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1 Introduction

In field theory, a very intriguing result is the Kawai-Lewellen-Tye (KLT) relation [1], which

connects gauge theories with gravity. A particular version of the KLT relations was given

by Bern, Dennen, Huang and Kiermaier in [2].1 Following [2], let us give a brief summary

about it in the language of Lagrangian field theory. We symbolically write the tree color-

dressed n gluon amplitude as

A(n) =
∑

i

cini

(Πsj)i
, (1.1)

where ci are color factors, ni are numerators made of momenta and polarization vectors,

and (Πsj) are appropriate products of inverse propagators, all constructed according to

a well defined set of Feynman rules once a gauge choice is made. Bern, Carrasco and

Johansson [4] stated that for channels which satisfy the Jacobi identity

ci + cj + ck = 0, (1.2)

1More KLT-type relations can be found in [3].
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one can reshuffle terms and obtain a new set of numerators so that they seem to have been

constructed completely through some effective three point vertices and thus also satisfy

n̄i + n̄j + n̄k = 0. (1.3)

The relations (1.2) and (1.3) have been called color-kinematics duality and the numerators

which have this property have been called BCJ or color-kinematic symmetric.2

Together with the antisymmetry of the effective three vertices, (1.2) leads to a reduction

in the number of independent color coefficients to (n−2)!, and via (1.3) to the same number

of independent numerators. Thus, naively one may also conclude that there are (n − 2)!

independent color-ordered amplitudes. Any of such a set is called a Kleiss-Kuijf basis [11].

We can form a column vector for a set of the independent numerators |N̄〉 and another

column vector for the set of color-ordered amplitudes in the chosen Kleiss-Kuijf basis |A〉.
They are related by

|A〉 = M |N̄〉, (1.4)

where the elements of the propagator matrix M are made of sums of products of propaga-

tors. An appropriate set of independent color coefficients will form a row vector 〈C|, which
will yield the color-dressed n particle amplitude

A(n) = 〈C|M |N̄〉. (1.5)

In [12] we pointed out that in fact there are (n − 3)(n − 3)! degrees of arbitrariness in

changing the elements in |N̄〉, which will yield the same |A〉. This freedom in writing

up the BCJ numerators was called the generalized gauge transformations in [12].3 The

underlying reason for this is that there are (n−3)(n−3)! eigenvectors with zero eigenvalue

forM ,4 and therefore one can add to |N̄〉 this number of arbitrary functions, each multiplied

to one of the zero eigenvectors. Clearly, it has no effect on |A〉. Seen through this, the true

number of independent elements in |A〉 is in fact only (n− 3)!.

It is important that we should be in our possession a set of dual symmetric numerators,

because the KLT relation, as expressed by Bern et al. in [2], in the present context is a

statement that up to coupling constants, the tree level n graviton amplitude is given by

A(n)
gr = 〈Ñ |M |N̄〉, (1.6)

in which ñi can be numerators due to a different gauge theory or not, which satisfy the

color-kinematic duality relations

c̃i + c̃j + c̃k = 0, (1.7)

2The color-kinematic duality has sparked a great interest: connections with string theory were

probed [5, 6], string inspired monodromy techniques were used to write relations between color-ordered

amplitudes in [7], a kinematic algebra (for the self-dual sector only) was proposed in [8] and extensions to

loop amplitudes in pure gauge theories were found [9, 10], to list a few.
3In [2] the authors exploited this freedom in their proof of the relationship between gravity and gauge

theory amplitudes.
4Recent work by Cachazo et al. expressed the entries of what we called the propagator matrixM in [12] as

partial amplitudes of a double-copy scalar theory with cubic interactions and wrote them in terms solutions

to the so-called scattering equations [13].
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and

ñi + ñj + ñk = 0. (1.8)

There are various proposals to construct concretely these color-kinematic symmetric

numerators.5 However, in our view they are not straightforwardly implementable via a

set of conventional Feynman rules.6 We will demonstrate that in fact a general approach

can be so prescribed. We have chosen in what follows to work in a light-like gauge of

which space-cone gauge [19] is an example. The reason is our hidden desire to ultimately

understand the connection of the gauge Lagrangian to the gravity Lagrangian in some way.

The light-like gauges seem to be the most promising, because explicitly there are only two

independent fields in each theory in four spacetime dimensions. Indeed, in [25], by working

in a light-like gauge, the authors were able to expose the squaring relation between the

gravity and gauge theory four-point tree-level amplitudes, at the level of the Lagrangian.

However, as we will see, our procedure does not rely on any particular gauge choice, in the

sense of a specific choice of the light-like vector which can dramatically reduce the number

of Feynman diagrams as in [19],7 if all we care is to obtain color-kinematic symmetric

numerators.

We have described how to relate the Kleiss-Kuijf set of amplitudes to numerators which

are color-kinematic symmetric. When the numerators are not initially color-kinematic

symmetric, as it is generally the case if we just apply Feynman rules as we normally would

to calculate amplitudes, then we must give a recipe how to modify them to make them

so. The important criterion to observe is that the color-ordered amplitudes should be the

same under such modifications. To be more specific, if we start out with

ni + nj + nk = ∆ijk 6= 0, (1.9)

we shall make changes

nl → n̄l = nl + δnl (1.10)

such that

n̄i + n̄j + n̄k = 0, (1.11)

5See for example [14–17].
6The exception is [18] who set out to derive BCJ numerators using a covariant (Feynman) gauge. In

doing so they extended the particular effective five-point Lagrangian obtained by Bern et al. in [2]. However

their approach is somewhat less transparent than the steps we undertake in this paper and we were unable

to see a direct translation of their algorithm into ours.
7Another benefit of the space-cone gauge is that it allows a straightforward proof of the BCFW on-shell

recursion relations [20], at the level of Feynman diagrams [21]. By choosing the null space-cone gauge

fixing vector such that it is expressed in terms of the two external gluon momenta which are analytically

continued in the BCFW recursion, the only z-dependence in the analytically continued Feynman diagrams

comes from the propagators. Then BCFW factorization is simply a statement about partial fractioning

of the propagators in the Feynman diagrams followed by a regrouping into products of lower n-point

amplitudes. In another application, the MHV Lagrangian was shown by Mansfield [22] to be derived from

a unitary transformation acting on the fields of the light-cone gauge fixed Lagrangian. Light-like gauges are

useful beyond tree-level as well. We recall that Mandelstam used light-cone gauge for his proof of the UV

finiteness of maximally supersymmetric Yang-Mills theories in four space-time dimensions [23]. On-shell

recursion at one loop is also somewhat subtle, but space-cone gauge makes it for an easier approach [24].
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which is equivalent to having the changes to absorb the violation

δni + δnj + δnk = −∆ijk. (1.12)

Now, we demand that from (1.1)

∑

i

ciδni

(Πsj)i
= 0. (1.13)

It is easy to see that there are only (n−2)! independent δnl and upon expressing the others

in terms of them and ∆’s, we find that we end up with an equation

|D〉 = M |δN〉, (1.14)

in which |δN〉 is a column vector with the independent δn’s as entries, |D〉 is made of the

∆’s, and M is the same matrix as in (1.4).

Just as before, because of the existence of eigenvectors with null eigenvalue in M , we

cannot invert the equation for δnl uniquely; there are only (n− 3)! linear combinations of

them which are active. We must make some ansatz for the functional forms of these δn’s

and solve for them, which also points to the fact that there is in principle a whole host of

choices one can make to render the numerators dual symmetric. What we would like to

reiterate is that the ∆’s are constructed through Feynman rules. They are uniquely given,

once a gauge is picked. On the other hand, there are (n− 3)(n− 3)! degrees of freedom in

choosing δn′s ( and hence dual symmetric n′s), which agree with the number of generalized

gauge transformations one can make. By the same token, there are (n − 2)! entries in D,

and we can use any (n− 3)! of them for the ’inversion’ of (1.14).

We will fix, in part, this freedom by requiring that the numerator shifts δn do not intro-

duce spurious poles. In other words, we require that the original pole structure expressed

in writing the color-ordered amplitudes as in (1.1), where ni are obtained via Feynman

rules, is preserved. This will result in a tighter set of constraints imposed on the numer-

ator shifts. For the five-points, the freedom in the numerator shifts reduces then to two

arbitrary constants. As a consequence, we obtain color-symmetric numerators n̄i in (1.4)

which will also preserve the original pole structure.

In the next few sections we will explicitly follow the program just outlined for n = 4, 5,

to obtain a set of shifts which render the numerators color-kinematic symmetric. We will

write an effective Lagrangian for them. The parametrization of the other dual symmetric

shifts will be given. It will become obvious that the same procedure should work for any

number of particles and in any light-like gauge.

The plan of this article is as follows. In section 2 we give a quick overview of Yang-

Mills theories in non-covariant, light-like gauges. We also introduce here our notation. In

section 3 we discuss four-point amplitudes as derived from the gauge-fixed Lagrangian. We

notice that similar to results derived in covariant gauges, the numerators are already BCJ

symmetric. The next two sections, 4 and 5, are dedicated to the five-point amplitudes and

the corresponding numerators. The numerators obtained via Feynman rules are not BCJ

symmetric. However, we show that there is an effective null five-point Lagrangian which
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induces shifts of the numerators such that the end result is BCJ symmetric. We relegate

technical details and intermediate results to four of the appendices. We make some final

remarks in section 6 and comment on extending our procedure to six-point functions in

appendix E.

2 Notation, conventions, and a quick overview of light-like gauges

Throughout this paper we work in four space-time dimensions. The Lorentz metric we use

is defined via the scalar product

PµQ
µ = −P 0Q0 + ~P · ~Q = pq̄ + p̄q − p+q− − p−q+, (2.1)

where we have introduced the notation

p± ≡ 1√
2
(P 0 ± P 3), p ≡ 1√

2
(P 1 + iP 2), p̄ ≡ 1√

2
(P 1 − iP 2). (2.2)

We reserve capital letter notation for vectors carrying Greek indices: Pµ = (P0, ~P ).

Following [19], we introduce the reference (commuting) spinors |±〉 and |±], normal-

ized to

〈+−〉 = [−+] = 1 (2.3)

but otherwise arbitrary. Then the set of null vectors {|+〉[+|, |−〉[+|, |+〉[−|, |−〉[−|} forms

a basis and the four-vector components introduced earlier in (2.2) are obtained from the

decomposition

P = p+|+〉[+| + p−|−〉[−| + p|+〉[−| + p̄|−〉[+|. (2.4)

If Pµ is a null four-vector, i.e. there exist spinors such that P = |p〉[p|, then

p = 〈p+〉[p−], p̄ = 〈p−〉[p+], p+ = 〈p−〉[−p], p− = 〈p+〉[+p]. (2.5)

Starting with the Yang-Mills Lagrangian

L = −1

4
Fµν aF

µν
a (2.6)

where a is an adjoint color index and the field strength Fµν a is given as

Fµν a = ∂µAν a − ∂νAµa + gfabcAµ bAν c, (2.7)

one can reach the non-covariant gauge [19]

ab = 0. (2.8)

This is analogous to the more familiar light-cone gauge fixing condition a+b = 0. Both

gauges are light-like, in the sense that one sets to zero a component of the gauge field along

a given null vector.
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In components, the Yang-Mills Lagrangian is

L = −1

4

[

2(∂+a−a − ∂−a+a + gfabca
+
b a

−
c )(∂

−a+a − ∂+a−a + gfadea
−
d a

+
e )

−4(∂+aa − ∂a+a + gfabca
+
b ac)(∂

−āa − ∂̄a−a + gfadea
−
d āe)

−4(∂+āa − ∂̄a+a + gfabca
+
b āc)(∂

−aa − ∂a−a + gfadea
−
d ae)

+2(∂āa − ∂̄aa + gfabcabāc)(∂̄aa − ∂āa + gfadeādae)
]

(2.9)

where all derivatives are understood to be ∂µ. For example, ∂+ = − ∂
∂x−

, ∂ = ∂
∂x̄

etc. In

momentum space these derivatives convert simply to factors of the corresponding momen-

tum components: ∂+ becomes ip+, ∂ becomes ip etc.

After using the gauge fixing condition ab = 0, āb is independent of the “time”-derivative

∂̄ and so it can be eliminated from its equation of motion,

āb =
1

∂

[

∂+a−b + ∂−a+b − g
fbcd
∂

(∂a−c a
+
d + ∂a+c a

−
d )

]

(2.10)

The gauge fixed Lagrangian becomes

L = −a−a ∂µ∂
µa+a + 2gfabc

(

∂+

∂
a−a

)

a−b ∂a
+
c + 2gfabc

(

∂−

∂
a+a

)

a+b ∂a
−
c

+2g2
(

fabca
−
b ∂a

+
c

) 1

∂2

(

fadea
+
d ∂a

−
e

)

. (2.11)

This Lagrangian contains now only the two physical degrees of freedom of a gauge field in

four space-time dimensions: positive and negative helicities corresponding respectively to

the a+ and a− components.8

This yields the following Feynman rules:

Propagator: = −iδab
P 2

Three-point vertices: 1

2

3
+

+

b

−

ca = −2gfabc

(

p−
1

p1
− p−

2

p2

)

p3

8Note that in [26], the gauge-fixed Lagrangian given in (14) has a sign typo in the kinetic term. For

another comparison, [19] have their Lagrangian being normalized as L = 1

8g2
Tr(FµνF

µν) with Fµν ≡

Fµν aTa = (∂µAν a − ∂νAµ a)Ta + Aµ bAν c [Tb, Tc]. After rescaling the gauge fields Aµ a → gAµ a, and

using that in the adjoint representation the gauge group generators equal (Ta)bc = ifabc where fabc are the

structure constants ([Ta, Tb] = −ifabcTc), their Lagrangian becomes our (2.11) up to an overall factor − 1

2

times a normalization factor N obtained from the evaluation of the traces Tr(TaTb) = Nδab. Taking N = 2

results in agreement between the Lagrangian in [19] and (2.11) up to an overall sign.
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1

2

3

b

ca

−

− +

= −2gfabc

(

p+
1

p1
− p+

2

p2

)

p3

Four-point vertices:9

1
+

a

2 3

4

− +

−

b c

d

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

µ

µ

1
+

a d

−
4

+

c
32

−

b

= ���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

µ

µ

d

−
4

2
−

b1
+

a

+

c
3

+

= −2g2ifabefcde
p1p4+p2p3
(p1+p2)2

s12
s12

+ (−2g2i)fdaefbce
p1p2+p3p4
(p1+p4)2

s14
s14

.

These Feynman rules need to be supplemented by the insertion of external line factors.

These originate in the polarization vectors and their components corresponding to the

positive or negative helicity of a given external line. More concretely,

ǫ(P )+ =
[−p]

〈+p〉 , ǫ(P )− =
〈+p〉
[−p]

, (2.12)

need to be inserted for each external line with momentum P and positive or negative

helicity respectively.

Chalmers and Siegel noted the advantage which comes from choosing the reference

spinors in such a way that |+〉[+| is the momentum of an external negative helicity gluon

and |−〉[−| is the momentum of an external positive helicity gluon (up to a normalization

factor). This choice leads to the least number of Feynman diagrams for a given pro-

cess (far less then in other more covariant gauges), and they referred to it as space-cone

gauge [19]. However, here we work in full generality, and keep the reference spinors ar-

bitrary. To emphasize this distinction we will refer to the gauge condition in (2.8) as a

light-like gauge condition.

It should be pointed out that in a light-like gauge, where we separate out particles

of two different helicities, the symmetries among like helicity particles are explicit, while

those between unlikes must be imposed by hand.

In the usual fashion, we will convert the structure constant factors into traces over the

group generators, and compute color ordered amplitudes.The tree level n-gluon scattering

9We choose to interpret the quartic term in the Lagrangian 2g2(fabca
−

b ∂a
+
c )

1

∂2 (fadea
+

d ∂a
−

e ) as

−2g2∂µ(fabca
−

b ∂a
+
c )

1

�∂2 ∂
µ(fadea

+

d ∂a
−

e ). The manifest propagator in the denominator makes it clear how

we choose to assign the contribution of the four-point vertex to the numerators. We note that a similar

choice was made by [18].

– 7 –
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amplitude is then equal to the sum over the color-ordered partial amplitudes

A(n) = −ign−2
∑

σ

Tr[Ta(σ(1))Ta(σ(2)) . . . Ta(σ(n−1))Ta(σ(n))]A(σ(1), σ(2), . . . σ(n)), (2.13)

where σ is a non-cyclic permutation of the external gluons.

To identify a given numerator by the labelling of the indices, we follow the convention

we developed in [12]. Thus, for n gluons, we have a set of color ordered numerators. As a

consequence of clockwise vs. counterclockwise tracing, the numerators satisfy

n(in · · · i1) = (−1)nn(i1 · · · in), (2.14)

The indices can be further refined: if two adjacent indices, say j and j + 1, share the

same structure constant fajaj+1ak , we shall separate them from the other indices by two

sets of semi-colons n(i1 · · · ij−1; ijij+1; ij+2 · · · in). Clearly they are antisymmetric

n(i1 · · · ij−1; ijij+1; ij+2 · · · in) = −n(i1 · · · ij−1; ij+1ij ; ij+2 · · · in), (2.15)

because of the form taken by the cubic and quartic vertices.

It is also clear that for each pair of such indices, a propagator i
2sj j+1

will go

with them in an amplitude, where sj j+1 = −1
2(Pj + Pj+1)

2. For example in writing

n(i1i2; i3; . . . ; in−1in), the pole structure associated with it is si1i2 = −1
2(Pi1 + Pi2)

2,

si1i2i3 = −1
2(Pi1 + Pi2 + Pi3)

2, . . . si1i2i3...in−2
= −1

2(Pin + Pin−1
)2.

3 Duality for four particles

In this section we carry out the program outlined in the Introduction for the simplest case

when n = 4. As it is well-known, the configurations ±±±± and ±±±∓ are trivial, because

the amplitudes vanish. The Jacobi permutation of the numerators ni+nj+nk vanishes even

off-shell. For the maximal helicity violation case 1+2−3+4− and other helicity assignments,

we show that when the particles are all on shell the numerators are automatically dual

symmetric, if we just apply the Feynman rules to obtain them in any light-like gauge, and

particularly in the space-cone gauge. We then extend this to obtain a result for the relevant

Jacobi cyclic permutation when the particles are off-shell, which will be used in the next

section as an insertion. We find here that each term is proportional to the invariant mass

of one of the four particles, which is an affirmation that the numerators are BCJ symmetric

on-shell, as said already mentioned.

Upon using (2.14) and (2.15), we see that it is sufficient to deal with the numerators

n(12; 34), n(13; 24), and n(23; 14). Let us focus on cyclically permuting the first three

indices,

n(12; 34) + n(23; 14) + n(31; 24) ≡ ∆(123|4), (3.1)

or

n(23; 41) = n(12; 34)− n(13; 24)−∆(123|4). (3.2)

– 8 –
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The last equation means that n(12; 34) and n(13; 24) can be taken as the independent nu-

merators, while n(23; 41) being given by them and the amount of duality violation ∆(123|4).
Similarly, if we Jacobi permute the last three indices

n(12; 34) + n(13; 42) + n(14; 23) ≡ ∆(1|234), (3.3)

we see that using (2.14) and (2.15), we are yielded

∆(123|4) = ∆(1|234), (3.4)

For the color-ordered amplitudes in the Kleiss-Kuijf basis, chosen for concreteness to

be composed of A(1234) and A(1324), we have

A(1234) =
n(12; 34)

s12
+

n(23; 41)

s14

= n(12; 34)

(

1

s12
+

1

s14

)

+ n(13; 24)

(

− 1

s14

)

+∆(123|4)
(

− 1

s14

)

, (3.5)

and

A(1324) =
n(13; 24)

s13
− n(23; 41)

s14

= n(12; 34)

(

− 1

s14

)

+ n(13; 24)

(

1

s13
+

1

s14

)

+∆(123|4)
(

1

s14

)

. (3.6)

The next step is to modify the numerators derived from the use of Feynman rules by

adding δn terms such that the resulting n̄ = n+ δn numerators obey Jacobi identity, and

such that the amplitudes are unchanged. More concretely,

n̄(12; 34) = n(12; 34) + δn(12; 34), n̄(13; 42) = n(13; 42) + δn(13; 42),

n̄(14; 23) = n(14; 23) + δn(14; 23), (3.7)

are defined so that

n̄(12; 34) + n̄(13; 42) + n̄(14; 23) = 0, (3.8)

or

δn(12; 34) + δn(13; 42) + δn(14; 23) = −∆(123/4), (3.9)

such that the values of the color-ordered amplitudes are not changed. Please note that by

definition we are referring to on-shell quantities here. When we extend the amplitudes to

amputated Green’s functions, we cannot make such a demand. From the requirement that

the change made to the numerators does not change the amplitudes, which in terms of the

color-kinematic symmetric numerators n̄ are written as
(

A(1234)

A(1324)

)

= M (4)

(

n̄(12; 34)

n̄(13; 24)

)

, (3.10)

we are led to the following constraint on the numerator shifts in the chosen Kleiss-Kuijf

basis:
(

−∆(123|4)
s14

∆(123|4)
s14

)

= M (4)

(

δn(12; 34)

δn(13; 24)

)

, (3.11)
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with M (4) the four-point propagator matrix introduced in [12]

M (4) =

(

1
s12

+ 1
s14

− 1
s14

− 1
s14

1
s13

+ 1
s14

)

. (3.12)

An important observation made in [12] is that M (4) has an eigenvector with zero eigenvalue

〈λ0| = 〈−s12, s13|. (3.13)

Then one has the freedom to change the numerators by adding these zero eigenvectors.

In doing so, the defining equation (3.12) remains the same. This freedom was called

generalized gauge transformation in [12].10 For the four point amplitudes, the implication

is that there is only one effective n̄ and one effective δn. For the latter, we make the

following generalized gauge transformation

(

δn(12; 34)

δn(13; 24)

)

→
(

δn(12; 34)

δn(13; 24)

)

− δn(13; 24)

s13
|λ0〉 =

(

δn

0

)

(3.14)

where

δn ≡ δn(12; 34) +
s12
s13

δn(13; 24). (3.15)

This results in a reduced equation

(

−∆(123|4)
s14

∆(123|4)
s14

)

= M

(

δn

0

)

, (3.16)

which demands

∆(123|4) = 0. (3.17)

We will verify this explicitly in a direct calculation below. In the mean time, it tells us

that the numerators calculated through Feynman rules for the on shell n = 4 amplitudes

are dual symmetric without any need for modification. We should point out that up to

this point, we need not refer to any specific choice of gauge, light-like or covariant, to come

to this conclusion.

Let us turn to the off-shell situation, by which we mean of course that the invariant

mass of each individual particle is non-zero. Also, we do not let the numerator matrix

elements act on the polarization tensors. Since we have

n(12; 34) + n(31; 24) + n(23; 14) = n(12; 34) + n(14; 23) + n(13; 42) (3.18)

there is only one Jacobi permutation. Also, for a given number of + and −, the specific

assignment to each individual particle can be arbitrary, because we cycle them through the

permutations above, which will cover all the cases if we relabel the particle number. For

10We would like to emphasize that the shifts δn cannot be obtained in general by making generalized

gauge transformations. The four-point case is somewhat special since we will argue that the numerators

satisfy the color-kinematic duality without any need to make these shifts. However, this does not extend

to the higher n-point numerators.
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±±±±, the case is trivial, because the vertices cannot be matched to make the scattering

go. For ±±±∓, we need only three-point vertices of the same type (+ +−). In the case

we are considering the numerators are

n(1+2+; 3+4−) =

(

p−1
p1

− p−2
p2

)

(−(p1 + p2))

(

p−1 + p−2
p1 + p2

− p−3
p3

)

p4,

n(1+4−; 2+3+) =

(

p−2
p2

− p−3
p3

)

(−(p2 + p3))

(

p−2 + p−3
p2 + p3

− p−1
p1

)

p4,

n(1+3+; 4−2+) =

(

p−3
p3

− p−1
p1

)

(−(p3 + p1))

(

p−3 + p−1
p3 + p1

− p−2
p2

)

p4. (3.19)

When we add them, we find that all terms in the sum cancel completely.

The ± ± ∓∓ case is the non-trivial one. For one thing, four-vertices make their

appearance. In view of the somewhat tedious algebra to bring the expressions to the

final form, we are relegating the details to appendix A. The results are

n(1−2+; 3+4−) = s23 +

(

p−2
p2

− p−3
p3

)(

p+4
p4

− p+1
p1

)

(p1p3 + p2p4)

+
p1p3

p1 + p2

(

− P 2
4

2p4
+

P 2
2

2p2

)

+
p2p4

p1 + p2

(

− P 2
3

2p3
+

P 2
1

2p1

)

, (3.20)

n(3+1−; 2+4−) = −s23 +

(

p−2
p2

− p−3
p3

)(

p+4
p4

− p+1
p1

)

(p1p2 + p3p4)

+
p3p4

p2 + p4

(

− P 2
2

2p2
+

P 2
1

2p1

)

+
p1p2

p2 + p4

(

− P 2
4

2p4
+

P 2
3

2p3

)

, (3.21)

and

n(2+3+; 1−4−) = −
(

p−2
p2

− p−3
p3

)(

p+4
p4

− p+1
p1

)

(p1 + p4)(p2 + p3), (3.22)

where we have omitted a product of the four polarization vectors because we are extending

the result to off-shell P 2
i = ~P 2

i − (P 0
i )

2 6= 0. We now add them and find

∆(2+|1−3+4−) ≡ n(2+1−; 3+4−) + n(2+3+; 4−1−) + n(2+4−; 1−3+)

= 1
2P

2
1 p4

(

1

p1 + p2
− 1

p1 + p3

)

+ 1
2P

2
2 p3

(

1

p1 + p2
− 1

p2 + p4

)

+1
2P

2
3 p2

(

1

p3 + p4
− 1

p1 + p3

)

+ 1
2P

2
4 p1

(

1

p3 + p4
− 1

p2 + p4

)

. (3.23)

When we go on-shell, by setting P 2
i → 0, we have ∆ → 0, which, as advertised, means

that duality holds by the on-shell numerators as calculated through regular Feynman rules,

without any need for additional adjustment. We will find the off-shell ∆(2+|1−3+4−) useful
as an insertion in the next section when we look into the five particle case. The fact that

it is non-vanishing is an indication that it is non-trivial in enforcing dual symmetry for

higher point numerators. We can associate the off-shell parts of (3.20)–(3.21)≈ P 2
i with an
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operator insertion

fbacfb′a′c

[(

1

�

1

∂

(

∂a−b
�

∂
a+a

))

(∂a+b′a
−
a′)−

(

1

�

1

∂
(∂a−b a

+
a )

)(

∂a+b′
�

∂
a−a′

)]

∝ Tr

(

1

∂

1

�
([a−, ∂a+])

[

∂a−,
�

∂
a+
])

, (3.24)

which generates the off-shell ∆(2+|1−3+4−) and others with � = ∂µ∂µ.
11 We note that by

adding this operator to the Lagrangian we can ensure that the four-points obey the BCJ

duality even off-shell. However, we will refrain in the following from doing so, and instead

use the four-point ∆’s as building blocks for computing the five-point and higher violations

of the BCJ duality discussed in detail in appendix B and appendix E.

For completeness, let us use these numerators to calculate (and check) one of the color

ordered amplitudes. It helps to note that when on-shell

sij = −pipj

(

p+i
pi

−
p+j
pj

)(

p−i
pi

−
p−j
pj

)

, (3.25)

and
p+a
pa

− p+b
pb

=
〈ab〉〈+−〉
〈+a〉〈+b〉 ,

p−a
pa

− p−b
pb

=
[ab][−+]

[−a][−b]
, (3.26)

Then some simple algebra gives

A(1−2+3+4−) =
n(1−2+; 3+4−)

s12
− n(2+3+, 1−4−)

s14

= −p1p2p3p4
s12s14

(

p−2
p2

− p−3
p3

)2(
p+4
p4

− p+1
p1

)2

ǫ−1 ǫ
+
2 ǫ

+
3 ǫ

−
4

=
〈14〉4

〈12〉〈23〉〈34〉〈41〉 (3.27)

a well-known result.

We did not make any choice of the reference vectors |+〉[+| or |−〉[−| up to this point

in order to show generality. However, if the intention is to shorten a calculation, then

some particular choices can be expeditious. For example, if we take |1〉[1| ∝ |+〉[+| and
|2〉[2| ∝ |−〉[−|, we have ǫ−1 , ǫ+2 , p1, p2 → 0. However

ǫ−1
p+1
p1

→ 1, ǫ+2
p−2
p2

→ 1, (3.28)

and many terms can be dropped to give immediately

A(1−2+3+4−) = −ǫ+3 ǫ
−
4

p3p4
s14

=
〈14〉4

〈12〉〈23〉〈34〉〈41〉 . (3.29)

11We note in passing that the operator insertion (3.24) which insures that the off-shell four-point

enjoys the color-kinematic duality can be obtained via the following field redefinition a−

b → a−

b −
1

∂

(

fbcdfdeg∂a
−

c
1

∂�
(a−

e ∂a
+
g )

)

, and its parity conjugate counterpart.
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4 Duality for five particles

For the five particle amplitudes following [12] we choose the Kleiss-Kuijf basis to be com-

posed of A(12345), A(14325), A(13425), A(12435), A(14235), A(13245). Each of these am-

plitudes has simple poles in the various kinematic invariants. There are fifteen numerators

associated with these poles, owing to symmetries such as (2.14) and (2.15). Keeping the

same notation as in [12] we denote six of them as follows:12

n1 = n(12; 3; 45), n12 = n(12; 4; 35), n15 = n(13; 2; 45),

n9 = n(13; 4; 25), n14 = n(14; 2; 35), n6 = n(14; 3; 25). (4.1)

Then we incorporate Jacobi permutations of the last three indices to express

n(12; 5; 34) = −n1 + n12 +∆(12|345),
n(13; 5; 24) = −n15 + n9 +∆(13|245),
n(14; 5; 23) = −n14 + n6 +∆(14|352),
n(15; 2; 34) = −n1 + n12 + n9 − n6 +∆(12|345) + ∆(25|134) + ∆(34|125),
n(15; 3; 42) = −n12 + n15 − n9 + n14 −∆(35|124)−∆(24|135)−∆(13|245),
n(15; 4; 23) = n1 − n15 − n14 + n6 +∆(14|352) + ∆(45|123) + ∆(23|145),
n(23; 1; 45) = −n1 + n15 −∆(45|123),
n(24; 1; 35) = −n12 + n14 −∆(35|124),
n(25; 1; 34) = n9 − n6 +∆(25|134). (4.2)

We will later give concrete expressions for the ∆’s for the configuration 1+2−3+4−5+.

Actually there is one extra equation which over-determines the quantities in (4.2). Thus,

for consistency, one has to have

∆(13|245) = ∆(45|123) + ∆(23|145) + ∆(34|125)
+∆(12|345) + ∆(25|134) + ∆(14|352)
−∆(35|124)−∆(24|135)−∆(15|234), (4.3)

which will be checked.

Then color-kinematic duality statement is that there is a set of numerators n̄’s, obeying

Jacobi identity under cyclic permutation of three indices. The algebraic relation between

12If we use color-kinematics duality, these six numerators would be the independent set in terms of which

all others are expressed. However, here we are concerned with a Lagrangian-based approach, and as we

will see the numerators obtained via Feynman diagrams in a generic light-like gauge do not obey color-

kinematics duality. We denote the violation of color-kinematic duality by ∆ and we compute the specific

∆’s. Only after modifying the numerators by δn shifts will the resulting numerators obey color-kinematic

duality. Of course the shifts are required to leave the amplitudes unchanged, as we did in the previous

section.
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the amplitudes and the BCJ numerators is



















A(12345)

A(14325)

A(13425)

A(12435)

A(14235)

A(13245)



















= M (5)



















n̄(12; 3; 45)

n̄(14; 3; 25)

n̄(13; 4; 25)

n̄(12; 4; 35)

n̄(14; 2; 35)

n̄(13; 2; 45)



















= M (5)



















n̄1

n̄6

n̄9

n̄12

n̄14

n̄15



















, (4.4)

where the propagator matrix M (5) is given by the following:



































































































1

s12s45
+ 1

s15s34

1

s15s34
+ 1

s23s15

−1

s15s34

−1

s15s34
+ −1

s12s34

−1

s23s15

−1

s23s45
+ −1

s23s15

+ 1

s23s15
+ 1

s12s34

+ 1

s23s45

1

s15s34
+ 1

s15s23

1

s14s25
+ 1

s14s23

−1

s15s34
+ −1

s34s25

−1

s15s34

−1

s14s23
+ −1

s15s23

−1

s15s23

+ 1

s15s23
+ 1

s15s34

+ 1

s34s25

−1

s15s34

−1

s15s34
+ −1

s34s25

1

s13s25
+ 1

s13s24

1

s15s24
+ 1

s15s34

−1

s15s24

−1

s13s24
+ −1

s15s24

+ 1

s15s24
+ 1

s15s34

+ 1

s34s25

−1

s12s34
+ −1

s15s34

−1

s15s34

1

s15s34
+ 1

s15s24

1

s12s35
+ 1

s12s34

−1

s15s24
+ −1

s24s35

−1

s15s24

+ 1

s15s34
+ 1

s15s24

+ 1

s24s35

−1

s15s23

−1

s14s23
+ −1

s15s23

−1

s15s24

−1

s15s24
+ −1

s24s35

1

s14s35
+ 1

s14s23

1

s15s23
+ 1

s15s24

+ 1

s15s23
+ 1

s15s24

+ 1

s24s35

−1

s23s45
+ −1

s23s15

−1

s15s23

−1

s13s24
+ −1

s15s24

−1

s15s24

1

s15s23
+ 1

s15s24

1

s13s45
+ 1

s13s24

+ 1

s15s24
+ 1

s15s23

+ 1

s23s45



































































































.

(4.5)

As in the four particle case, we achieve color-kinematic symmetry by adding δn to the

Feynman rule determined numerators n

n̄i = ni + δni, (4.6)

such that n̄’s have the required symmetry. The net result is that we have the same set

of equation as in (4.2) with ni’s replaced by δni and with each term with a ∆ gaining a

minus sign. We now impose the requirement that the Feynman numerator shifts by δni
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must leave the color ordered amplitudes untouched. For example, we have

A(12345) =
n(12; 3; 45)

s12s45
− n(12; 5; 34)

s12s34
+

n(23; 4; 51)

s23s51

−n(23; 1; 45)

s23s45
− n(34; 2; 51)

s34s51
, (4.7)

which yields

δn1

s12s45
+

δn1 − δn12 +∆(12|345)
s12s34

− −δn1 + δn15 +∆(45|123)
s23s45

+
δn1 − δn15 − δn14 + δn6 −∆(14|352)−∆(45|123)−∆(23|145)

s23s15

−−δn1 + δn12 + δn9 − δn6 −∆(12|345)−∆(25|134)−∆(34|125)
s34s15

= 0, (4.8)

or, collecting all Jacobi-violating ∆’s into a single quantity

δn1

(

1

s12s45
+

1

s12s34
+

1

s23s15
+

1

s23s45
+

1

s34s15

)

−δn12

(

1

s12s34
+

1

s34s15

)

+ δn15

(

− 1

s23s15
− 1

s23s45

)

−δn9

(

1

s34s15

)

+ δn14

(

− 1

s23s15

)

− δn6

(

− 1

s23s15
− 1

s34s15

)

= D (12345) , (4.9)

where

D (12345) ≡ ∆(12|345)
(

− 1

s12s34
− 1

s34s15

)

+∆(45|123)
(

1

s23s15
+

1

s23s45

)

+∆(14|352)
(

1

s23s15

)

+∆(23|145)
(

1

s23s15

)

+∆(25|134)
(

− 1

s34s15

)

+∆(34|125)
(

− 1

s34s15

)

. (4.10)

In a similar fashion we obtain all the other D’s corresponding to the amplitudes in our

chosen Kleiss-Kuijf basis, and we list them in appendix C.

Succinctly, starting from the defining relation (4.4),

|A〉 = M (5)|N̄〉, (4.11)

where |A〉 denotes the set of Kleiss-Kuijf amplitudes and |N̄〉 the set of BCJ numera-

tors, we replace n̄’s by n + δn’s. On the other hand, the Feynman numerators 〈N | =
(n1, n6, n9, n12, n14, n15) satisfy

|A〉 − |D〉 = M (5)|N〉, (4.12)

where we collected the Jacobi-violating terms into a six-component vector |D〉. Then, the
requirement for the shifts δn is that they should satisfy

|D〉 = M (5)|δN〉, (4.13)
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or, more explicitly,


















D(12345)

D(14325)

D(13425)

D(12435)

D(14235)

D(13245)



















= M (5)



















δn1

δn6

δn9

δn12

δn14

δn15



















. (4.14)

The solution for δni is not unique, because M
(5) has four eigenvectors with zero eigenvalue.

We gave a rather thorough discussion on this in [12] with regard to the origin of generalized

gauge transformations. The effects are that we can determine only two linear combinations

of δni, which are

δn′ = δn1 − δn9
s12s45
s13s24

+ δn12
s45(s12 + s24)

s24s35

−δn14
s12s45
s24s35

+ δn15
s12(s24 + s45)

s13s24
= s12(s25D(13425)− (s15 + s25)D(12435)), (4.15)

and

δn′′ = δn6 + δn9
s14(s24 + s25)

s13s24
− δn12

s14s25
s24s35

+δn14
s25(s14 + s24)

s24s35
− δn15

s14s25
s13s24

= s25(−(s12 + s15)D(13425) + s12D(12435)). (4.16)

Another noteworthy remark is that they imply that there should be only two independent

D′
is, which requires checking for consistency.

Using D’s and ∆’s in appendix C and appendix B, respectively, we find that

δn′ = s12
s45
s24

X, δn′′ = −s25
s14
s24

X, (4.17)

where

X =
p−1
p1

(p52 − p54) +
p−5
p5

(p12 − p14)−
p−3
p3

(p12 − p14 + p52 − p54), (4.18)

and

p12 =
p1p2

p1 + p4
, p14 =

p1p4
p1 + p2

,

p32 =
p3p2

p3 + p4
, p34 =

p3p4
p3 + p2

,

p52 =
p5p2

p5 + p4
, p54 =

p5p4
p5 + p2

. (4.19)

(We should attach a product of the five polarization tensors toX, which will be understood,

because we are dealing with on-shell amplitudes at this point.)

At this point it seems that the numerator shifts are bound to contain a large degree of

ambiguity, since we are only placing a constraint on δn′ (4.15) and on δn′′ (4.16). However,
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this is not the case if we impose the additional condition that the numerator shifts should

not introduce spurious poles. For example, this would require that

δn1 = s12s45a1, δn6 = s14s25a6, δn9 = s13s25a9,

δn12 = s12s35a12, δn14 = s14s35a14, δn15 = s13s45a15, (4.20)

where a1 should have at most simple poles in s12 and s45, a6 should have at most simple

poles in s14 or s25 etc.

We take note that X is symmetric under 1 ↔ 5, but antisymmetric under 2 ↔ 4.

Then (4.17) can be written as

s24a1 − s25a9 + (s12 + s24)a12 − s14a14 + (s24 + s45)a15 = X, (4.21)

and

s24a6 + (s24 + s25)a9 − s12a12 + (s14 + s24)a14 − s45a15 = −X. (4.22)

Actually (4.21) and (4.22) follow from each other, because under

1 ↔ 5 : a1 ↔ −a6, a12 ↔ −a9, a15 ↔ −a14, (4.23)

and under

2 ↔ 4 : a1 ↔ a6, a15 ↔ a9, a12 ↔ a14. (4.24)

When we add (4.21)–(4.22), we further obtain

a1 + a6 + a9 + a12 + a14 + a15 = 0. (4.25)

To solve for δni, or equivalently for the ai separately, instead of just the combinations δn′

and δn′′, we are guided by symmetry and by the requirement that a’s must have at most

simple poles in the allowed channels: e.g. a1 can have at most simple poles in s12 and in

s45 etc.

a1 =
p−1
p1

(

x321 p32 + x341 p34 + x521 p52 + x541 p54
)

+
p−3
p3

(

y121 p12 + y141 p14 + y521 p52 + y541 p54
)

+
p−5
p5

(

z121 p12 + z141 p14 + z321 p32 + z341 p34
)

, (4.26)

a15 =
p−1
p1

(

x3215p32 + x3415p34 + x5215p52 + x5415p54
)

+
p−3
p3

(

y1215p12 + y1415p14 + y5215p52 + y5415p54
)

+
p−5
p5

(

z1215p12 + z1415p14 + z3215p32 + z3415p34
)

, (4.27)

where the x’s, y’s, and z’s are functions of sij . By inspection, from (4.17) and (4.18) we

infer that they are of the order 1/s. We obtain the other a’s through (4.23)–(4.24). After
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some straightforward but tedious algebra, recorded in appendix D, we obtain

x321 =
1

s12
+

α

s45
, x341 =

β

s45
, x521 = − 1

s12
+

β

s45
, x541 =

α

s45
, (4.28)

y121 = α

(

1

s12
− 1

s45

)

, y141 = β

(

1

s12
− 1

s45

)

, y521 = β

(

1

s12
− 1

s45

)

, y541 = α

(

1

s12
− 1

s45

)

,

z121 = − α

s12
, z141 =

1

s45
− β

s45
, z321 = − β

s12
, z341 = − 1

s45
− α

s12
,

x3215 =
1

s13
− α

s45
, x3415 = − 1

s13
− β

s45
, x5215 = − β

s45
, x5415 = − α

s45
, (4.29)

y1215 = − 1

s13
+

α

s45
, y1415 =

1

s13
+

β

s45
, y5215 =

β

s45
, y5415 =

α

s45
,

z1215 =
β − α

s13
, z1415 = − 1

s45
+

α− β

s13
, z3215 =

α− β

s13
, z3415 =

β − α

s13
+

1

s45
.

Please be reminded that δn1 = s12s45a1 and δn15 = s13s45a15. Thus, there is no

spurious singularity in the forms of 1
s12

, 1
s13

or 1
s45

in δn1 or δn15, nor is there any in other

δn’s. The numerator shifts are not uniquely determined, there is still some arbitrariness as

parametrized by the constants α and β. This is due to the fact that we have the freedom of

shifting the numerators using the zero-modes of the propagator matrix. This freedom was

further restricted here by requiring that the shifts preserve the original pole structure of

the Feynman-rules amplitude decomposition (1.1), leaving only the undetermined α and β.

Also, we would like to point out that if we choose |+〉[+| ∝ P2 or |+〉[+| ∝ P4, which

makes ǫ−2 = 0 or ǫ−4 = 0, respectively, then the shifts δni = 0, or the numerators are already

BCJ symmetric to begin with.13

13For MHV amplitudes, space-cone gauge with |+〉[+| ∝ Pi, where i denotes an on-shell negative helicity

gluon, yields BCJ numerators. The other external legs can be kept off-shell. The choice made such that

one of negative helicity gluons is reference (and the space-cone gauge is defined relative to it) means that

the vertices used to generate the MHV diagrams will be of type (+ + −) and only one (+ − −), where

one of the negative helicity gluons participating in the only vertex (+ − −) is our reference gluon. The

quartic vertex (+ + − −) is zero provided that we make this choice. With this structure one can easily

check that the numerators generated by Feynman rules are color-kinematic symmetric. See also [8]. There

is a class of one-loop amplitudes, that of rational amplitudes, where this features extends, in the sense that

the amplitude integrand obtained from Feynman rulles is manifestly color-kinematic symmetric. These are

one-loop amplitudes which vanish at the tree level: the amplitudes with all external gluons of the same

helicity, and those where all external gluons but one have the same helicity. They are special in the sense

that they are all constructed from cubic vertices as follows. It is easy to see that in a light-like gauge,

the all plus helicity one-loop amplitude is constructed only from (+ + −) vertices. The one-loop all plus

one negative helicity amplitude is built mostly from (+ + −) vertices, with a single cubic (− − +) vertex

attached to the negative helicity external line. The quartic vertex can be removed in a light-like gauge

where the momentum of the negative helicity gluon is used in defining the gauge. This fact was noted

and used earlier in [24]. More recently in [9] it was shown that the cubic vertex structure of the one-loop

rational amplitudes yields BCJ dual expressions for the integrands.
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5 Effective Lagrangian

Using the results of (4.28)–(4.29), we can derive all the

a(ij; k; lm) ≡ δn(ij; k; lm)

sijslm
, (5.1)

which appear naturally in the scattering amplitudes, with an effective Lagrangian

L5 =

[

− fc1c2d
sc1c2

(fdc3efec4c5 + fdc5efec3c4 + fdc4efec5c3) (5.2)

−fc1c5d
sc1c5

(fdc2efc3c4e + fdc3efc4c2e + fdc4efc2c3e)

−(1− α+ β)
fc2c4d
sc2c4

(fdc1efc3c5e + fdc3efc5c1e + fdc5efc1c3e)

+α

(

fc5c2d
sc2c5

(fdc1efec4c3+fdc4efec3c1+fdc3efec1c4)+
fc3c4d
sc3c4

(fdc1efec2c5+fdc2efec5c1+fdc5efec1c2)

)

+β

(

fc5c4d
sc4c5

(fdc1efec2c3+fdc2efec3c1+fdc3efec1c2)+
fc3c2d
sc3c2

(fdc1efec4c5+fdc4efec5c1+fdc5efec1c4)

)

+(β − α)
fc5c3d
sc3c5

(fdc2efec4c1 + fdc4efec1c2 + fdc1efec2c4)

]

∂−

∂
a+c1∂a

−
c2

1

∂
(∂a+c5a

−
c4
)a+c3 + h.c.

where α and β are arbitrary constants. We should note that in view of the Jacobi identity

obeyed by the structure constants fabc this effective Lagranigan is null, which is of course

a succinct statement that the shifts we performed in the numerators have no effects on the

physical amplitudes.

It is easy to check that this effective Lagrangian implements the desired shifts:

a1 = a(1+2−; 3+; 4−5+) =
p−1
p1

[

1

s12
(p32 − p52) +

1

s45

(

α(p32 + p54) + β(p34 + p52)

)]

+
p−3
p3

[

1

s12

(

α(p12 + p54) + β(p14 + p52)

)

− 1

s45

(

α(p12 + p54) + β(p14 + p52)

)]

+
p−5
p5

[

− 1

s12

(

α(p12 + p34) + β(p14 + p32)

)

+
1

s45
(p14 − p34)

]

(5.3)

and

a15 = a(1+3+; 2−; 4−5+) =
p−1
p1

[

1

s13
(p32 − p34)−

1

s45

(

α(p32 + p54) + β(p34 + p52)

)]

+
p−3
p3

[

1

s13
(p14 − p12) +

1

s45

(

α(p12 + p54) + β(p14 + p52)

)]

+
p−5
p5

[

β − α

s13
(p12 − p14 − p32 + p34) +

1

s45
(p34 − p14)

]

(5.4)

We will not write out all the a(ij; k; lm) explicitly, as their particular form is not especially

illuminating. Suffices it to say that they fall into three groups, according to their helicity

arrangements:

(A) (±∓; +;±∓), (5.5)
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which consists of

a(12; 5; 34), a(12; 3; 45), a(14; 5; 23), a(14; 3; 52), a(23; 1; 45), a(25; 1; 34). (5.6)

The α = β = 0 contribution to the set of numerators (A) comes from the piece of L5 which

is proportional to

(fdec3fc4c5e + fdec5fc3c4e)fc2c1d
1

sc1c2
(5.7)

(B) (±∓;−; ++), (++;−;±∓), (5.8)

which consists of

a(12; 4; 53), a(13; 2; 45), a(13; 4; 52), a(14; 2; 35), a(15; 2; 34), a(15; 4; 23). (5.9)

The α = β = 0 contribution to this set of numerators comes from terms proportional to

fdec4fc5c3efc2c1d
1

sc1c2
+ (fdec2fc3c4e + fdec4fc2c3e)fc5c1d

1

sc1c5
(5.10)

(C) (++;+;−−), (−−; +;++), (5.11)

which consists of

a(13; 5; 24), a(15; 3; 42), a(24; 1; 35). (5.12)

Lastly, the α = β = 0 contribution to the numerators of type (C) comes from terms

proportional to

fdec3fc4c2efc5c1d
1

sc1c5
+ (fdec1fc3c5e + fdec3fc5c1e + fdec5fc1c3e)fc4c2d

1

sc2c4
. (5.13)

6 Concluding remarks

We would like to digress at this point and to explain how BCFW on-shell recursion [20]

is performed in the space-cone gauge. We note that the Lagrangian in (2.11) has no ∂̄

dependence in its interaction terms. Thus, analytical continuation is done by making

shifts in some p̄ direction with a complex number z (and if necessary by also choosing some

appropriate reference vector ± so that A(z) → 0 as z → ∞.) Because the numerators have

no p̄ dependence, the continuation does not affect them and the poles of the amplitude are

due to the vanishing of some inverse propagators. This polology makes it very transparent

the meaning of cuts of the amplitudes in evaluating the integral
∫

dz
z
A(z). In other words,

the cutting of the amplitude into two halves gives an easy organization to yield BCFW

recurrence [21].

A question which can be asked is whether one can circumvent the Lagrangian approach

and write down BCJ numerators from amplitudes. In particular, as noticed in [12], there

is a set of BCJ numerators which can be obtained from knowledge of the amplitudes

provided that we use the zero modes of the propagator matrix M fully to set to zero

(n−3)(n−3)! components of the BCJ numerators N̄ . Then the relation |A〉 = M |N̄〉 can be

inverted. However, the numerators obtained in such fashion will generally contain spurious

– 20 –



J
H
E
P
1
2
(
2
0
1
4
)
0
3
6

poles. In [17], with the same starting point, it was noticed that one can obtain ‘virtuous”

numerators by applying a certain symmetrization procedure. While these expression carry

certain ’virtues’ [15], there are also issues which demand attention. Consider the virtuous

four-point numerator given by [15, 17]

n̂(1−2+; 3+4−) =
1

3
(s12A(1

−2+3+4−)− s14A(1
−4−2+3+)). (6.1)

When we use

A(1−4−2+3+) = A(4−2+3+1−) = A(1−2+3+4−)|1↔4 (6.2)

and (3.27), we express it as

n̂(1−2+; 3+4−) =
1

3
p1p2p3p4

(

p−2
p2

− p−3
p3

)2(p+4
p4

− p+1
p1

)2(

− 1

s14
+

1

s24

)

ǫ(1)−ǫ(2)+ǫ(3)+ǫ(4)−.

(6.3)

We see that the numerators obtained in this way contain spurious poles at s14 and s24.

This defeats to some extent the purpose of decomposing the amplitude in the form (1.1),

with the propagator poles manifestly written.

Color-kinematics duality allows for a particular version of the KLT relations, express-

ing the gravity amplitudes in terms of gauge theory amplitudes, with the key ingredient

being the color-kinematic symmetric (BCJ) gauge theory numerators. However, the BCJ

symmetry is not automatic, if one is to compute the numerators from a gauge Lagrangian.

To summarize our results, what we have shown is that the violation of this symmetry can

be systematically computed and absorbed into shifts of the Feynman numerators. These

shifts do not change the color-ordered amplitudes. We specifically work in a light-like

gauge, because it is physical and therefore makes the on-shell limit transparent. We have

set up a set of equations for four and five particle cases, which are used to solve for the

shifts in terms of the violations. In the four particle case, there is no need to make any

shift on-shell. For the five particle case, we have obtained the general solution for shifts

which are consistent with the acceptable pole structure. We have also constructed the

null five-point Lagrangian which augments the light-like gauge fixed Lagrangian and which

yields color-kinematic symmetric numerators. It is clear that this program should work for

any number of particles and with an arbitrary choice of the light-like gauge fixing vector.
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A Four-point off-shell numerators

In this appendix, we calculate the Jacobi-permutation of three indices of four particle

numerators.
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It is useful to notice that for a tree-level amplitude, the net factor of 2 from the propa-

gators i/(2sij) and from the vertices given in section 2 will cancel against the normalization

factor of the group generators. [See footnote 6.] In what follows we decompose the am-

plitude as in (1.1) and (2.13). The factors of gn−2 and (−i) which accompany a tree-level

n-point amplitude are implicit. We will omit them in writing out the numerators of a

color-ordered amplitude. With this observation, we have the following ingredients for the

color-ordered amplitudes: the propagator is 1/P 2, the color-ordered three-point vertex is

3 pt vertex(1−2+k−) ≡ (1−2+k−) = p2

(

k+

k
− p+1

p1

)

,

3 pt vertex(1−2+k+) ≡ (1−2+k+) = p1

(

p−2
p2

− k−

k

)

, (A.1)

and color-ordered four-point vertex is

4 pt vertex(1−2+; 3+4−) = −p2p4 + p1p3
(p1 + p2)2

(A.2)

4 pt vertex(4−1−; 2+3+) = 0

4 pt vertex(2+1−; 3+4−) = 4 pt vertex(1−2+; 4−3+)

= −4 pt vertex(1−2+; 3+4−) = −4 pt vertex(2+1−; 4−3+).

Of course, the color-ordered 4 pt vertex(1234) is the sum of 4 pt vertex(12; 34) and

4 pt vertex(41; 23). The split we make is relevant only in assigning each contribution to

a certain numerator: 4 pt vertex(12; 34) times the inverse propagator −s12 contributes to

n(12; 34) and 4 pt vertex(41; 23) times the inverse propagator −s14 contributes to n(41; 23).

Schematically, we write

n(12; 34) = (12k)(k34) + (12; 34), (A.3)

where

(12; 34) ≡ 4 pt vertex(12; 34)× (−s12) (A.4)

now includes the inverse propagator.14 Thus, with the understanding that a product of the

four polarization tensors is omitted and that the particles can then be off-shell, we have

n
(

1−2+; 3+4−
)

=

(

p−2
p2

− p−1 + p−2
p1 + p2

)

p1

(

p+4
p4

− p+1 + p+2
p1 + p2

)

p3

+

(

p+1 + p+2
p1 + p2

− p+1
p1

)

p2

(

p−1 + p−2
p1 + p2

− p−3
p3

)

p4

+
p2p4 + p1p3

(p1 + p2)
2

1
2 (P1 + P2)

2 , (A.5)

14To avoid cluttering the notation further we write (12k)(k34) for the cubic vertex contribution even

though we mean that in each vertex all momenta are incoming, and so this should really be written as

(12k)(−k34), with Pk = −P1 − P2 = P3 + P4. We hope that this is an obvious omission and will refrain

from writing the sign of the momentum in the other cubic vertex.
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where the last term is (12; 34), and as explained before it includes the 1
2(P1 + P2)

2 factor.

We pick out one term each from the three lines above to form

p2p4 + p1p3
(p1 + p2)2

[

(p+1 + p+2 )(p
−
1 + p−2 ) +

1
2(P1 + P2)

2
]

=
p2p4 + p1p3
(p1 + p2)2

(p1 + p2)(p̄1 + p̄2). (A.6)

Now we write

p̄1 + p̄2 = −p̄3 − p̄4 = −
(

p+3 p
−
3

p3
+

1
2P

2
3

p3

)

−
(

p+4 p
−
4

p4
+

1
2P

2
4

p4

)

. (A.7)

Putting (A.5), (A.6) into (A.7), we have

n(1−2+; 3+4−) = p1p3

(

p−3
p1 + p2

p+4
p4

+
p−2
p2

p+4
p4

+
p−2
p2

p+3 + p+4
p1 + p2

− 1

p1 + p2

p+3 p
−
3

p3
− 1

p1 + p2

1
2P

2
3

p3
− 1

p1 + p2

1
2P

2
4

p4

)

+p2p4

(

p+4
p1 + p2

p−3
p3

+
p+1
p1

p−3
p3

+
p+1
p1

p−3 + p−4
p1 + p2

− 1

p1 + p2

p+4 p
−
4

p4
− 1

p1 + p2

1
2P

2
3

p3
− 1

p1 + p2

1
2P

2
4

p4

)

. (A.8)

It is useful to add and subtract − (p1p3 + p2p4)
(

p−
2

p2

p+
4

p4
− p−

2

p2

p+
1

p1
− p−

3

p3

p+
4

p4
+

p−
3

p3

p+
1

p1

)

to the

expression above. Then we use

p1p3

(

p−3
p1 + p2

p+4
p4

+
p−3
p3

p+4
p4

)

+ p2p4

(

p+4
p1 + p2

p−3
p3

+
p−3
p3

p+4
p4

)

= −p−3 p
+
4 , (A.9)

and

p1p3

(

p−2
p2

p+3 + p+4
p1 + p2

+
p−2
p2

p+1
p1

)

+ p2p4

(

p−1
p1

p−3 + p−4
p1 + p2

+
p−2
p2

p+1
p1

)

= − p1p3
p1 + p2

p+2 p
−
2

p2
− p2p4

p1 + p2

p+3 p
−
3

p3
− p+1 p

−
2 , (A.10)

to obtain

n
(

1−2+; 3+4−
)

= − 1

p1 + p2

(

(p1p3 + p2p4)

(

P 2
3

2p3
+

P 2
4

2p4

)

+p1p3

(

p+2 p
−
2

p2
+

p+3 p
−
3

p3

)

+ p2p4

(

p+1 p
−
1

p1
+

p+4 p
−
4

p4

))

+(p1p3 + p2p4)

(

p−2
p2

p+4
p4

− p−2
p2

p+1
p1

− p−3
p3

p+4
p4

− p−3
p3

p+1
p1

)

= s23 +

(

p−2
p2

− p−3
p3

)(

p+4
p4

− p+1
p1

)

(p1p3 + p2p4)

+
p1p3

2 (p1 + p2)

(

−P 2
4

p4
+

P 2
2

p2

)

+
p2p4

2 (p1 + p2)

(

−P 2
3

p3
+

P 2
1

p1

)

. (A.11)

In a similar way, we obtain n(3+1−; 2+4−) and n(2+3+; 1−4−) given in (3.21)–(3.22).
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B Five-point ∆’s

In this appendix we calculate the ∆’s for 1+2−3+4−5+. We put all the external particles

on-shell. To shorten the expression of various terms we continue to omit the common

factor of the product of the polarizations (i.e. the external line factors). Let us take one

specific case and the others will be treated similarly. For ∆(1+2−|3+4−5+), there are two

sets of contributions. The first set is due to a four-vertex multiplied by a three vertex for

each graph. The second set is due to a three vertex (1+, 2−,−(1 + 2)+) multiplied by the

off-shell ∆((1 + 2)−|3+4−5+). For the first set, we have

∆
(

1+2−|3+4−5+
)

1
=
(

1+2−; 3+ (4 + 5)−
) (

− (4 + 5)+ 4−5+
)

+
(

1+2−; 5+ (3 + 4)−
) (

− (3 + 4)+ 3+4−
)

+
(

1+2−; 4+ (5 + 3)+
) (

− (5 + 3)− 5+3+
)

=
s12

(p1 + p2)
2

[

(p3p2 + p1 (p4 + p5))

(

p−5
p5

− p−4 + p−5
p4 + p5

)

p4

+(p5p2 + p1 (p3 + p4))

(

p−3 + p−4
p3 + p4

− p−3
p3

)

p4

+(p2 (p3 + p5)) + p1p4)

(

p−5
p5

− p−3
p3

)

(p3 + p5)

]

, (B.1)

which after some algebra is simplified to

∆
(

1+2−|3+4−5+
)

1
=

s12
(p1 + p2)

[

− p−5
p5

(p2p3 + p1p4) +
p−3
p3

(p1p4 + p2p5)

+
p−3 + p−4
p3 + p4

p2p3 −
p−4 + p−5
p4 + p5

p2p5

]

. (B.2)

The contribution of the other set is

∆
(

1+2−|3+4−5+
)

2
=
(

1+, 2−,− (1 + 2)+
)

∆
(

(1 + 2)− /3+4−5+
)

= s12

(

p−1 + p−2
p1 + p2

− p−1
p1

)

p2p4

(

1

p4 + p5
− 1

p3 + p4

)

. (B.3)

The sum of these two contributions gives

∆
(

1+2−|3+4−5+
)

= s12

[

p−1
p1

p2p4

(

− 1

p4 + p5
+

1

p3 + p4

)

+
p−3
p3

(

p1p4
p1 + p2

− p2p5
p4 + p5

)

+
p−5
p5

(

p2p3
p3 + p4

− p1p4
p1 + p2

)]

. (B.4)

Please note that

∆ (ij|klm) = −∆(klm|ij) = −∆(ji|klm) = −∆(ij|lkm) = −∆(mlk|ji) , (B.5)
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and therefore, we have

∆
(

1+2−3+|4−5+
)

= −∆
(

5+4−|3+2−1+
)

= −∆
(

1+2−|3+4−5+
)

|1↔5,2↔4

= −s45

[

p−1
p1

(

p3p4
p2 + p3

− p2p5
p4 + p5

)

+
p−3
p3

(

p2p5
p4 + p5

− p1p4
p1 + p2

)

+
p−5
p5

p2p4

(

− 1

p1 + p2
+

1

p2 + p3

)]

. (B.6)

In a similar fashion, we obtain

∆
(

1+4−5+|2−3+
)

= ∆
(

1+2−3+|4−5+
)

|2↔4,1↔5

= −s23

[

p−1
p1

(

p2p5
p4 + p5

− p3p4
p2 + p3

)

+
p−5
p5

(

p3p4
p2 + p3

− p1p2
p1 + p4

)

+
p−3
p3

p2p4

(

− 1

p1 + p4
+

1

p4 + p5

)]

, (B.7)

∆
(

1+2−5+|3+4−
)

= −∆
(

1+2−3+|4−5+
)

|3↔5

= s34

[

p−1
p1

(

p4p5
p2 + p5

− p2p3
p3 + p4

)

+
p−5
p5

(

p2p3
p3 + p4

− p1p4
p1 + p2

)

+
p−3
p3

p2p4

(

− 1

p1 + p2
+

1

p2 + p5

)]

, (B.8)

∆
(

3+4−5+|1+2−
)

= ∆
(

1+2−5+|3+4−
)

|2↔4,1↔3

= s12

[

p−3
p3

(

p2p5
p4 + p5

− p1p4
p1 + p2

)

+
p−5
p5

(

p1p4
p1 + p2

− p2p3
p3 + p4

)

+
p−1
p1

p2p4

(

− 1

p3 + p4
+

1

p4 + p5

)]

, (B.9)

∆
(

1+3+4−|2−5+
)

= −∆
(

3+4−5+|1+2−
)

|1↔5

= −s25

[

p−3
p3

(

p1p2
p1 + p4

− p4p5
p2 + p5

)

+
p−1
p1

(

p4p5
p2 + p5

− p2p3
p3 + p4

)

+
p−5
p5

p2p4

(

− 1

p3 + p4
+

1

p1 + p4

)]

, (B.10)
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∆
(

2−3+5+|1+4−
)

= −∆
(

1+2−3+|4−5+
)

|1↔5

= −s14

[

p−3
p3

(

p4p5
p2 + p5

− p1p2
p1 + p4

)

+
p−5
p5

(

p1p2
p1 + p4

− p3p4
p2 + p3

)

+
p−1
p1

p2p4

(

− 1

p2 + p3
+

1

p2 + p5

)]

, (B.11)

∆
(

1+2−4−|3+5+
)

= −s35

[

p1 (p3 + p5)

(

p−3
p3

− p−5
p5

)(

1

p1 + p4
− 1

p1 + p2

)]

, (B.12)

∆
(

2−3+4−|1+5+
)

= −∆
(

1+2−4−|3+5+
)

|1↔3

= s15

[

p3 (p1 + p5)

(

p−5
p5

− p−1
p1

)(

1

p2 + p3
− 1

p3 + p4

)]

, (B.13)

∆
(

2−4−5+|1+3+
)

= −∆
(

1+2−4−/3+5+
)

|1↔5

= s13

[

p5 (p1 + p3)

(

p−3
p3

− p−1
p1

)(

1

p4 + p5
− 1

p2 + p5

)]

, (B.14)

and

∆
(

1+3+5+|2−4−
)

= 0. (B.15)

When we add all the equations from (B.6) to (B.15), we find that (4.6) holds. This serves

as a check on the algebra.

C Five-point D’s

Following the procedure from (4.6) to (4.10), we arrive at the other D’s:

D (14325) = ∆ (14|352)
(

1

s14s23
+

1

s23s15

)

+∆(12|345)
(

− 1

s34s15

)

+∆(25|134)
(

− 1

s34s15
− 1

s25s34

)

+∆(34|125)
(

− 1

s34s15

)

+∆(45|123)
(

1

s23s15

)

+∆(23|145)
(

1

s23s15

)

, (C.1)

D (13425) = ∆ (13|245)
(

1

s13s24
+

1

s24s15

)

+∆(12|345)
(

1

s34s15

)

+∆(25|134)
(

1

s34s15
+

1

s25s34

)

+∆(34|125)
(

1

s34s15

)

+∆(35|124)
(

1

s24s15

)

+∆(24/135)

(

1

s24s15

)

, (C.2)

D (12435) = ∆ (12|345)
(

1

s12s34
+

1

s34s15

)

+∆(24|135)
(

1

s24s15

)

+∆(35|124)
(

1

s24s15
+

1

s24s35

)

+∆(13|245)
(

1

s24s15

)

+∆(34|125)
(

1

s34s15

)

+∆(25|134)
(

1

s34s15

)

, (C.3)
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D (14235) = ∆ (14|352)
(

− 1

s14s23
− 1

s23s15

)

+∆(24|135)
(

− 1

s24s15

)

+∆(35|124)
(

− 1

s24s15
− 1

s24s35

)

+∆(13|245)
(

− 1

s24s15

)

+∆(45|123)
(

− 1

s23s15

)

+∆(23|145)
(

− 1

s23s15

)

, (C.4)

D (13245) = ∆ (13|245)
(

− 1

s13s24
− 1

s24s15

)

+∆(14|352)
(

− 1

s23s15

)

+∆(45|123)
(

− 1

s23s15
− 1

s23s45

)

+∆(23|145)
(

− 1

s23s15

)

+∆(35|124)
(

− 1

s24s15

)

+∆(24|135)
(

− 1

s24s15

)

. (C.5)

D Solving for the five-point numerator shifts

In this appendix we give the details of the steps taken to arrive at the solution given in

the main text for the numerator shifts. First we notice that because of

a6 = a1(2 ↔ 4) = −a1(1 ↔ 5), (D.1)

we have

z121 (1 ↔ 5) = −x541 (2 ↔ 4), z141 (1 ↔ 5) = −x521 (2 ↔ 4),

z321 (1 ↔ 5) = −x341 (2 ↔ 4), z341 (1 ↔ 5) = −x321 (2 ↔ 4),

y121 (1 ↔ 5) = −y541 (2 ↔ 4), y141 (1 ↔ 5) = −y521 (2 ↔ 4). (D.2)

Instead of using (4.21) or (4.22) to normalize the x, y, z’s we use instead equivalently15

δn1 − δn3 − δn12 = −∆(12|345), (D.3)

where

δn3 = δn(12; 5; 43) = δn1(3 ↔ 5). (D.4)

We now use (4.25) to obtain four independent equations:

x321 + x341 (2 ↔ 4) + x3215 + x3415(2 ↔ 4)− z3415(2 ↔ 4; 1 ↔ 5)− z3215(1 ↔ 5) = 0, (D.5)

x521 + x541 (2 ↔ 4) + x5215 + x5415(2 ↔ 4)− z1415(2 ↔ 4; 1 ↔ 5)− z1215(1 ↔ 5) = 0, (D.6)

y121 + y141 (2 ↔ 4) + y1215 + y1415(2 ↔ 4)− y5415(2 ↔ 4; 1 ↔ 5)− y5215(1 ↔ 5) = 0, (D.7)

y521 + y541 (2 ↔ 4) + y5215 + y5415(2 ↔ 4)− y1415(2 ↔ 4; 1 ↔ 5)− y1215(1 ↔ 5) = 0. (D.8)

15We are using here notation introduced earlier in eq. (3.1) in [12].
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By equating coefficients multiplied to different
p−i
pi
pjk from (D.3), we obtain a set of twelve

equations:

−s34x
52
1 (3 ↔ 5) + s45x

32
1 + s35z

34
15(2 ↔ 4; 1 ↔ 5) = 1, , (D.9)

−s34x
54
1 (3 ↔ 5) + s45x

34
1 + s35z

32
15(2 ↔ 4; 1 ↔ 5) = 0, (D.10)

−s34x
32
1 (3 ↔ 5) + s45x

52
1 + s35z

14
15(2 ↔ 4; 1 ↔ 5) = −1, (D.11)

−s34x
34
1 (3 ↔ 5) + s45x

54
1 + s35z

12
15(2 ↔ 4; 1 ↔ 5) = 0; (D.12)

s34x
54
1 (2 ↔ 4; 1 → 3 → 5 → 1) + s45y

12
1 + s35y

54
15(2 ↔ 4; 1 ↔ 5) = 0, (D.13)

s34x
52
1 (2 ↔ 4; 1 → 3 → 5 → 1) + s45y

14
1 + s35y

52
15(2 ↔ 4; 1 ↔ 5) = −1, (D.14)

s34x
34
1 (2 ↔ 4; 1 → 3 → 5 → 1) + s45y

52
1 + s35y

14
15(2 ↔ 4; 1 ↔ 5) = 1, (D.15)

s34x
32
1 (2 ↔ 4; 1 → 3 → 5 → 1) + s45y

54
1 + s35y

12
15(2 ↔ 4; 1 ↔ 5) = 0; (D.16)

−s34y
12
1 (3 ↔ 5) + s45z

12
1 + s35x

54
15(2 ↔ 4; 1 ↔ 5) = 0, (D.17)

−s34y
14
1 (3 ↔ 5) + s45z

14
1 + s35x

52
15(2 ↔ 4; 1 ↔ 5) = 1, (D.18)

−s34y
52
1 (3 ↔ 5) + s45z

32
1 + s35x

34
15(2 ↔ 4; 1 ↔ 5) = −1, (D.19)

−s34y
54
1 (3 ↔ 5) + s45z

34
1 + s35x

32
15(2 ↔ 4; 1 ↔ 5) = 0. (D.20)

When we make 3 ↔ 5 to (D.11), we obtain

− s45x
32
1 + s34x

52
1 + s35z

14
15(2 ↔ 4; 1 → 3 → 5 → 1) = −1, (D.21)

which is added to (D.9) to give

z3215(1 ↔ 5) + z1215(1 → 3 → 5 → 1) = 0.. (D.22)

In a similar fashion, we obtain from (D.10) and (D.12)

z3415(1 ↔ 5) + z1415(1 → 3 → 5 → 1) = 0.. (D.23)

If we use the results above, then we should of course keep only one of (D.9) and (D.11)

and one of (D.10) and (D.12).

Using z121 = −x541 (2 ↔ 4; 1 ↔ 5) and making 3 ↔ 5, we write (D.17) as

− s45y
12
1 − s34x

54
1 (2 ↔ 4; 1 → 3 → 5 → 1) + s35x

54
15(2 ↔ 4; 1 → 3 → 5 → 1) = 0. (D.24)

When we combine this with (D.13). we have

x5415(1 ↔ 3) + y5415 = 0. (D.25)

The same operations will lead to

x5215(1 ↔ 3) + y5215 = 0. (D.26)

x3415(1 ↔ 3) + y1415 = 0. (D.27)

x3215(1 ↔ 3) + y3215 = 0. (D.28)
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We should then keep either the set (D.13) to (D.16) or the set (D.17)–(D.20). Therefore

we have only six of equations (D.9) to (D.20) and the four of equations (D.5) to (D.8),

which add up to ten. Taking into account (D.2) and (D.22) to (D.28), we have twelve

independent equations for x’s, y’s and z’s. We noted earlier that these coefficients have

dimension 1/s. We will be solving for them with the requirement that they are of the form

of a sum of terms each being a simple pole in the allowed kinematic invariant (such that

the numerator shifts do not introduce spurious poles). This leads to the solution given

in (4.28) and (4.29).

E Beyond five-point

In this appendix we discuss how one can extend recursively the current results beyond five-

points. Consider the six-point case. We begin by choosing a Kleiss-Kuijf basis as in [12]:

A(1i2i3i4i56) with (i2, i3, i4, i5) equal to a permutation of indices (2,3,4,5). We use the

shorthand notation16

n(12; 3; 4; 56) = n1, n(13; 2; 4; 56) = n2, n(13; 4; 2; 56) = n3, n(13; 4; 5; 26) = n4

n(12; 4; 3; 56) = n5, n(14; 2; 3; 56) = n6, n(14; 3; 2; 56) = n7, n(14; 3; 5; 26) = n8

n(12; 5; 4; 36) = n9, n(15; 2; 4; 36) = n10, n(15; 4; 2; 36) = n11, n(15; 4; 3; 26) = n12

n(12; 3; 5; 46) = n13, n(13; 2; 5; 46) = n14, n(13; 5; 2; 46) = n15, n(13; 5; 4; 26) = n16

n(12; 4; 5; 36) = n17, n(14; 2; 5; 36) = n18, n(14; 5; 2; 36) = n19, n(14; 5; 3; 26) = n20

n(12; 5; 3; 46) = n21, n(15; 2; 3; 46) = n22, n(15; 3; 2; 46) = n23, n(15; 3; 4; 26) = n24.

(E.1)

For each color-ordered amplitude we decompose into terms which display the propa-

gator pole structure as in eq. (A.2) in [12]. For example,

A(123456) =
n1

s12s123s1234
− n(12; 3; 6; 45)

s12s123s1236
− n(12; 6; 3; 45)

s12s126s1236

+
n(61; 2; 3; 45)

s16s126s1236
+

n(12; 6; 5; 34)

s12s126s1256
+

n(23; 4; 5; 61)

s23s234s2345

−n(23; 4; 1; 56)

s23s234s1234
− n(23; 1; 4; 56)

s23s123s1234
+

n(34; 2; 1; 56)

s34s234s1234

−n(34; 5; 2; 61)

s34s345s2345
− n(34; 2; 5; 61)

s34s234s2345
+

n(23; 1; 6; 45)

s23s123s1236

+
n(12; 34; 56)

s12s34s56
+

n(61; 23; 45)

s16s23s45
. (E.2)

However, the Feynman-rules numerators will not satisfy the BCJ relations (as opposed to

the numerators in eq. (A.5) of [12]). Instead, there will be violations which we parametrized

16This type of numerators has been later called half-ladder in [15]. The reason is that the external legs

are all arranged along an internal line with two external legs joined together only at the two ends of that

internal line.
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as in appendix B by ∆’s. These can be constructed as follows. For concreteness let us

focus on

n(12; 3; 4; 56) + n(12; 3; 6; 45) + n(12; 3; 5; 64) = ∆(12; 3|456), (E.3)

where

∆(12; 3|456) = (12k)∆(k3|456) + (12; 3k)∆(k|456). (E.4)

and as before (12k) denotes a three-point vertex and (12; 3k) denotes a four-point vertex.17

The off-shell five-point ∆’s are given by the corresponding version of (B.4) plus off-shell

terms. For example ∆(1+2−|3+4−5+), where all legs are taken to be off-shell, has the

following off-shell pieces (representing the contributions of the off-shell four-point ∆ to18

(1+2−k+)∆(k−|3+4−5+)) in addition to (B.4):

[

p3(p1 + p2)

p3 + p4

(

− P 2
5

2p5
+

P 2
4

2p4

)

+
p4p5

p4 + p3

(

− (P1 + P2)
2

2(p1 + p2)
+

P 2
3

2p3

)

+
p5(p1 + p2)

p4 + p5

(

− P 2
3

2p3
+

P 2
4

2p4

)

− p4p3
p4 + p5

(

− (P1 + P2)
2

2(p1 + p2)
+

P 2
5

2p5

)]

×
(

p−1 + p−2
p1 + p2

− p−1
p1

)

p2. (E.5)

Consider n(12; 6; 3; 45) as obtained by Feynman rules. We can write this as

(12k)n(k6; 3; 45) + (12; 6k)n(k3; 45). The second term is necessary since it is a contri-

bution from the 4-point vertex (12; 6k) which is not included in the first term where a

cubic vertex is affixed to the off-shell 5-point numerator.

Next we use that

n(k6; 3; 45) + n(3k; 6; 45) + n(63; k; 45) = ∆(k63|45) (E.6)

where this is the off-shell 5-point ∆ described earlier in this section.

Then

n(3k; 6; 45) = n(k3; 4; 56) + n(k3; 5; 64) + ∆(3k|645), (E.7)

while

n(63; k; 45) = n(36; 4; 5k) + n(36; 5; k4) + ∆(63|k45). (E.8)

17Recall that according to the Feynman rules the four-point vertex contribution (12; 3k) is non-zero only

when the gluons in each pair (12) and (3k) have opposite helicities, and that (12; 3k) is proportional to s12.
18Recall that ∆(k+|3+4−5+) = 0 and that ∆(k|345) = ∆(543|k) = ∆(435|k).
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Putting everything together,

n(12; 6; 3; 45) = (12k)n(k6; 3; 45) + (12; 6k)n(k3; 45)

= (12k)[∆(k63|45) + ∆(k3|645)−∆(63|k45)] + (12; 6k)n(k3; 45)

−(12k)n(k3; 4; 56)− [(12; 3k)n(k456)− (12; 3k)n(k4; 56)]

+(12k)n(k3; 5; 46) + [(12; 3k)n(k5; 46)− (12; 3k)n(k5; 46)]

+(12k)n(k5; 4; 63) + [(12; 5k)n(k4; 63)− (12; 5k)n(k4; 63)]

+(12k)n(k4; 5; 36) + [(12; 4k)n(k5; 36)− (12; 4k)n(k5; 36)]

= (12k)[∆(k63|45) + ∆(k3|645)−∆(63|k45)] + (12; 6k)n(k3; 45)

−n(12; 3; 4; 56) + n(12; 3; 5; 46)− n(12; 5; 4; 36) + n(12; 4; 5; 36)

+(12; 3k)n(k4; 56)−(12; 3k)n(k5; 46)+(12; 5k)n(k4; 36)−(12; 4k)n(k5; 36)

= n(12; 3; 4; 56) + n(12; 3; 5; 46)− n(12; 5; 4; 36) + n(12; 4; 5; 36)

+∆(12; 3|645)
+(12k)∆(36|k45) + (12; 6k)n(k3; 45)− (12; 3k)n(k6; 45)

+(12k)∆(45|36k) + (12; 5k)n(k4; 36)− (12; 4k)n(k5; 36). (E.9)

The following numerators can be expressed in this way and obtained by relabelling of

external legs:

n(12; 6; 5; 34) from n(12; 6; 3; 45) with (3 → 5, 4 → 3, 5 → 4) (E.10)

n(23; 1; 4; 56) = n(65; 4; 1; 32) from n(12; 6; 3; 45) with (1 ↔ 6, 5 ↔ 2, 4 ↔ 3) (E.11)

n(34; 2; 1; 56) = n(65; 1; 2; 43) from n(12; 6; 3; 45) with (6 ↔ 1, 5 → 2, 2 → 3, 3 → 5). (E.12)

Yet another type of terms is n(23; 1; 6; 45). We write it as n(23; 1k)n(k6; 45) +

(23k)(k1; 6l)(l45) and manipulate it such that we express it in terms of the chosen ba-

sis of numerators plus violating terms.

n(23; 1; 6; 45) = (−n(12; 3k)− n(31; 2k) + ∆(123|k))(−n(k4; 56)− n(k5; 64) + ∆(k|645))
+(23k)(k1; 6l)(l45)

= n(12; 3; 4; 56)− n(12; 3; 5; 46)− n(13; 2; 4; 56) + n(13; 2; 5; 46)

−∆(231|k)[n(k4; 56) + n(k5; 64)]−∆(k|645)[n(12; 3k) + n(31; 2k)]

−(12k)[(k3; 4l)(l56) + (k3; 5l)(l64)] + (13k)[(k2; 4l)(l56) + (k2; 5l)(l64)]

+(23k)(k1; 6l)(l45). (E.13)

Then we have the snowflake n(12; 34; 56). This can be expressed as−(12k)n(34; k; 56)+

(34; k)(kl; 12)(l56) + (12k)(34; lk)(l56) + (12k)(kl; 56)(l34), so

n(12; 34; 56) = −(12k)∆(34k|56) + (12k)n(4k; 3; 56) + (12k)n(k3; 4; 56)

+(34; k)(kl; 12)(l56) + (12k)(34; lk)(l56) + (12k)(kl; 56)(l34)

= −(12k)∆(34k|56)− n(12; 4; 3; 56) + n(12; 3; 4; 56)

+(12k)(k4; 3l)(l56)− (12k)(k4; 3l)(l56)

+(34; k)(kl; 12)(l56) + (12k)(34; lk)(l56) + (12k)(kl; 56)(l34). (E.14)
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The more complicated numerators have an s61 associated pole. Let’s consider

n(61; 2; 3; 45). We can write it as n(61; 2k)n(k3; 45) + (61k)(k2; 3l)(l45), which gives

n(61; 2; 3; 45) = [−n(12; 6k)− n(26; 1k) + ∆(162|k)]n(k3; 45) + (61k)(k2; 3l)(l45)

= −n(12; 6; 3; 45) + n(62; 1; 3; 45) + ∆(162|k)n(k3; 45)
+(61k)(k2; 3l)(l45) + (12k)(k6; 3l)(l45) + (26k)(k1; 3l)](l45), (E.15)

then each of the numerators n(12; 6; 3; 45) and n(26; 1; 3; 45) receives the same treatment

as before. For the final expression,

n(61; 2; 3; 45) = n(12; 3; 4; 56)− n(12; 3; 5; 46) + n(12; 5; 4; 36)− n(12; 4; 5; 36)

−n(62; 3; 4; 51) + n(62; 3; 5; 41)− n(62; 5; 4; 31) + n(62; 4; 5; 31)

−∆(12; 3|645)
−(12k)∆(36|k45)− (12; 6k)n(k3; 45)− (12; k3)n(k6; 45)

−(12k)∆(45|36k)− (12; 5k)n(k4; 36)− (12; k4)n(k5; 36)

+∆(15; 4|632)
+(15k)∆(46|k32) + (15; 6k)n(k4; 32)− (15; k4)n(k6; 32)

+(15k)∆(32|46k) + (15; 2k)n(k3; 46)− (15; k3)n(k2; 46)

+∆(162|k)n(k3; 45)
+(61k)(k2; 3l)(l45) + (12k)(k6; 3l)(l45) + (26k)(k1; 3l)(l45). (E.16)

The other numerators in the same family are obtained as follows

n(23; 4; 5; 61) = n(16; 5; 4; 32) = −n(61; 5; 4; 32) from− n(61; 2; 3; 45) with (2 ↔ 5, 3 ↔ 4)

n(34; 5; 2; 61) =−n(61; 2; 5; 43) from − n(61; 2; 3; 45) with (3 ↔ 5)

n(34; 2; 5; 61) =−n(61; 5; 2; 43) from − n(61; 2; 3; 45) with (2 → 5, 3 → 2, 5 → 3). (E.17)

Lastly, we have the snowflake with a s61 inverse propagator. We write it as

n(61; 23; 45) = n(61kl)(k23)(l45) + (16k)(23; kl)(l45) + (16k)(45; kl)(l23), (E.18)

to obtain

n(61; 23; 45) =−(23k)n(k1; 6l)(l45) + (23k)n(k6; 1l)(l45)

+∆(61k|l)(k23)(l45) + (16k)(23; kl)(l45) + (16k)(45; kl)(l23)

=−n(23; 1; 6; 45) + n(23; 6; 1; 45)

+(23; 1k)n(k6; 45) + n(23; 1k)(k6; 45)−(23; 6k)n(k1; 45)− n(23; 6k)(k1; 45)

+∆(61k|l)(k23)(l45) + (16k)(23; kl)(l45) + (16k)(45; kl)(l23). (E.19)
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The numerators n(23; 1; 6; 45) and n(23; 6; 1; 45) have been discussed before, leading to the

following expression for the 61-snowflake:

n(61; 23; 45) =−
(

n(12; 3; 4; 56)− n(12; 3; 5; 46)− n(13; 2; 4; 56) + n(13; 2; 5; 46)

−∆(231|k)[n(k4; 56) + n(k5; 64)]−∆(k|645)[n(12; 3k) + n(31; 2k)]

−(12k)[(k3; 4l)(l56) + (k3; 5l)(l64)] + (13k)[(k2; 4l)(l56) + (k2; 5l)(l64)]

+(23k)(k1; 6l)(l45)

)

+

(

n(62; 3; 4; 51)− n(62; 3; 5; 41)− n(63; 2; 4; 51) + n(63; 2; 5; 41)

−∆(236|k)[n(k4; 51) + n(k5; 64)]−∆(k|145)[n(62; 3k) + n(36; 2k)]

−(62k)[(k3; 4l)(l51) + (k3; 5l)(l14)] + (63k)[(k2; 4l)(l51) + (k2; 5l)(l14)]

+(23k)(k6; 1l)(l45)

)

+(23; 1k)n(k6; 45) + n(23; 1k)(k6; 45)−(23; 6k)n(k1; 45)− n(23; 6k)(k1; 45)

+∆(61k|l)(k23)(l45) + (16k)(23; kl)(l45) + (16k)(45; kl)(l23). (E.20)

Armed with this we can proceed to computing the D’s. For example, by collecting

together all the δn-independent terms in the expression below gives D(123456), in a natural

extension of the five-point relations (4.6)–(4.10):

δn1

s12s123s1234
− −δn1 + δn13 +∆(12; 3|456)

s12s123s1236
+

−δn1 + δn2 +∆(231|4; 56)
s23s123s1234

− 1

s12s126s1236

(

− δn1 − δn9 + δn13 + δn17 +∆(12; 3|645)

+(12k)∆(36|k45) + (12; 6k)n(k3; 45) + (12; 3k)n(6k; 45)

+(12k)∆(45|36k) + (12; 5k)n(k4; 36) + (12; k4)n(k5; 36)
)

+
1

s12s126s1256

(

δn1 − δn5 + δn9 − δn21 +∆(12; 5|634)

+(12k)∆(56|k34) + (12; 6k)n(k5; 34) + (12; 5k)n(6k; 34)

+(12k)∆(34|56k) + (12; 4k)n(k3; 56) + (12; k3)n(k4; 56)
)

− 1

s23s243s1234

(

− δn1 + δn2 + δn6 − δn7 ++∆(65; 4|132)

+(65k)∆(41|k32) + (65; 1k)n(k4; 32) + (65; 4k)n(1k; 32)

+(65k)∆(32|41k) + (65; 2k)n(k3; 41) + (65; k3)n(k2; 41)
)

+
1

s34s234s1234

(

δn1 − δn3 − δn5 + δn7 +∆(62; 4|135)

+(64k)∆(31|k52) + (64; 1k)n(k3; 52) + (64; 3k)n(1k; 52)

+(64k)∆(52|31k) + (64; 2k)n(k5; 31) + (64; k5)n(k2; 41)
)

+
1

s23s123s1236

(

δn1 − δn2 − δn13 + δn14

−∆(231|k)[n(k4; 56) + n(k5; 64)]−∆(k|645)[n(12; 3k) + n(31; 2k)]
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−(12k)[(k3; 4l)(l56) + (k3; 5l)(l64)] + (13k)[(k2; 4l)(l56) + (k2; 5l)(l64)]

+(23k)(k1; 6l)(l45)
)

+
1

s12s34s56

(

δn1 − δn5 − (12k)∆(34k|56)

+(12k)(k4; 3l)(l56)− (12k)(k4; 3l)(l56)

+(34; k)(kl; 12)(l56) + (12k)(34; lk)(l56) + (12k)(kl; 56)(l34)
)

+
1

s16s126s1236

(

δn1 − δn4+δn9 − δn12 − δn13+δn16 − δn17+δn20

−∆(12; 3|645)+∆(15; 4|632) − (12k)∆(36|k45)− (12; 6k)n(k3; 45)− (12; k3)n(k6; 45)

−(12k)∆(45|36k)−(12; 5k)n(k4; 36)−(12; k4)n(k5; 36)+(15k)∆(46|k32)+(15; 6k)n(k4; 32)

−(15; k4)n(k6; 32) + (15k)∆(32|46k)+(15; 2k)n(k3; 46) − (15; k3)n(k2; 46)

+∆(162|k)n(k3; 45)+(61k)(k2; 3l)(l45)+(12k)(k6; 3l)(l45)+(26k)(k1; 3l)(l45)
)

− 1

s16s156s1456

(

δn1 − δn2 − δn6+δn7+δn11 − δn12 − δn22+δn23

−∆(15; 4|632)+∆(12; 3|645) − (15k)∆(46|k32)− (15; 6k)n(k4; 32)− (15; k4)n(k6; 32)

−(15k)∆(32|46k)− (15; 2k)n(k3; 46)− (15; k3)n(k2; 46) + (12k)∆(36|k45)+(12; 6k)n(k3; 45)

−(12; k3)n(k6; 45) + (12k)∆(45|36k)+(12; 5k)n(k4; 36) − (12; k4)n(k5; 36)

+∆(165|k)n(k4; 32) + (61k)(k5; 4l)(l32)+(15k)(k6; 4l)(l32)+(56k)(k1; 4l)(l32)
)

− 1

s16s156s1256

(

− δn1+δn3+δn5 − δn7 − δn10+δn12+δn22 − δn24

−∆(15; 2|643)+∆(13; 4|625) − (15k)∆(26|k43)− (15; 6k)n(k2; 43)− (15; k2)n(k6; 43)

−(15k)∆(43|26k)− (15; 3k)n(k4; 26)− (15; k4)n(k3; 26) + (13k)∆(46|k25)+(13; 6k)n(k4; 25)

−(13; k4)n(k6; 25) + (13k)∆(25|46k)+(13; 5k)n(k2; 46) − (13; k2)n(k5; 46)

+∆(165|k)n(k2; 43) + (61k)(k5; 2l)(l43)+(15k)(k6; 2l)(l43)+(56k)(k1; 2l)(l43)
)

− 1

s16s126s1256

(

− δn1+δn4+δn5 − δn8 − δn9+δn12+δn21 − δn24

−∆(12; 3|645)+∆(15; 4|632) − (12k)∆(56|k43)− (12; 6k)n(k5; 43)− (12; k5)n(k6; 43)

−(12k)∆(43|56k)− (12; 3k)n(k4; 56)− (12; k4)n(k3; 56) + (13k)∆(46|k52)+(13; 6k)n(k4; 52)

−(13; k4)n(k6; 52) + (13k)∆(52|46k)+(13; 2k)n(k5; 46) − (13; k5)n(k2; 46)

+∆(162|k)n(k5; 43) + (61k)(k2; 5l)(l43)+(12k)(k6; 5l)(l43)+(26k)(k1; 5l)(l43)
)

+
1

s16s23s45

(

δn1 − δn2+δn11 − δn12 − δn13+δn14 − δn19+δn20

+∆(231|k)[n(k4; 56)+n(k5; 64)]+∆(k|645)[n(12; 3k)+n(31; 2k)]

+(12k)[(k3; 4l)(l56)+(k3; 5l)(l64)] − (13k)[(k2; 4l)(l56)+(k2; 5l)(l64)] − (23k)(k1; 6l)(l45)

−∆(236|k)[n(k4; 51)+n(k5; 64)] −∆(k|145)[n(62; 3k)+n(36; 2k)]

−(62k)[(k3; 4l)(l51)+(k3; 5l)(l14)]+(63k)[(k2; 4l)(l51)+(k2; 5l)(l14)] + (23k)(k6; 1l)(l45)

+(23; 1k)n(k6; 45)+n(23; 1k)(k6; 45) − (23; 6k)n(k1; 45)− n(23; 6k)(k1; 45)

+∆(61k|l)(k23)(l45)+(16k)(23; kl)(l45)+(16k)(45; kl)(l23)
)

= 0 (E.21)
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