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1 Introduction

Some of the most fundamental processes at hadron colliders such as the LHC are medi-

ated at leading order (LO) in perturbation theory by 2 → 2 scattering processes of col-

ored particles — two prime examples within the Standard Model are dijet and top-quark

pair production. Fixed-order perturbation theory provides an obvious and conceptually

straightforward framework in which to calculate higher-order QCD corrections to the total

and differential cross sections for such processes, but it is often interesting or even necessary

to supplement the fixed-order calculations with certain classes of logarithmic corrections

to all orders in perturbation theory.

The factorization formulas underlying such resummations depend on the way in which

the observable is sensitive to soft and collinear emissions, and are thus in general different

for each particular differential cross section. Concrete examples are threshold resummation

for inclusive jet production [1–3], highly boosted top-quark pair production [4, 5], and

inclusive hadroproduction [6], as well as the resummations used for dijet event shapes in [7].

Relatively recently, the factorization of processes with two (or more) jets was also studied

by means of Soft Collinear Effective Theory (SCET) methods [8, 9]. However, a common

ingredient to all resummations for 2 → 2 processes are so-called “hard functions”, which
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account for virtual corrections to the underlying Born amplitudes. There is thus one such

hard function for each possible 2 → 2 partonic process involving massless quarks and gluons,

although all can be derived from those for qq̄ → QQ̄, qg → qg, and gg → gg scattering,

where q and Q are distinct quarks. The hard functions are related to the interference of

vector components of color-decomposed helicity amplitudes, and are matrices of varying

dimension for the different partonic scattering processes — 2× 2 for four-quark processes,

3×3 for qg → qg processes, and 9×9 for the four-gluon process. The next-to-leading order

(NLO) hard functions for such QCD processes were extracted in [10]; these are a necessary

ingredient for the resummation of any dijet hadronic process up to next-to-next-to-leading

logarithmic (NNLL) accuracy.

The goal of the current work is to build on previous results by presenting the complete

set of next-to-next-to-leading order (NNLO) hard functions. The main building blocks

needed in this task are the NNLO UV-renormalized, color-decomposed helicity amplitudes

for 2 → 2 massless QCD processes calculated in [11–15]. We turn these computations

into results for the hard functions by performing an IR renormalization procedure on the

color decomposed amplitudes, and then constructing the spin-averaged hard matrices by

interfering all possible combinations of the fully renormalized color-decomposed amplitudes.

Needless to say, the final results are quite lengthy, and are therefore given in electronic form

with the arXiv submission of this work. To facilitate use by other groups, we also provide

a Mathematica interface to the results.

The hard functions we calculate in the present work are a necessary ingredient for

pushing any resummed calculation of a dijet observable at hadron colliders to next-to-

next-to-next-to-leading logarithmic (NNNLL) order, as they provide the boundary terms

for the renormalization-group evolution equations to that order. However, especially in

cases where NNLO results are known, it is a frequent practice to include these boundary

terms on top of NNLL resummations to achieve “NNLL′+NNLO” accuracy,1 even in the

absence of the three-loop non-cusp and four-loop cusp anomalous dimensions needed for a

full NNNLL resummation. We thus anticipate that the results collected here will be useful

for practitioners of higher-order resummation in the near and distant future.

The organization of the paper is as follows: we describe our calculational procedure in

section 2, give results in section 3, and conclude in section 4.

2 Hard functions to NNLO: calculational procedure

The goal of this paper is to obtain the NNLO hard functions for all scattering processes

with two incoming and two outgoing partons in massless QCD. These processes can be

classified into groups containing four quarks, two quarks and two gluons, and four gluons.

1Here we use the nomenclature of, e.g., [16].
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Including all possible crossings, the four-quark processes are

q(p1) + q̄(p2) −→ Q(p3) + Q̄(p4) , (2.1)

q(p1) + Q̄(p2) −→ q(p3) + Q̄(p4) , (2.2)

q(p1) +Q(p2) −→ q(p3) +Q(p4) , (2.3)

q(p1) +Q(p2) −→ Q(p3) + q(p4) , (2.4)

q(p1) + q̄(p2) −→ q(p3) + q̄(p4) , (2.5)

q(p1) + q(p2) −→ q(p3) + q(p4) , (2.6)

where q and Q indicate quarks of different flavors. For scattering processes involving two

quarks and two gluons, we focus on the following three possibilities:

g(p1) + g(p2) −→ q(p3) + q̄(p4) , (2.7)

q(p1) + g(p2) −→ q(p3) + g(p4) , (2.8)

q(p1) + g(p2) −→ g(p3) + q(p4) . (2.9)

There is also a qq̄ → gg process, but with our definitions its hard function is the same

as (2.7) up to an overall factor (N2 − 1)2/N2 (where N = 3 is the number of colors)

which accounts for the color average over the incoming quarks rather than the incoming

gluons. Furthermore, one needs to consider processes analogous to (2.8), (2.9) containing

antiquarks, for which the hard functions are also identical to the corresponding processes

involving quarks. We therefore omit these from the discussion. Finally, we consider the

four-gluon scattering process

g(p1) + g(p2) −→ g(p3) + g(p4) . (2.10)

Here and in the following, we associate to the particle carrying momentum pi a helicity

index λi ∈ {+,−} and a color index ai, which is understood to be in the fundamental

representation of SU(3) if the particle is a quark, and in the adjoint representation if the

particle is a gluon. For use later on, we introduce the invariants

s = (p1 + p2)
2 , t = (p1 − p3)

2 , u = (p1 − p4)
2 , and r = −t/s . (2.11)

Momentum conservation implies that the Mandelstam variables satisfy s + t + u = 0,

which we will use to write our end results as functions of s, the ’t Hooft scale µ, and the

dimensionless ratio r.

A unique hard function is associated to each of the processes listed above. These can

all be extracted using the two-loop helicity amplitudes calculated in [11–15]. To describe

the calculational procedure that goes into doing this, we first introduce some aspects of the

color-space formalism of [17], which allows us to treat the different cases with a uniform

notation. In this formalism the UV-renormalized helicity amplitudes are considered vectors

in color space, whose perturbative expansions we define as

|Mh(ǫ, r, s)〉 = 4παs

[

|M(0)
h 〉+ αs

2π
|M(1)

h 〉+
(αs

2π

)2
|M(2)

h 〉+O(α3
s)

]

(2.12)

= 4παs

[

|M̂(0)
h 〉+ αs

4π
|M̂(1)

h 〉+
(αs

4π

)2
|M̂(2)

h 〉+O(α3
s)

]

. (2.13)
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Here ǫ = (4−d)/2 is the dimensional regulator and the subscript h = (λ1, λ2, λ3, λ4) labels

the helicity amplitudes. Moreover, we have suppressed the arguments of the expansion

coefficients on the right-hand side.2 Finally, in order to follow SCET conventions for the

perturbative expansions of the hard functions in powers of αs/4π below, we have defined

a set of coefficients |M̂(L)
h 〉 ≡ 2L|M(L)

h 〉.
The amplitudes can be further decomposed in a particular color-space basis as

|M(L)
h 〉 =

n
∑

I=1

M(L)
hI |CI〉 , (2.14)

where |CI〉 are basis vectors. The basis includes two vectors in processes involving four

quarks and three vectors in processes involving two quarks and two gluons. For the four-

gluon scattering process we will use the redundant basis involving nine vectors employed

in [15].

The helicity amplitudes contain IR poles in the dimensional regulator ǫ. We can

subtract these poles in the MS scheme using the renormalization procedure described in [18,

19]. We thus define renormalized amplitudes according to

|Mren
h (r, s, µ)〉 = lim

ǫ→0
Z−1 (ǫ, r, s, µ) |Mh (ǫ, r, s)〉 . (2.15)

The exact form of the renormalization factor Z was determined up to two-loops by means of

SCET methods in [18, 19]; for now we just note that it is the same for all helicity amplitudes.

For reasons that will become apparent later on, we define the perturbative expansion of

the renormalization factor as (with a slight abuse of notation inherited from [20])

Z−1 (ǫ, r, s, µ) = 1+
αs

2π
Z(1) (ǫ) +

(αs

2π

)2
Z(2) (ǫ) +O

(

α3
s

)

, (2.16)

where Z(L)(ǫ) ≡ Z(L)(ǫ, r, s, µ). We can then evaluate (2.15) order-by-order in perturbation

theory, defining renormalized amplitudes and expansion coefficients analogous to (2.12)

and (2.14).

With this notation it is now a simple matter to write expressions for the hard functions

to NNLO. We first define expansion coefficients through

H(r, s, µ) =
16π2α2

s

NR

[

H(0) +
αs

4π
H(1) +

(αs

4π

)2
H(2) +O

(

α3
s

)

]

, (2.17)

where H(L)(r, s, µ) ≡ H(L). The factor NR takes into account the channel-dependent

factors related to averaging over initial state colors; it is defined as NR = N2 for initial

states with two quarks, NR = N(N2 − 1) for quark-gluon initial states, and NR = (N2 −
1)2 for initial states with two gluons. In terms of the color-decomposed, IR and UV

renormalized helicity amplitudes perturbatively expanded as in (2.13), the hard function

2These coefficients depend on on r, s, and the renormalization scale µr, although the all-order amplitude

on the left-hand side is independent of µr.
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matrix elements read

H
(0)
IJ =

1

4

∑

h

(

M̂(0)
hI

)∗

M̂(0)
hJ ,

H
(1)
IJ =

1

4

∑

h

[(

M̂(0)
hI

)∗

M̂(1)
hJ +

(

M̂(1)
hI

)∗

M̂(0)
hJ

]

,

H
(2)
IJ =

1

4

∑

h

[(

M̂(1)
hI

)∗

M̂(1)
hJ +

(

M̂(0)
hI

)∗

M̂(2)
hJ +

(

M̂(2)
hI

)∗

M̂(0)
hJ

]

. (2.18)

The factor 1/4 in (2.18) is related to the average over the spin of the two incoming partons.

The normalization of the expansion coefficients above (but not that of the hard function

itself) then coincides with the mt → 0 limit of the corresponding results for the production

of massive top pairs [21]. The hard functions are 2 × 2 matrices for scattering processes

involving four quarks and 3× 3 matrices for processes involving two quarks and two gluon.

The hard functions for the process involving four gluons are 9× 9 matrices with our choice

of color basis. All of the matrices are Hermitian.

With our definitions, the hard function is related to the square of the renormalized

amplitude as

1

4NR

∑

h

〈Mren
h (r, s, µ) |Mren

h (r, s, µ)〉 = Tr
[

H (r, s, µ) s̃(0)
]

. (2.19)

The matrix s̃(0) is a “tree-level soft function”, whose elements are defined as

s̃
(0)
IJ = 〈CI |CJ〉 . (2.20)

The color bases for the various processes we consider are specified in the next section,

along with the basis-dependent results for the soft functions (2.20). Furthermore, the hard

function is related to the L-loop corrections to the double differential partonic cross section

in s and r by

d2σ̂(L)

dsdr
=

α2
s

NR

(αs

4π

)L π

s2
Tr
[

H(L) (r, s, µ) s̃(0)
]

. (2.21)

With this conceptual framework in place, we now address the more practical issue of

how to extract the hard functions from the NNLO helicity amplitudes calculated in [11–15].

In all cases, we have used the helicity amplitudes evaluated in the ’t Hooft-Veltman (HV)

scheme. The most straightforward way to use the information in those papers would be

to construct the UV-renormalized, color decomposed helicity amplitudes, perform the IR

renormalization procedure (2.15), and then evaluate the matrix elements (2.18). We have

indeed used this straightforward (and tedious) method in obtaining our results.

A slightly more streamlined method, detailed recently in [20], uses that [11–15] do in

fact quote results for IR finite amplitudes, but in different renormalization schemes based on

the structure of IR poles written down in [22]. Therefore, constructing the MS subtracted

amplitudes (2.15) from those works is just a matter of switching between renormalization

schemes. To understand how to perform this switch, we first consider the typical split of
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UV-renormalized helicity amplitudes into pole and finite remainder terms used in [11–15].

As a concrete example, the one-loop helicity amplitudes calculated in [12] are written as

(see (4.10) of that work)

|M(1)
h 〉 = I(1)(ǫ)|M(0)

h 〉+ |M(1),fin
h 〉 , (2.22)

while the two-loop helicity amplitudes are written as (see (4.11) of that work)

|M(2)
h 〉 = I(2)(ǫ)|M(0)

h 〉+ I(1)(ǫ)|M(1)
h 〉+ |M(2),fin

h 〉 . (2.23)

The IR poles are contained in the color-space operator I [22], whose perturbative expansion

is defined as

I(ǫ, r, s, µ) = 1+
αs

2π
I(1)(ǫ) +

(αs

2π

)2
I(2)(ǫ) +O

(

α3
s

)

(2.24)

where I(L)(ǫ) ≡ I(L)(ǫ, r, s, µ). This object is analogous, but not identical, to the renor-

malization factor Z in (2.15). The difference is that Z contains only pole terms while I

contains both pole terms and some finite terms. Moreover, the 1/ǫ pole term and finite

parts of the two-loop coefficient I(2) were not fully specified in [22], but are instead param-

eterized in a function H
(2)
R.S. defined in equation (19) of that work. The authors of [11–15]

provide explicit expressions for this function in their calculations, but in such a way that

the finite parts of I(2) are not the same in each paper. For these reasons, the finite re-

mainders quoted in [11–15] differ from the MS renormalized amplitudes (2.15). Instead,

they can be viewed as renormalized amplitudes in a scheme defined by equations (2.22)

and (2.23) above, which differs from calculation to calculation according to the exact choice

of H
(2)
R.S.. To convert these finite-remainders to the MS scheme, one can insert (2.22), (2.23)

into (2.15) to find

|M(1),ren
h 〉 =|M(1),fin

h 〉+
(

I(1)(ǫ) +Z(1)(ǫ)
)

|M(0)
h 〉 ,

|M(2),ren
h 〉 =|M(2),fin

h 〉+
(

I(1)(ǫ) +Z(1)(ǫ)
)

|M(1),fin
h 〉

+
[

I(2)(ǫ) +
(

I(1)(ǫ) +Z(1)(ǫ)
)

I(1)(ǫ) +Z(2)(ǫ)
]

|M(0)
h 〉 . (2.25)

One can then recast this equation into an explicitly IR finite form. As explained above,

the result depends on the choice of the single pole term in I(2). In the case where this term

is identical to that in Z, i.e. adds no extra finite parts to I(2), one can write the result in

terms of ǫ independent operators Ci (i = 0, 1) and various known anomalous dimensions

as in [20]

I(1)(ǫ)+Z(1)(ǫ) =C0 ,

I(2)(ǫ)+
(

I(1)(ǫ)+Z(1)(ǫ)
)

I(1)(ǫ) +Z(2)(ǫ) =
1

2
C
2
0 +

γcusp1

8

(

C0 +
π2

128
Γ′
0

)

+
β0
2

(

C1 +
π2

32
Γ0 +

7ζ3
96

Γ′
0

)

− 1

8
[Γ0,C1] ,

(2.26)
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where

Γ0 =
∑

(i,j)

Ti · Tj

2
γcusp0 ln

µ2

−sij
+
∑

i

γi0 ,

C0 =
∑

(i,j)

Ti · Tj

16

[

γcusp0 ln2
µ2

−sij
− 4

γi0
Ci

ln
µ2

−sij

]

− π2

96
Γ′
0 ,

C1 =
∑

(i,j)

Ti · Tj

48

[

γcusp0 ln3
µ2

−sij
− 6

γi0
Ci

ln2
µ2

−sij

]

− π2

48
Γ0 − ζ3

24
Γ′
0 . (2.27)

The sums run over the unordered tuples (i, j) of distinct partons, Ti is the color generator

associated with the i-th parton in the scattering amplitude, and sij ≡ 2σijpi ·pj+ i0, where

the sign factor σij = +1 if the two parton momenta are both incoming or outgoing, and

σij = −1 otherwise. The anomalous dimensions appearing in (2.26), (2.27) are collected in

many places, for example in appendix A of [20]; an explicit expression for the commutator

[Γ0,C1] in terms of Ti, logarithms and anomalous dimensions can be found in the same

appendix. We emphasize that in [11–15] the single pole term in H
(2)
R.S. is multiplied by

factors of the form (−µ2/sij)
2ǫ, which yield additional finite contributions to I(2) and thus

to the right-hand side of the second line of (2.26) upon expansion in ǫ. We do not list these

explicitly, as they differ between [11–15], but we do take them into account when extracting

MS-renormalized helicity amplitudes from those references using (2.25) and (2.26).

We have calculated the MS-renormalized helicity amplitudes using both methods de-

scribed above, and checked that they agree. We then used these amplitudes to construct

the hard functions through (2.18). We end this section by describing several cross-checks

we have performed on our channel and basis-dependent results, which we give in the next

section. First, for the qq̄ → QQ̄ and gg → qq̄ channels, we verified that the trace of func-

tions given in (2.19) is consistent with the NNLO results derived in [23]. In turn, the results

in the latter reference were tested against the squared NLO and NNLO matrix elements

for the processes in (2.1), (2.7), which can be found in [24–26]. For the gg → gg channel,

on the other hand, we have checked (2.19) against the UV-renormalized squared matrix

elements given in [27, 28]. In order to carry out this last comparison, it was necessary to

renormalized away the IR poles from the squared amplitudes in [27, 28], this was done by

employing once more the IR renormalization method of [18, 19].

Second, the hard functions for the channels in (2.2), (2.3), (2.4) were assembled not

only by starting from the appropriate amplitudes obtained from [12], but also by applying

crossing symmetries to the amplitudes for the process in (2.1). Similarly, the hard functions

for the processes in (2.8), (2.9) were also obtained a second time from the amplitudes for

the process in (2.7) by applying crossing symmetries.

Third, we have checked that the hard functions satisfy the renormalization-group equa-

tions implied by (2.15). These take the form

d

d lnµ
H(r, s, µ) = Γ(r, s, µ)H(r, s, µ) +H(r, s, µ)Γ†(r, s, µ) . (2.28)

The general form of the anomalous dimension operator Γ in the case of massless scattering

amplitudes is exactly known up to two loops [18, 19]. In those papers it is also conjectured
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that Γ involves only color dipoles at all orders. The n-th order term in the expansion of Γ

can be obtained by replacing γa0 → γan (a ∈ {cusp, i}) in (2.27). We give explicit, channel

and basis dependent results for the anomalous dimension in the next section.

As a byproduct of our calculation we also evaluated the NLO hard functions, which

were previously calculated in [10]. We find agreement with the results in that work, after

we account for differences in notation.3

3 Hard functions to NNLO: results

We now present our results for the hard functions. We split the discussion into three

subsections for the four-quark, two quark plus two gluon, and four-gluon scattering, which

in turn are subdivided according to momentum crossings. In each case we define the

channel-dependent color basis in which the hard function is calculated, and give analytic

results for the tree-level hard and soft functions as well as the anomalous dimension Γ in

that basis. The color bases are defined by projections of the basis vectors onto the arbitrary

vector |{a}〉 ≡ |a1, a2, a3, a4〉, where ai represents the color index of the parton i (which can

be either in the fundamental or adjoint representation, depending on the process). These

vectors satisfy the relation

〈{a}|{b}〉 = δa1b1δa2b2δa3b3δa4b4 . (3.1)

The action of the color operators Ti on the vectors |{a}〉, which is needed to construct the

basis-dependent expressions, is discussed in many references, see for example section 3.2

in [21].

The main results of this work are the NNLO hard functions obtained through the last

line of (2.18). The analytic results for these functions would fill about 100 pages, were

they printed out explicitly. As by now customary in such situations, we instead include

the results in electronic format with the arXiv submission of this work. All of the hard

functions are stored in Mathematica input files which can be loaded in the accompanying

Mathematica notebook. In the latter file, a simple function allows the user to obtain

numerical values for the hard functions for the processes listed in (2.1)–(2.10) once the

desired perturbative order (LO, NLO, or NNLO) and the values of r, s, µ and Nl (the

number of fermions) are specified. As a reference for other groups which might desire to

carry out this calculation, we give explicit numerical results for the NLO and NNLO hard

functions at a specific benchmark point in the subsections that follow. In all cases we use

N = 3, Nl = 5, r =

√
5− 1

2
,

√
s = 2µ. (3.2)

3Equation (55) in [10] defines a real hard function in the channels with two quarks and two gluons, while

we define Hermitian hard functions with complex off diagonal terms. Furthermore, one needs to be careful

when applying the crossing relations listed in table 2 of [10] in cases where fermions are switched between

the initial and final state, as this necessitates extra minus signs. Finally, there is a minor typo in table 5

of [10], which is related to the four-gluon channel: the color factors listed in the next to the last column of

that table apply to the helicities labeled 7 and 8, while the ones listed in the last column of the table apply

to the helicities labeled by the numbers 9–16.
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3.1 Four-quark scattering

Here we summarize results for the four-quark scattering processes in (2.1)–(2.6). In all cases

we use singlet-octet type color bases defined below, for which the tree-level soft function is4

s̃(0) =

(

N2 0

0 CFN
2

)

, (3.3)

where CF = (N2−1)/(2N). Channel dependent results for the hard functions and anoma-

lous dimensions are gathered in the subsections below.

3.1.1 q(p1) + q̄(p2) → Q(p3) + Q̄(p4)

The color basis which we employ to describe the four-quark process in (2.1) is

C1 ≡ 〈{a}|C1〉 = δa1a2δa3a4 , C2 ≡ 〈{a}|C2〉 = tca2a1t
c
a3a4

. (3.4)

with this choice, the tree-level hard function is

H(0) =
(

1− 2r + 2r2
)

(

0 0

0 2

)

. (3.5)

We also provide numerical values of the NLO and NNLO hard functions at the benchmark

point (3.2):

H(1) =

(

0 −0.139210− i 0.192224

−0.139210 + i 0.192224 2.51146

)

, (3.6)

H(2) =

(

7.16744 −22.1589− i 70.2433

−22.1589 + i 70.2433 380.359

)

. (3.7)

The anomalous dimension Γ in this basis is

Γ =

[

2CFγcusp (αs)

(

ln
s

µ2
− iπ

)

+ 4γq (αs)

]

1

+Nγcusp (αs) (ln r + iπ)

(

0 0

0 1

)

+ 2γcusp (αs) ln

(

r

1− r

)

(

0 CF

2N

1 − 1
N

)

. (3.8)

The anomalous dimensions γcusp and γq have an expansion in powers of a ≡ αs/(4π) of the

form γ =
∑

i a
iγi. The coefficients of the expansions up to NNLO are collected in many

sources, for example appendix A in [20].

4The soft function in (3.3) differs by an overall factor N from the one some of us employed in previous

work involving four quark partonic processes (see for example [21]). This is due to the definition of s̃(0)

in (2.20), which differs slightly from the one employed in previous papers. Analogous considerations apply

to the soft function for the channels involving two gluons, which can be found in (3.20).
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3.1.2 q(p1) + Q̄(p2) → q(p3) + Q̄(p4)

The color basis which we employ to describe the four-quark process in (2.2) is the same

one introduced in (3.4). The tree-level hard matrix is

H(0) =
2− 2r + r2

N2r2

(

(N2−1)2

2N2 −N2−1
N

−N2−1
N

2

)

. (3.9)

The NLO and NNLO matrices at the benchmark point (3.2) are

H(1) =

(

71.4641 −47.5473− i 13.8859

−47.5473 + i 13.8859 31.1224

)

,

H(2) =

(

2231.12 −1575.43− i 608.692

−1575.43 + i 608.692 1325.99

)

, (3.10)

and the anomalous dimension Γ in this basis is the same as (3.8).

3.1.3 q(p1) + Q(p2) → q(p3) + Q(p4)

The color basis which we employ to describe the four-quark process in (2.3) is

C1 ≡ 〈{a}|C1〉 = δa3a2δa4a1 , C2 ≡ 〈{a}|C2〉 = tca3a2t
c
a4a1

. (3.11)

In this channel, the tree-level hard matrix is identical to the one in (3.9). The NLO and

NNLO matrices at the benchmark point (3.2) are

H(1) =

(

58.9143 −50.2365 + i 13.8859

−50.2365− i 13.8859 42.2155

)

,

H(2) =

(

2083.37 −1350.52 + i 209.622

−1350.52− i 209.622 1071.72

)

, (3.12)

and the anomalous dimension Γ in this basis is

Γ =

[

2CFγcusp (αs)

(

ln
s

µ2
− iπ

)

+ 4γq (αs)

]

1

+ γcusp (αs) (ln r + iπ)

(

2CF
CF

N

2 N2−3
N

)

+ γcusp (αs) ln

(

r

1− r

)

(

−2CF 0

0 1
N

)

. (3.13)

3.1.4 q(p1) + Q(p2) → Q(p3) + q(p4)

The color basis employed for the process in (2.4) is the one we wrote in (3.11). The LO

hard function in this channel is

H(0) =

(

1− 2

1− r
+

2

(1− r)2

)

(

0 0

0 2

)

. (3.14)
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The NLO and NNLO matrices at the benchmark point (3.2) are

H(1) =

(

0 −14.8225− i 15.5573

−14.8225 + i 15.5573 1086.44

)

,

H(2) =

(

36.6860 538.071 + i 2019.16

538.071− i 2019.16 43819.6

)

. (3.15)

The anomalous dimension Γ in this basis is the same as (3.13).

3.1.5 q(p1) + q̄(p2) → q(p3) + q̄(p4)

We consider here the scattering process in (2.5), where we employ the color basis in (3.4).

The tree-level hard matrix is in this case given by

H(0) =
(N2 − 1)

N3r2

(

(N2−1)
2N [2− r(2− r)] −r

(

N(r − 1)2 + r − 2
)

− 2

−r
(

N(r − 1)2 + r − 2
)

− 2
N{2r[N2r(2(r−1)r+1)+2N(r−1)2+r−2]+4}

N2−1

)

.

(3.16)

The NLO and NNLO matrices at the benchmark point (3.2) are

H(1) =

(

71.9130 −54.4697− i 14.8627

−54.4697 + i 14.8627 45.2964

)

,

H(2) =

(

2214.83 −1745.69− i 590.364

−1745.69 + i 590.364 2303.46

)

, (3.17)

and the anomalous dimension Γ in this basis is the same as (3.8).

3.1.6 q(p1) + q(p2) → q(p3) + q(p4)

The color basis which we employ in the process in (2.6) is the one in (3.11). The tree-level

hard matrix is

H(0) =
(N2 − 1)

N3r2





(N2−1)
2N [2− r(2− r)] 2−r[N+(r−3)r+4]

r−1
2−r[N+(r−3)r+4]

r−1

N{2r[N2(r3+r)+2N(r−1)+(r−2)((r−2)r+3)]+4}
(N2−1)(1−r)2



 .

(3.18)

The NLO and NNLO matrices at the benchmark point (3.2) are

H(1) =

(

50.4474 126.555 + i 2.12346

126.555− i 2.12346 797.387

)

,

H(2) =

(

2106.09 5787.25 + i 2270.79

5787.25− i 2270.79 35362.4

)

, (3.19)

and the anomalous dimension Γ in this basis is the same as (3.13).
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3.2 Two-quark two-gluon scattering

We now turn to the two-quark two-gluon processes in (2.7)–(2.9). As with the four-quark

processes, we choose color bases for the three processes such that the tree-level soft function

is the same for each, and reads

s̃(0) = V







N 0 0

0 N
2 0

0 0 N2−4
2N






, (3.20)

where we introduced the quantity V ≡ N2 − 1. Channel dependent results for the hard

functions and anomalous dimensions are gathered in the subsections below.

3.2.1 g(p1) + g(p2) → q(p3) + q̄(p4)

The quark-antiquark pair production in the gluon fusion channel, (2.7), is studied by

employing the color basis

C1 ≡ 〈{a}|C1〉 = δa1a2δa3a4 , C2 ≡ 〈{a}|C2〉 = ifa1a2ctca3a4 ,

C3 ≡ 〈{a}|C3〉 = da1a2ctca3a4 .

(3.21)

With this basis, the tree-level hard matrix becomes

H(0) =











1
N2

(

1
2r +

1
2(1−r) − 1

)

1
N

(

1
2r − 1

2(1−r) + 2r − 1
)

1
N

(

1
2r +

1
2(1−r) − 1

)

1
N

(

1
2r − 1

2(1−r) + 2r − 1
)

1
2r +

1
2(1−r) + 4r − 4r2 − 3 1

2r − 1
2(1−r) + 2r − 1

1
N

(

1
2r +

1
2(1−r) − 1

)

1
2r − 1

2(1−r) + 2r − 1 1
2r +

1
2(1−r) − 1











.

(3.22)

The NLO and NNLO matrices at the benchmark point (3.2) are

H(1) =







2.73994 −1.90813 + i 0.304853 8.37732− i 2.53415

−1.90813− i 0.304853 1.32846 −5.83592 + i 0.880136

8.37732 + i 2.53415 −5.83592− i 0.880136 25.6045






,

H(2) =







108.917 −53.1488− i 144.053 253.200 + i 363.288

−53.1488 + i 144.053 52.2319 −106.493 + i 180.767

253.200− i 363.288 −106.493− i 180.767 597.058






, (3.23)

and the anomalous dimension Γ in this basis is

Γ =

[

(N + CF ) γcusp (αs)

(

ln
s

µ2
− iπ

)

+ 2γg (αs) + 2γq (αs)

]

1

+Nγcusp (αs) (ln r + iπ)







0 0 0

0 1 0

0 0 1






+ γcusp (αs) ln

(

r

1− r

)







0 1 0

2 −N
2

N2−4
2N

0 N
2 −N

2






. (3.24)

The anomalous dimension γg can be expanded in powers of a = αs/(4π) as γ
g =

∑

i a
iγgi .

The coefficients of the expansion up to NNLO can be found for example in appendix A

in [20].
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3.2.2 q(p1) + g(p2) −→ q(p3) + g(p4)

The color basis that we adopt in order to describe the process in (2.8) is

C1 ≡ 〈{a}|C1〉 = δa4a2δa3a1 , C2 ≡ 〈{a}|C2〉 = ifa4a2ctca3a1 ,

C3 ≡ 〈{a}|C3〉 = da4a2ctca3a1 .

(3.25)

The tree-level hard function is

H(0) =











1
2N2

(

1− r + 1
1−r

)

1
N

(

3
2 − 2

r
− 1

2(1−r) − r
2

)

1
2N

(

1− r + 1
1−r

)

1
N

(

3
2 − 2

r
− 1

2(1−r) − r
2

)

5
2 − r

2 + 4
r2

− 4
r
+ 1

2(1−r)
3
2 − 2

r
− 1

2(1−r) − r
2

1
2N

(

1− r + 1
1−r

)

3
2 − 2

r
− 1

2(1−r) − r
2

1
2

(

1− r + 1
1−r

)











, (3.26)

while the NLO and NNLO matrices at the benchmark point (3.2) are

H(1) =







−0.960743 −17.4992 + i 23.7762 2.64035− i 6.99918

−17.4992− i 23.7762 278.010 −89.5442− i 24.3766

2.64035 + i 6.99918 −89.5442 + i 24.3766 24.4888






,

H(2) =







466.834 −1614.79 + i 37.4939 770.946 + i 328.609

−1614.79− i 37.4939 9379.39 −3080.95− i 2025.95

770.946− i 328.609 −3080.95 + i 2025.95 1148.26






, (3.27)

The anomalous dimension Γ in this basis is

Γ =

[

(N + CF ) γcusp (αs)

(

ln
s

µ2
− iπ

)

+ 2γg (αs) + 2γq (αs)

]

1

+ γcusp (αs) (ln r + iπ)







CF +N −1 0

−2 N − 1
2N

4−N2

2N

0 −N
2 N − 1

2N







+ γcusp (αs) ln

(

r

1− r

)







0 1 0

2 −N
2

N2−4
2N

0 N
2 −N

2






. (3.28)

3.2.3 q(p1) + g(p2) → g(p3) + q(p4)

The color basis employed in order to describe the scattering process in (2.9) is

C1 ≡ 〈{a}|C1〉 = δa3a2δa4a1 , C2 ≡ 〈{a}|C2〉 = ifa3a2ctca4a1 ,

C3 ≡ 〈{a}|C3〉 = da2a3ctca4a1 .

(3.29)

The tree-level hard function is

H(0) =









1
2N2

(

1
r
+ r
)

1
N

(

1− 1
2r − 2

1−r
+ r

2

)

1
2N

(

1
r
+ r
)

1
N

(

1− 1
2r − 2

1−r
+ r

2

)

2− 4
1−r

+ 1
2r +

4
(1−r)2

+ r
2 1− 1

2r − 2
1−r

+ r
2

1
2N

(

1
r
+ r
)

1− 1
2r − 2

1−r
+ r

2
1
2

(

1
r
+ r
)









. (3.30)
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As expected, the matrix above can be obtained from (3.26) by replacing r by 1 − r. The

NLO and NNLO matrices at the benchmark point (3.2) are

H(1) =







−2.78334 −17.7615 + i 29.2185 −2.76521− i 6.64060

−17.7615− i 29.2185 900.938 −124.257− i 3.26543

−2.76521 + i 6.64060 −124.257 + i 3.26543 8.45881






,

H(2) =







568.421 −3153.14− i 6008.72 786.213 + i 1640.19

−3153.14 + i 6008.72 34356.2 −4658.03− i 1019.52

786.213− i 1640.19 −4658.03 + i 1019.52 742.940






. (3.31)

and the anomalous dimension Γ in this basis can be obtained by replacing r → 1 − r

in (3.28).

3.3 Four-gluon scattering

For the four-gluon scattering case (2.10) we adopt the color basis used in [15], namely

C1 ≡ 〈{a}|C1〉 = 4Tr [ta1ta2ta3ta4 ] ,

C2 ≡ 〈{a}|C2〉 = 4Tr [ta1ta2ta4ta3 ] ,

C3 ≡ 〈{a}|C3〉 = 4Tr [ta1ta4ta2ta3 ] ,

C4 ≡ 〈{a}|C4〉 = 4Tr [ta1ta3ta2ta4 ] ,

C5 ≡ 〈{a}|C5〉 = 4Tr [ta1ta3ta4ta2 ] ,

C6 ≡ 〈{a}|C6〉 = 4Tr [ta1ta4ta3ta2 ] ,

C7 ≡ 〈{a}|C7〉 = 4Tr [ta1ta2 ] Tr [ta3ta4 ] ,

C8 ≡ 〈{a}|C8〉 = 4Tr [ta1ta3 ] Tr [ta2ta4 ] ,

C9 ≡ 〈{a}|C9〉 = 4Tr [ta1ta4 ] Tr [ta2ta3 ] . (3.32)

The color basis in (3.32) is over-complete. The factor of 4 in the r.h.s. of (3.32) arises

from the fact that the authors of [15] define their color basis by employing color matrices

normalized as Tr[T aT b] = δab, while we re-express their basis in terms of color matrices

with the standard normalization Tr[tatb] = δab/2.

The tree-level hard function for the process in (2.10) is

H(0) =

























a b c c b a

b d e e d b

c e f f e c 03×6

c e f f e c

b d e e d b

a b c c b a

06×3 03×3

























, (3.33)

– 14 –



J
H
E
P
1
2
(
2
0
1
4
)
0
0
5

where the elements a, · · · , f are

a =
1

r2
− 2

r
− 2r + r2 + 3 ,

b =
1

r
+

1

1− r
+ r − r2 − 2 ,

c =
1

r
− 1

r2
− 1

1− r
+ r − 1 ,

d =
1

(1− r)2
− 2

1− r
+ r2 + 2 ,

e = −1

r
− 1

(1− r)2
+

1

1− r
− r ,

f = 1 +
1

r2
+

1

(1− r)2
. (3.34)

The NLO hard function for the four-gluon scattering process of (2.10) depends on nine

independent functions and has the following structure:

H(1) =

































a1 b1 c1 c1 b1 a1 g1 g1 g1
b∗1 d1 e1 e1 d1 b∗1 h1 h1 h1
c∗1 e∗1 f1 f1 e∗1 c∗1 i1 i1 i1
c∗1 e∗1 f1 f1 e∗1 c∗1 i1 i1 i1
b∗1 d1 e1 e1 d1 b∗1 h1 h1 h1
a1 b1 c1 c1 b1 a1 g1 g1 g1
g∗1 h∗1 i∗1 i∗1 h∗1 g∗1 0 0 0

g∗1 h∗1 i∗1 i∗1 h∗1 g∗1 0 0 0

g∗1 h∗1 i∗1 i∗1 h∗1 g∗1 0 0 0

































, (3.35)

where the non-zero elements at the benchmark point (3.2) are

a1 = 68.8613 , b1 = 111.212 + i 18.1565 , c1 = −158.807− i 55.4626 ,

d1 = 179.607 , e1 = −256.410− i 42.2061 , f1 = 359.541 ,

g1 = 24.0246− i 22.3654 , h1 = 38.8726− i 36.1879 , i1 = −62.8973 + i 58.5533 .

(3.36)

The NNLO matrix has the structure

H(2) =

































a2 b2 c2 c2 b2 a2 g2 j2 m2

b∗2 d2 e2 e2 d2 b∗2 h2 k2 n2

c∗2 e∗2 f2 f2 e∗2 c∗2 i2 l2 o2
c∗2 e∗2 f2 f2 e∗2 c∗2 i2 l2 o2
b∗2 d2 e2 e2 d2 b∗2 h2 k2 n2

a2 b2 c2 c2 b2 a2 g2 j2 m2

g∗2 h∗2 i∗2 i∗2 h∗2 g∗2 p2 p2 p2
j∗2 k∗2 l∗2 l∗2 k∗2 j∗2 p2 p2 p2
m∗

2 n∗
2 o∗2 o∗2 n∗

2 m∗
2 p2 p2 p2

































, (3.37)
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and the value of the 16 independent elements at the benchmark point (3.2) is

a2 = 2106.67 , b2 = 3196.18+i 3422.95 , c2 =−4797.70−i 4902.02 ,

d2 = 5188.15 , e2 =−8129.75+i 692.435 , f2 = 13732.3 ,

g2 = 1930.67−i 5041.68 , h2 = 2747.40−i 8529.46 , i2 =−3470.79+i 13852.3 ,

j2 =−9.86728+i 3871.76 , k2 =−392.448+i 5892.80 , l2 = 1609.60−i 9483.43 ,

m2 = 148.769−i 202.044 , n2 =−135.769−i 698.760 , o2 = 1194.28+i 1181.94 ,

p2 = 1041.49 . (3.38)

The anomalous dimension Γ in this basis is

Γ =

[

2Nγcusp (αs)

(

ln
s

µ2
− iπ

)

+ 4γg (αs)

]

1

+ γcusp (αs) (ln r + iπ)M1 + γcusp (αs) ln

(

r

1− r

)

M2 , (3.39)

where the matrices M1 and M2 are

M1 =

































N 0 0 0 0 0 0 0 −1

0 N 0 0 0 0 0 −1 0

0 0 2N 0 0 0 0 1 1

0 0 0 2N 0 0 0 1 1

0 0 0 0 N 0 0 −1 0

0 0 0 0 0 N 0 0 −1

−1 −1 0 0 −1 −1 0 0 0

0 0 1 1 0 0 0 2N 0

0 0 1 1 0 0 0 0 2N

































,

M2 =

































0 0 0 0 0 0 1 0 1

0 −N 0 0 0 0 −1 0 0

0 0 −N 0 0 0 0 0 −1

0 0 0 −N 0 0 0 0 −1

0 0 0 0 −N 0 −1 0 0

0 0 0 0 0 0 1 0 1

1 0 0 0 0 1 0 0 0

0 −1 −1 −1 −1 0 0 −2N 0

1 0 0 0 0 1 0 0 0

































. (3.40)
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Finally, the tree-level soft function is

s̃(0) =
V

N2

































C1 C2 C2 C2 C2 C3 NV −N NV

C2 C1 C2 C2 C3 C2 NV NV −N

C2 C2 C1 C3 C2 C2 −N NV NV

C2 C2 C3 C1 C2 C2 −N NV NV

C2 C3 C2 C2 C1 C2 NV NV −N

C3 C2 C2 C2 C2 C1 NV −N NV

NV NV −N −N NV NV N2V N2 N2

−N NV NV NV NV −N N2 N2V N2

NV −N NV NV −N NV N2 N2 N2V

































, (3.41)

with C1 = N4 − 3N2 + 3, C2 = 3−N2, and C3 = 3 +N2.

4 Conclusions

We have given results for the spin-averaged hard functions for all 2 → 2 scattering processes

in massless QCD up to NNLO in the strong coupling constant. These hard functions are a

necessary ingredient for resummations in processes mediated by 2 → 2 scatterings at Born

level, typical examples being dijet and boosted top production.

We extracted our results from NNLO calculations of UV-renormalized helicity ampli-

tudes presented in [11–15], using a calculational procedure explained in section 2. The main

idea is to interpret the IR poles in the color-decomposed helicity amplitudes as the UV

poles of effective-theory operators, and to subtract them in the MS scheme. The hard func-

tions defined through this procedure depend on the basis used in the color decomposition,

which we specified in section 3. In all cases we performed several non-trivial cross-checks

on our (lengthy) results for the matrix valued, basis-dependent hard functions, which are

2× 2 matrices for four-quark processes, 3× 3 matrices for two-quark two-gluon processes,

and 9×9 matrices for the four-gluon process. We have listed their explicit numerical values

at a benchmark point in section 3, which will facilitate future cross-checks. Moreover, we

have provided analytic results in Mathematica form with the electronic submission of this

paper to ensure their easy accessibility. Our results will thus be useful for practitioners of

higher-order resummations in the near and distant future.
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