into two collinear particles with momenta q and l − q. We use lightcone coordinates

throughout the calculations where k+ ≡ n · k and k− ≡ n̄ · k. Also, we use dimensional

regularization to regulate the divergences with the spacetime dimension d = 4 − 2ǫ, and

the MS renormalization scheme. For quark jets,

JqEr

ω,alg(µ) = 4παs

(

µ2eγE

4π

)ǫ

CF

∫

dl+

2π

1

(l+)2

∫

ddq

(2π)d

[

4
l+

q−
+ (d− 2)

l+ − q+

ω − q−

]

×2πδ(q−q+ − q2⊥)Θ(q−)Θ(q+) 2πδ

(

l+ − q+ − q2⊥
ω − q−

)

Θ(ω − q−)Θ(l+ − q+)

×
(

M1 +M2 +M3 +M4

)

, (3.11)

and for gluon jets,

JgEr

ω,alg(µ) = 8παs

(

µ2eγE

4π

)ǫ ∫ dl+

2π

1

l+

∫

ddq

(2π)d

[

TFnf

(

1− 2

1− ǫ

q+q−

ωl+

)

−CA

(

2− ω

q−
− ω

ω − q−
− q+q−

ωl+

)]

2πδ(q2)Θ(q−)Θ(q+)

×2πδ((l − q)2)Θ(ω − q−)Θ(l+ − q+)×
(

M1 +M2 +M3 +M4

)

. (3.12)

Here

M1 = Θ

(

tan2
r

2
− q+

q−

)

Θ

(

tan2
r

2
− l+ − q+

ω − q−

)

Θalg × l0 (3.13)

M2 = Θ

(

tan2
r

2
− q+

q−

)

Θ

(

l+ − q+

ω − q−
− tan2

r

2

)

Θalg × q0 (3.14)

M3 = Θ

(

q+

q−
− tan2

r

2

)

Θ

(

tan2
r

2
− l+ − q+

ω − q−

)

Θalg × (l0 − q0) (3.15)

M4 = Θ

(

q+

q−
− tan2

r

2

)

Θ

(

l+ − q+

ω − q−
− tan2

r

2

)

Θalg × 0 , (3.16)

which are the cases where each of the two particles are either inside the cone of size r or not.

The algorithm dependence enters in the calculations through Θalg in the following way,

Θcone = Θ

(

tan2
R

2
− q+

q−

)

Θ

(

tan2
R

2
− l+ − q+

ω − q−

)

ΘkT = Θ

(

tan2
R

2
− q+ω2

q−(ω − q−)2

)

. (3.17)

Note that at this order the phase space constraint is the same for anti-kT jets and kT jets,

so we label the anti-kT jet energy functions by kT for simplicity. For cone jets the two

collinear particles are constrained to be inside a cone of size R, whereas for anti-kT jets the
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angle between the two collinear particles has to be smaller than R. Therefore one expect

that cone jets are more spread out than anti-kT jets.

We expand the dimensionally regularized one-loop jet energy functions in series of ǫ’s.

The anomalous dimension can be extracted from the coefficient of the 1/ǫ pole in the series,

and the O(ǫ0) piece will be the renormalized jet energy function in the MS scheme. The

jet energy functions for cone jets at O(αs) are

2

ω
JqEr
ω,cone(µ) =

αsCF

2π

[

1

2
ln2

ω2 tan2 r
2

µ2
− 3

2
ln
ω2 tan2 r

2

µ2
− 2 lnX ln

ω2 tan2 r
2

µ2

+2− 3π2

4
+ 4Li2

(

X

1 +X

)

+ 3 ln(1 +X) +
3X

1 +X
+ 2 ln2(1 +X)

+

(

− 5 ln(1 +X) +
5X + 2X2

1 +X
− 2X2 ln

X

1 +X

)

tan2
R

2

]

, (3.18)

and

2

ω
JgEr
ω,cone(µ) =

αs

2π

[

CA

2
ln2

ω2 tan2 r
2

µ2
−
(

11

6
CA − 2

3
TFnf

)

ln
ω2 tan2 r

2

µ2

−2CA lnX ln
ω2 tan2 r

2

µ2
−
(

5π2

12
− 2Li2

(

X

1 +X

)

+ 2Li2

(

1

1 +X

))

CA

+

(

11

3
CA − 4

3
TFnf + 2CA lnX

)

log(1 +X)

+
−2(5+63X+81X2+35X3)TFnf+(65+351X+477X2+203X3)CA

36(1 +X)3

−
(

2X(6 + 13X + 9X2)TFnf −X(36 + 85X + 63X2 + 12X3)CA

6(1 +X)3

+2CAX
2 lnX − 2(TFnf − CA(3−X2)) ln(1 +X)

)

tan2
R

2

]

, (3.19)

where

X =
tan r

2

tan R
2

≈ r

R
for r,R≪ 1 , (3.20)

is boost-invariant along the jet direction. In fact, under a Lorentz boost with rapidity β

along the jet direction, ω and r transform in the following way,

ω → eβω , tan
r

2
→ e−β tan

r

2
. (3.21)

Therefore the combination, ω tan r
2 , is also boost-invariant. For anti-kT jets, we have

2

ω
JqEr

ω,kT
(µ) =

αsCF

2π

[

1

2
ln2

ω2 tan2 r
2

µ2
− 3

2
ln
ω2 tan2 r

2

µ2
− 2 lnX ln

ω2 tan2 r
2

µ2
(3.22)

+ 2− 3π2

4
+ 6X − 3

2
X2 −

(

1

2
X2 − 2X3 +

3

4
X4 + 2X2 lnX

)

tan2
R

2

]

,
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and

2

ω
JgEr

ω,kT
(µ) =

αs

2π

[

CA

2
ln2

ω2 tan2 r
2

µ2
−
(

11

6
CA − 2

3
TFnf

)

ln
ω2 tan2 r

2

µ2

−2CA lnX ln
ω2 tan2 r

2

µ2
+

(

65

36
− 3π2

4
+ 8X − 3X2 +

8X3

9
− X4

4

)

CA

+

(

− 5

18
− 4X + 3X2 − 16X3

9
+
X4

2

)

TFnf

−X
2

30

(

(25− 80X + 45X2 − 16X3 + 5X4 + 60 lnX)CA

+ (−20 + 40X − 45X2 + 32X3 − 10X4)TFnf

)

tan2
R

2

]

. (3.23)

An important observation is that the choice of the renormalization scale µ = ω tan r
2

eliminates all the large logarithms at O(αs). Also, the terms from the second line down in

each expression of the jet energy function are non-singular when X → 0. The jet energy

functions for jets reconstructed using different algorithms differ by these non-singular terms

at this order. For r = R, we have

2

ω
JqER
ω,cone(µ) = Jq

ω,cone(µ) +
αs

2π
CF

(

7

2
− 3 ln 2

)

tan2
R

2

2

ω
JgER
ω,cone(µ) = Jg

ω,cone(µ) +
αs

2π

[

CA

(

49

12
− 4 ln 2

)

− TFnf

(

7

6
− 2 ln 2

)]

tan2
R

2
, (3.24)

and

2

ω
JqER

ω,kT
(µ) = Jq

ω,kT
(µ) +

αs

2π

3

4
CF tan2

R

2
2

ω
JgER

ω,kT
(µ) = Jg

ω,kT
(µ) +

αs

2π

[

7

10
CA +

1

10
TFnf

]

tan2
R

2
. (3.25)

Here

Jq
ω,alg(µ) =

αs

2π

(

−3

2
CF ln

ω2 tan2 R
2

µ2
+

1

2
CF ln2

ω2 tan2 R
2

µ2
+ dqalg

)

Jg
ω,alg(µ) =

αs

2π

(

−1

2
β0 ln

ω2 tan2 R
2

µ2
+

1

2
CA ln2

ω2 tan2 R
2

µ2
+ dgalg

)

, (3.26)

are the unmeasured jet functions [53], with β0 =
11
3 CA − 4

3TFnf and

dqcone = CF

(

7

2
+ 3 ln 2− 5π2

12

)

dqkT = CF

(

13

2
− 3π2

4

)

dgcone = CA

(

137

36
+

11

3
ln 2− 5π2

12

)

− TFnf

(

23

18
+

4

3
ln 2

)

dgkT = CA

(

67

9
− 3π2

4

)

− TFnf

(

23

9

)

. (3.27)
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Note that, the unmeasured jet functions are boost-invariant to all orders in perturbation

theory, whereas the jet energy functions are boost-covariant up to terms which are power

suppressed in R. This gives a strong constraint on the R dependence of the jet and soft

functions in the factorization theorem. For example, the R dependence of the unmeasured

jet functions can only appear as the logarithms of the ratio between ω tan R
2 and µ.

The differential jet shapes of quark jets at O(αs) are

ψq
cone(r) =

αsCF

2π

1

16 sin r

[

1−
(

49 + 2X +X2

(1 +X)2
+ 64 ln

X

1 +X

)

sec2
r

2

]

ψq
kT
(r) =

αsCF

2π

1

sin r

(

− 3 + 6X − 3X2 − 4 lnX

)

sec2
r

2
, (3.28)

while for gluon jets, we have

ψg
cone(r) =

αs

2π

1

sin r

[−(11 + 20X + 12X2)CA + 2(2 + 2X + 3X2)TFnf
3(1 +X)4

−4CA ln
X

1 +X
sec2

r

2

]

ψg
kT
(r) =

αs

2π

1

sin r

[(

− 11

3
+ 8X − 6X2 +

8X3

3
−X4 − 4 lnX

)

CA

+

(

4

3
− 4X + 6X2 − 16X3

3
+ 2X4

)

TFnf

]

. (3.29)

In the r ≪ R≪ 1 limit, the differential jet shapes become

ψq(r) =
αsCF

2π

1

r

[

4 ln
R

r
− 3 + 10(or 6)

r

R

]

ψg(r) =
αs

2π

1

r

[

4CA ln
R

r
− 11

3
CA +

4

3
TFnf + (12(or 8)CA − 4TFnf )

r

R

]

, (3.30)

for jets reconstructed using the cone (or anti-kT) algorithm. The difference between the

differential jet shapes with different jet algorithms is of O(r/R), which can be important

at the periphery of the jet. Note that in the r ≪ R≪ 1 limit the above results reproduce

the differential jet shapes calculated at O(αs) in [18].

3.2 Renormalization-group equations and resummation

To resum the large logarithms we need to know how the jet energy functions evolve in

energy. The renormalization-group equations satisfied by the jet energy functions are

the following,

dJqEr
ω (µ)

d lnµ
=

[

−CFΓcusp(αs) ln
ω2 tan2 R

2

µ2
− 2γq(αs)

]

JqEr
ω (µ)

dJgEr
ω (µ)

d lnµ
=

[

−CAΓcusp(αs) ln
ω2 tan2 R

2

µ2
− 2γg(αs)

]

JgEr
ω (µ), (3.31)
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µjR ≈ EJ × R

µjr ≈ EJ × r

µ

Figure 3. The renormalization group evolution for the jet energy functions. The jet energy

functions JEr

ω (µ) of quark jets and gluon jets are calculated at O(αs) at the natural scale µjr , and

they are evolved to a common renormalization scale µ. At the natural scale there are no large

logarithms in the jet energy functions. Large logarithms of the form log r/R in jet shapes are

resummed by the renormalization group evolution between the two jet scales µjr and µjR .

where Casimir scaling is assumed to hold up to three loops and Γcusp is the cusp anomalous

dimension. The anomalous dimensions Γcusp and γ can be computed order by order in

perturbation theory as series in αs

4π ,

Γcusp(αs) =

(

αs

4π

)

Γ0 +

(

αs

4π

)2

Γ1 + · · · ,

γ(αs) =

(

αs

4π

)

γ0 +

(

αs

4π

)2

γ1 + · · · . (3.32)

The cusp anomalous dimension has been calculated to three loops, and γ(αs) has only been

calculated at one loop for both quark and gluon jet energy functions (and unmeasured

jet functions),

γq0 = −3CF , γg0 = −β0 . (3.33)

The renormalization-group equation can be solved and the jet energy function can be

evolved from its natural scale µjr to the renormalization scale µ,

J iEr
ω (µ) = J iEr

ω (µjr) exp [−2CiS(µjr , µ) + 2Ai(µjr , µ)]

(

ω2 tan2 R
2

µ2jr

)CiAΓ(µjr ,µ)

, (3.34)

where i = q, g with Cq = CF and Cg = CA the Casimir operators of the fundamental and

adjoint representations in QCD. Here

S(ν, µ) = −
∫ αs(µ)

αs(ν)
dα

Γcusp(α)

β(α)

∫ α

αs(ν)

dα′

β(α′)
, (3.35)

and

Ai(ν, µ) = −
∫ αs(µ)

αs(ν)
dα
γi(α)

β(α)
, AΓ(ν, µ) = −

∫ αs(µ)

αs(ν)
dα

Γcusp(α)

β(α)
, (3.36)
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Figure 4. The integral (left) and differential (right) jet shapes for quark and gluon jets recon-

structed using the anti-kT algorithm with R = 0.3, with a fixed jet energy EJ = 100GeV plotted

as an illustration. The dashed lines are the SCET calculations at leading-order (LO), whereas the

solid lines are the ones at next-to-leading logarithmic order (NLL).

are the renormalization-group evolution kernels in SCET. From these, the integral jet

shape becomes

Ψi
ω(r) =

J iEr
ω (µ)

J iER
ω (µ)

=
J iEr
ω (µjr)

J iER
ω (µjR)

exp[−2CiS(µjr , µjR) + 2Ai(µjr , µjR)]

×
(

µ2jr
ω2 tan2 R

2

)CiAΓ(µjR
,µjr )

. (3.37)

Formally Ψω(r) is independent of µ, µjr and µjR to all orders in perturbation theory.

However, practically we truncate the series at finite order and this induces a renormalization

scale dependence. By choosing

µjr = ω tan
r

2
≈ EJ × r , µjR = ω tan

R

2
≈ EJ ×R , (3.38)

which eliminate large logarithms in the fixed order calculations of J iEr
ω (µjr) and J

iER
ω (µjR)

at one loop,5 we can resum large logarithms of the form ln r/R in jet shapes by the renor-

malization group evolution of the jet energy functions between µjr and µjR (figure 3). The

theoretical uncertainties, which come from neglecting higher order terms, can be estimated

by exploiting the scale dependence in the resummed results.

4 Results

We will compare our calculations with the pythia 8 simulations and the CMS measure-

ments of differential jet shapes in proton-proton collisions with nucleon-nucleon center of

mass energy at
√
sNN = 2.76TeV [26]. This is the reference for the studies of the jet

shape modification in lead-lead collisions, which we will discuss in a forthcoming paper.

5At two loops, due to the potential issue of non-global logarithms, large logarithms in the fixed order

calculations of jet energy functions may not be entirely eliminated with this scale choice. This limits the

logarithmic accuracy of our resummed series to NLL.
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Figure 5. The integral (left) and differential (right) jet shapes in proton-proton collisions with

center of mass energy at
√
sNN = 2.76TeV are plotted as a function of r, which is the angle from

the jet axis. Jets are reconstructed using the anti-kT algorithm with R = 0.3. The cuts on the

transverse momenta and rapidity of the jets (pjetT > 100GeV and 0.3 < |yjet| < 2) are imposed.

The dots are the CMS data with negligible experimental uncertainties. The shaded blue boxes are

the LO (light) and NLL (dark) results for anti-kT jets, with the theoretical uncertainties estimated

by varying the jet scales between 1
2
µjR < µ < 2µjR . As we can see, the NLL results agree with the

data much better than the LO results. The shaded green boxes are the NLL results for cone jets,

plotted as an illustration of the algorithm dependence in jet shapes.

Events with dijet production are the most dominant events in the experiment. Jets are

reconstructed using the anti-kT algorithm with R = 0.3. This relatively small value of R

is chosen to reduce the background fluctuations in heavy ion collisions. The following cuts

on the transverse momentum and pseudo-rapidity of a jet are imposed,

pjetT > 100 GeV , 0.3 < |yjet| < 2 . (4.1)

The region |yjet| < 0.3 is excluded because of the techniques used in the background

subtraction. Note that, the differential jet shapes measured by CMS are constructed from

the transverse momenta of the charged particles with ptrackT > 1GeV,

∆Ψ(r)

∆r
=

1

NJ

NJ
∑

J=1

Ψtrack
J (r + δr/2)−Ψtrack

J (r − δr/2)

δr
, (4.2)

and the jet cone is divided into six annuli between 0 < r < 0.3 with δr = 0.05. The

difference with the differential jet shapes we calculate is power suppressed by O(r/R).

To look into the pT dependence of jet shape more exclusively, we also compare our

calculations with the CMS differential jet shape measurement for R = 0.7 anti-kT jets in

proton-proton collisions at
√
s = 7TeV [54]. Central jets with |yjet| < 1 are divided into

many pT bins, covering a wide range from 20GeV to 1TeV, and the jet cone is divided

into seven annuli between 0 < r < 0.7 with δr = 0.1. The comparison with the first jet

shape measurement at the LHC by the ATLAS collaboration [55] gives a similar result.

For the jet production cross section calculations, we use the CTEQ5M parton distri-

bution functions (PDFs) [56] and the leading order O(α2
s) QCD results. We then average

the jet shapes calculated in SCET with the fixed order QCD differential jet production

cross section formula. In the SCET calculations of the differential jet shapes Ψω(r), we
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Figure 6. The differential jet shapes in proton-proton collisions at
√
s = 7TeV. Jets are recon-

structed using the anti-kT algorithm with R = 0.7, and the shapes for central jets with |yjet| < 1

are examined in different pT bins: 50 GeV < pT < 60 GeV, 110 GeV < pT < 125 GeV,

225 GeV < pT < 250 GeV and 500 GeV < pT < 600 GeV, shown as examples. The dots are the

CMS data with negligible experimental uncertainties. The shaded blue boxes are the NLL results,

with the theoretical uncertainties estimated by varying the jet scales between 1
2
µjR < µ < 2µjR .

For high pT jets the calculations reproduce the peak region (r ≪ R) very well, with some discrep-

ancy with the data in the tail region (r ≈ R) due to power corrections. For low pT jets the power

corrections become more significant.

include the one-loop jet energy functions, the two-loop cusp anomalous dimensions (Γ0 and

Γ1) and the one-loop anomalous dimensions (γq,g0 ) of the jet energy functions, as well as

the two-loop running of the strong coupling constant with αs(mZ) = 0.1172 [10]. This

will give us the precision formally at next-to-leading logarithmic order (NLL), including

terms down to αn
s ln

2n−1 r
R
. At next-to-next-to-leading logarithmic order (NNLL), there

are potential issues related to non-global logarithms which may not be resummed using our

renormalization-group technique. Note that, unlike the non-global logarithms which arise

from the existence of multiple soft scales when we consider exclusive observables sensitive

to soft radiation, in this case non-global logarithms may exist within a SCET collinear

sector, which is interesting. We will leave the study of non-global logarithms in jet shapes

for future work.6

6While our main focus is on the phenomenological studies of jet shapes in proton-proton and heavy

ion collisions, in e+e− collisions the full fixed order QCD calculations at NLO [57] and NNLO [58, 59] are

available. The coefficients of the leading non-global logarithms at five loops were also recently calculated

in the large Nc limit [60]. They provide useful information about non-global logarithms and allow checks

for precision hadronic observable resummation in e+e− collisions beyond NLL.
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Figure 7. The comparison among the differential jet shapes from the CMS data, the pythia 8

simulations, and the SCET calculations in proton-proton collisions with center of mass energy at

2.76 (left) and 7 (right) TeV. The black dots are the CMS data. The red dots are the pythia

simulation with the default tune, while the green dots are the pythia simulation with initial state

radiation (ISR) and hadronization turned off. The yellow dots in the left plot are the pythia

simulation without the ptrackT > 1GeV cut and the background subtraction. The shaded blue boxes

are the NLL SCET results, which agree with pythia without ISR and hadronization.

Figure 4 shows the integral and differential jet shapes of quark jets and gluon jets

calculated at leading-order (LO) and next-to-leading logarithmic order (NLL) in SCET.

For illustration we plot the energy distributions for jets with a fixed jet energy at 100GeV.

The fixed-order jet shape diverges at r = 0 due to Sudakov logarithms, which need to be

resummed. As we can see from the location of the peaks of the NLL differential jet shape

distributions, quark jets are more localized whereas gluon jets are more spread out. Also,

the effect of resummation is important throughout the whole range of r.

Figure 5 shows the comparison between our LO and NLL calculations and the CMS

measurement of the integral and differential jet shapes in proton-proton collisions at√
sNN = 2.76TeV. Jets are reconstructed using the anti-kT algorithm with a small R = 0.3.

This is the reference for the studies of the jet shape modification in heavy ion collisions.

The data are shown as the dots in the plot with negligible experimental uncertainties,

which demands precise theoretical calculations. The shaded boxes are the theoretical un-

certainties we estimate by varying the jet scales between 1
2µjR < µ < 2µjR . Note that the

distribution is plotted with the logarithmic scale in the vertical axis. The LO calculation,

due to its divergent nature, certainly can not describe the data and resummation becomes

necessary. The results for cone jets are also shown to illustrate the algorithm dependence

in jet shapes. Note that cone jets are more spread out than anti-kT jets.

Figure 6 shows a similar comparison of our calculations with the CMS differential

jet shape measurement in proton-proton collisions at
√
s = 7TeV. Here, jets are recon-

structed using the anti-kT algorithm with a larger R = 0.7, and only the central jets with

|yjet| < 1 are considered. We examine the differential jet shapes for jets in different pT
bins: 50 GeV < pT < 60 GeV, 110 GeV < pT < 125 GeV, 225 GeV < pT < 250 GeV and

500 GeV < pT < 600 GeV, as examples. Again the dots are the CMS data with negligible

experimental uncertainties, and the theoretical uncertainties are estimated by scale varia-

tion. As we can see, for high pT jets the calculations reproduce the peak region (r ≪ R)
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very well, with some discrepancy with the data in the tail region (r ≈ R) due to the power

corrections of O(R). For low pT jets the power corrections of O(Λ/Q) become more signif-

icant because a considerable amount of radiation is outside the jets, which makes the jet

more spread out. Also, this is the region where initial state radiation and non-perturbative

effects also become significant.

Figure 7 shows the comparison of the jet shapes obtained in this work with pythia

8 simulations at center of mass energies 2.76TeV and 7TeV. We turn on and off the

contributions from initial state radiation (ISR) and hadronization to study their effects.

The SCET calculations ignore ISR and hadronization, and they agree well with the pythia

simulation without these effects. pythia with the default tune also reasonably agrees with

the data. Note that for the jet shapes in the 2.76TeV collisions, there are several caveats

in comparing the data with the SCET resummed results. The jet shapes are reconstructed

using only the charged particles with the ptrackT > 1GeV cut. Also, to deal with the

huge underlying event contamination in heavy ion collisions, an η-reflected background

subtraction is performed also in reconstructing the jet shapes in proton collisions. These

may affect the tail of the jet shape at about 10 to 20 % level.

5 Summary and discussion

In this paper we calculated the integral and differential jet shapes in proton-proton colli-

sions at the LHC using soft-collinear effective theory (SCET). We performed resummation

at next-to-leading logarithmic (NLL) accuracy, neglecting contributions from initial state

radiation and non-perturbative effects. We aimed at obtaining a simple factorized form for

the jet shape. Once we choose a recoil-free jet axis, which always points in the collinear

momentum direction, the factorized expression assumes a product form, which allows for

the cancelation of the hard, unmeasured jet and soft functions in the calculation. The

integral jet shape is then a ratio between two jet energy functions which we calculate at

leading order (LO) for both quark jets and gluon jets reconstructed using the cone or the

anti-kT algorithm.

We compared our NLL calculation with the pythia 8 simulation and the CMS mea-

surement of jet shapes in proton-proton collisions at both
√
s = 2.76TeV and

√
s = 7TeV

and found good agreement. This sets the baseline calculation for the study of the jet

shape modification in heavy ion collisions, which we will discuss in a forthcoming paper.

We showed that the LO calculation can not describe the data well and that resummation

is essential. By examining the jet shapes for jets with different transverse momenta, we

found that for low pT jets the power corrections are significant. Physically, this is the

region where initial-state radiation and non-perturbative effects play a role. For high pT
jets the NLL resummed differential jet shape agrees with the data very well in the peak

region with some room for power corrections at the very periphery of the jet.

To go beyond this precision systematically, at next-to-next-to-leading logarithmic

(NNLL) accuracy we will need to calculate the two-loop jet energy function and its two-

loop anomalous dimension. At this order issues about non-global logarithms and the way

to resum them will also arise. The jet algorithm dependence will become more interesting
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because at this order we can distinguish between different recombination algorithms. It

would be interesting to calculate the jet energy function, as well as the unmeasured jet

function at two loops to investigate these questions. The boost properties of these jet func-

tions can also allow us to constrain the logR dependence. On the other hand, even though

the soft function cancels in the jet shape calculation, it is of importance for the resumma-

tion of the jet rate. It would be interesting to obtain the two-loop soft function, which has

been calculated for a more complicated situation of the jet thrust [61, 62]. This simpler

exercise will allow us to check the consistency of the factorization theorem of jet rate and

give us insight of the possible refactorization of the soft sector without the complication of

the extra measurements.
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