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1 Introduction

In recent years a major progress has been made in the understanding of large N three

dimensional Chern-Simons theory coupled to matter in the fundamental representa-

tion [1]–[14]. Interesting exact results have been derived without the aid of supersymmetry.

Among these achievements is the determination of the exact planar free energy of the the-

ory at finite temperature on R2 as a function of the ’t Hooft coupling λ = N
K , where K

is the level of the Chern-Simons term. Another property of these theories is the fact that

classically in the large N there is an infinite tower of high-spin conserved currents. It was

shown in [1] that the divergence of these currents is equal to a double and a triple trace of

currents that vanish in the large N limit. In [4] it was shown that in the large N limit the

theory of N scalars coupled to U(N) CS theory at level K is equivalent to the Legendre

transform of the theory of K fermions coupled to a U(K) CS theory at level N .

In [1] the fact that one can extract exact results is attributed to the discrete nature

of the CS coupling constant, the large N limit, the light-cone gauge and the fact that

for the massless case the theory is conformal invariant. The main question addressed

in the this work is to what extent can one decipher the large N CS theory coupled to

massive fundamental fermions. Thus our question is essentially whether two of the three

ingredients of the CS coupling, large N and the light-cone gauge are enough to enable us to

solve it exactly or is conformal symmetry necessary for that. Our answer is that there are

interesting physical quantities that can be determined even without conformal invariance.

Concretely we have addressed the following three questions: (i) The fermion propagator
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and the thermal free energy. (ii) The hight spin currents and their classical conservations.

(iii) The spectrum bound state mesons.

Following [1] we show that by solving a Schwinger-Dyson equation, the fermion prop-

agator and the partition function at finite temperature can be determined exactly. We

have generalized the result of [1] to the massive case while using a somewhat different tech-

nique. In [2] it was shown that the result of [1] is incomplete and that there is an additional

contribution to the thermal free energy from winding modes. The full expression written

down in that paper holds for fermions of any mass, with an appropriate modification of

the parameters.

We prove that in the large N limit there exists an infinite set of classically conserved

high spin currents. The conservation holds classically for high spin currents which are

similar to the ones used in the massless case apart from the following replacement

(
←−
Dσ
−→
Dσ)→ (

←−
Dσ
−→
Dσ)−m2 (1.1)

The divergence of these currents is equal to double trace operators which vanish in the

large N limit. This is the same structure as for the conformal invariant setup.

As for the spectrum of bound state mesons, we write down, in analogy to the seminal

work of ’t Hooft on two dimensional QCD, a Bethe-Salpeter equation for the wave function

of a “quark anti-quark” bound state. We show that unlike the two dimensional QCD case,

the three dimensional Chern-Simons theory does not admit a confining spectrum. In fact,

no high mass bound states exist.

The paper is organized as follows: the next section describes the basic setup of a

Chern-Simons theory in Euclidean three dimensions in the large N and large level K limits

with fixed ratio, coupled to a fermion in the fundamental representation. Section 3 is de-

voted to the determination of the fermion propagator at zero temperature. In section 4 we

determine the fermion propagator at finite temperature. This is in fact a straightforward

generalization of the result found in [2] for the theory which at zero temperature is confor-

mal invariant. In section 5 we discuss the free energy case. Section 6 is devoted to the high

spin currents. In section 7 we write down a ’t Hooft-like equation for the bound states of

the theory at zero temperature, and transform it to a form closer to the two dimensional

case. We then apply in subsection 7.1 the high mass approximation, finding a solution that

is not consistent with the approximation. The conclusion is that there are no high mass

bound states, where by high mass we mean much larger than the quark mass. Section 8 is

devoted to analyzing higher spin currents. We show that the same structure that occurs

for the conformal theory is also characterizing the massive theory. In the last section we

summarize our results and present several open questions.

2 The setup

The R3 Euclidean action of the U(N) CS theory coupled to a massive fermion in the

fundamental representation is

S =
iK

4π

∫
d3xTr

[
AdA+

2

3
A3

]
+

∫
d3xψ̄(γµDµ +mbare)ψ (2.1)

– 2 –



J
H
E
P
1
2
(
2
0
1
3
)
0
9
1

where A = AaT a, T a is a fundamental generator normalized so that Tr[(T a)2] = 1
2 and

Dµψ = ∂µψ − iAaµT aψ. Note that we set the coupling constant to one. Using light-cone

coordinates x+, x−, x3 and light-front gauge A− = 0 the action in momentum space reads

S =

∫
d3p

(2π)3

[
− iK

2π
Tr[A3(−p)p−A+(p)] + ψ̄(−p)(iγµpµ +mbare)ψ(p)

]
−i
∫

d3p

(2π)3

∫
d3q

(2π)3
[
ψ̄(−p)[γ+A+(−q) + γ3A3(−q)]ψ(p+ q)

]
(2.2)

Here

x± =
1√
2

[x1 ± x2]

A± =
1√
2

[A1 ±A2] (2.3)

It follows from this action that the gauge field propagator takes the form

< Aaµ(p)Abν(−q) >= (2π)3δ(p− q)δabGµν(p) (2.4)

where the only non-trivial components of Gµν(p) are

G+3(p) = −G3+(p) =
4πi

K

1

p+
(2.5)

This translates in configuration space to

< A3(x)A+(0) >= − < A+(x)A3(0) >=
2

K

δ(x3)

x+
(2.6)

3 The fermion propagator

The fermion propagator is given by

< ψm(q)ψn(−p) >= (2π)3δ(q−p)δmn S(q) = (2π)3δ(q−p)δmn
1

iγµqµ +mbare + Σ(q)
(3.1)

and

Σ(q) = iΣµγ
µ + ΣII −mbareI (3.2)

The equation for Σ takes the form

Σ(p) = −i4πλ
∫

d3q

(2π)3
γ+ΣI + iI(q + Σ(q))−

(qµ + Σµ(q))(qµ + Σµ(q)) + ΣI(q)2
1

(p− q)+
(3.3)

where λ = Nc/K. This is depicted in figure 1.

Equating the coefficients of the various γµ matrices it is clear that Σ is independent

of p3 and

Σ− = Σ3 = 0 ΣI = psf0(λ, ps,mbare) Σ+ = p+g0(λ, ps,mbare) (3.4)

– 3 –



J
H
E
P
1
2
(
2
0
1
3
)
0
9
1

Figure 1. Fermion self energy.

with

ps =
√
p21 + p22 =

√
2|p−| =

√
2|p+|. (3.5)

Substituting (3.4) into (3.3) we get the following integral equations for f0 and g0

g0 = −4πλ

p−

∫
d3q

(2π)3
qsf0

q23 + q2s(1 + g0 + f20 )

1

(p+ − q+)

f0ps −mbare = 4πλ

∫
d3q

(2π)3
q+

q23 + q2s(1 + g0 + f20 )

1

(p+ − q+)
(3.6)

To solve for the functions f0(λ, ps,mbare) and f0(λ, ps,mbare) we now employ the identity

∂

∂p−
1

p+
= 2πδ2(p) (3.7)

Applying this to eq. (3.6) we get

∂

∂p−
(psf0) =

λp+

ps
√

1 + g0 + f20
∂

∂p−
(p−g0) = − λf0√

1 + g0 + f20
(3.8)

Multiplying the first with f0ps, the second by p+ and adding, we get zero for the right

hand side, thus obtaining (
1 +

1

2
ps

∂

∂ps

)
(g0 + f20 ) = 0 (3.9)

Which gives the solution

g0 + f20 =
m2

p2s
(3.10)

The constant of integration comes out to be m2, where m is the pole in the full

propagator. Using this, the first equation in (3.8) can be integrated, to give

psf0 = λ
√
p2s +m2 + C (3.11)

To determine C, we will evaluate the integral in (3.3) for ps = 0. Actually, it is enough to

evaluate the scalar part. So we have

ps → 0 : (psf0 −mbare)→ −4πλ

∫
d3q

(2π)3
1

q2 +m2
(3.12)

The integral is equal to

− λ 2

π

∫ ∞
0

dq + λm (3.13)
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Setting the linearly divergent integral to zero, by dimensional regularization, we get

that C = mbare, and so

psf0 = λ
√
p2s +m2 +mbare (3.14)

As for p+g0, it follows from the integral equation (3.3) that it vanishes at ps = 0. This

means that psf0 equals m for ps = 0, entailing

mbare = m(1− λ) (3.15)

Thus the functions f0 and g0 and hence the non-trivial components of Σ are given by

psf0(λ, ps,mbare) = m+ λ[
√
p2s +m2 −m]

p2sg0(λ, ps,mbare) = −λ
[
2m(1− λ)

[√
p2s +m2 −m

]
+ λp2s

]
(3.16)

Note that we got this solution without solving for the integrals, just by their form and

their values at p = 0.

It follows from (3.16) that Σ takes the form

Σ(p) = ip+

[
−λ2 − 2λ

(
mbare

ps

)(√
1 +

m2

p2s
− m

ps

)]
γ+ + λps

√
1 +

m2

p2s
I (3.17)

Thus the coefficient of the unit matrix in Σ, which was for the massless case λps, is still

linear in λ but there is a re-scaling of ps → ps

√
1 + m2

p2s
. The coefficient of γ+ , ip+g0, which

for the massless case was −ip+λ2, is determined in the massive case from the relation (3.10).

It is easy to check that for the massless limit these results go back to

f0 = λ g0 = −λ2 (3.18)

To summarize the propagator of the massive fermion takes the form

S(q) = − iq−γ
− + iq+(1− g0)γ+ + iq3γ

3 − f0qs
q2 +m2

(3.19)

4 The fermion propagator at finite temperature

The physical system considered in the previous section can be brought into an equilibrium

with a thermal bath of temperature T = 1
β . To analyze such a case one is required to

compactify the Euclidean time direction and thus put the system on a R2×S1 background

manifold rather than on an R3 manifold. The fermion propagator for such a system

at finite temperature was computed for the massless case in [1]. This result was later

corrected in [2] where the contribution from windings around the Euclidean time direction

were incorporated and in addition a mass term was added. The result derived in [2] takes

the following form

yf0(y)− βmbare = −λy

√
1 +

µ2T
y2

+
1

πi

[
Li2

(
−e−y

√
1+

µ2
T
y2

+πiλ

)
− c.c

]
(4.1)
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where y = βps and Li2[. . .] is the dilogarithm function. The “thermal mass parameter” µT
is determined by the equation

µT (λ) =

∣∣∣∣βmbare + λµT +
1

πi

[
Li2

(
−e−µT−πiλ

)
− c.c

] ∣∣∣∣ (4.2)

where the positive solution for µT was chosen. At finite temperature there is a non-trivial

thermal mass parameter both for the underlying massive as well as the massless theories. In

terms of the fermion propagator the difference between the massless and massive theories

is the fact that for the former case one has to substitute mbare = 0 in the equations above.

Note also that when T → 0, and with µT = βmT , we get that mT (1 − λ) → mbare, as

expected (use also (3.15)).

Once the f(y) function is determined we are left over only with g(y) which determines

the coefficient of γ+ in Σ. This function is determined in this case also from a relation

similar to (3.10), namely

f20 (y) + g0(y) =
µ2T (λ)

y2
(4.3)

5 The free energy

Once the fermion self energy is determined we can also compute the free energy of the

system. In [2] it was shown that the free energy of the thermal system is given by

βF = −NV2
∫ 1/2

−1/2
du

∫
d2q

(2π)2

∞∑
n=−∞

Tr

[
log (iq̃µγ

µ + ΣT +mbareI)−
1

2
ΣT

1

iq̃µγµ + ΣT +mbare

]
(5.1)

where we have replaced the trace with an integral over the uniform spread of eigenvalues

and where q̃µ = qµ − 2π|λ|u
β δ3,µ.

The final result derived in [2] takes the form

βF =
NV2
2πβ2

{
µ3T
3

(
1− 1

|λ|

)

+
βmbareµ

2
T

2λ
− (βmbare)

3

6λ
+

1

πiλ

∫ ∞
µT

dyy[Li2

(
−e−µT+πiλ

)
− c.c]

}
(5.2)

6 High spin currents

In [1] it was shown that the free massless theory admits an infinite set of high spin currents

which are classically conserved. The conserved currents of dimension s+ 1 and spin s have

the following structure

J (s)
µ1,...,µs = ψ̄γµ1

[
polynomial of order(s−1) of(

←−
∂ and

−→
∂ )
]
ψ + Symmetrized (6.1)
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where there is a full symmetrization of all the vector indices. The polynomial is determined

using a generating function [9]

O(x, ε) =
∑

J (s)
µ1,...,µsε

µ1 . . . εµs = ψ̄~γ · ~εf(
←−
∂ ,
−→
∂ ,~ε)ψ (6.2)

where

f(~u,~v,~ε) =
exp (~u · ~ε− ~v · ~ε) sinh

√
2~u · ~v~ε · ~ε− 4~u · ~ε~v · ~ε√

2~u · ~v~ε · ~ε− 4~u · ~ε~v · ~ε
(6.3)

By Taylor expanding this function the four first conserved currents are found to be

Jµ = ψ̄γµψ

Jµ1µ2 = ψ̄γµ1

(−→
∂µ2 −

←−
∂µ2

)
ψ

Jµ1µ2µ3 =
1

6
ψ̄γµ1

(
3
←−
∂µ2
←−
∂µ3 − 10

←−
∂µ2
−→
∂µ3 + 3

−→
∂µ2
−→
∂µ3 + 2(

←−
∂σ
−→
∂σ)ηµ2µ3

)
ψ

Jµ1µ2µ3µ4 =
1

6
ψ̄γµ1

(←−
∂µ2
←−
∂µ3
←−
∂µ4 − 7

←−
∂µ2
←−
∂µ3
−→
∂µ4 + 7

←−
∂µ2
−→
∂µ3
−→
∂µ4 −

−→
∂µ2
−→
∂µ3
−→
∂µ4

+2(
←−
∂σ
−→
∂σ)
←−
∂µ2ηµ3µ4 − 2(

←−
∂σ
−→
∂σ)
−→
∂µ2ηµ3µ4

)
ψ (6.4)

It is easy to check that the first two currents are conserved also for the massive theory.

The higher spin currents are conserved provided we make the following replacement

(
←−
∂σ
−→
∂σ)→ (

←−
∂σ
−→
∂σ)−m2 (6.5)

To show this, we use the generating function, after we make this replacement, applying

to it (
−→
∂ +

←−
∂ ) · ∂∂~ε . The contribution of the factor [exp

(−→
∂ · ~ε−

←−
∂ · ~ε

)
] is zero also in the

massive case, since

(
−→
∂ +

←−
∂ ) · (

−→
∂ −

←−
∂ ) =

−→
� −←−� (6.6)

which vanishes when taken between ψ̄ and ψ. As for the other factors in the generating

function, it is enough to show that the contribution of the argument vanishes, namely

2(
−→
∂ ·
←−
∂ −m2)~ε · ~ε− 4

−→
∂ · ~ε
←−
∂ · ~ε = 0. (6.7)

This is indeed the case, as

4(
−→
∂ ·
←−
∂ −m2)~ε · (

−→
∂ +

←−
∂ )− 4

−→
∂ · (
−→
∂ +

←−
∂ )
←−
∂ · ~ε− 4

−→
∂ · ~ε
←−
∂ · (
−→
∂ +

←−
∂ )

= −4(
←−
∂ · ~ε)(−→� +m2)− 4(

−→
∂ · ~ε)(←−� +m2) (6.8)

which also vanishes when taken between ψ̄ and ψ.

It remains to check the part where the divergence is contracted with the γ matrix,

which follows from

ψ̄(
−→
∂ µ +

←−
∂ µ)γµψ = 0 (6.9)

also in the massive case.

For the interacting massless theory it was proven in [1] that there is a similar set of

higher spin currents, gotten by replacing ordinary derivatives with covariant derivatives,

←−
∂ →

←−
D

−→
∂ →

−→
D (6.10)
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The similarity is in the sense that although not conserved, their divergence does not have

a single trace part.

The classical divergence of the corresponding currents was derived using the equation

of motion. The one associated with the gauge fields does not change in form when a mass

is introduced, and it remains as

(Fµν)ij =
π

K
εµνρψ̄

iγρψj (6.11)

However, the equation associated with the fermion does of course change, and it now reads

Dµγµψ = imψ (6.12)

Now, when checking the equation for the divergence of the currents, we have to change

orders of covariant derivatives. For this we use

−→
Dµ
−→
Dν −

−→
Dν
−→
Dµ = −iFµν

←−
Dµ
←−
Dν −

←−
Dν
←−
Dµ = iFµν

−→
Dµ
←−
Dν −

←−
Dν
−→
Dµ = iFµν (6.13)

Combining with (6.11), we see that for the single trace terms, we can treat the covariant

derivatives as commuting, since the extra terms are higher trace, with each one multiplied

by an extra 1
K factor.

We now claim that also in the massive case, the divergence of the currents will have

no single trace term, provided we make the replacement

(
←−
Dσ
−→
Dσ)→ (

←−
Dσ
−→
Dσ)−m2 (6.14)

The currents are now

J̃ (s)
µ1,...,µs = ψ̄γµ1

[
polynomial of order(s−1) of(

←−
D and

−→
D)
]
ψ + Symmetrized (6.15)

In the following we will omit the “Symmetrized”.

Take the divergence

∂µl J̃
(s)
µ1,...,µs = ψ̄(

←−
∂ µl +

−→
∂ µl)γµ1

[
polynomial of order(s−1) of(

←−
D and

−→
D)
]
ψ =

ψ̄(
←−
Dµl +

−→
Dµl)γµ1

[
polynomial of order(s−1) of(

←−
D and

−→
D)
]
ψ (6.16)

Now, when µl is contracted with γ, we have

ψ̄(
←−
Dµl +

−→
Dµl)γµl

[
polynomial of order(s−1) of(

←−
D and

−→
D)
]
ψ =

ψ̄(im+
−→
Dµlγµl)

[
polynomial of order(s−1) of(

←−
D and

−→
D)
]
ψ =

ψ̄
[
polynomial of order(s−1) of(

←−
D and

−→
D)
]

(im+
−→
Dµlγµl)ψ+

Terms with double trace multiplied by
1

K
=

Only terms with double trace multiplied by
1

K
(6.17)
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For the rest of the proof, we use the generating function, with the replacement (6.10)

to covariant derivatives, and also the m2 shift (1.1).

As for the term

exp
(−→
D · ~ε−

←−
D · ~ε

)
(6.18)

it is sufficient to check

(
−→
D +

←−
D) · (

−→
D −

←−
D) (6.19)

which, for the single trace terms, is equal to

−→
D ·
−→
D −

←−
D ·
←−
D (6.20)

This is actually zero, by the use of

−→
D ·
−→
Dψ = −

(
1

2
εijkFijγk +m2

)
ψ

ψ̄
←−
D ·
←−
D = −ψ̄

(
1

2
εijkFijγk +m2

)
(6.21)

which follows from (6.12).

It remains to examine the contribution of the factor

2(
−→
D ·
←−
D −m2)~ε · ~ε− 4

−→
D · ~ε

←−
D · ~ε (6.22)

Its contribution to the divergence, for the single trace terms, is

4(
−→
D ·
←−
D −m2)~ε · (

−→
D +

←−
D)− 4

−→
D · (

−→
D +

←−
D)
←−
D · ~ε− 4

−→
D · ~ε

←−
D · (

−→
D +

←−
D)

= −4(
←−
D · ~ε)(

−→
D ·
−→
D +m2)− 4(

−→
D · ~ε)(

←−
D ·
←−
D +m2) (6.23)

It has no single trace terms, by (6.21). This completes our proof.

7 ’t Hooft like equation for the spectrum of bound states

In the conformal setup when the fermions are massless a natural question to address is the

spectrum of dimensions of the primaries operators and their descendants. The primaries

are the operator ψ̄ψ and the tower of symmetric traceless currents J
(s)
µ1,...µs which are con-

structed from a fermion anti-fermion bilinear sandwiching derivatives and a gamma matrix.

The analysis of the spectrum of dimensions was carried out in [1]. The analogous question

for the massive theory is the mass spectrum of bound states. The latter can be built in the

same way as in the conformal theory. Here we will discuss a special class of the mesonic

bound states. Note also that since the theory is invariant under local U(N) symmetry, and

not only SU(N), baryons bound states are not gauge invariant.1 We address the question

of the spectrum of masses only at zero temperature.

1Note, however, that at large N the U(1) part is down by 1
N
.
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Figure 2. Schwinger-Dyson equation for the fermion anti-fermion bound state.

The spectrum of fermion anti-fermion bound states of two dimensional QCD in the

planar limit was solved in the seminal work of ’t Hooft [15]. Since like in that work, here

we are also using (i) light-front coordinates, (ii) light-cone gauge and (iii) the planar limit,

it calls for the use of a similar approach to the one used in [15] for our system. The key

player is the bound state “wave-function” or the “blob” which is the Fourier transform of

the matrix element of the operator ψ(x)ψ̄(0) between the vacuum and the meson states,

φ(p, k) =

∫
d3x

(2π)3
eikx < meson(p)|Tψ(x)ψ̄(0)|0 > (7.1)

To determine the “wave-function” one has to solve a Bethe-Salpeter which is depicted

in figure 2.

For gauge invariance we need also a factor of e
∫ x
0 Aµ(y)dyµ between ψ and ψ̄. In the

gauge A− = 0, only the integrals over A+dy
+ and A3dy

3 will appear. As we will integrate

over k3 (see following (7.11)), this means x3 = 0, leaving us with only an integral over

A+dy
+. The discussion after eq. (7.13) indicates that actually x+ = 0. Thus we discuss

here directly the matrix element (7.1).

Note that the correlator in the definition of φ(p, k) includes the operators ψ and ψ̄ at

different points ψ(x)ψ̄(0). Expanding ψ(x) around x = 0 we get bilinear operators of ψ and

ψ̄ with any arbitrary number of derivatives (∂µ1 . . . ∂µnψ)ψ̄|x=0. Thus the blob describes

a bound state of a quark and an anti-quark with all orbital momenta. As for the internal

spin, φ(p, k) is a 2x2 matrix, so it includes the spin zero and one components, and those

are all the Dirac bilinear combinations in 3 dimensions.

To determine the masses of the bound states, we will have to go back to Minkowski

space. But let us first continue in Euclidean space.

The integral equation reads

φ(k, p) = − λ

2π2
S(k)

∫
d3q

(k+ − q+)

[
γ+φ(q, p)γ3 − γ3φ(q, p)γ+

]
S(k − p) (7.2)

Using (3.7) we can transform the integral equation into the following differential

equation

∂

∂k−
[
S−1(k)φ(k, p)S−1(k − p)

]
=
λ

π

[
γ3φ̃(k̃, p)γ+ − γ+φ̃(k̃, p)γ3

]
(7.3)

where k̃ is the vector (k1, k2), and

φ̃(k̃, p) =

∫
dk3φ(p, k) (7.4)
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Next we expand the blob in terms of the coefficients of γµ and I similar to (3.2)

φ = φ−γ
− + φ+γ

+ + φ3γ
3 + φsI (7.5)

which gives

γ3φγ+ − γ+φγ3 = 2[φsγ
+ − φ−I] (7.6)

and similarly for φ̃.

Thus the right hand side of (7.2) involves φs and φ− only. This results in two coupled

integral equations for φs and φ−, with φ+ and φ3 determined from φs and φ−.

The integral equation now implies

π2

λ
φs(k, p) = [a−(bs − b3) + b−(a3 + as)]

∫
d3q

(k+ − q+)
φs(q, p)

−[a−b+ + a+b− + a3b3 + asbs]

∫
d3q

(k+ − q+)
φ−(q, p)

π2

λ
φ−(k, p) = [2a−b−]

∫
d3q

(k+ − q+)
φs(q, p)

−[a−(b3 + bs) + b−(as − a3)]
∫

d3q

(k+ − q+)
φ−(q, p) (7.7)

where

as = − f0ks
k2 +m2

a− =
ik−

k2 +m2
a+ =

ik+(1− g0)
k2 +m2

a3 =
ik3

k2 +m2
(7.8)

and (bs, b−, b+, b3) are given similarly with the same expressions but with k−p replacing k.

Let us choose now the frame

p = (0, 0, p3) (7.9)

Then

a− =
ik−

[k2 +m2]
b− =

ik−
[k2s + (k3 − p3)2 +m2]

a+ =
ik+[1− g0(ks)]

[k2 +m2]
b+ =

ik+[1− g0(ks)]
[k2s + (k3 − p3)2 +m2]

as = −ksf0(ks)
k2 +m2

bs = − ksf0(ks)

k2s + (k3 − p3)2 +m2

a3 =
ik3

k2 +m2
b3 =

i(k3 − p3)
k2s + (k3 − p3)2 +m2

(7.10)
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The integral equations become

π2

λ
φs(k, p) = − k+[p3 + 2iksf0(ks)]

[k2 +m2][k2s + (k3 − p3)2 +m2]

∫
d3q

(k+ − q+)
φs(q, p)

+
k2s + k3(k3 − p3)−m2

[k2 +m2][k2s + (k3 − p3)2 +m2]

∫
d3q

(k+ − q+)
φ−(q, p)

π2

λ
φ−(k, p) = − (k+)2

[k2 +m2][k2s + (k3 − p3)2 +m2]

∫
d3q

(k+ − q+)
φs(q, p)

+
k+[2iksf0(ks)− p3]

[k2 +m2][k2s + (k3 − p3)2 +m2]

∫
d3q

(k+ − q+)
φ−(q, p) (7.11)

We can now perform an integration over k3 on both sides. Note that the integrals

on the right-hand-sides do not depend on k3. Thus the integration can be done directly,

yielding an equation for φ̃(k̃, p) =
∫
dk3φ(k, p) with k̃ = (k+, k−).

To find the bound states, we have to go to Minkowski space, by analytic continuation

to p3 = iMb. The solutions of the integral equation should provide us with the masses of

the bound states Mb.

To perform the integrals over k3, we will make use of the following integrals∫
dk3

[k2s + k23 +m2][k2s + (k3 − p3)2 +m2]
=

2π√
k2s +m2

1

[p23 + 4(k2s +m2)]∫
dk3

k3(k3 − p3)
[k2s + k23 +m2][k2s + (k3 − p3)2 +m2]

=
2π
√
k2s +m2

[p23 + 4(k2s +m2)]
(7.12)

The integral equations, after the k3 integration, become

π

2λk+

√
k2s +m2[p23 + 4(k2s +m2)]φ̃s(k̃, p3) =−[2iksf0(ks) + p3]

∫
d2q̃

(k+ − q+)
φ̃s(q̃, p3)

+4k−
∫

d2q̃

(k+ − q+)
φ̃−(q̃, p3)

π

2λk+

√
k2s +m2[p23 + 4(k2s +m2)]φ̃−(k̃, p3) =−k+

∫
d2q̃

(k+ − q+)
φ̃s(q̃, p3) (7.13)

+[2iksf0(ks)− p3]
∫

d2q̃

(k+ − q+)
φ̃−(q̃, p3)

Note that, in the integrals on the right-hand-sides, what appears is∫ dq+

k+−q+
∫
dq−φ̃(q̃, p). The integration over dq− indicates that it is actually x− = 0,

and hence no need to have an integral of the form
∫ x−
0 A+(y)dy− in the Wilson line

between ψ and ψ̄.

7.1 Large bound state mass approximations

The analysis of the spectrum of bound sates of large N QCD in two space-time dimensions

simplifies in the limit of high excitation, or large bound state mass. It was found out [15]

that for high excitations the spectrum becomes a Regge-like spectrum, namely, M2
b ∼ n

where n is the excitation number. Thus, we would like to first to investigate whether there
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is a region of large bound sate masses and if yes what is the structure of the spectrum in

that region.

Take, in the last equation, the limit of |ip3| ⇒ ∞. Then,

πp3
2λk−

√
k2s +m2φ̃s(k̃, p3) = −

∫
d2q̃

(k+ − q+)
φ̃s(q̃, p3) (7.14)

and an identical one for φ̃−(q̃, p3). Define

ψ(k̃, p3) =
√
k2s +m2φ̃s(k̃, p3) (7.15)

Then
∂

∂k−
lnψ(k̃, p3) = −4λ

p3

k+√
k2s +m2

(7.16)

from which

lnψ(k̃, p3) = −4λ

p3

√
k2s +m2 + F (7.17)

The additional function F, by rotational invariance in the (1,2) plane, depends on ks
only, and as it does not depend on k−, it therefore is independent of k̃ altogether. It can

thus depend on p3 only. Finally, we get

ψ(k̃,Mb) = exp [F (Mb)] exp

[
i
λ

Mb
4
√
k2s +m2

]
(7.18)

where the proportionality factor may depend on Mb. Note that factor 4
√
k2s +m2 is the

energy of the relative motion, in the rest frame of the bound state. Also, since the equations

are homogeneous, we might as well put the proportionality factor to 1.

Substituting the solution into the integral on the right hand side of (7.14), we actu-

ally get

exp [F (Mb)]

{
exp

[
i
λ

Mb
4
√
k2s +m2

]
− exp

[
i
λ

Mb
4m

]}
which means we have no solution to the integral equation (7.14), except the trivial one

φ̃s(k̃,Mb) = 0.

Turning now to φ̃−(k̃,Mb), we have here the form k− times a function of k2s . Looking

for a solution for an equation like (7.14), we do find that√
k2s +m2φ−(k̃,Mb) = k−G(Mb) exp

[
i
λ

Mb
4
√
k2s +m2

]
is a solution, provided that we take

limk2s→∞ exp

[
i
λ

Mb
4
√
k2s +m2

]
= 0

in view of the oscillatory factor.

To fix the eigenvalues of Mb, we need some boundary conditions. Assuming, as an

example, the requirement that the solution is real at ks = 0, we get for the n-th state,

Mn
b =

4λm

πn
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which means that the highest mass is actually the one for n=1, and it is not extending to

∞, contradicting our initial assumption.

It is thus clear that unlike spectrum of two dimensional QCD, in the large N large

K limit of the CS theory coupled to fermions in the fundamental representation the spec-

trum does not admit a confining behavior. This should not surprise us since we are not

considering for the gauge fields the YM theory but rather the CS one.

8 Summary and open questions

Two main questions have been addressed in this note:

(i) In the CS theory coupled to fermions in the fundamental representation, in the large

N large level limit, is conformal invariance really necessary for:

1. Having high-spin currents which are classically conserved.

2. For the exact determination of the fermion propagator and the thermal free

energy.

(ii) The structure of the spectrum of bound states of the massive theory.

As for the fermion propagator and the thermal free energy we have generalized the results

of [1] to the case of massive fermions. While working on this project these properties were

re-derived including a correction due to the presence of modes associated with the holonomy

around the Euclidean circle in [2]. These results were determined for both the massless

and massive cases. We have shown in this paper that the same structure of classically

conserved high spin currents of the massless theory occurs also for the massive one. This

was derived by a simple modification of the currents.

The question of the spectrum of bound states of the three dimensional CS theory is

less tractable than the analogous problem in two dimensional QCD [15]. For once there

are two coupled integral equations for two independent components of the “wave function”

φs(k, p) and φ−(k, p). The fact that the integrals are three dimensional rather than just two

light-cone dimensions add further complication. We were not able to solve the equations

in full generality. However, we were able to show that, unlike the two dimensional case

where there is for large excitation number a “ Regge spectrum” where [M
(n)
b ]2 ∼ n, there

are no highly excited bound states in our case. This is in accordance with the fact that

the system described in this paper is not a confining one as can be seen from (6.11).

The research of the massive CS theory is still in an infant state and there are plenty

of open quesitons to further investigate.

• For the conformal theories both with fermions and with scalars the high spin currents

were analyzed also beyond the classical limit. In particular three point functions

involving high spin currents have been computed [1, 3]. A natural question to ask is

can one determine the analogous correlators for the massive theory.
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• By no means the investigation of the coupled ‘t Hooft like equations has been ex-

hausted. One can try solving them in other special cases similar to the |ip3| → ∞
that we have used, and one may try to use also numerical methods.

• Following the work of ‘t Hooft, a similar though non-homogeneous, integral equation

was written down for the scattering amplitude of a quark anti-quark [16]. In a

similar manner to the coupled equations that we derived for the “blob”, one can

write equations also for the scattering amplitude and analyze them.

• We have addressed the issue of mesonic bound-states at zero temperature. Provided

that there are such bound-states at zero temperature an interesting question is to

examine their fate once a temperature is turned on.

• In [3] a bosonization duality was proposed that relates a certain CS theory coupled to

massive fermions in the fundamental representation to a CS theory couple to complex

scalar in the fundamental representation. Thus one can investigate the issue of the

spectrum of the bounds states of the massive theory also in the bosonic theory.

• An interesting limit to address is that of mbare → ∞ where the theory is supposed

to flow to a “topological” pure CS theory.
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