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1 Introduction

Compared with the situation in 2012, the existence of a new scalar with mass around

125GeV has been further corroborated by the ATLAS and CMS collaborations with a

local statistical significance reaching 9σ and more than 7σ respectively [1–4]. Especially,

recently both the collaborations updated their measurements on the properties of the scalar

by using the detector calibration in the event reconstruction [5–8], and as indicated by their

published data, the two group measurements now agree with each other in a much better

way. So far the mass of the scalar is rather precisely determined, and its other properties,

albeit still with large experimental uncertainties, coincide with those of the Higgs boson

predicted by the Standard Model (SM). Nevertheless, the issue of whether this particle is

the SM Higgs boson is still open, and indeed there are some motivations, such as the gauge

hierarchy problem and the intriguing slight excess of the di-photon signal for the scalar

over the SM prediction, which now is µγγ = 1.17±0.27 by the ATLAS measurement [5] and

µγγ = 1.13± 0.24 by the CMS measurement [8], to consider new physics interpretation of

this particle. Studies in this direction have been performed intensively in supersymmetric

theories (SUSY) (for MSSM explanation of the 125GeV scalar, see for example [9–20]; for

NMSSM explanation of the 125GeV scalar, see for example [21–34]), which are considered

as the most promising new physics candidates due to their capability to unify the gauge

couplings, provide a viable Dark Matter candidate as well as stabilize the weak scale in

a much better way than the SM. These studies indicated that, although in the Minimal

Supersymmetric Standard Model (MSSM) there exists a broad parameter space to fit the

Higgs data quite well [35, 36], the mass of the observed particle leads to a well-known

tension with naturalness since it is much larger than the upper bound of the tree-level
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Higgs mass, which is controlled by the weak gauge coupling due to the structure of the

model [37]. This tension led to a revival of interest in non-minimal realizations of SUSY

at the weak scale. Arguably the simplest among such extended constructions is the Next-

to-Minimal Supersymmetric Standard Model (NMSSM) [38–40], which will be the focus of

this paper.

In the NMSSM, the particle content is extended by including a gauge singlet super-

field Ŝ with its interaction with the MSSM Higgs superfields Ĥu and Ĥd taking the form

λŜĤu.Ĥd (Ĥu.Ĥd ≡ ǫabĤ
a
uĤ

b
d is SU(2) index contraction) [38–40]. The inclusion of the

singlet allows the quartic terms of the Higgs potential to get a new contribution, which

is proportional to λ2. This will lift the tree-level Higgs mass and consequently alleviate

the tension [37]. In fact, it is due to this advantage that the NMSSM was widely adopted

to interpret the LHC results [21–34]. While on the other hand, since λ is up bounded by

the perturbativity of the theory below the grand unification scale, i.e. λ . 0.7, the size

of the lift is mild and so the naturalness problem is only partially addressed. Under such

a situation, λ-SUSY which corresponds to the NMSSM with a relatively large λ around

1 was recently emphasized [41–48]. As suggested by the pioneer works in this direction,

the NMSSM may still maintain the grand unification and perturbativity for such a λ if

an appropriate new dynamics is implemented at a certain ultraviolet energy scale [49–53].

Moreover, it was pointed out that in λ-SUSY, the sensitivity of the weak scale to the scalar

top quark (stop) mass is reduced by a factor of ∼ (g/λ)2 in comparison with the MSSM

(g is the SM weak gauge coupling), which means that the lower bound on the stop mass

imposed by the LHC direct searches has a weaker implication on fine-tuning in this model

than in the MSSM or the NMSSM with a low λ [53]. In this sense, λ-SUSY has been

treated as a simplest and meanwhile most natural realization of SUSY at weak scale.1

In λ-SUSY, the phenomenology in Higgs sector is rather special. Firstly, since the

tree-level mass of the SM-like Higgs boson (denoted by h hereafter) may be easily higher

than 125GeV, the boson must have sizable singlet and/or non-SM doublet components.

Consequently, its couplings might deviate significantly from their SM predictions, which

will be constrained by the recently updated Higgs data [46–48]. Secondly, unlike the MSSM

where a large tanβ is preferred to enhance the tree-level Higgs mass, tanβ in λ-SUSY must

be rather low, i.e. tanβ . 4, to coincide with the electro-weak precision data [53, 54]. In

this case, the constraints of the LHC direct search for neutral non-SM Higgs bosons by τ τ̄

channel are weakened [56, 57], and the non-SM Higgs bosons may be significantly lighter

than those of the MSSM. This will result in a rather different phenomenology [55], but

so far is paid little attention in literature. Thirdly, as we mentioned before, the quartic

terms of the Higgs potential are altered greatly in λ-SUSY so that the interactions among

the physical Higgs particles may be significantly strengthened [46, 47]. Under such a

situation, the hh production may be greatly enhanced by the mediation of the non-SM

Higgs bosons, which may decay into the Higgs pair dominantly [58–61], and/or by the

trilinear self coupling of the SM-like Higgs boson, which may be much stronger than the

1We would like to mention that λ-SUSY is not the only setup to improve the fine-tuning in the singlet

extensions of the MSSM. In fact, in some more complex frameworks such as the GNMSSM [137] and the

DiracNMSSM [138], the fine-tuning problem can also be greatly alleviated in a nice way [137, 139–141].
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SM prediction in some parameter region of the λ-SUSY. Considering the importance of

the pair production in extracting the Higgs self coupling information, such enhancement

effects should be investigated carefully. Noting above features, we in this work first consider

various experimental constraints on λ-SUSY, then we explore the Higgs sector by focusing

on the properties of the lightest and the next-to-lightest CP-even Higgs bosons. We also

investigate how large the Higgs pair production rate may get enhanced in λ-SUSY.

This work is organized as follows. In section 2, we recapitulate the framework of λ-

SUSY and the features of its Higgs sector. Then we scan its parameter space by considering

various constraints to get physical parameter points. In section 3, we investigate the

predictions of these points on the properties of the lightest and the next-to-lightest CP-

even Higgs boson, such as their couplings and decay rates, to show their distinctive features.

In section 4, we study the SM-like Higgs pair production process, and point out that its

rate in λ-SUSY may be enhanced by a factor of 100 over its SM prediction, which is hardly

achieved in the MSSM. Finally, we draw our conclusions.

2 Higgs sector in λ-SUSY and our scan strategy

2.1 Higgs sector in NMSSM with a large λ

The NMSSM extends the MSSM with one gauge singlet superfield Ŝ, and since it aims at

solving the µ problem of the MSSM, a Z3 discrete symmetry under which the Higgs super-

fields Ĥu, Ĥd and Ŝ are charged is implemented in the construction of the superpotential

to avoid the appearance of parameters with mass dimension. As a result, its superpotential

is given by [38–40]

WNMSSM = WF + λĤu · ĤdŜ +
1

3
κŜ3, (2.1)

where WF is the superpotential of the MSSM without the µ-term, and λ, κ are all dimen-

sionless parameters describing the interactions among the superfields. The scalar potential

for the Higgs fields Hu, Hd and S is given by the sum of the usual F- and D-term contri-

butions, and the soft breaking terms:

V NMSSM
soft = m̃2

u|Hu|2 + m̃2
d|Hd|2 + m̃2

S |S|2 +
(

λAλSHu ·Hd +
1

3
κAκS

3 + h.c.

)

. (2.2)

In all, the Higgs sector Lagrangian contains 7 free parameters, which include

psusyi = {λ, κ, m̃2
u, m̃

2
d, m̃

2
S , Aλ, Aκ}. (2.3)

With the scalar potential expressed in term of the fields Hu, Hd and S, it is not easy

to see its particle implication on the LHC results. To improve such a situation, one usually

introduces following combinations of the Higgs fields [38–40]

H1 = cosβHu + ε sinβH∗
d , H2 = sinβHu − ε cosβH∗

d , H3 = S, (2.4)

– 3 –



J
H
E
P
1
2
(
2
0
1
4
)
0
2
6

where ε12 = −ε21 = 1, ε11 = ε22 = 0 and tanβ ≡ vu/vd with vu and vd representing the

vacuum expectation values of the fields Hu and Hd. In this representation, Hi (i = 1, 2, 3)

are given by

H1 =

(

H+

S1+iP1√
2

)

, H2 =

(

G+

v + S2+iG0

√
2

)

, H3 = vs +
1√
2
(S3 + iP2) . (2.5)

These expressions indicate that the field H2 corresponds to the SM Higgs field with G+

and G0 denoting Goldstone bosons, and S2 representing the SM Higgs field (so it should

make up the dominant component of the observed scalar as suggested by the LHC data),

and the field H1 represents a new SU(2)L doublet scalar field, which has no tree-level

couplings to the W/Z bosons. Eq. (2.5) also indicates that the Higgs sector of the NMSSM

includes three CP-even mass eigenstates, which are the mixtures of the fields S1, S2 and

S3, two CP-odd mass eigenstates composed by the fields P1 and P2, as well as one charged

Higgs H+.

In practical application, it is usually more convenient to use [38–40]

λ, κ, tanβ, µ, MA, MP , (2.6)

as input parameters, where m̃2
u, m̃

2
d and m̃2

S in eq. (2.3) are traded for mZ , tanβ ≡ vu/vd
and µ ≡ λvs by the potential minimization conditions, and Aλ and Aκ are replaced by the

squared masses of the CP-odd fields P1 and P2, which are given by

M2
A =

2µ

sin 2β
(Aλ + κvs), M2

P = λ2v2
(

MA

2µ/ sin 2β

)2

+
3

2
λκv2 sin 2β − 3κvsAκ. (2.7)

Note that MA and MP represent the tree-level CP-odd particle masses only when the

mixing between P1 and P2 vanishes.

With this set of input parameters, the mass matrix for CP-even Higgs bosons in the

basis (S1, S2, S3) is given by [38–40]

M2
S,11 = M2

A + (m2
Z − λ2v2) sin2 2β,

M2
S,12 = −1

2
(m2

Z − λ2v2) sin 4β,

M2
S,13 = −

(

M2
A

2µ/ sin 2β
+ κvs

)

λv cos 2β,

M2
S,22 = m2

Z cos2 2β + λ2v2 sin2 2β,

M2
S,23 = 2λµv

[

1−
(

MA

2µ/ sin 2β

)2

− κ

2λ
sin 2β

]

,

M2
S,33 =

1

6
λ2v2

(

MA

µ/ sin 2β

)2

+ 4(κvs)
2 − 1

3
M2

P , (2.8)

and the corresponding mass eigenstates hi (i = 1, 2, 3) are obtained by diagonalizing the

mass matrix:

hi =
3
∑

j=1

VijSj ,
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where Vij denotes the rotation matrix. In the following, we assume mh3
> mh2

> mh1
,

and call the state hi the SM-like Higgs boson (non-SM doublet Higgs boson) if |Vi2|2 > 0.5

(|Vi1|2 > 0.5). Moreover, in order to present our results in a compact way we define S̄i = Vi3

and D̄i = Vi1 with |S̄i|2 and |D̄i|2 representing the singlet and non-SM doublet components

in the physical state hi respectively. With this notation, the couplings of hi with vector

bosons and fermions are given by

ChiV V /SM = Sign(Vi2)
√

1− D̄2
i − S̄2

i , V = Z,W,

Chiūu/SM = D̄i cotβ + Sign(Vi2)
√

1− D̄2
i − S̄2

i ,

Chid̄d
/SM = −D̄i tanβ + Sign(Vi2)

√

1− D̄2
i − S̄2

i , (2.9)

where the denominator SM means the corresponding Higgs coupling in the SM. We also

have following sum rules

D̄2
1 + D̄2

2 + D̄2
3 = 1,

S̄2
1 + S̄2

2 + S̄2
3 = 1. (2.10)

The expression of M2
S,22 in eq. (2.8) indicates that, without the mixings of the CP-even

states, the SM-like Higgs mass at tree level is given by

m2
h,tree ≃ m2

Z cos2 2β + λ2v2 sin2 2β,

where the last term on the right side is peculiar to any singlet extension of the MSSM [38–

40], and its effect is to enhance the mass. Obviously, if the NMSSM is a natural theory,

mh,tree should lie near 125GeV, but in practice, this is not so since the perturbativity of

the theory up to GUT scale has required λ . 0.7 so that m2
h,tree usually falls far short of

the desired value. For example, given tanβ = 3 and λ = 0.7, one can get mh,tree ≃ 97GeV,

which means ∆2/m2
h,tree ≃ 2/3 for the top-stop loop correction ∆2 in order to predict the

125GeV Higgs boson in no mixing case. Confronted with such a situation, λ-SUSY which

corresponds to the NMSSM with a large λ around one was proposed [49–53]. This theory

is based on the hypothesis that the NMSSM with a large λ is only an effective Lagrangian

at the weak scale, and an appropriate structure of superfields intervenes at an ultraviolet

energy scale (usually chosen at 10TeV) so that the virtues of SUSY such as the grand

unification of the gauge couplings are maintained. Under this assumption, the values of λ

and κ at weak scale are relaxed by [48]

0.17λ2 + 0.26κ2 . 1. (2.11)

In λ-SUSY, two fine tuning quantities are defined to measure the naturalness of the

theory [48]:

∆Z = max
i

∣

∣

∣

∣

∂ logm2
Z

∂ log pi

∣

∣

∣

∣

, ∆h = max
i

∣

∣

∣

∣

∂ logm2
h

∂ log pi

∣

∣

∣

∣

, (2.12)

where pi denotes SUSY parameters at the weak scale, and it includes the parameters

listed in eq. (2.3) and top quark Yukawa coupling Yt with the latter used to estimate the
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sensitivity to stop mass. Obviously, ∆Z (∆h) measures the sensitive of the weak scale (the

Higgs mass) to SUSY parameters, and the larger its value becomes, the more tuning is

needed to get the corresponding mass. In our calculation, we calculate ∆Z and ∆h by the

formulae presented in [62] and [48] respectively.

Throughout this work, we consider the lightest CP-even Higgs boson as the SM-like

Higgs boson. The possibility that the next-to-lightest CP-even Higgs boson corresponds

to the SM-like Higgs boson is theoretically less appealing since mh,tree in λ-SUSY usually

exceeds 125GeV, and the mixing between S2 and S3 can further push up the mass so that

the theory has more tuning to get the Higgs boson mass. Our numerical scan checked

this point.

2.2 Strategy in scanning the parameter space of λ-SUSY

In this work, we first perform a comprehensive scan over the parameter space of λ-SUSY by

considering various experimental constraints. Then for the surviving samples we investigate

the features of its Higgs sector. In order to simplify our analysis, we make following

assumptions about some unimportant SUSY parameters:

• First, we fix all soft breaking parameters for the first two generation squarks at 2TeV.

For the third generation squarks, considering that they can affect significantly the

mass of the SM-like Higgs boson, we set free all soft parameters in this sector except

that we assume mU3
= mD3

for right-handed soft breaking masses and At = Ab for

soft breaking trilinear coefficients.

• Second, since we require λ-SUSY to explain the discrepancy of the measured value

of the muon anomalous magnetic moment from its SM prediction, we assume all soft

breaking parameters in the slepton sector to have a common value ml̃ and treat ml̃

as a free parameter.

• Third, we assume the grand unification relation 3M1/(5α1) = M2/α2 for electroweak

gaugino masses, and set gluino mass at 2TeV.

With above assumptions, we use the package NMSSMTools-4.0.0 [63, 64] to scan fol-

lowing parameter space of λ-SUSY:

0.7 < λ ≤ 2, 0 < κ ≤ 2, 100 GeV ≤ MA,MP , µ ≤ 3 TeV,

100 GeV ≤ MQ3
,MU3

≤ 2 TeV, |At| ≤ 5 TeV,

1 ≤ tanβ ≤ 15, 100 GeV ≤ ml̃,M2 ≤ 1 TeV, (2.13)

where all the parameters are defined at the scale of 1TeV. During the scan, we keep samples

that satisfy following constraints:

(1) The SM-like Higgs boson lies around 125GeV: 120GeV ≤ mh ≤ 130GeV, mt̃i
≥

200GeV as suggested by the LHC search for stops [65–69], and also the bound on

λ, κ from eq. (2.11). Note that we have allowed for a rather wide range of mh in

our analysis. This is because λ larger than 1 may induce a sizable correction to

– 6 –
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mh at two-loop level [70], which is not considered in the NMSSMTools. We take

this fact into account in following discussion by assuming a total (theoretical and

experimental) uncertainty of 2.5GeV for mh in the fit to the Higgs data collected

at the LHC, so the sample with mh deviating from 125GeV by 5GeV may still be

acceptable by the data.

(2) All the constraints implemented in the package NMSSMTools-4.0.0, which are from

the LEP search for sparticles (including the lower bounds on various sparticle masses

and the upper bounds on the chargino/neutralino pair production rates), the Z-boson

invisible decay, the B-physics observables such as the branching ratios for B → Xsγ

and Bs → µ+µ−, and the mass differences ∆Md and ∆Ms, the discrepancy of the

muon anomalous magnetic moment, the dark matter relic density and the LUX limits

on the scattering rate of dark matter with nucleon. In getting the constraint from a

certain observable which has an experimental central value, we use its latest measured

result and require the NMSSM to explain the result at 2σ level.

(3) Constraints from the search for Higgs bosons at the LEP, the Tevatron and the LHC.

We implement these constraints with the package HiggsBounds-4.0.0 [71, 72].

(4) Constraints from the stability of the scalar potential at one-loop level, including

the absence of charge and color breakings [73–77]. We use the package Vevacious-

1.1.02 [73, 78–83] to implement the constraints by assuming that only the CP-even

Higgs fields, stau fields and stop fields are possible to develop non-zero vacuum expec-

tation values. We checked that samples with a large At/
√

M2
Q3

+M2
U3

are disfavored

by such constraints.

(5) Indirect constraints from the electroweak precision data such as ρℓ, sin2 θℓ
eff
, MW

and Rb. We require all these quantities in the NMSSM within the 2σ range of

their experimental values. We compute these observables with the formula presented

in [54]. Note these constraints are important in limiting tanβ in λ-SUSY [53, 54].

For each surviving sample, we further perform a fit to the Higgs data updated in

this summer. These data include the measured signal strengthes for γγ, ZZ∗, WW ∗, bb̄

and τ τ̄ channels, and their explicit values are shown in figure 2 of [5], figure 20 of [6]

and figure 20 of [7] for the ATLAS results, in figure 5 of [8] for the CMS results and in

figure 15 of [84] for the CDF+D0 results. We totally use 26 sets of experimental data

with 24 of them corresponding to the measured signal strengthes and the other 2 being the

combined masses of the Higgs boson reported by the ATLAS and the CMS collaborations

respectively [8, 85]. In calculating corresponding χ2, we use the method first introduced

in [86, 87], consider the correlations among the data like done in [88–91], and assume an

uncertainty of mh to be 2.5GeV (to estimate the Higgs mass contribution on the fit). For

the surviving samples, we obtain χ2
min,2014/d.o.f = 11.7/15, where χ2

min,2014 represents the

minimal value of the χ2 with the Higgs data in 2014, and the total number of the degree of

freedom (d.o.f.) is counted in a naive way as ν = nobs − npara [36] with nobs = 26 denoting

the set number of the experimental data and npara = 11 being the number of the model free

– 7 –
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Figure 1. Samples surviving the constraints 1-3 and meanwhile satisfying χ2 ≤ 25, projected on

the plane of µ versus λ. For these samples, their predictions on the fine tuning parameters ∆Z and

∆h are marked with different colors.

parameters listed in eq. (2.2). In the following, we concentrate on the samples satisfying

χ2 ≤ 25. These samples are interpreted in statistics as the points that keep consistency

with the Higgs data at 95% C.L..

Compared with the similar fit done in 2013 (see for example that in [92]), we find

χmin,2013 ≃ 17 for the same set of the surviving samples, which is significantly larger than

χmin,2014. This reflects the more consistency of the two collaboration results in describing

the properties of the discovered boson. Moreover, in order to check the validity of our new

fit we also perform Higgs fits for the surviving samples by using the package HiggsSignal-

1.2.0 [93, 94], where 84 sets of data obtained before March 2014 are used. Similar to the

new fit, this time we set the theoretical uncertainty of mh to be 2.5GeV. We find that,

although fewer data are employed in the new fit, the 95% C.L. constraints of the two fits

on the surviving samples coincide well with each other. For example, we have totally 7015

samples surviving the constraints from items (1-5), and we find that 6553 (6577) of them

further satisfy the limitation from the new fit (the fit with HiggsSignal).

At this stage, we emphasize that since the main advantage of λ-SUSY over the MSSM

is its naturalness in predicting mZ and mh, ∆Z and ∆h should be used as a criteria in

estimating the goodness of the parameter points, that is, samples with very large ∆Z

and ∆h should be viewed as theoretically disfavored even though they may agree well

with various measurements. Numerically speaking, considering that ∆Z in the MSSM are

usually larger than 50 [35] (note the definition of ∆Z in [35] differs from that in this work

by a factor 2), we take max{∆Z ,∆h} ≤ 50 as a standard for naturalness. To exhibit

the characters of ∆Z and ∆h in λ-SUSY, in figure 1 we project the surviving samples

on the plane of µ versus λ with their corresponding values of ∆Z and ∆h marked with

different colors. This figure indicates that the samples with relatively low ∆Z and ∆h are

characterized by low values of µ, or numerically speaking, requiring max{∆Z ,∆h} ≤ 50

results in µ . 780GeV. This can be intuitively understood by the fact that µ = λvs with

– 8 –
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λ
Figure 2. Surviving samples projected on tanβ − λ plane. Samples in the left panel are same as

that of figure 1, while samples in the right panel are further required to satisfy max{∆Z ,∆h} ≤ 50.

the natural size of vs lying at the weak scale. Furthermore, we checked that ∆Z and ∆h are

more sensitive to λ than to the other SUSY parameters for most of the surviving samples.

Since λ and tanβ are two most important parameters in λ-SUSY, we pay particular

attention to their correlation. In figure 2 we show all the surviving samples on the tanβ−λ

plane without and with the requirement max{∆Z ,∆h} ≤ 50 (see left panel and right panel

respectively). This figure indicates that tanβ tends to decrease with the increase of λ, and

for λ > 1, tanβ ≤ 10. The main reason for such a behavior is, as we mentioned before,

due to the constraints from the electroweak precision data. This figure also indicates that

after requiring max{∆Z ,∆h} ≤ 50, a large portion of samples with relatively low values of

tanβ are excluded. The reason is that m2
h,tree in λ-SUSY is usually larger than 125GeV

and a high value of tanβ is able to reduce the value of m2
h,tree.

Based on above arguments and meanwhile in order to show the preference of the Higgs

data and the fine tuning argument on the parameter space, we classify the surviving samples

into three types as follows:

• Type-I samples: those with χ2 ≤ 25 and meanwhile max{∆Z ,∆h} ≤ 50. This type

of sample is considered as the physical sample in our discussion.

• Type-II samples: those with χ2 ≤ 25 but max{∆Z ,∆h} > 50. This type of sample

can not be excluded by experiments, but is not favored by the fine tuning argument.

• Type-III samples: those with χ2 > 25. Obviously, this type of sample is of less

interest than the previous two types.

For completeness, we present in table 1 the allowed ranges for these samples. As shown in

figure 1 and figure 2 and also in this table, with the increase of λ the parameter space of

λ-SUSY are crushed into a narrow region until λ reaches its maximum, which is about 1.8.
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Parameters Type-I Samples Type-(I+II) Samples Type-(I+II+III) Samples

λ 0.7 ∼ 1.8 0.7 ∼ 1.9 0.7 ∼ 2

κ 0.2 ∼ 1.9 0.1 ∼ 1.9 0.1 ∼ 2.0

tanβ 1.2 ∼ 14.2 1 ∼ 14.2 1 ∼ 15

µ(GeV) 105 ∼ 870 105 ∼ 2700 100 ∼ 2200

MA(GeV) 365 ∼ 3000 345 ∼ 3000 340 ∼ 3000

MP (GeV) 65 ∼ 3000 60 ∼ 3000 20 ∼ 3000

M1(GeV) 50 ∼ 470 50 ∼ 500 50 ∼ 500

MQ3
(GeV) 200 ∼ 2000 200 ∼ 2000 200 ∼ 2000

MU3
(GeV) 200 ∼ 2000 200 ∼ 2000 200 ∼ 2000

At(GeV) −4500 ∼ 4300 −5000 ∼ 4800 −5000 ∼ 5000

Ml̃(GeV) 100 ∼ 620 100 ∼ 620 100 ∼ 750

Aλ(GeV) −1100 ∼ 2900 −3200 ∼ 2900 −2800 ∼ 3000

Aκ(GeV) −2600 ∼ 180 −2600 ∼ 200 −2600 ∼ 450

Table 1. Allowed ranges for different parameters. All types of samples survive the constraints 1-3,

and they differ only by their predictions on χ2 and max{∆Z ,∆h} (see their definitions at the end

of subsection B).
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Figure 3. Singlet component coefficient S̄1 and non-SM doublet component coefficient D̄1 of the

SM-like Higgs boson as a function of λ. Here red bullet, blue triangle and sky-blue square denote

Type-I sample, Type-II sample and Type-II sample respectively.

3 Properties of h1 and h2

In this section, we explore the Higgs sector of λ-SUSY to exhibit the properties of the

lightest and the next-to-lightest CP-even Higgs bosons. We pay particular attention to the

features of the bosons that differentiate λ-SUSY from the MSSM or from the NMSSM with

a low λ.
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Figure 4. Coupling information of the SM-like Higgs boson for Type-I sample (red bullet), Type-II

sample (blue triangle) and Type-III sample (sky-blue square).

3.1 Properties of the lightest CP-even Higgs boson

As we mentioned before, throughout this work we treat the lightest CP-even Higgs boson

as the SM-like Higgs boson, so some properties of h such as its coupling to vector bosons

have been limited to closely mimic those of the SM Higgs boson. However, as we will show
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below, the triple self coupling of the boson or more general the Higgs potential may still

differ greatly from that of the SM.

In figure 3, we show the singlet component coefficient S̄1 and non-SM doublet compo-

nent coefficient D̄1 of h for Type-I samples (red bullet), Type-II samples (blue triangle)

and Type-III samples (sky-blue square) on the left panel and right panel respectively. This

figure indicates that |S̄1| may exceed 0.6 without considering the Higgs data, and it is up

bounded by about 0.5 at 95% C.L. after considering the data. In contrast, |D̄1| reaches
at most about 0.3 and 0.1 before and after considering the data respectively, and given

S̄1 6= 0, we find it is always much smaller than |S̄1| after considering the data. The reason

for the difference between S̄1 and D̄1 is that the constraints we considered have put non-

trivial requirements on the elements M2
11 and M2

12 of the CP-even Higgs mass matrix, e.g.

M2
11 & 200GeV2 and |M2

12/M2
11| ≪ 1, so |D̄1| is forbidden to be moderately large. In

comparison, M2
33 is less constrained due to the singlet nature of the field S3, and given

M2
33 ≃ M2

22, |S̄1| may be as large as 0.7. Furthermore, from the coupling expressions of

h in eq. (2.9) one can learn that the hZZ coupling is always suppressed in comparison

with its SM value due to the non-vanishing of S̄1 and D̄1, while for the fermion Yukawa

couplings Yhf̄f , depending the sign of D̄1 it may be either enhanced or suppressed. Explic-

itly speaking, given S̄1 = 0 and |D̄1| < 0.1, one can learn that Chūu is slightly enhanced

while Chd̄d is suppressed if D̄1 is positive, and the situation reverses for the couplings if

D̄1 changes its sign. In any case, the larger |S̄1| becomes, the smaller the couplings are.

Figure 3 also indicates that the values of |S̄1| and |D̄1| tend to increase with the increase

of λ, and so are the deviations of the normalized couplings from unity. The reason is that

mh,tree will be much larger than 125GeV for a sufficient large λ, and sizable mixings must

intervene to pull down the mass.

We also compare our results in figure 3 with those in [48], where a similar fit was

performed by using the Higgs data in 2013 in the framework of λ-SUSY. We find that now

the allowed ranges of |S̄1| and |D̄1| shrink significantly. This reflects the more tightness of

the constraints we considered in limiting the Higgs properties.

Now let’s turn to the couplings of h. In figure 4, we exhibit such information for same

samples as those in figure 3. This figure indicates that after imposing the constraints from

the Higgs data, the normalized couplings Chγγ/SM , ChZZ/SM and Cht̄t/SM are limited

within 15% deviation from unity, and the couplings Chgg/SM and Chb̄b/SM are at most

25% and 40% deviating from unity respectively. Moreover, due to the change of the width

of h which is mainly determined by Chb̄b, the normalized branching ratios Br(h → γγ)/SM

and Br(h → ZZ∗)/SM may vary from 0.6 to 1.5. Compared with the similar fit results in

2012 [35], we find that the optimal values of the couplings are now shifted significantly.

Maybe the most impressive feature of h in λ-SUSY is that the strength of its triple self

coupling Chhh/SM may get enhanced by a factor over 10. This is shown on the right panel

of the third row in figure 4, which exhibits that Chhh/SM may reach 16 and 23 for the

Type-I samples and Type-II samples respectively. Here we remind that that such a great

enhancement can not occur in the MSSM where the quartic terms of the Higgs potential

are determined by the weak coupling [95]. We also remind that the enhancement seems

to be limited by the naturalness argument. To see this, we list two benchmark points
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No. of Point Point 1 (P1) Point 2 (P2) Point 3 (P3) Point 4 (P4)

λ 0.86 0.94 0.75 0.71

κ 1.27 1.19 1.64 1.64

tanβ 1.59 1.82 1.45 1.35

µ(GeV) 697.6 1100.7 614.0 599.8

MA(GeV) 2127.9 2237.9 388.1 372.6

MP (GeV) 1449.4 283.8 2282.4 2135.2

M1(GeV) 169.9 200.7 83.2 70.5

MQ3
(GeV) 1646.3 675.5 409.2 1587.8

MU3
(GeV) 511.0 1435.6 697.6 894.7

Ml̃(GeV) 186.5 218.5 128.4 112.4

At(GeV) -25.1 1539.6 881.1 -1639.8

Aλ(GeV) 766.0 -310.5 -1248.9 -1302.0

Aκ(GeV) -674.5 -12.5 -1602.3 -1032.6

mh(GeV) 125.0 125.4 125.2 124.4

mH2
(GeV) 1697.3 2144.6 232.4 245.0

mA1
(GeV) 1440.5 174.0 150.5 102.3

mH±(GeV) 2088.2 2153.7 228.1 238.6

D̄1 -8×10−5 2×10−3 0.01 0.04

S̄1 0.02 -0.02 6×10−3 -3×10−3

D̄2 -0.22 -0.98 -0.99 -0.99

D̄A1
0.08 0.10 0.99 0.99

χ2 12.2 12.1 12.0 13.5

∆Z 35.4 139.6 46.9 45.1

∆h 38.4 233.2 89.5 89.1

Chhh/SM 13.7 22.1 5.1 4.2

σ(gg → hh)/SM 34.3 96.1 1.3 0.6

Table 2. Benchmark points for different cases considered in this work. Note all the input parame-

ters are defined at 1TeV, and in calculating the spectrum of the Higgs bosons, important radiative

corrections have been taken into account.

with large Chhh in table 2 (see points P1 and P2). One can easily learn that each point

corresponds to a low Higgs χ2 and meanwhile a relative large ∆Z and ∆h, indicating that

naturalness disfavors a too large Chhh in λ-SUSY.

3.2 Properties of the next-to-lightest CP-even Higgs boson

Considering that h3 in λ-SUSY is usually at TeV scale and thus it decouples from the

electroweak physics, we here only study the property of the Next-to-Lightest CP-even

Higgs boson h2. As we will show below, such a study is helpful to understand the Higgs

pair production process.

In figure 5, we show the non-SM doublet component D̄2
2 as a function ofmh2

for Type-I,

Type-II and Type-III samples. This figure reveals following information:
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Figure 5. Doublet component of h2 as a function of mh2
for the same samples as figure 3. Again,

Type-I, Type-II and Type-III samples are marked with red bullet, blue triangle and sky-blue square,

respectively.
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Figure 6. Couplings and Branching ratios of h2 as a function of h2. Note that only the samples

with doublet dominated h2 in figure 6 are considered.
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• For mh2
≤ 500GeV, D̄2

2 is either around 1 or around 0 for most Type-I and Type-II

samples. In this case, the mixing between the fields S1 and S3 is small in forming h2,

which can be obtained if |M2
13| ≪ |M2

11−M2
33|. Note such a situation is not altered

until mh2
& 700GeV.

• In case of D̄2
2 ≃ 1, h2 is obviously non-SM doublet dominated, while in case of D̄2

2 ≃ 0

h2 should be singlet dominated since D̄2
3 = 1− D̄2

1 − D̄2
2 ≃ 1, which implies that h3

is non-SM doublet dominated.

• The doublet dominated h2 can be as light as 200GeV, which is quite different from

the situation of the MSSM where the non-SM Higgs boson H must be heavier than

about 300GeV after considering various constraints [96]. As a comparison, the singlet

dominated h2 is more loosely limited so that it can be lighter than 150GeV.

• Note for mh2
. 300GeV, there exist some type-III samples with D̄2

2 > 0.2. Since

D̄2
3 = 1− D̄2

1 − D̄2
2 < 0.8, these samples predict a h3 with sizable singlet and/or SM

doublet components. This mixing pattern can be achieved only for a not too heavy

h3. In fact, we examined the properties of these sample, and found mh3
. 650GeV

and µ . 200GeV. Since all CP-even Higgs bosons in this case are relatively light, it

is apt to be tightly limited by the Higgs data.

• Naturalness should play a role in limiting the properties of h2 [97]. Explicitly speak-

ing, figure 5 shows that there are few Type-I samples with mh2
> 2000GeV, which

may be interpreted as that naturalness prefers a relatively light h2. Another example

is the fraction of Type-I samples in the total number of Type-I plus Type-II samples

for the doublet dominated h2 is significantly lower than that for the singlet dominated

h2, which means that naturalness tends to put a tighter constraint on the doublet

dominated h2. All these features can be intuitively understood by the fact that since

vu, vd ∼ 100GeV, a too heavy non-SM doublet dominated or singlet dominated h2
will make the theory fine tuned to get the correct electroweak symmetry breaking.

In the following, we try to illustrate the properties of h2 for Type-I and Type-II samples

with mh2
≤ 500GeV. Most of these samples are characterized by either D̄2

2 ≃ 1 or D̄2
2 ≃ 0,

which is very helpful to simplify our analysis.

We first concentrate on a doublet dominated h2. Since D̄2
2 ≃ 1, the couplings of the

h2 can be approximated by:

Ch2V V /SM ≃ 0, Ch2ūu/SM ≃ Sign(D̄2) cotβ, Ch2d̄d
/SM ≃ −Sign(D̄2) tanβ.(3.1)

In figure 6, we only consider the doublet dominated h2 in figure 5 and show their normalized

couplings such as Ch2 t̄t/SM , Ch2b̄b
/SM and Ch2hh/v as functions of mh2

. We also plot the

branching ratios of h2 → t̄t, h2 → b̄b and h2 → hh in a similar way.

From figure 6, we can learn following features about Type-I and Type-II samples:

• In most cases, eq. (3.1) is a good approximation for the three h2 couplings, especially

for the coupling Ch2b̄b
/SM .
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• In general, with the increase of mh2
the couplings Ch2 t̄t/SM and Ch2b̄b

/SM may vary

within a wider ranges. This is because the constraints we considered get relaxed as h2
becomes heavy so that the couplings become more flexible to satisfy the constraints.

This character also applies to the singlet dominated h2.

• |Ch2 t̄t/SM | is not too small: |Ch2 t̄t/SM | & 0.2, and in optimal case, it is just slightly

below 1. On the other hand, |Ch2b̄b
/SM | is usually larger than 1 with its maximum

value reaching 6. In this case, the h2gg coupling is given by

∣

∣

∣

∣

∣

Ch2gg

CSM
hgg

∣

∣

∣

∣

∣

≃
cotβA 1

2

(

m2

h2

4m2
t

)

− tanβA 1

2

(

m2

h2

4m2
t

)

A 1

2

(

m2

h

4m2
t

)

≃



















{1.5 cotβ − (−0.03 + 0.03i) tanβ}/1.4 for mh2
= 250GeV,

{(2.0 + 0.01i) cotβ − (−0.02 + 0.02i) tanβ}/1.4 for mh2
= 350GeV,

{(2.1 + 1.1i) cotβ − (−0.01 + 0.01i) tanβ}/1.4 for mh2
= 450GeV,

{(1.5 + 1.6i) cotβ − (−0.01 + 0.01i) tanβ}/1.4 for mh2
= 550GeV,

where the loop function A 1

2

is defined in [95] and we have neglected the minor im-

portant squark contribution. This expression indicates that due to the opposite sign

of the two couplings, the real parts of the top and bottom contributions to the h2gg

interaction interfere constructively, while the imaginary parts interfere destructively,

and the h2gg coupling strength is maximized at low tanβ.

• The potentially important decay modes of h2 include h2 → t̄t, b̄b, A1A1, ¯̃χiχ̃j , where

A1 denotes the lighter CP-odd Higgs boson and χ̃i represents a supersymmetric

particle such as a neutralino. We find that h2 → tt̄ is usually the main decay mode

for mh2
& 400GeV, and h2 → hh (any of the decays h2 → bb̄, A1A1, ¯̃χiχ̃j) may be

dominant over the other channels for 260Gev . mh2
. 400GeV (mh2

. 250GeV).

• Considering that the case of mh2
. 250GeV was scarcely studied before, we pay

particular attention to its features. We find that the Higgs sector in this case usually

exhibits an inverted mass hierarchy, i.e. the spectrum is characterized by mh2
≃

mH± > mA1
instead of the usual order mA1

> mH± . The underlying reason for such

an anomaly is owe to the hierarchy structure of the CP-odd Higgs mass matrix in the

basis (P1, P2): |M2
P,11| ≪ |M2

P,12| ≪ |M2
P,22|. For such a mass matrix, the physical

scalar A1 can be tuned to be very light by choosing an appropriate value of M2
P,12. In

table 2, we list two such points (denoted by P3 and P4 respectively) with P4 further

satisfying mh2
> 2mA1

.

Next we consider the singlet dominated h2. In this case, since D̄2
2 ≃ 0 we have

1− S̄2
2 − D̄2

2 ≃ 1− S̄2
2 ≃ S̄2

1 + S̄2
3 , (3.2)

where the sum rule S̄2
2 = 1− S̄2

1 − S̄2
3 is used. On the other hand, because

S̄2
3 + D̄2

3 = S̄2
3 + 1− D̄2

2 − D̄2
1 ≃ S̄2

3 + 1− D̄2
1 ≤ 1,
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Figure 7. Same as figure 6, but for a singlet dominated h2.
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Figure 8. Same as figure 6 (left panel) and figure 7 (right panel), but showing the τ̄ τ signal rates

induced by the process gg → h2 → τ̄ τ at 8-TeV LHC. As a comparison, the bounds from the direct

search for τ̄ τ signal by ATLAS collaboration are also shown.

we get

S̄2
3 . D̄2

1. (3.3)

Taking eq. (3.2) and eq. (3.3) in mind, and noticing the fact that D̄2
1 ≪ S̄2

1 for a sizable S̄1

(see discussion about figure 3), we finally conclude that

1− S̄2
2 − D̄2

2 ≃ S̄2
1 . (3.4)

With this approximation, we can write down the couplings of the singlet dominated h2 as:

Ch2V V /SM ≃ |S̄1|, Ch2ūu/SM ≃ Sign(V22)|S̄1|,
Ch2d̄d

/SM ≃ −D̄2 tanβ + Sign(V22)|S̄1|. (3.5)
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In figure 7, we show the couplings Ch2 t̄t/SM , Ch2b̄b
/SM and Ch2hh/v, and also the branch-

ing ratios of h2 → t̄t, h2 → b̄b and h2 → hh in a way similar to figure 6. This figure indicates

that as suggested by above approximations, both the h2t̄t and h2b̄b couplings for a singlet-

like h2 are usually small, but the coupling h2hh may still be large with Ch2hh/v reaching

about 2.5 in optimal case. As a result of such couplings and meanwhile the relatively strong

interaction of the h2 with sparticles,2 h2 → t̄t is no longer the dominant decay channel of

h2 even for mh2
& 400GeV, instead any of h2 → hh,A1A1, ¯̃χiχ̃j may become dominant

once the kinematics is accessible. We checked that h2 → ¯̃χiχ̃j is usually the main decay

mode for mh2
< 250GeV.

In order to further show the difference between a doublet dominated h2 and a singlet

dominated h2, we plot the rate of the τ̄ τ signal induced by the process gg → h2 → τ̄ τ

at 8-TeV LHC with the same samples as those in figure 6 and figure 7 respectively. For

comparison, we also show the direct search bound on this signal from the recent ATLAS

analysis. This figure indicates that the τ̄ τ signal rate induced by a doublet dominated h2
is usually two order larger than that by a singlet dominated h2 with same mass, and in

either case the rate is at least one order lower than the direct search bound. This means

that indirect experimental constraints such as B → Xsγ, the dark matter direct search

result and the Higgs data play an important role in deciding the lower mass bound of h2.

4 Higgs pair production at the LHC

After the discovery of the Higgs boson, the next important task of the LHC is to recon-

struct the Higgs potential and finally decipher the mechanism of the electroweak symmetry

breaking. In this direction, the Higgs pair production plays an unique role since it involves

the Higgs self interactions. So although the production is a rare process in comparison

with other Higgs production processes, it has been paid particular attention in last twenty

years [98–111].

In the SM the Higgs pair production at the LHC proceeds by the parton process

gg → hh through the heavy quark induced box diagrams and also through the production

of an off-shell Higgs which subsequently splits into two on-shell Higgs bosons (see diagram

(1), (2) and (8) of figure 9) [98–100]. The production rate is rather low for
√
s = 14TeV,

about 20 fb at leading order [101] and 35 fb after including the next-to-leading order QCD

correction [102–111]. The capability of the LHC to detect this production process was

investigated in [112–122] by the channel such as gg → hh → bb̄γγ, bb̄WW ∗, bb̄τ+τ− respec-

tively, and it has been shown that the most efficient one is gg → hh → bb̄γγ with 6 signal

events over 14 background events expected for 600 fb−1 integrated luminosity after consid-

ering some elaborate cuts [112–115]. In principle, the capability can be further improved if

the recently developed jet substructure technique is applied for the Higgs tagging [123–125].

2After neglecting gauge interactions, the coupling of h2 with dark matter is determined by terms λĤu ·

ĤdŜ+ 1

3
κŜ3 in the superpotential. For a singlet dominated h2, the coupling strength is mainly determined

by λ for bino-like dark matter and by κ for singlino-like dark matter. Given the potentially largeness of λ and

κ, the strength is moderately large. While for a doublet dominated h2, only its coupling with bino-like dark

matter is sizable, and it is significantly smaller than the similar coupling for a singlet dominated h2 because

in contrast with a sizable bino-Higgsino mixing in neutralino mass matrix, there is no bino-singlino mixing.
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Figure 9. Feynman diagrams for the pair production of the SM-like Higgs boson via gluon fusion

in λ-SUSY with hi denoting a CP-even Higgs (i = 1, 2, 3) and q̃i,j (i, j = 1, 2) denoting a squark.

The diagrams with initial gluons or final Higgs bosons interchanged are not shown here. For the

quarks and squarks we only consider the third generation due to their large Yukawa couplings.

In SUSY the Higgs pair production may also proceed through the diagrams 3–10 in

figure 9 with the internal particles in the loops involving the third generation squarks and

the intermediating s-channel scalar being any CP-even Higgs boson [126–132]. Since the

genuine SUSY contribution to the amplitude is of the same perturbation order as the SM

contribution, the SUSY prediction on the production rate may significantly deviate from

the SM result. Based on previous studies in this field [58–61, 132, 134], we learn that there

are three main mechanisms to enhance the production rate greatly:

• Through the loops mediated by stops [132]. In SUSY, the coupling strength of the

ht̃∗i t̃j interaction is mainly determined by the trilinear soft breaking parameter At,

and consequently stops contribute to the pair production in following way [132]

M ∼ α2
sY

2
t

(

c1 sin
2 2θt

A2
t

m2

t̃1

+ c2
A2

t

m2

t̃2

)

, (4.1)

where M denotes the amplitude of the stop-induced box diagrams, Yt is top quark

Yukawa coupling, θt is the mixing angle of stops and c1, c2 are dimensionless co-

efficients determined by detailed loop calculation. It is then obvious that the stop

contributions may enhance the pair production rate greatly for a light stop along

– 19 –



J
H
E
P
1
2
(
2
0
1
4
)
0
2
6

10
-2

10
-1

1

1 10

σ
(g

g
→

h
2
→

h
h

)/
σ

 (
g

g
→

h
h

)

R
1 10

R
1 10 10

2

R

Figure 10. Correlation between the normalized total cross section σ(pp → hh), R, and the pure

resonant s-channel contribution to the pair production. Results shown in left panel, middle panel

and right panel are for Type-I samples, Type-II samples and Type-III samples respectively.

with a large At. Detailed calculation indicates that the corrected cross section may

be several times larger than its SM prediction [132].

• Through the resonant effect of a CP-even state hi [58–61]. In SUSY, hi may be on-

shell produced by gg or bb̄ initial state. For 260GeV . mhi
. 400GeV, the production

rate is not suppressed by parton distribution function, and meanwhile hi may decay

dominantly into hh. In this case, the on-shell production of hi can greatly enhance

the pair production rate.

In λ-SUSY, usually only the non-SM doublet dominant h2 is pertinent to the en-

hancement, and its resonance effect on the pair production is estimated by

σ(gg → hh)(pb) ≃ (12.5 ∼ 14.5)×
(

cotβ − tanβA 1

2

(τb)/A 1

2

(τt)

)2

×Br(h2 → hh),

where τb = m2
h2
/(4m2

b) and τt = m2
h2
/(4m2

t ). In getting this estimation, we use the

fact that σ(gg → h2) at 14-TeV LHC is about 14.5pb (12.5pb) for mh2
= 260GeV

(350GeV) given that the h2 has same couplings as the SM Higgs boson to top and

bottom quarks [133], and meanwhile neglecting the squark contribution to the h2gg

coupling. For tanβ = 2 and Br(h2 → hh) = 60%, one can learn that the rate is

about (1.8 ∼ 2.2)pb, which is about 100 times larger than the SM prediction.

• Through a large Higgs self coupling [134]. In the SM, the triple self coupling of the

Higgs boson plays a minor role in contributing to the pair production due to its

relative smallness: CSM
hhh ≃ 32GeV, and its effect is to cancel the dominant top quark

contribution. While if the self coupling is sufficiently enhanced, the situation will

change and the self coupling contribution may become dominant. Given that h has

same couplings as the SM Higgs boson to top and bottom quarks, and meanwhile

neglecting the squark effect to the production, one can roughly estimate the pair
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Figure 11. Same as figure 10, but showing the spin-independent χ0
1-nucleon scattering cross section

as a function of the dark matter only for Type-I and Type-II samples.

production rate by [134]

σ(gg → h∗ → hh)(pb) ≃ (Chhh/SM − 2.5)2/1.52 × 0.019, (4.2)

where Chhh/SM is the normalized self coupling of the SM-like Higgs boson in λ-

SUSY. This estimation coincides in magnitude with our precise results presented in

table 2 for the benchmark points P1 and P2.

In the following, we define the normalized Higgs pair production rate by R = σ(pp →
hh)/(σLO

SM
(pp → hh)|mh=125GeV) ≃ σ(pp → hh)/(19 fb) for the convenience to present our

results, and use the same code as [132] to calculate the cross section of pp → hh in λ-SUSY.

In figure 10, we present the value of R for Type-I, Type-II and Type-III samples in left-

panel, middle panel and right panel respectively. In order to emphasize the resonance h2
contribution, we also calculate the process gg → h2 → hh separately, and present the ratio

σ(pp → h2 → hh)/σ(pp → hh) in the same figure. This figure indicates that the Higgs

pair production rate may get enhanced by more ten times either through the resonance h2
effect (corresponding to points with the ratio around one in the figure) or through the large

self coupling contribution (corresponding to points with the ratio significantly below one).

Especially, in some extreme cases we find that the pair production may get enhanced by

more than 100 times for the Type-II sample, which seems impossible in the MSSM [132].

Before we end our discussion, we’d like to point that the spin-independent cross section

for dark matter scattering off nucleon may be moderately large since the couplings of the

CP-even states hi with dark matter can be enhanced by a large λ [38–40]. In figure 11, we

show such a rate as a function of the dark matter mass. In calculating the cross section,

we use the formula presented in [135] by choosing a rather low fTs, fTs = 0.025, which

represents the strange quark component in nucleon. This figure indicates that given LUX

experiment with 300 live-days data, most of the Type-I samples will be excluded in case
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that no dark matter signal is observed. Furthermore, if the updated XENON1T does not

detect any signal of the dark matter, nearly all samples of λ-SUSY will be excluded. These

facts tell us that the dark matter direct experiments in parallel with collider experiment

such as the LHC can serve as a powerful tools in testing the framework of λ-SUSY.

5 Summary and conclusions

Since the first hint of the 125GeV Higgs-like particle appeared at the end of 2011, the

unnaturalness of the MSSM in predicting the Higgs mass and also the absence of SUSY

signal at the LHC have motivated more and more interests of the non-minimal realizations

of SUSY. This revived the λ-SUSY theory, which corresponds to the NMSSM with a large

λ around one. In the framework of the λ-SUSY, the Higgs mass can be around 125GeV

even without the large top-squark radiative correction, and meanwhile the sensitivity of the

weak scale to stop masses is reduced by a factor of (g/λ)2 in comparison with the MSSM,

which means that the lower bound on the stop mass imposed by the LHC direct searches

has a weaker implication on fine-tuning in this model than in the MSSM or the NMSSM

with a low λ. Due to these advantages, the λ-SUSY has been considered as a most natural

realization of SUSY [41–47].

In order to implement the constraints on the λ-SUSY in a better way, we consider the

Higgs data recently updated by the ATLAS and CMS collaborations, for which the con-

sistency of the two group results has been improved greatly. We also define two quantities

to measure the naturalness of the parameter points. After these preparations, we scan the

parameter space of the λ-SUSY by considering various constraints, then investigate the

features of its Higgs sector in physical parameter region. As is shown in this work, the

improvement of the two constraints is really necessary. For example, we find the values of

the Higgs χ2 obtained with the latest Higgs data are significantly reduced than before, and

the naturalness argument does play an important role in selecting the parameter space of

the λ-SUSY.

For the SM-like Higgs boson h, we have following conclusions:

• Current Higgs data still allow for a sizable singlet component in h, which at most

reaches 25%, while the non-SM doublet component is forbidden to be larger than 1%.

• Due the latest Higgs data, the normalized couplings such as Chγγ/SM , ChZZ/SM

and Cht̄t/SM are limited within 15% deviation from unity at 95% C.L.. Compared

with the similar fit results in 2012, the optimal values of the couplings in the new fit

are shifted significantly.

• Interestingly, the strength of the triple self coupling of h may get enhanced by a

factor over 10, and naturalness can limit such a possibility.

For the next-to-lightest CP-even Higgs boson h2, we find

• For mh2
≤ 500GeV, h2 in most cases is either highly non-SM doublet dominated or

highly singlet dominated. This feature enables us to express the couplings of h2 in a

simple analytic way.
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• For the non-SM double dominated h2, it may be as light as 200GeV, which seems

impossible in the MSSM. As for its coupling, we find |Cht̄t/SM | ≥ 0.2, and in optimal

case the normalized coupling is just slightly below 1. On the other hand, |Chb̄b/SM |
is usually larger than one with its maximum value reaching 6. As a result, the h2gg

coupling may be comparable with the SM hgg coupling for a low tanβ.

• For the singlet dominated h2, although it may be as light as 150GeV, its couplings

with SM fermions is usually rather weak, so is of less interest in phenomenology study.

• For either the doublet dominated h2 or the singlet dominated h2, the strength of the

h2hh interaction may be quite large. Consequently, h2 → hh can act as the dominant

decay channel of h2.

• Naturalness disfavors a h2 with mass at several TeV regardless its field components.

We also investigate the h pair production process, and we show three mechanisms

to enhance the rate greatly, i.e. by stop-induced box diagrams, by s-channel resonant h2
effect and by large self coupling of h. With these mechanisms, we conclude that the h pair

production rate in λ-SUSY may be enhanced by more than 100 times compared with its

SM prediction.

In summary, in this work we obtained two possible characteristic features of λ-SUSY

in the experimentally allowed parameter space: 1) the triple self coupling of the SM-like

Higgs boson may get enhanced by a factor over 10 in comparison with its SM prediction;

2) the pair production of the SM-like Higgs boson at the LHC may be two orders larger

than its SM prediction. These two features seems to be unachievable in the MSSM and in

the NMSSM with a low λ, and should be tested at the future LHC.
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