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effect on the MW prediction of the Higgs signal at about 125.6 GeV, which within the

MSSM can in principle be interpreted as the light or the heavy CP-even Higgs boson. For

both interpretations the predicted MSSM region for MW is in good agreement with the
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results in the stop sector on the MW prediction, considering both the cases of improved

limits and of the detection of a scalar top quark.
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1 Introduction

The recent discovery of a signal with a mass of around 125.6 GeV in the Higgs searches at

ATLAS [1] and CMS [2] is compatible with the Higgs boson postulated by the Standard

Model (SM), but it can also be interpreted in a variety of models of physics beyond the

SM. On the other hand, the direct searches for physics beyond the SM have not resulted

in a signal so far. In order to enhance the sensitivity for discriminating between different

models of the underlying physics, it is useful to complement the measurements of the

properties of the new state with other high-precision observables that have sensitivity to

the quantum level, i.e. to loop contributions involving in principle all the particles of the

considered model.

In this context, the relation between the W boson mass, MW , and the Z boson mass,

MZ , in terms of the fine-structure constant, α, the Fermi constant, Gµ, and the parameters

entering via loop contributions plays a crucial role. The accuracy of the measurement of

the W boson mass has significantly been improved with the latest results presented by

CDF [3] and DØ [4]. Together with the results obtained at LEP [5] this gives rise to the

latest world average of [6, 7]

M exp
W = 80.385± 0.015 GeV, (1.1)

i.e. to a relative experimental accuracy of better than 2×10−4. Furthermore, the improved

measurement of the top-quark mass, mt, at the Tevatron and the LHC (see below for a
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discussion of the physical interpretation of those measurements) has improved the accuracy

of the theoretical prediction for MW , since the experimental error of the input parameter

mt constitutes a dominant source of (parametric) uncertainty in the theoretical prediction,

see e.g. ref. [8]. Further observables that have a high sensitivity for testing electroweak

physics at the quantum level are in particular the effective leptonic weak mixing angle at

the Z-resonance, sin2 θeff , the anomalous magnetic moment of the muon, (g − 2)µ, and

rare b decays such as b → sγ. The interpretation of the constraints from sin2 θeff are

complicated by the fact that the two single most precise measurements, ALR by SLD [7]

and AFB
b at LEP [7], differ from each other by more than 3σ, see e.g. ref. [9] for a recent

discussion. While the experimental value of (g − 2)µ shows a significant deviation from

the SM prediction at the level of 3–4σ, which led to many interpretations in terms of new

physics models (see e.g. refs. [10–12] for reviews), the analysis of rare b decays so far has

been inconclusive [13].

We will concentrate in the following on the prediction for the W boson mass and,

taking into account the latest experimental results, compare the prediction of the SM

with that of its most popular extension, the Minimal Supersymmetric Standard Model

(MSSM) [14–16]. Within the SM, the interpretation of the discovered new state as the

SM Higgs boson implies that there is no unknown parameter anymore in the prediction for

MW . This fact considerably sharpens both the comparison with the experimental result

for MW and with predictions in extensions of the SM such as the MSSM. Our analysis

within the MSSM updates previous studies, see in particular refs. [17, 18] and references

therein. Our results are based on the currently most precise prediction for MW in the

MSSM, which we compare with the result in the SM. The MSSM prediction consists of a

complete one-loop calculation for the general case of complex parameters (without flavor

violation in the sfermion sector [19]), combined with all known higher-order corrections of

SM and supersymmetric (SUSY) type. Compared to the result employed in ref. [17], the

MSSM prediction used in the present analysis has been improved in several respects: the

one-loop result in the MSSM has been reevaluated and coded in a more flexible way, which

permits an improved treatment of regions of parameter space that can lead to numerical

instabilities and furthermore provides the functionality to easily implement results for

non-minimal SUSY models (see ref. [20] and also ref. [21] for the case of the NMSSM); the

incorporation of the state-of-the-art SM result has been improved using the expressions

given in ref. [22].

The top quark mass used in our evaluation corresponds to the pole mass. In our results

it could easily be re-expressed in terms of a properly defined short distance mass such as

the MS or DR mass. The parameter measured with high precision via direct reconstruction

at the Tevatron and the LHC is expected to be close to the top pole mass, and we adopt

this interpretation in the following. For a discussion of the systematic uncertainties arising

from the difficulties how to relate the measured mass parameter to the pole mass see

refs. [23, 24].

Extensive searches for SUSY particles have been performed by ATLAS and CMS.

No supersymmetric particles have been detected so far in direct searches, and stringent

limits were set in particular on the gluino mass and the mass of the squarks of the first
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two generations [25–28], see however refs. [29, 30]. Substantially weaker limits have been

reported for the particles of the other MSSM sectors, so that third-generation squarks, stops

and sbottoms, as well as the uncolored SUSY particles are significantly less constrained by

LHC searches, and LEP limits still give relevant constraints [31].

In this paper we analyze the prediction for MW in view of the discovery of a signal in

the Higgs searches at ATLAS and CMS. Within the framework of the MSSM the lighter

CP-even Higgs boson can have a mass of about 125.6 GeV for sufficiently large MA and

sufficiently large higher-order corrections from the scalar top sector. It is interesting to

note that a mass value as high as about 125.6 GeV for the lighter CP-even Higgs boson of

the MSSM implies that MA has to be in the decoupling region, MA �MZ , which in turn

has the consequence that the state at about 125.6 GeV has a SM-like behavior, see e.g. the

discussion in refs. [32, 33]. However, also the interpretation of the discovered particle as

the heavy CP-even Higgs state of the MSSM is, at least in principle, a viable possibility,

see refs. [32–38].1 We take into account the information from the mass measurement of

the observed Higgs boson for these two cases, and for the light Higgs interpretation we

investigate the correlation between MW and Γ(h→ γγ). The limits from Higgs searches at

LEP, the Tevatron and the LHC are incorporated with the help of the code HiggsBounds

(version 4.0.0) [40–42].2 We perform scans over the relevant SUSY parameters and we

analyze in detail the impact of different SUSY sectors on the prediction of MW . We also

investigate possible effects of either future limits from SUSY searches at the LHC or of the

detection of a scalar top quark.

This paper is organized as follows: in the next section we give a short summary of the

relevant MSSM sectors and specify our notation. In section 3 and section 4 we describe the

evaluation of MW in the MSSM. In section 5 we present the result for MW from a global

scan over the MSSM parameter space. We investigate the contributions from all relevant

MSSM particle sectors and analyze the impact of the observed Higgs signal as well as from

limits arising from searches for Higgs bosons and SUSY particles. Effects of possible future

results from SUSY searches at the LHC are also discussed in this context. The conclusions

can be found in section 6.

2 Particle sectors of the MSSM

The prediction for MW in the MSSM depends on the masses, mixing angles and couplings

of all MSSM particles. Sfermions, charginos, neutralinos and the MSSM Higgs bosons

enter already at the one-loop level and can give substantial contributions to MW . In this

section we briefly describe the relevant MSSM sectors and fix our notation for the MSSM

parameters. In our numerical analysis below we will focus on the case of real MSSM

parameters. For a discussion of the possible impact of non-zero phases of the MSSM

parameters see ref. [17].

1This scenario is challenged by the recent ATLAS bound on light charged Higgs bosons [39].
2The latest ATLAS results on light charged Higgs boson searches [39] are not included in this

HiggsBounds version (while finalizing this paper a new HiggsBounds version including this result became

available [43]).
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Contrary to the SM, two Higgs doublets are required in the MSSM, resulting in five

physical Higgs boson degrees of freedom. At the tree level, where possible CP-violating

contributions of the soft supersymmetry-breaking terms do not enter, these are the light

and heavy CP-even Higgs bosons, h and H, the CP-odd Higgs boson, A, and the charged

Higgs bosons, H±. At lowest order the MSSM Higgs sector is fully described byMZ and two

MSSM parameters, often chosen as the CP-odd Higgs boson mass, MA, and tanβ ≡ v2/v1,

the ratio of the two vacuum expectation values. Higher-order corrections to the Higgs

boson masses can be sizeable and must be included. Particularly important are the one-

and two-loop contributions from top quarks and squarks. Accordingly, the masses of the

CP-even neutral Higgs bosons and the charged Higgs boson are not free parameters (as

the Higgs mass in the SM), but can be predicted in terms of the other MSSM parameters

(introduced below).

The sfermion mass matrix in the gauge-eigenstate basis (f̃L, f̃R) for one generation

and flavor f is given by

Mf̃ =

(
M2
f̃L

+m2
f +M2

Z cos 2β(If3 −Qfs2
w) mf Xf

mf Xf M2
f̃R

+m2
f +M2

Z cos 2βQfs
2
w

)
. (2.1)

Here mf denotes the corresponding fermion mass, I3 is the third component of the weak

isospin, Qf the electric charge and sw is the sine of the weak mixing angle. The L–R

mixing of the sfermions is determined by the off-diagonal entries

mfXf = mf (Af − µ {cotβ, tanβ}), (2.2)

where cotβ refers to up-type sfermions and tanβ to down-type sfermions. Af denotes the

trilinear Higgs-sfermion coupling and µ the Higgsino mass parameter. The SUSY-breaking

parameters are:

Mf̃L
=

{
MQ̃i

for left-handed squarks

ML̃i
for left-handed sleptons

(2.3)

Mf̃R
=


MŨi

for right-handed u-type squarks

MD̃i
for right-handed d-type squarks

MẼi
for right-handed charged sleptons ,

(2.4)

where i = 1, 2, 3 is the family index. Flavor violation in the sfermion sector is neglected

here (see refs. [19, 44] for a discussion of this kind of effects in the one-loop contributions

to MW ). The charged gauginos and Higgsinos mix with each other, yielding charginos χ̃±
1,2.

The corresponding mass matrix is given by

Mχ̃± =

(
M2

√
2MW sinβ√

2MW cosβ µ

)
, (2.5)
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with the soft breaking parameter M2. The neutralinos are mixtures of the neutral gauginos

and Higgsinos. The neutralino mass matrix in the basis (B̃, W̃ 0, H̃0
1 , H̃

0
2 ) is given by

Mχ̃0 =


M1 0 −MZsw cosβ MZsw sinβ

0 M2 MZcw cosβ −MZcw sinβ

−MZsw cosβ MZcw cosβ 0 −µ
MZsw sinβ −MZcw sinβ −µ 0

 . (2.6)

The gluino is the only SUSY particle that enters only from the two-loop level onwards;

thus the impact of the gluino mass, mg̃ = |M3|, on the MW prediction is relatively small.

3 Determination of the W boson mass

Muons decay via the weak interaction almost exclusively into eν̄eνµ [31]. The decay was

originally described within the Fermi model, which is a low-energy effective theory that

emerges from the SM in the limit of vanishing momentum transfer. The Fermi constant,

Gµ, is determined with high accuracy from precise measurements of the muon life time [45]

and the corresponding Fermi-model prediction including QED corrections up to O(α2) for

the point-like interaction [46–50]. Comparison of the muon-decay amplitude in the Fermi

model and in the SM or extensions of it yields the relation

Gµ√
2

=
e2

8s2
WM

2
W

(1 + ∆r) . (3.1)

Here ∆r represents the sum of all contributing loop diagrams to the muon-decay amplitude

after splitting off the Fermi-model type virtual QED corrections,

∆r =
∑
i

∆ri , (3.2)

with

MLoop,i = ∆ri MBorn . (3.3)

This decomposition is possible since after subtracting the Fermi-model QED corrections,

masses and momenta of the external fermions can be neglected, which allows to reduce all

loop contributions to a term proportional to the Born matrix element, see refs. [51, 52].

By rearranging eq. (3.1), the W boson mass can be calculated via

M2
W = M2

Z

(
1

2
+

√
1

4
− απ√

2GµM2
Z

(1 + ∆r)

)
. (3.4)

In different models, different particles can contribute as virtual particles in the loop dia-

grams to the muon-decay amplitude. Therefore, the quantity ∆r depends on the specific

model parameters, and eq. (3.4) provides a model-dependent prediction for the W boson

mass. The quantity ∆r itself does depend on MW as well; hence, the value of MW as the

solution of eq. (3.4) has to be determined numerically. In practice this is done by iteration.

In most cases this procedure converges quickly and only a few iterations are needed.
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In order to exploit MW as a precision observable providing sensitivity to quantum

effects it is crucial that the theoretical predictions for ∆r are sufficiently precise with

respect to the present and expected future experimental accuracies of MW . Within the

SM the full one-loop [51, 53] and two-loop [52, 54–64], as well as the leading higher-

order corrections [65–73] are known. In addition a convenient fitting formula for MW

containing all numerically relevant contributions has been developed [74], and in ref. [22]

a corresponding formula for the two-loop electroweak contributions to ∆r has been given.

In the MSSM the one-loop result [17, 75–85] and leading two-loop corrections have been

obtained [86–89].

4 Calculation of ∆r

Our analysis is based on a new one-loop calculation of ∆r in the MSSM with complex pa-

rameters which has been carried out using the Mathematica [90] based programs FeynArts

(Version 3.5) [91–96] and FormCalc (Version 6.2) [97], see ref. [20] for further details. The

one-loop result is combined with all known higher order corrections of SM and SUSY type

as specified below, so that the numerical results given in this paper correspond to the

currently most precise predictions for the W boson mass in the SM and the MSSM.

4.1 One-loop calculation in the MSSM

The one-loop contributions to ∆r consist of the W boson self-energy, vertex and box

diagrams, and the related counter terms (CT),

∆r = W Self-energy + W Self-energy CT + Vertex + Vertex CT + Box

=
ΣWW
T (0)

M2
W

+

(
−δZW −

δM2
W

M2
W

)
+ Vertex

+

(
2δZe − 2

δsw

sw
+ δZW +

1

2
(δZµ + δZe + δZνµ + δZνe)

)
+ Box .

(4.1)

Here ΣT denotes the transverse part of a gauge boson self-energy, δMW is the counter-

term for the W boson mass, δZe and δsw are the renormalization constants for the electric

charge and the (sine of the) weak mixing angle, respectively, while the other δZ denote

field renormalization constants. Since the W boson appears only as a virtual particle,

its field renormalization constant δZW drops out in the ∆r formula. The box diagrams

are themselves UV-finite in a renormalizable gauge. Choosing on-shell renormalization

conditions,3 which ensures that eq. (3.1) corresponds to the relation between the physical

3The on-shell renormalization conditions correspond to the definition of the W and Z boson masses

according to the real part of the complex pole of the propagator. This gives rise to the fact that the

predictions for ∆r discussed in this paper internally make use of a definition of the gauge boson masses in

terms of a Breit-Wigner shape with a fixed width. The values of the W and Z boson masses according to

this fixed-width definition are finally converted into the running-width definition which has been adopted

for the determination of the experimental values of MW and MZ , see e.g. ref. [52] for further details.
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masses of the W and Z bosons, yields (neglecting the masses of the external fermions)4

∆r =
ΣWW
T (0)− Re

(
ΣWW
T (M2

W )
)

M2
W

+ ΠAA (0)− c2
w

s2
w

Re

[
ΣZZ
T (M2

Z)

M2
Z

− ΣWW
T (M2

W )

M2
W

]
+ 2

sgn sw

cw

ΣAZ
T (0)

M2
Z

+ Vertex + Box− 1

2
Re
(
Σe
L(0) + Σµ

L(0) + Σνe
L (0) + Σ

νµ
L (0)

)
,

(4.2)

with the photon vacuum polarization

ΠAA(k2) =
ΣAA
T (k2)

k2
. (4.3)

Here ΣL denotes the left-handed part of a fermion self-energy.

The contributions to ∆r in the MSSM, besides the ones of SM type, consist of a large

number of additional self-energy, vertex and box diagrams containing sfermions, (SUSY)

Higgs bosons, charginos and neutralinos in the loop, see also ref. [17]. In order to determine

the contribution to ∆r from a particular loop diagram, the Born amplitude has to be

factored out of the one-loop muon decay amplitude, as shown in eq. (3.3). While most loop

diagrams directly give a result proportional to the Born amplitude, more complicated spinor

structures that do not occur in the SM case arise from box diagrams containing neutralinos

and charginos. Those spinor chains can be related to the Born amplitude with the help

of Fierz identities and charge conjugation relations. The reduction of the box diagrams to

Born-type amplitudes leads to coefficients containing ratios of mass-squared differences of

the involved particles. These coefficients can give rise to numerical instabilities in cases

of mass degeneracies. In the implementation of our results (which has been carried out

in a Mathematica and a Fortran version) special care has been taken of such parameter

regions with mass degeneracies or possible threshold effects, so that a numerically stable

evaluation is ensured.

At the one-loop level, the quantity ∆r can be split into three parts

∆r(α) = ∆α− c2
w

s2
w

∆ρ+ ∆rrem. (4.4)

The shift of the fine structure constant ∆α arises from the charge renormalization which

contains the contributions from light fermions. The quantity ∆ρ contains loop corrections

to the ρ parameter [98], which describes the ratio between neutral and charged weak

currents, and can be written as

∆ρ =
ΣZZ
T (0)

M2
Z

− ΣWW
T (0)

M2
W

. (4.5)

4We adopt here the sign conventions for the covariant derivative used in FeynArts [91–96], which are

different for the SM and the MSSM. Accordingly, sgn (the sign of the term involving the SU(2) coupling in

the covariant derivative) in eq. (4.2) for this choice of convention is sgn = −1 in the SM and sgn = +1 in

the MSSM. eq. (4.2) agrees with the corresponding formula given in ref. [17] up to typographical errors in

ref. [17].
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This quantity is sensitive to the mass splitting between the isospin partners in a doublet [98],

which leads to a sizable effect in the SM in particular from the heavy fermion doublet. While

∆α is a pure SM contribution, ∆ρ can get large contributions also from SUSY particles, in

particular the superpartners of the heavy quarks. All other terms, both of SM and SUSY

type, are contained in the remainder term ∆rrem.

4.2 Incorporation of higher order corrections

The one-loop result described above has been combined with all available higher-order

corrections. Since the calculation of ∆r in the SM is more advanced than in the MSSM we

have organized our result such that the full SM result for ∆r can be used also for the MSSM

prediction of MW . Therefore the MSSM result is split into a SM part and a SUSY part5

∆rMSSM = ∆rSM + ∆rSUSY . (4.6)

Writing the MSSM result in terms of eq. (4.6) ensures in particular that in the decou-

pling limit of the MSSM result, where all superpartners are heavy and the Higgs sector

becomes SM-like, the full SM result (with MSM
H = Mh) is recovered, see also the discussion

in ref. [17]. The SM part of ∆r up to four-loop order is given by

∆rSM =∆r(α) + ∆r(ααs) + ∆r(αα2
s) + ∆r

(α2)
ferm + ∆r

(α2)
bos

+ ∆r(G2
µαsm

4
t ) + ∆r(G3

µm
6
t ) + ∆r(Gµm2

tα
3
s) .

(4.7)

It contains, besides the one-loop contribution ∆r(α),

• the two-loop QCD corrections ∆r(ααs) [54–59],

• the three-loop QCD corrections ∆r(αα2
s) [65–68],

• the fermionic electroweak two-loop corrections ∆r
(α2)
ferm [52, 60, 61],

• the purely bosonic electroweak two-loop corrections ∆r
(α2)
bos [62–64],

• the mixed QCD and electroweak three-loop contributions ∆r(G2
µαsm

4
t ) [69, 72],

• the purely electroweak three-loop contribution ∆r(G3
µm

6
t ) [69, 72],

• and the four-loop QCD correction ∆r(Gµm2
tα

3
s) [71].

The full result for the electroweak two-loop contributions in the SM involves numerical

integrations of the two-loop scalar integrals, which make the corresponding code rather

unwieldy and slow. Thus, we make use of the simple parametrisation that has been given

in ref. [22] for the combined result of the fermionic and bosonic electroweak two-loop

corrections in the SM, which approximates the exact result for ∆r
(α2)
ferm + ∆r

(α2)
bos to better

than 2.7× 10−5 for 10 GeV ≤MSM
H ≤ 1 TeV (and the other input parameters in their 2σ

5Since the complete one-loop results for ∆r in the SM and in the MSSM are used in eq. (4.6), this

splitting has an impact only from the two-loop level onwards.
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ranges), corresponding to an uncertainty of 0.4 MeV for MW . The use of a parametrisation

directly for the SM prediction of ∆r
(α2)
ferm + ∆r

(α2)
bos rather than for the full SM prediction

of MW leads to an improved accuracy in the combination with the SUSY contributions as

compared to ref. [17]. Concerning the QCD corrections, which enter from the two-loop level

onwards, it should be noted that they result in a rather large (downward) shift of the W

boson mass prediction. It is obvious that this kind of corrections needs to be theoretically

well under control in order to gain sensitivity to effects of physics beyond the SM.

The quantity ∆rSUSY in eq. (4.6) denotes the difference between ∆r in the MSSM

and the SM, i.e. it only involves the contributions from the additional SUSY particles and

the extended Higgs sector. Beyond one-loop order, all SUSY corrections that are known

to date are implemented, namely the leading reducible O(α2) two-loop corrections that

can be obtained via the resummation formula given in ref. [99], the leading SUSY two-

loop QCD corrections of O(ααs) to ∆ρ as given in refs. [86, 87], as well as the dominant

Yukawa-enhanced electroweak corrections of O(α2
t ), O(αtαb), O(α2

b) to ∆ρ [88, 89]. In

order to incorporate the latter corrections, the dominant Yukawa-enhanced electroweak

corrections in the SM [100, 101] have been subtracted from the MSSM result presented

in ref. [89] according to eq. (4.6). For this purpose we have identified the SM Higgs mass

entering the result of refs. [100, 101] with the mass of the MSSM Higgs boson that has the

largest coupling to gauge bosons (i.e., the MSSM Higgs boson that behaves most SM-like).

In the decoupling limit, where MA � MZ and all superpartners are heavy, the MSSM

contribution reduces to the SM contribution with MSM
H = Mh, so that the contribution to

∆rSUSY vanishes as required.

5 Numerical analysis

Our numerical results are based on the contributions to ∆r described in the previous

section (which have been implemented in a Mathematica and a Fortran version, where

the latter has been used to generate the results presented below). The numerical values

for the masses and effective couplings of the MSSM Higgs bosons have been evaluated

with the help of the program FeynHiggs (version 2.9.4) [102–106]. We cross-checked our

evaluation with the earlier results given in ref. [17] and found good agreement, at the level

of about 1–2 MeV.

5.1 Prediction for the W boson mass in the SM

The mass of the signal discovered in the Higgs boson searches at the LHC about a year

ago is measured mainly in the γγ and the ZZ(∗) channels. Currently, the combined mass

measurement from ATLAS is 125.5 ± 0.2 ± 0.6 GeV [107] and from CMS 125.7 ± 0.3 ±
0.3 GeV [108]. Adding systematic and statistical errors in quadrature and determining the

weighted average between the ATLAS and CMS measurements we get MSM
H = 125.64 ±

0.35 GeV. Setting the SM Higgs boson mass to this value, the SM prediction for the W

boson mass reads (the other SM parameters have been fixed as Gµ = 1.1663787 × 10−5,

MZ = 91.1875 GeV, αs(MZ) = 0.1180, ∆αhad = 0.02757)

MSM
W (mt = 173.2 GeV,MSM

H = 125.64 GeV) = 80.361 GeV. (5.1)
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Accordingly, the SM prediction for MW turns out to be below the current experimental

value, M exp
W = 80.385±0.015 GeV, by about 1.5σ. The dominant theoretical uncertainty of

the prediction for MW arises from the parametric uncertainty induced by the experimental

error in the measurement of the top-quark mass. An experimental error of 1 GeV on mt

causes a parametric uncertainty on MW of about 6 MeV, while the parametric uncertain-

ties induced by the current experimental error of the hadronic contribution to the shift in

the fine-structure constant, ∆αhad, and by the experimental error of MZ amount to about

2 MeV and 2.5 MeV, respectively. The uncertainty of the MW prediction caused by the ex-

perimental error of the Higgs mass δM exp
H = 0.35 GeV is significantly smaller (∼ 0.2 MeV).

The uncertainties from unknown higher-order corrections have been estimated to be around

4 MeV in the SM for a light Higgs boson (MSM
H < 300 GeV) [74].

5.2 MSSM parameter scan: scan ranges and constraints

The prediction for MW in the MSSM is affected by additional theoretical uncertainties

from unknown higher-order corrections of SUSY type. While in the decoupling limit those

additional uncertainties vanish, they can be important if some SUSY particles, in partic-

ular in the scalar top and bottom sectors, are relatively light. The combined theoretical

uncertainty from unknown higher-order corrections of SM- and SUSY-type has been esti-

mated (for the MSSM with real parameters) in refs. [17, 89] as δMW = (4.7 − 9.4) MeV,

depending on the SUSY mass scale.

In the following we will investigate the prediction for MW in the MSSM based on

scans of the MSSM parameters over a wide range (using flat distributions). We have

performed two versions of those random scans, one where the top-quark mass is kept

fixed at mt = 173.2 GeV and one where also mt is allowed to vary in the scan. Both

scans use initially ∼ 5 × 106 points, and dedicated smaller scans have been performed in

parameter regions where the SUSY contributions to MW are relatively large. The scan

ranges are given in Table 1. We have assumed that the value of M1 is fixed by the one

of M2 in terms of the usual GUT relation, M1 = 5/3 s2
w/c

2
w M2. As mentioned above, we

restrict our numerical analysis to the case of real parameters. We include CKM mixing,

but the numerical effect turns out to be negligible (below 0.01 MeV in MW ). Possible

flavor violation in the SUSY sector [19] is neglected here. In order to avoid unphysical

parameter regions and regions of numerical instabilities we disregard parameter points for

which FeynHiggs indicates a large theoretical uncertainty in the evaluation of the Higgs

mass predictions. We furthermore exclude points where stop and sbottom masses are mass-

degenerate within less than 0.1 GeV causing numerical instabilities in the gluino corrections

of O(ααs) to ∆ρ.

All MSSM points included in our results have the lightest neutralino as LSP and have

SUSY particle masses that pass the lower mass limits from direct searches at LEP. The

Higgs and SUSY masses are calculated from the MSSM input parameters using FeynHiggs

(version 2.9.4) [103–106]. In the SM and SUSY higher-order corrections, as listed in sec-

tion 4.2, the bottom-quark mass has been renormalized in the on-shell scheme. Accordingly,

in our evaluation of MW the bottom-quark pole mass, mpole
b , is used everywhere. This also

applies to the calculation of the sbottom masses from the MSSM input parameters, and we
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Parameter Minimum Maximum

µ -2000 2000

MẼ1,2,3
= ML̃1,2,3

100 2000

MQ̃1,2
= MŨ1,2

= MD̃1,2
500 2000

MQ̃3
100 2000

MŨ3
100 2000

MD̃3
100 2000

Ae = Aµ = Aτ -3MẼ 3MẼ

Au = Ad = Ac = As -3MQ̃12
3MQ̃12

Ab -3 max(MQ̃3
,MD̃3

) 3 max(MQ̃3
,MD̃3

)

At -3 max(MQ̃3
,MŨ3

) 3 max(MQ̃3
,MŨ3

)

tanβ 1 60

M3 500 2000

MA 90 1000

M2 100 1000

Table 1. Parameter ranges considered in the scans. All parameters with mass dimension are given

in GeV.

have modified the corresponding routine in FeynHiggs accordingly (in the calculation of the

sbottom masses furthermore a ∆b [109–112] correction enters, which can be absorbed into

an effective bottom-quark mass). For every parameter point we test whether it is allowed

by direct Higgs searches using the code HiggsBounds (version 4.0.0) [40–42]. This code

tests the compatibility of the MSSM points with the search limits from LEP, the Tevatron

and the LHC. Running HiggsBounds, we take into account the theoretical uncertainties on

the Higgs masses using the estimate provided by FeynHiggs.

Our results presented below improve on earlier results given in ref. [17] in several

respects. We study here the impact of both the limits from the Higgs boson searches as well

as from the signal observed at about 125.6 GeV. Furthermore we investigate constraints

from present and possible future limits from searches for SUSY particles. On a more

technical level, our analysis incorporates the SUSY two-loop corrections of O(α2
t ), O(αtαb),

O(α2
b), which were not included in the scan results presented previously, and we perform

a more detailed scan involving a larger number of sampling points.

5.3 Results for the W boson mass in the MSSM

In this section we study the MSSM prediction for MW , starting in figure 1 where MW is

displayed as a function of the top-quark mass, mt, in the SM and the MSSM. The green

area shows the MSSM parameter space that is allowed by HiggsBounds and the various

other constraints described in the previous subsection. It should be noted that in this
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Figure 1. Prediction for MW as a function of mt. Left: the green region shows the HiggsBounds

allowed region for the MSSM MW prediction. It has been obtained by scanning over the MSSM

parameters as described in the text. The cuts mt̃2
/mt̃1

< 2.5 and mb̃2
/mb̃1

< 2.5 are applied. The

red strip indicates the overlap region of the SM and the MSSM, with MSM
H = 125.6±0.7 GeV. The

two arrows indicate the possible size of the slepton and the chargino (and neutralino) contributions.

Right: zoom into the most relevant region, with the SM area omitted.

plot only the limits from the Higgs searches are considered as constraints on the MSSM

parameter space, not the observed signal at about 125.6 GeV (the latter will be discussed

below). The region where the MSSM prediction for MW overlaps with the one in the SM

is indicated by the red strip, where MSM
H = 125.6 ± 0.7 GeV (corresponding roughly to

the 2σ experimental error on MH) has been used for the SM prediction. The left plot

shows the results on a larger scale, in order to indicate the possible range of the MSSM

prediction, while the right plot is a zoom into the parameter region of the MSSM near

the experimental central values of MW and mt. In order to obtain the MSSM prediction

shown as the green band in figure 1 we have imposed as an additional restriction a limit

on the mass splittings in the stop and sbottom sector, which has been implemented via the

conditions mt̃2
/mt̃1

< 2.5 and mb̃2
/mb̃1

< 2.5. If no such condition on the mass splittings

in the stop and sbottom sector were imposed, even larger values of MW (up to ∼ 80.8 GeV)

would be possible in the MSSM, see also the discussion in ref. [17]. Since this parameter

region far above the experimental value of MW is of little phenomenological interest, we

will not consider it further here. While it is well-known that a non-zero SUSY contribution

tends to increase the prediction for MW as compared to the SM case, close inspection of

figure 1 reveals that there exists a small MSSM (green) region below the overlap region

between the MSSM and the SM (red), which is best visible for the largest mt values. The

reason for this feature lies in the fact that, as explained above, the SM prediction is shown

for the range MSM
H = 125.6 ± 0.7 GeV, while no restriction from the signal observed in

the Higgs searches has been applied to the MSSM parameter space. As a consequence, the

MSSM region (green) contains parameter points where the lightest CP-even Higgs boson

of the MSSM has a mass above the range allowed for MSM
H (and below the upper bound
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on Mh in the MSSM, which increases with increasing mt). In the decoupling region, where

all superpartners are heavy, the MSSM prediction for MW in this case corresponds to the

prediction in the SM with a higher value of MSM
H , which yields a lower value of MW .6

The predictions for MW in the SM and the MSSM are compared with the current

experimental results for MW and mt [6] which are displayed by the corresponding 68% C.L.

ellipse shown in gray. One can see that the SM prediction barely touches the 68% C.L.

ellipse, whereas the ellipse is fully contained in the MSSM area. It is obvious that the MSSM

contains parameter regions where the MSSM prediction for MW is in very good agreement

with the data. On the other hand, also MW values significantly above the experimental

value are possible in the MSSM. The latter arise mainly from very light states and a large

mass splitting in the stop and sbottom sector (see the discussion below).

Figure 1 shows that confronting the prediction for MW in the MSSM with the exper-

imental result is of interest both for putting constraints on parameter regions that would

give rise to a too high value of MW and for investigating the parameter region where the

agreement between the MSSM prediction and the data is in fact better than for the SM

case. While the deviation between the SM prediction and the experimental result for MW

is statistically not very significant (the SM prediction is well compatible with the exper-

imental result at the 95% C.L.), the pattern that the SM prediction is somewhat low as

compared to the data has been robust for many years in spite of numerous updates of

the experimental results. Focussing now on the region where we find the best agreement

between the MSSM prediction for MW and the experimental result, it is interesting to note

that in this region some of the superpartner masses are expected to be relatively light. In

order to illustrate this feature we furthermore show in figure 1 the impact of the slepton

sector (left arrow) and the chargino sector (right arrow), where the mass values indicated

at the arrows (approximately) show the effect in MW arising from the contribution of a

slepton and a chargino having this mass, respectively. We have chosen to display those

arrows such that they start at the lower border, corresponding to the situation where all

other superpartners are heavy and decoupled. For the sleptons we show the corrections to

MW as a function of ML ≡ MẼ1,2,3
= ML̃1,2,3

, where the lower limit of ∼ 90 GeV roughly

corresponds to the (fairly model-independent) limit obtained at LEP. One can see that very

light sleptons, just above the LEP limit, could induce a shift in MW of about 60 MeV. We

have checked that each generation contributes roughly the same to this effect. The ma-

jor contributions to MW from the sleptons arise from the ∆ρ term in eq. (4.4), which is

sensitive to the mass splitting between l̃1,2 and ν̃l. The splitting between the sneutrinos

and the sleptons becomes significant if MẼ = ML̃ and MW are of comparable size. The

contributions to MW from light charginos and neutralinos are substantially smaller, but

clearly not negligible in this context. They reach about 20 MeV for mχ̃±
1
∼ 95 GeV, close

to its lower mass limit from LEP. In that case, due to the assumed GUT relation between

6It should be noted that a similar kind of feature would occur even if one restricted the predicted value

for Mh in the MSSM to the same region as the range adopted for MSM
H . This is caused by the fact that the

additional theoretical uncertainties from unknown higher-order corrections affecting the prediction for Mh

in the MSSM, which are not present in the SM where MSM
H is a free input parameter, essentially lead to a

broadening of the allowed range of Mh in the MSSM as compared to MSM
H .
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Figure 2. Prediction for MW as a function of the lightest stop mass mt̃1
. In all plots the cuts

mt̃2
/mt̃1

< 2.5 and mb̃2
/mb̃1

< 2.5 are applied. In the upper left plot all HiggsBounds allowed

points are shown, in the upper right plot only the points are shown for which additionally the

squarks of the first two generations and the gluino are heavier than 1200 GeV, in the lower left plot

only the points are shown for which additionally the sbottoms are heavier than 1000 GeV, and in

the lower right plot only the points are shown for which additionally also the sleptons and charginos

are heavier than 500 GeV. The red line indicates the SM prediction for MW .

M1 and M2, the mass of χ̃0
1 is ∼ 50 GeV. Our analysis of the contributions in the slepton

and the chargino / neutralino sector shows that even if all squarks were so heavy that their

contribution to the MW prediction were negligible, contributions from the slepton sector

or the chargino / neutralino sector could nevertheless be sufficient to bring the MSSM

prediction in perfect agreement with the data. This could be the case for slepton masses

of about 150–200 GeV or for a chargino mass of about 100–150 GeV. If the squark sector

gives rise to a non-zero contribution to MW the same predicted value for MW could be

reached with heavier sleptons and charginos / neutralinos.

In figure 2 and figure 3 we analyze in detail the dependence of MW on the scalar

quark masses, in particular on mt̃1
and mb̃1

, with mt fixed to 173.2 GeV. The upper left

plot of figure 2 shows the prediction for MW (green dots) as a function of mt̃1
. All points

are allowed by the constraints discussed in section 5.2 and fulfill the additional constraint

mt̃2,b̃2
/mt̃1,b̃1

< 2.5. The SM prediction is shown as a red strip for MSM
H = 125.6±0.7 GeV,

and the 1σ experimental result is indicated as a gray dashed band. We checked that without
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Figure 3. Prediction for MW as a function of the lightest sbottom mass. The cuts mt̃2
/mt̃1

< 2.5

and mb̃2
/mb̃1

< 2.5 are applied. In the left plot all HiggsBounds allowed points are shown, in the

right plot only the points are shown for which additionally the squarks of the first two generations

and the gluino are heavier than 1200 GeV, stops are heavier than 1000 GeV and also the sleptons

and charginos are heavier than 500 GeV. As above, the red line indicates the SM prediction for MW .

the cut mt̃2,b̃2
/mt̃1,b̃1

< 2.5 the largest MW values are reached for very light stop masses

with a very large (> 2.5) splitting in the stop sector. Now the maximum of ∼ 80.6 GeV

is reached for mt̃1
around 800 GeV. The position where the maximum is reached depends

strongly on the splitting between stops and sbottoms and will be further explained below

(in the discussion of figure 3). In the upper right plot we only show points which have first

and second generation squark masses and the gluino mass above 1.2 TeV, i.e. roughly at

the limit obtained at the LHC for simplified spectra [25–28]. It can be observed that the

effects on MW of the first and second generation squarks as well as of the gluino are rather

mild. Next, in the lower left plot we only show points which in addition have b̃ masses above

1000 GeV (this is a hypothetical cut that is applied for illustration purposes only; it does

not reflect the current experimental situation). The fact that all MSSM points in the lower

left and lower right plots have stop masses larger than 400 GeV results from the restrictions

that we have imposed, constraining the sbottom masses (> 1000 GeV) and the maximal

splitting in the stop and sbottom sector (mt̃2,b̃2
/mt̃1,b̃1

< 2.5) at the same time. Clearly

the sbottoms have a large impact on the MW prediction. After applying (for illustration)

the sbottom mass cut the maximal MW values obtained in the scan are ∼ 80.43 GeV,

i.e. the SUSY contributions can still be so large in this case that they can yield not only

predicted MW values that are in good agreement with the experimental result but also

ones that are significantly higher. The SUSY shift in this case is caused by the remaining

contribution from the stop-sbottom sector, as well as by the contributions from charginos,

neutralinos and sleptons. In order to disentangle these effects, in the lower right plot we also

require (again, for illustrative purposes only) the electroweak SUSY particles to be heavy

and show only points with slepton and chargino masses above 500 GeV. A direct mass

limit on neutralinos is not applied. Since we fixed M1 ≈ 1
2M2, all points have neutralino

masses above ∼ 240 GeV. In this plot the shift in the MW prediction as compared to

– 15 –



J
H
E
P
1
2
(
2
0
1
3
)
0
8
4

the SM case arises solely from the stop-sbottom sector with mb̃1
> 1000 GeV (neglecting

the numerically insignificant contributions from the other sectors for large SUSY particle

masses). One can observe that MW values up to the upper edge of the experimental 1σ

band (∼ 80.400 GeV) can still be reached for mt̃1
values as high as mt̃1

∼ 1100 GeV in this

case. For large stop masses, mt̃1
& 1100 GeV, the contributions from the stop-sbottom

sector decrease as expected in the decoupling limit.7

Now we turn to figure 3 showing the MW prediction plotted against mb̃1
. In the

left plot we show all points that are allowed by HiggsBounds and the other constraints

described above (in particular, mt̃2
/mt̃1

< 2.5 and mb̃2
/mb̃1

< 2.5 is required). In the right

plot only those points are displayed for which the stops are heavier than 1000 GeV, the

first and second generation squark masses as well as the gluino mass are above 1200 GeV,

and the sleptons and charginos are heavier than 500 GeV. Focusing first on the left plot,

one can see that it displays the same qualitative features as the upper left plot of figure 2.

While one would normally expect that the highest values for MW are obtained for the

smallest values of mt̃1
and mb̃1

, in the corresponding plots of figure 2 and figure 3 the

highest MW values are found for mt̃1
∼ 800 GeV and mb̃1

∼ 400 GeV. This feature is

related to the imposed restriction that the maximal mass splitting for stop and sbottom

masses is limited to be smaller than 2.5. The largest correction to MW originates from the

stop-sbottom contributions to ∆ρ, which depend sensitively on the mass splittings between

the four squarks of the third generation. After imposing the limit on the maximal mass

splittings of stops and sbottoms, these contributions become largest if the relative size of

the sbottom mixing, |Xb/max(MQ̃3
,MD̃3

)|, reaches its maximum. This is realized in this

case for mb̃1
∼ 400 GeV and mb̃2

/mb̃1
∼ 2.5, mt̃1

/mb̃1
∼ 2, giving rise to the maximum

around mt̃1
∼ 800 GeV and mb̃1

∼ 400 GeV in the upper left plot of figure 2 and the left

plot of figure 3, respectively. As expected, for higher values of mb̃1
the maximum value

reached for MW in figure 3 decreases, but MW values as high as the experimental central

value are seen to be possible all the way up to mb̃1
∼ 2 TeV. In the right plot the other

SUSY particles are required to be rather heavy (in particular, the stop masses are assumed

to be above 1000 GeV; the other masses are restricted as described above), so that the

impact of the contributions from the sbottom sector becomes apparent. While rather large

contributions are possible for sbottom masses below about 800 GeV, for the highest values

of mb̃1
shown in the figure the MSSM prediction for MW approaches the one in the SM.

So far we have only taken into account the existing limits from the Higgs searches at

the LHC and other colliders (via the program HiggsBounds), but we have not explicitly

imposed a constraint in view of the observed signal at ∼ 125.6 GeV. Within the MSSM

(referring to the CP-conserving case for simplicity), the signal can, at least in principle, be

identified either with the light CP-even Higgs boson h or the heavy CP-even Higgs boson H.

In figure 4 we show the SM and MSSM prediction of MW as a function of mt as obtained

from our scan according to Table 1, where in the left plot the green MSSM area fulfillsMh =

7In all plots in figure 2 one can see a small gap between the MSSM points for mt̃1
> 1900 GeV and the

SM line. This is an artefact of the chosen scan ranges: in this region the mass-splitting between t̃1 and t̃2 is

small, and mh does not reach values up to ∼ 126 GeV. The MW value approached in the decoupling limit

therefore corresponds to the SM prediction for a lower Higgs mass value.
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Figure 4. Prediction for MW as a function of mt. The left plot shows the MW prediction assuming

the light CP-even Higgs boson h in the mass region 125.6 ± 3.1 GeV. The red band indicates the

overlap region of the SM and the MSSM with MSM
H = 125.6 ± 0.7 GeV. The right plot shows the

MW prediction assuming the heavy CP-even Higgs boson H in the mass region 125.6 ± 3.1 GeV.

The blue band again indicates the SM region with MSM
H = 125.6± 0.7 GeV. All points are allowed

by HiggsBounds.

125.6±3.1 GeV, while in the right plot the green MSSM area fulfills MH = 125.6±3.1 GeV.

The substantially larger uncertainty with respect to the SM experimental uncertainty of

0.7 GeV (at the 2σ level) arises as a consequence of the theoretical uncertainties from

unknown higher-order corrections in the MSSM prediction for the Higgs boson mass. We

have added a global uncertainty of 3 GeV [104] in quadrature, yielding a total uncertainty

of 3.1 GeV.

Starting with the left plot, where the light CP-even Higgs boson has a mass that is

compatible with the observed signal, we find a similar result as in figure 1. In particular,

the comparison with the experimental results for MW and mt, indicated by the gray ellipse,

shows a slight preference for a non-zero SUSY contribution to MW . While the width of

the MSSM area shown in green is somewhat reduced compared to figure 1 because of

the additional constraint applied here (requiring Mh to be in the range Mh = 125.6 ±
3.1 GeV leads to a constraint on the stop sector parameters, see, e.g., ref. [32], which in

turn limits the maximal contribution to MW ), the qualitative features are the same as

in figure 1. This is not surprising, since the limits from the Higgs searches implemented

in figure 1 have already led to a restriction of the allowed mass range to the unexcluded

region near the observed signal. As in figure 1 the plot shows a small MSSM region (green)

below the overlap region between the MSSM and the SM (red), which is a consequence

of the broadening of the allowed range of Mh caused by the theoretical uncertainties from

unknown higher-order corrections, as explained above.

In the right plot of figure 4 we show the result for the case where instead the mass of the

heavy CP-even Higgs boson is assumed to be compatible with the observed signal, i.e.MH =

125.6± 3.1 GeV. While as mentioned above the interpretation of the discovered signal in
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terms of the heavy CP-even Higgs boson within the MSSM is challenged in particular by

the recent ATLAS bound on light charged Higgs bosons [39] (which is not yet included

in the version of HiggsBounds used for our analysis),8 it is nevertheless interesting to

investigate to what extent the precision observable MW is sensitive to such a rather exotic

scenario where all five states of the MSSM Higgs sector are light. The lightest CP-even

Higgs in this scenario has a heavily suppressed coupling to gauge bosons and a mass that

can be significantly below the LEP limit for a SM-like Higgs, see e.g. ref. [33]. As shown

in the right plot of figure 4, the constraint MH = 125.6± 3.1 GeV gives rise to a situation

where the MSSM region (green) does not overlap with the SM prediction (blue). This gap

between the predictions of the two models is caused by the fact that MH = 125.6±3.1 GeV

implies light states in the Higgs sector (in particular a light charged Higgs), which lead to

a non-zero SUSY contribution to MW in this case, whereas for the light CP-even Higgs

boson the constraint Mh = 125.6± 3.1 GeV can be fulfilled in the decoupling region of the

MSSM. The plot furthermore shows that the constraint MH = 125.6±3.1 GeV implies not

only a lower bound on the SUSY contribution to MW but also a more restrictive upper

bound, as can be seen from comparing the two plots in figure 4. It is interesting to note

that also in the case where the heavy CP-even Higgs is in the mass range compatible with

the observed signal, the MSSM turns out to be better compatible with the experimental

results for MW and mt (indicated by the gray ellipse) than the SM.

In figure 5 we analyze the dependence of the MW prediction on light scalar taus.

In refs. [114, 115] it was shown that light scalar taus can enhance the decay rate of the

light CP-even Higgs boson into photons. This is of interest in view of the current exper-

imental situation, where the signal strength in the γγ channel observed by ATLAS [116]

lies significantly above the value expected in the SM (but is still compatible at the 2σ

level), while the signal strength observed in CMS [117] is currently slightly below the

SM level. Since loop contributions of BSM particles to the decay width Γ(h → γγ) do

not have to compete with a SM-type tree-level contribution, this loop-induced quantity is

of particular relevance for investigating possible deviations from the SM prediction. fig-

ure 5 shows the prediction for MW as a function of Γ(h → γγ)/Γ(H → γγ)SM, where

the latter has been evaluated with FeynHiggs. As a starting point we use the best-fit

point obtained in ref. [34] from a pMSSM-7 fit to all Higgs data (available at that time),

which indeed exhibited an enhancement of Γ(h → γγ) due to scalar taus with a mass

close to 100 GeV. The parameters of the best fit point are MA = 669 GeV, tanβ = 16.5,

µ = 2640 GeV, MQ̃3
= MŨ3

= MD̃3
= 1100 GeV, MQ̃1,2

= MŨ1,2
= MD̃1,2

= 1000 GeV,

ML̃3
= MẼ3

= 285 GeV, ML̃1,2
= MẼ1,2

= 300 GeV, Af = 2569 GeV, M2 = 201 GeV and

M3 = 1000 GeV. In figure 5 the best-fit point is indicated as a black star. We vary the stau

mass scale MẼ3
= ML̃3

in the range of 280 GeV to 500 GeV, giving rise to a corresponding

variation of the lighter stau mass. The results are shown as the green line in figure 5, where

the current experimental 1σ region for MW is indicated as a gray band. One can observe

that for light scalar taus, corresponding to larger Γ(h→ γγ), the agreement of the predic-

8If the Higgs sector contains an additional singlet, as in the NMSSM, it is possible to have a SM-like

second-lightest Higgs, while the charged Higgs boson can be much heavier in this case, see e.g. ref. [113].
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Figure 5. MW prediction in the MSSM as a function of Γ(h→ γγ), normalized to the SM value.

The black star indicates the best fit point from a pMSSM-7 fit to all Higgs data (available at that

time) [34]. The green line is obtained by varying MẼ3
= ML̃3

from 280 GeV to 500 GeV.

tion for MW with the experimental value is improved. A certain level of enhancement of

Γ(h→ γγ) is also compatible with the current experimental results on the signal strength

in the γγ channel. For heavy scalar taus, as obtained for MẼ3
= ML̃3

= 500 GeV (and

keeping the other parameters as defined above), the MW prediction still remains within

the experimental 1σ band, while nearly SM values for Γ(h→ γγ) are reached.

5.4 Discussion of possible future scenarios

In the final step of our investigation we discuss the precision observable MW in the context

of possible future scenarios. We first investigate the impact of an assumed limit of 500 GeV

on stops and sbottoms (and assume that no other colored particles are observed below

1200 GeV). In figure 6 we show again the MW –mt planes as presented in figure 1 (where

the parameter region allowed by HiggsBounds is displayed) and in figure 4 (Mh orMH in the

range of 125.6±3.1 GeV), but now in addition the light blue points obey the (hypothetical)

mass limits for stops and sbottoms (500 GeV) and for other colored particles (1200 GeV).

The left plot shows the HiggsBounds allowed points, whereas in the middle (right) plot

Mh(MH) = 125.6 ± 3.1 GeV is required. It can be observed that the light blue points

corresponding to a relatively heavy colored spectrum are found at the lower end of the

predicted MW range, i.e. in the decoupling region of the MSSM. As discussed above the

largest SUSY contributions arise from the stop-sbottom sector. If lower lower mass limits

on stops and sbottoms of 500 GeV are assumed, it can be seen that the band corresponding

to the possible range of predictions for MW in the MSSM would shrink significantly, to the

region populated by the blue points. It should be noted that the prediction for MW in this

region is in perfect agreement with the experimental measurements of MW and mt. Besides

the contributions of stops and sbottoms, which can still be significant even if the stops and
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Figure 6. Prediction for MW as a function of mt. The left plot shows all points allowed by

HiggsBounds, the middle one requires Mh to be in the mass region 125.6 ± 3.1 GeV, while in

the right plot MH is required to be in the mass region 125.6 ± 3.1 GeV. The color coding is as

in Figures 1 and 4. In addition, the blue points are the parameter points for which the stops and

sbottoms are heavier than 500 GeV and squarks of the first two generations and the gluino are

heavier than 1200 GeV.

sbottoms are heavier than 500 GeV, the main SUSY corrections arise from relatively light

sleptons, charginos and neutralinos, as analyzed above.

While so far we have compared the various predictions with the current experimental

results for MW and mt, we now discuss the impact of future improvements of these mea-

surements. For the W boson mass we assume an improvement of a factor three compared

to the present case down to ∆MW = 5 MeV from future measurements at the LHC and a

prospective Linear Collider (ILC) [118], while for mt we adopt the anticipated ILC accuracy

of ∆mt = 100 MeV [119]. For illustration we show in figure 7 again the left plot of figure 4,

assuming the mass of the light CP-even Higgs boson h in the region 125.6± 3.1 GeV, but

supplement the gray ellipse indicating the present experimental results for MW and mt with

the future projection indicated by the red ellipse (assuming the same experimental central

values). While currently the experimental results for MW and mt are compatible with the

predictions of both models (with a slight preference for a non-zero SUSY contribution),

the anticipated future accuracies indicated by the red ellipse would clearly provide a high

sensitivity for discriminating between the models and for constraining the parameter space

of BSM scenarios.

As a further hypothetical future scenario we assume that a light scalar top quark has

been discovered at the LHC with a mass of mt̃1
= 400 ± 40 GeV, while no other new

particle has been observed. As before, for this analysis we use an anticipated experimental

precision of ∆MW = 5 MeV (other uncertainties have been neglected in this analysis).

Concerning the masses of the other SUSY particles, we assume lower limits of 300 GeV

on both sleptons and charginos, 500 GeV on other scalar quarks of the third generation

and of 1200 GeV on the remaining colored particles. We have selected the points from our

scan accordingly. Any additional particle observation would impose a further constraint

and would thus enhance the sensitivity of the parameter determination. In figure 8 we

show the parameter points from our scan that are compatible with the above constraints.

All points fulfill Mh = 125.6 ± 3.1 GeV and mt̃1
= 400 ± 40 GeV. Yellow, red and blue
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Figure 7. Prediction for MW as a function of mt, as given in the left plot of figure 4 (the mass

Mh of the light CP-even Higgs boson is assumed to be in the region 125.6± 3.1 GeV). In addition

to the current experimental results for MW and mt that are displayed by the gray 68% C.L. ellipse

the anticipated future precision at the ILC is indicated by the red ellipse (assuming the same

experimental central values).

points have furthermore a W boson mass of MW = 80.375, 80.385, 80.395 ± 0.005 GeV,

respectively, corresponding to three hypothetical future central experimental values for

MW . The left plot in figure 8 shows the MW prediction as a function of the lighter sbottom

mass. Assuming that the experimental central value for MW stays at its current value of

80.385 GeV (red points) or goes up by 10 MeV (blue points), the precise measurement of

MW would set stringent upper limits of ∼ 800 GeV (blue) or ∼ 1000 GeV (red) on the

possible mass range of the lighter sbottom. As expected, this sensitivity degrades if the

experimental central value for MW goes down by 10 MeV (yellow points), which would

bring it closer to the SM value given in eq. (5.1). The right plot shows the results in the

mb̃1
–mt̃2

plane. It can be observed that sensitive upper bounds on those unknown particle

masses could be set9 based on an experimental value of MW of 80.385 ± 0.005 GeV or

80.395 ± 0.005 GeV (i.e. for central values sufficiently different from the SM prediction).

In this situation the precise MW measurement could give interesting indications regarding

the search for the heavy stop and the light sbottom (or put the interpretation within the

MSSM under tension).

6 Conclusions

We have presented the currently most precise prediction for the W boson mass in the MSSM

and compared it with the state-of-the-art prediction in the SM. The evaluation in the MSSM

includes the full one-loop result (for the general case of complex parameters) and all known

higher-order corrections of SM and SUSY type. Within the SM, interpreting the signal

9See also ref. [120] for a recent analysis investigating constraints on the scalar top sector.
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Figure 8. Results of an MSSM parameter scan illustrating the prediction for MW in a hypothetical

future scenario assuming a measurement of mt̃1
= 400± 40 GeV at the LHC as well as lower limits

on all other SUSY particles: the assumed lower limits are 500 GeV for the other third generation

squarks, 1200 GeV for all other colored particles, and 300 GeV for sleptons and charginos. All

displayed points fulfill Mh = 125.6±3.1 GeV. The yellow, red and blue points correspond to MW =

80.375 ± 0.005 GeV (yellow), MW = 80.385 ± 0.005 GeV (red), and MW = 80.395 ± 0.005 GeV

(blue). The left plot shows the prediction for MW as a function of the lighter sbottom mass, mb̃1
,

while the right plot shows the MW prediction in the mb̃1
–mt̃2

plane.

discovered at the LHC as the SM Higgs boson with MSM
H = 125.6 GeV, there is no unknown

parameter in the MW prediction anymore. This yields MSM
W = 80.361 GeV, which is

somewhat below (but compatible at the level of about 1.5σ) with the current experimental

value of M exp
W = 80.385±0.015 GeV. The loop contributions from supersymmetric particles

in general give rise to an upward shift in the prediction for MW as compared to the SM

case, which tend to bring the prediction into better agreement with the experimental result.

For very light superpartners of the top and bottom quarks and large mass splittings in this

sector even much larger (and thus experimentally disfavored) values of MW are possible.

We have investigated the MSSM and SM predictions in the MW –mt plane, updating

earlier results in ref. [17] while taking into account the existing constraints from Higgs

and SUSY searches. We have analyzed in this context the implications of the results of

present and possible future searches for supersymmetric particles at the LHC. While the

existing bounds on the gluino and the squarks of the first two generations have only a minor

effect, more stringent bounds on the third generation squarks would have a drastic effect

on the possible range of MW values in the MSSM. In particular, assuming a lower bound

of 500 GeV on the masses of the stops and sbottoms, the resulting range of predicted

MW values in the MSSM essentially reduces to the region that is best compatible with

the experimental result (corresponding to the 68% C.L. region). We have shown that

MSSM predictions in exact agreement with the current experimental central value of MW

can be reached for stop mass values as large as mt̃1
∼ 1.5 TeV, even if all other SUSY

particles are heavy. We have furthermore pointed out that even if the squarks are so heavy

that their contribution to MW becomes negligible, sizable SUSY contributions to MW are

nevertheless possible if either charginos, neutralinos or sleptons are light. Analyzing the
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impact of light SUSY particles that are still allowed by LHC searches we have found that

scalar leptons can give a contribution larger than 60 MeV, while light charginos can give

corrections of up to ∼ 20 MeV.

Besides the impact of limits from searches for supersymmetric particles, we have ana-

lyzed the constraints arising from the Higgs signal at about 125.6 GeV. Within the MSSM

this signal can be interpreted, at least in principle, either as the light or the heavy CP-

even Higgs boson (we have not addressed here the possibility of a state consisting of an

admixture of CP-even and CP-odd components). Concerning the interpretation in terms

of the light CP-even Higgs boson, the result for MW turns out to be well compatible with

the additional constraint that Mh should be in the mass range compatible with the signal.

The main effect of this constraint is that it somewhat reduces the allowed range of pre-

dicted MW values in the MSSM, improving in this way the overall compatibility with the

experimental result for MW . It is remarkable that also the rather exotic scenario where

the mass of the heavy CP-even Higgs boson is required to be in the range compatible with

the observed signal (which is under pressure in particular from the recent ATLAS bound

on light charged Higgs bosons) leads to predicted values for MW that tend to be in better

agreement with the experimental result than for the SM case. It is interesting to note

that in this case, which corresponds to an MSSM scenario outside of the decoupling region,

there is no overlap between the SM prediction and the range of MSSM predictions for MW .

A high-precision measurement of MW could thus yield a clear distinction between the two

models in such a scenario.

As another interesting feature in the context of Higgs phenomenology, we have studied

the correlation between MW and Γ(h→ γγ) via light scalar taus. Light staus contribute to

the loop-induced process h→ γγ, leading to an enhancement of the γγ width over the SM

prediction. At the same time staus appear in the MSSM loop corrections to the muon decay,

and thus light staus can also yield a sizable contribution to the prediction for MW . We have

demonstrated that light staus can have the simultaneous effect of enhancing Γ(h → γγ)

while bringing the MW prediction in perfect agreement with the current experimental

central value of MW .

As a final step we have discussed the impact of the precision observable MW in the

context of possible future scenarios. The improved precision on MW and mt from future

measurements at the LHC and in particular at a prospective Linear Collider (ILC) would

significantly enhance the sensitivity to discriminate between the SM and the MSSM (as

well as other BSM scenarios). Analyzing in this context the impact of possible future LHC

results in the stop sector on the MW prediction, we have discussed a hypothetical scenario

where a light stop has been detected at the LHC, while lower limits have been imposed

on all other SUSY particles. We have demonstrated that, depending on the future central

experimental value, a high-precision measurement of MW could yield quite stringent upper

bounds on the mass of the heavier stop and the lighter sbottom, which could be of great

interest regarding the direct searches for those particles. In case other SUSY particles were

detected, this would further sharpen the sensitivity for determining unknown mass scales

of the model.
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[97] T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and

D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

[98] M. Veltman, Limit on mass differences in the Weinberg model, Nucl. Phys. B 123 (1977)

89 [INSPIRE].

[99] M. Consoli, W. Hollik and F. Jegerlehner, The effect of the top quark on the M(W )-M(Z)

interdependence and possible decoupling of heavy fermions from low-energy physics, Phys.

Lett. B 227 (1989) 167 [INSPIRE].

[100] R. Barbieri, M. Beccaria, P. Ciafaloni, G. Curci and A. Vicere, Two loop heavy top effects

in the standard model, Nucl. Phys. B 409 (1993) 105 [INSPIRE].

[101] J. Fleischer, O. Tarasov and F. Jegerlehner, Two loop heavy top corrections to the ρ

parameter: a simple formula valid for arbitrary Higgs mass, Phys. Lett. B 319 (1993) 249

[INSPIRE].

[102] T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, FeynHiggs: a program for

the calculation of MSSM Higgs-boson observables — Version 2.6.5, Comput. Phys.

Commun. 180 (2009) 1426 [INSPIRE].

[103] M. Frank et al., The Higgs boson masses and mixings of the complex MSSM in the

Feynman-diagrammatic approach, JHEP 02 (2007) 047 [hep-ph/0611326] [INSPIRE].

[104] G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high precision

predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020]

[INSPIRE].

[105] S. Heinemeyer, W. Hollik and G. Weiglein, The masses of the neutral CP-even Higgs bosons

in the MSSM: accurate analysis at the two loop level, Eur. Phys. J. C 9 (1999) 343

[hep-ph/9812472] [INSPIRE].

[106] S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: a program for the calculation of the

masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124

(2000) 76 [hep-ph/9812320] [INSPIRE].

[107] ATLAS collaboration, Combined measurements of the mass and signal strength of the

Higgs-like boson with the ATLAS detector using up to 25 fb−1 of proton-proton collision

data, ATLAS-CONF-2013-014 (2013).

[108] CMS collaboration, Combination of standard model Higgs boson searches and measurements

of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005 (2013).

[109] R. Hempfling, Yukawa coupling unification with supersymmetric threshold corrections, Phys.

Rev. D 49 (1994) 6168 [INSPIRE].

[110] L.J. Hall, R. Rattazzi and U. Sarid, The top quark mass in supersymmetric SO(10)

unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [INSPIRE].

– 29 –

http://dx.doi.org/10.1016/0550-3213(92)90169-C
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B387,467
http://dx.doi.org/10.1016/0920-5632(92)90444-W
http://dx.doi.org/10.1016/S0010-4655(01)00290-9
http://dx.doi.org/10.1016/S0010-4655(01)00290-9
http://arxiv.org/abs/hep-ph/0012260
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0012260
http://dx.doi.org/10.1016/S0010-4655(01)00436-2
http://arxiv.org/abs/hep-ph/0105349
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0105349
http://dx.doi.org/10.1016/S0010-4655(98)00173-8
http://arxiv.org/abs/hep-ph/9807565
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9807565
http://dx.doi.org/10.1016/0550-3213(77)90342-X
http://dx.doi.org/10.1016/0550-3213(77)90342-X
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B123,89
http://dx.doi.org/10.1016/0370-2693(89)91301-4
http://dx.doi.org/10.1016/0370-2693(89)91301-4
http://inspirehep.net/search?p=find+J+Phys.Lett.,B227,167
http://dx.doi.org/10.1016/0550-3213(93)90448-X
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B409,105
http://dx.doi.org/10.1016/0370-2693(93)90810-5
http://inspirehep.net/search?p=find+J+Phys.Lett.,B319,249
http://dx.doi.org/10.1016/j.cpc.2009.02.014
http://dx.doi.org/10.1016/j.cpc.2009.02.014
http://inspirehep.net/search?p=find+J+Comput.Phys.Commun.,180,1426
http://dx.doi.org/10.1088/1126-6708/2007/02/047
http://arxiv.org/abs/hep-ph/0611326
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0611326
http://dx.doi.org/10.1140/epjc/s2003-01152-2
http://arxiv.org/abs/hep-ph/0212020
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0212020
http://dx.doi.org/10.1007/s100529900006
http://arxiv.org/abs/hep-ph/9812472
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9812472
http://dx.doi.org/10.1016/S0010-4655(99)00364-1
http://dx.doi.org/10.1016/S0010-4655(99)00364-1
http://arxiv.org/abs/hep-ph/9812320
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9812320
http://cds.cern.ch/record/1523727
http://cds.cern.ch/record/1542387
http://dx.doi.org/10.1103/PhysRevD.49.6168
http://dx.doi.org/10.1103/PhysRevD.49.6168
http://inspirehep.net/search?p=find+J+Phys.Rev.,D49,6168
http://dx.doi.org/10.1103/PhysRevD.50.7048
http://arxiv.org/abs/hep-ph/9306309
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9306309


J
H
E
P
1
2
(
2
0
1
3
)
0
8
4

[111] M.S. Carena, M. Olechowski, S. Pokorski and C. Wagner, Electroweak symmetry breaking

and bottom-top Yukawa unification, Nucl. Phys. B 426 (1994) 269 [hep-ph/9402253]

[INSPIRE].

[112] M.S. Carena, D. Garcia, U. Nierste and C.E. Wagner, Effective lagrangian for the t̄bH+

interaction in the MSSM and charged Higgs phenomenology, Nucl. Phys. B 577 (2000) 88

[hep-ph/9912516] [INSPIRE].

[113] O. St̊al and G. Weiglein, Light NMSSM Higgs bosons in SUSY cascade decays at the LHC,

JHEP 01 (2012) 071 [arXiv:1108.0595] [INSPIRE].

[114] M. Carena, S. Gori, N.R. Shah, C.E. Wagner and L.-T. Wang, Light stau phenomenology

and the Higgs γγ rate, JHEP 07 (2012) 175 [arXiv:1205.5842] [INSPIRE].

[115] M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM

and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].

[116] ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the two

photon decay channel with the ATLAS detector using 25 fb−1 of proton-proton collision

data, ATLAS-CONF-2013-012 (2013).

[117] CMS collabroation, Updated measurements of the Higgs boson at 125 GeV in the two photon

decay channel, CMS-PAS-HIG-13-001 (2013).

[118] M. Baak et al., Study of electroweak interactions at the energy frontier, arXiv:1310.6708

[INSPIRE].

[119] H. Baer et al., The International Linear Collider technical design report — Volume 2:

physics, arXiv:1306.6352 [INSPIRE].

[120] V. Barger, P. Huang, M. Ishida and W.-Y. Keung, Scalar-top masses from SUSY loops with

125 GeV mh and precise Mw, Phys. Lett. B 718 (2013) 1024 [arXiv:1206.1777] [INSPIRE].

– 30 –

http://dx.doi.org/10.1016/0550-3213(94)90313-1
http://arxiv.org/abs/hep-ph/9402253
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9402253
http://dx.doi.org/10.1016/S0550-3213(00)00146-2
http://arxiv.org/abs/hep-ph/9912516
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9912516
http://dx.doi.org/10.1007/JHEP01(2012)071
http://arxiv.org/abs/1108.0595
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.0595
http://dx.doi.org/10.1007/JHEP07(2012)175
http://arxiv.org/abs/1205.5842
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.5842
http://dx.doi.org/10.1007/JHEP03(2012)014
http://arxiv.org/abs/1112.3336
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.3336
http://cds.cern.ch/record/1523698
http://cds.cern.ch/record/1530524
http://arxiv.org/abs/1310.6708
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.6708
http://arxiv.org/abs/1306.6352
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.6352
http://dx.doi.org/10.1016/j.physletb.2012.11.049
http://arxiv.org/abs/1206.1777
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.1777

	Introduction
	Particle sectors of the MSSM
	Determination of the w boson mass
	Calculation of Delta(r)
	One-loop calculation in the MSSM
	Incorporation of higher order corrections

	Numerical analysis
	Prediction for the W boson mass in the SM
	MSSM parameter scan: scan ranges and constraints
	Results for the W boson mass in the MSSM
	Discussion of possible future scenarios

	Conclusions

