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1 Introduction

The formulation of quantum theories of massless tensor fields on a spatial Riemannian

manifold M requires the self-adjointness and positivity of its negative Laplacian −∇2.

Both properties are readily fulfilled if M = R
N or a compact boundary-less Riemannian

manifold, and are the basis of massless tensor field theories on Minkowski space.

But there are many situations where the manifold M is not R
N , but is a compact

Riemannian manifold with boundary ∂M . Such manifolds are important for quantum Hall

and Casimir effects and topological insulators. IfM has a boundary ∂M , the Laplace oper-

ator −∇2 may fail to satisfy −∇2 ≥ 0. Thus, for a scalar field, let ~n be the outward-drawn

unit normal vector and ψ̇ := ~n · ∇Ψ|∂M on ∂M . Consider the Robin boundary condition

ψ̇ = µψ = µΨ|∂M (1.1)

on ∂M with µ > 0 and where ψ = Ψ|∂Ω denotes the boundary value of Ψ. Let us also

introduce the useful notations

(Ψ,Φ) :=

∫

M
dVMΨ(x)†Φ(x), (1.2)

〈ψ, φ〉 :=
∫

∂M
dV∂Mψ(x)

†φ(x) (1.3)

where dVM and dV∂M are respectively the volume forms for the metric g entering the

Laplacian operator ∇2, and its pull-back to ∂M . Then

(Ψ,−∇2Ψ) = (∇Ψ,∇Ψ)− 〈ψ, ψ̇〉 = (∇Ψ,∇Ψ)− µ〈ψ, ψ〉 . (1.4)

The last term here is negative for positive µ > 0. For this reason, provided that µ is large

enough, there exist Ψ such that (Ψ,−∇2Ψ) < 0 and −∇2 has negative eigenvalues [1].

The corresponding eigenstates are edge states localised in a small neighborhood of ∂M . In
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particular, Asorey et al. [2], proved that as µ becomes large, and the Dirichlet condition is

approached, the negative eigenvalues recede to −∞. At the same time, the corresponding

eigenstates get progressively more localised at the edge and eventually become weakly zero

as µ → ∞. Numerical evidence of this phenomenon in one dimension and a numerical

algorithm to solve such eigenvalue problems can be found in [3].

The purpose of this paper is to report on our studies of this remarkable phenomenon

which happens for all tensor fields, including the electromagnetic field. It is also insensitive

to the topology and dimension of ∂M . We show in section 2 that the boundary condi-

tions (1.1) naturally arise when M and R
N\M support different phases, the former being

the massive phase of mass m ≃ µ of the order parameter. In particular M can support a

pseudo-Goldstone boson.

Similar edge states exist for the massive Dirac Hamiltonian as well as shown in section

3. They may play a role in the physics of topological insulators. In this case, negative

eigenvalues are not a problem for quantum field theory. As before, the bulk states have

a large gap compared to the edge excitations. There is also a spin-momentum locking

phenomenon. These are among the desired features of topological insulators.1

The foregoing considerations do not depend on the topology or the Riemannian metric

of M .

Let us now make brief remarks on parity P and time-reversal T .

As regards, parity, it is a global diffeomorphism and for this reason must act on M

to be even defined. That depends also on the nature of the boundary ∂M which may not

be a sphere. It must also be an isometry of the metric of M and its boundary ∂M . For

simplicity, to enforce these requirements, let us assume that the metric onM is flat and that

M is a spherical ball Bd. For d = 1, M is the interval [0, R] with ∂M = {0, R}, for d = 2,

M is the disk B2 with ∂M = S1 and for d = 3, M is the ball B3 with ∂M = S2. For such

a geometry, for tensor fields, P is a symmetry. So is T regardless of the above geometry.

The Dirac HamiltonianH with a mass termm requires separate comments. In this case

we will also find a Hamiltonian HE for edge states which controls the APS-like boundary

conditions for H. For d = 1, HE is just a finite-dimensional matrix, we will not comment

on it for now. For d = 3, if H is based on an irreducible representation of γ-matrices,

breaks P and T even on R
2 [6, 7] and hence also on B2. At the same time, the edge

Hamiltonian HE is T -invariant and also P -invariant if M is the spherical disk B2 as above.

But for d = 3, i.e. if M is the spherical ball B3, HE breaks P and T , being the massive

2 + 1 Hamiltonian on the sphere S2. As HE determines the APS boundary condition, H

too breaks P and T symmetries.

We remark that even for the d = 2 disk, where HE preserves P and T whereas H

violates both discrete symmetries, since the bulk and edge modes can get coupled by in-

teractions, the P and T symmetries of HE are likely to be only approximate, protected

perhaps by the mass gap of the bulk.

1See for example the reviews [4, 5].
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We can of course recover T -invariance for HE or H if appropriate reducible represen-

tations of γ-matrices are used, as done by Altland and Zirnbauer [8].2 Also both symme-

tries can be preserved if we consider local boundary conditions which generalise bag chiral

boundary conditions and which are considered in section 4. Section 5, which is the conclud-

ing section, discusses spin Hall effect using our model, as also the Majorana condition for

spinorial edge excitations. Finally, we formulate the edge Hamiltonian for these spinorial

edge modes.

The work of Altland and Zirnbauer has been generalised by Ryu et al. [10], Le Clair

and Bernard [11] and others. As we discuss in the final section, the analysis of our ap-

proach along their lines requires further assumptions about the boundary manifold and the

symmetries of the dynamics of the boundary theory. The edge effects we find come from

the nature of the boundary conditions for the Hamiltonian. While their detailed properties

can depend on discrete symmetries as in their work, their existence and the presence of a

large gap in the bulk are very general phenomena. They are present not just for spinorial

systems, but also for all tensorial systems.

For reasons of clarity, we focus only on scalar and spinor fields in this paper, reserving

tensor fields and certain mathematical details to a paper in preparation [12].

2 Scalar fields

We assume henceforth that M is compact, with a Riemannian metric g and a smooth

boundary of codimension 1.

The existence of negative energy edge states of −∇2 for the boundary conditions (1.1)

has long been known [1, 13, 14] and has also been recently studied by [15] in the context

of black holes. A general demonstration of their existence is due to [2] and goes as follows:

introduce Gaussian normal coordinates in a collar neighbourhoodX of ∂M with r ∈ [1−ǫ, 1]
the radial and θ = {θa} the angular coordinates, (r = 1,θ) being the coordinates of ∂M .

Then on X, the metric g and the Laplacian take the form

g(r,θ) =

(

1 0

0 Ω(r,θ)

)

(2.1)

∇2 = ∂2r +
1

√

|Ω(r,θ)|
∂a
√

|Ω(r,θ)|∂a ≡ ∂2r +∇2
θ , (2.2)

where ∂a := ∂
∂θa and |Ω(r,θ)| = detΩ(r,θ). Set s = π

2ǫ(1− r) and

Ψ(x) =

{

ξ(θ) exp(−2µǫ
π tan s), (s,θ) ∈ X

0, (s,θ) ∈M\X
, (2.3)

where ξ is any smooth function of θ. This function verifies the boundary condition (1.1).

Asorey et al. [2] show that for ǫ small enough

(Ψ,−∇2Ψ) ≤ π

2ǫ

(

1

4k
(1 + δ)− k

2
(1− δ)

)

〈ξ, ξ〉+ ǫ(1 + δ)〈ξ,−∇2
θξ〉 (2.4)

2See ref. [9] for a review.
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and

(Ψ,Ψ) ≥ π(1− δ)

4ǫ(k + 1)
〈ξ, ξ〉 (2.5)

where k = 2ǫµ/π and δ comes from the bound of the variation of the metric, |Ω(r,Γ)| <
|Ω(0,Γ)|(1 + δ), in the collar around the boundary for small enough ǫ. Both inequalities

provide an upper bound for the energy of the state (2.3)

E =
(Ψ,−∇2Ψ)

(Ψ,Ψ)
≤ 2(k + 1)

(

1 + δ

4k(1− δ)
− k

2
+

2ǫ2

π

1 + δ

1− δ

〈ξ,−∇2
θ
ξ〉

〈ξ, ξ〉

)

, (2.6)

which shows that the edge states (2.3) have negative energies for large enough µ. In fact,

E → −∞ as µ→ ∞ when we approach Dirichlet boundary conditions.

The localisation of Ψ†Ψ near the boundary gets sharper as µ gets larger, and its width

can be made as small as we please by choosing a large enough µ. Hence Ψ approaches zero

weakly in the Dirichlet limit µ → ∞. In fact the convergence to a null vector is strong in

this limit [2].

Interpretation. If M is a superconductor and R
N\M is a dielectric or vacuum, the or-

der parameter Ψ in the different effective theories (London, Ginsburg-Landau or Anderson-

Higgs) is obtained as a solution of a second order differential equation involving the Lapla-

cian of M and an effective mass m. The De Gennes boundary conditions [16] are in fact

Robin boundary conditions (1.1) with µ < 0. The Meissner effect states that the static

magnetic potentials Ai decay exponentially in r from ∂M as one goes inwards the super-

conductor: i.e. the photon acquires a mass m on M . The boundary conditions in this case

can be also chosen to be Robin boundary conditions (1.1), but in this case with µ > 0.

The choice m ≃ µ matches the connection of the penetration depth with the effective mass

of the electromagnetic field into the superconductor in M according to Anderson-Higgs

effective model.

But then all the wave functions in the domain of −∇2 fulfill (1.1). The general theory

requires this for the self-adjointness of −∇2 + m2. That in turn predicts that there are

low-lying edge states at the interface of a superconductor and the vacuum or a dielectric.

Nevertheless, the bulk states are gapped. We can show this as follows. It is enough to

consider the scalar Ψ. Genuine bulk states vanish at the boundary:

Ψ|∂M = 0. (2.7)

They can also satisfy the boundary condition (1.1) provided that their normal derivatives

also vanish at the edge, ψ̇ = 0. Hence

(Ψ, (−∇2 +m2)Ψ) = (∇Ψ,∇Ψ) +m2(Ψ,Ψ) ≥ m2(Ψ,Ψ) , (2.8)

where we used (2.7) during partial integration. What has happened is that the addition of

m2 to −∇2 lifts the negative energy edge levels of −∇2 above zero while at the same time

pushing up the positive energy bulk levels above m2.

It should be possible to check these conclusions experimentally.
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It is interesting that changing µ to −µ in (1.1) interchanges the roles ofM and R
N\M ,

with edge states appearing at the boundary of RN\M when approached from the side of

R
N\M .

Any system with a scalar order parameter Ψ in M supporting a massive phase with

broken symmetry and a massless phase with intact symmetry R
N\M will have an analogous

behaviour. The boundary condition (1.1) guarantees the existence of a static solution with

exponential decay at the boundary, and edge states for the low lying stationary excitations.

The crucial requirements for edge excitations are that M has a compact regular boundary

and supports a massive field with a static solution. Candidates for this field from the

Standard Model would be its pseudo-Goldstone bosons like the pion, but it looks unrealistic

to imagine that they can be confined to a manifold with boundary.

Finally, we note that (1.1) is T -invariant, µ being real, and orientation-reversal invari-

ant because ~n · ∇ has that property.

These considerations are very general. They do not depend on the topology and the

Riemannian geometry of M , requiring only that ∂M is a regular codimension 1 boundary.

They hold for all tensor fields, in particular for the electromagnetic field. Although we

have explicitly shown this result only for a scalar field in this paper, it is easy to extend it

to Ai as we show in a companion paper.

Example: disk of radius R. We next work out the edge states on a disk of radius R

with a flat metric. Previous literature has looked at this example, although perhaps only

briefly [1, 14].

We thus consider the eigenvalue problem

(−∇2 +m2)Ψ = E2Ψ, m > 0 , (2.9a)

Ψ̇|∂M = µΨ|∂M , µ > 0 . (2.9b)

As our focus is on edge states, we shall look for E2/m2 ≃ 0, which implies in particular that

E2 < m2. We will also adjust µ so that E2 > 0 as we do not want a negative eigenvalue

for −∇2 +m2. We will see that µ2 . m2 as expected.

In radial coordinates, the eigenvalue problem reads
(

−1

r

∂

∂r
r
∂

∂r
− 1

r2
∂2ϕ +m2

)

Ψ = E2Ψ (2.10a)

∂rΨ(R,ϕ) = µΨ(R,ϕ) . (2.10b)

Substituting Ψ = Rl(r)e
ilϕ and E = El, one gets

− ∂2

∂r2
Rl(r)−

1

r

∂

∂r
Rl(r) +

l2

r2
Rl(r) = (E2

l −m2)Rl(r) , (2.11)

Ṙl(R) = µRl(R) .

With

ε2l := E2
l −m2, (2.12)

and ρ = εlr, this equation becomes the well-known Bessel equation

− ρ2
∂2

∂ρ2
Rl(ρ)− ρ

∂

∂ρ
Rl(ρ) + (l2 − ρ2)Rl(ρ) = 0 , (2.13)
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Figure 1. Edge states with boundary condition (2.15) for m = 1

R
and different values of angular

momentum l = 1, 2, 3. The horizontal axis represents the dimensionless parameter r
R
.

with solutions Rl(r) = Jl(εlr).

We need to impose now the boundary condition. With the standard notation that

primes denote differentiation with respect to the argument of the function, we get for the

normal derivatives
∂Rl

∂r
(r) = εlJ

′
l (εlr) , (2.14)

and therefore the boundary condition becomes:

µ =
εlJ

′
l (εlR)

Jl(εlR)
. (2.15)

The eigenvalues will correspond to solutions of these equations. If ε2l > 0 the equation

above has solutions near the zeros of the Bessel function in the denominator, and hence

an infinite set of them. However here ε2l can be a negative number. Such solutions will

correspond to the edge states.

Hence as we focus just on edge states, let us look for solutions with ε2l = E2−m2 < 0 or

εl = iλl (2.16)

with λl > 0. Then, the condition (2.15) can be rewritten in terms of the modified Bessel

functions:

µ =
λlI

′
l(λlR)

Il(λlR)
. (2.17)

These equations have solutions for small values of l. Plots in figure 1 of the Bessel functions

for the corresponding values of ε2l show that there are indeed edge states.

Remark. The scalar products (·, ·) and 〈·, ·〉 in (1.2) and (1.3) define two Hilbert spaces

H(M) and H(∂M), one for M and one for ∂M . We need them in the next section.

We remark that our considerations are valid if Ψ’s and Φ’s are multicomponent, then

Ψ†Φ =
∑

αΨ
∗
αΦα. The operator ∇ can also contain a connection.

– 6 –
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3 The Dirac Hamiltonian

The Dirac operator on the manifold M of dimension d, Riemannian metric g and mass m

is the Hamiltonian H of the (d+ 1)-dimensional Dirac operator. It reads

H = −iγi∇i +mγd+1, i = 1, . . . , d , (3.1)

where the gamma matrices verify

γiγj + γjγi = 2gij , (3.2a)

γiγd+1 + γd+1γi = 0 , (3.2b)

(γd+1)2 = I , (3.2c)

(γν)† = γν , ν = 1, . . . , d+ 1 . (3.2d)

We hereafter set gij = δij for simplicity so that we get the usual anticommutation relations

for the gamma matrices. An important formal property of H is that

H2 = −∇2 +m2 . (3.3)

While for manifolds without boundary, this identity is meaningful, for manifolds with

boundary, one must pay attention to the domains of definition of H and −∇2. Neverthe-

less one can use it as a helpful guide to thought.

The boundary conditions for H can be found by considering the following identity:

Σ(Ψ,Φ) := (Ψ, HΦ)− (HΨ,Φ) = i〈ψ,~γ · ~nφ〉 . (3.4)

Here we follow the notation of (1.2) and (1.3) identifying Ψ†Φ with
∑

αΨ
∗
αΦα, α being the

spinor index.

Now let K be any self-adjoint operator on H(∂M) with no zero eigenvalue and anti-

commuting with ~γ · ~n, i.e.
K2 > 0 , (3.5a)

~γ · ~nK = −K~γ · ~n . (3.5b)

Then we can split H(∂M) into the orthogonal direct sum H+(∂M)⊕H−(∂M) where

H±(∂M) are spanned by the eigenvectors of K for positive (negative) eigenvalues.

K|H+(∂M) > 0, K|H−(∂M) < 0 . (3.6)

Clearly 〈Ψ(+),Φ(−)〉 = 0 if Ψ(+) ∈ H+(∂M) and Φ(−) ∈ H−(∂M).

It follows from (3.5b) that

(~γ · ~n) H±(∂M) = H∓(∂M) . (3.7)

Hence if we impose the boundary condition Φ|∂M ,Ψ|∂M ∈ H−(∂M) then

(Ψ, HΦ)− (HΨ,Φ) = 0 . (3.8)

This shows that H is a symmetric operator. One can easily show that H is self-adjoint as

well, hence H† = H. Thus the domain DK , or equivalently the boundary condition for H,

depends on K:

DK =
{

Ψ
∣

∣Ψ∂M ∈ H−(∂M)
}

. (3.9)

There are also routine Sobolev conditions on Ψ, but we need not elaborate on them.
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3.1 APS boundary conditions

What shall we choose for K? Atiyah, Patodi and Singer [17–19] proceed as follows. In X

we can write

H = −i(~γ · ~n)∂r −
i

r
γθ · ∇θ +mγd+1

:= −i(~γ · ~n)∂r +A′(m) .

Here γθ and ∇θ are the tangential components of γi and ∇i. Then if

A(m) = A′(m)|r=R

= − i

R
γθ · ∇θ +mγd+1 ,

then

A(m)2 ≥ m2 > 0 , (3.10)

~γ · ~nA(m) = −A(m)~γ · ~n . (3.11)

Hence A(m) satisfies conditions (3.5) and is a candidate for K. But so is the following

one-parameter family which we choose for K:

K(µ) = i~γ · ~nA(µ) , µ > 0 , (3.12)

that, according to the relations (3.2), also satisfies (3.5).

In the work of Atiyah,Patodi and Singer, µ is set equal to m. We introduce µ so that

we can choose it to have the most appropriate value for a given problem.

With the introduction of the parameter µ, we can use K(µ) to define boundary con-

ditions for H even if m = 0. This could be a useful remark, for example for index theory.

Another remark may be made. The operator iγd+1~γ · ~n is, up to a constant, the large

µ limit of K(µ), and is the type of Hamiltonian entering the discussion of Altland and

Zirnbauer [8].

The work of Altland and Zirnbauer was generalised by Ryu et al. [10], LeClair and

Bernard [11] and references therein. Comments relating their papers and our approach are

in the last section.

The motivation for this choice will be explained later. We will first work out examples

to show that it seems to have good physical properties.

Remark. There are three dimensionful parameters in the problem, namely m, µ and R.

We will see that low-lying edge excitations in an interval or a disk require µ ≃ m. We can

always tune µ to get optimal results.

The presence of the two “masses” m and µ are here the spinorial counterparts of m

and µ for −∇2 +m2.

– 8 –
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Example: the half line (−∞, 0]. Consider the Dirac Hamiltonian H = −iσ1∂1+mσ2
on the half-line M = (−∞, 0]. So ∂M = {0}. M is not compact, but ∂M is, and that is

enough for M to serve as an example. We see that

K(µ) = iµσ1σ2 = −µσ3 . (3.13)

Therefore the boundary condition requires that

Ψ|∂M =

(

1

0

)

, (3.14)

setting a possible constant multiplying the spinor equal to 1.

For x → −∞, we must have Ψ(x) → 0. With that in mind we get the zero energy

solution (“bound state”)

Ψ(x) = emx

(

1

0

)

, (3.15)

HΨ(x) = −imemx(σ1 + iσ2)

(

1

0

)

= 0, (3.16)

which is localised near x = 0.

Besides this normalisable solution, H has a set of generalised eigenfunctions. Together,

they form a complete spectral set.

In this case, the domain of H is independent of µ provided it is positive, since H−(∂M)

is the same for all µ > 0.

Example: the disk. Let us also look at the two-dimensional disk with flat metric and

radius R. The Dirac Hamiltonian is in this case

H = −i(σ1∂1 + σ2∂2) +mσ3 . (3.17)

In spherical coordinates, we have

H = −iσr∂r −
i

r
σϕ∂ϕ +mσ3 , (3.18)

where if r̂ and ϕ̂ are the radial and angular unit vectors,

σr = r̂ · ~σ , σϕ = ϕ̂ · ~σ , (3.19)

where we choose the sign of ϕ̂ so that σrσϕ = iσ3.

Thus,

σr =

(

0 e−iϕ

eiϕ 0

)

. (3.20a)

σϕ =

(

0 −ie−iϕ

ieiϕ 0

)

. (3.20b)

– 9 –
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The conserved angular momentum for (3.18) is

J = −i ∂
∂ϕ

+
1

2
σ3 . (3.21)

Its eigenstates ψ
(±)
j for eigenvalues j ∈ {±1/2,±3/2, . . . } and orbital momentum l = j+1/2

(l = j − 1/2) are

l = j + 1/2 : ψ
(+)
j = ei(j+1/2)ϕ

(

0

1

)

, (3.22)

l = j − 1/2 : ψ
(−)
j = ei(j−1/2)ϕ

(

1

0

)

. (3.23)

An eigenstate of H for eigenvalue Ej can thus be written as

Ψj(r, ϕ) = αj(r)ψ
(+)
j + βj(r)ψ

(−)
j . (3.24)

Then HΨj = EjΨj leads to the equations

−iα′
j −

i

r
(j + 1/2)αj +mβj = Ejβj , (3.25a)

−iβ′j +
i

r
(j − 1/2)βj −mαj = Ejαj . (3.25b)

This leads to the second order equation

α′′
j +

1

r
α′
j −

[

(m2 − E2
j ) +

(j + 1/2)2

r2

]

αj = 0. (3.26)

If we can solve this equation for αj and Ej , we can find βj from (3.25a). But to

solve (3.26), we need to formulate our generalised APS conditions.

The operator K(µ). The operator K(µ) can be read off from (3.18):

K(µ) = iσr
[

− i

R
σϕ∂ϕ + µσ3

]

=
1

R
σ3i∂ϕ + µσϕ .

We can solve the eigenvalue problem for K(µ) using ψ
(±)
j . If φj is an eigenstate of K(µ),

we write

φj = ajψ
(+)
j + bjψ

(−)
j . (3.27)

Then noticing that

K(µ) = − 1

R
σ3J +

1

2R
+ µσϕ, (3.28)

write
(

K(µ)− 1

2R

)

φj = λjφj . (3.29)
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That leads to
(

j/R− λj iµ

−iµ −j/R− λj

)(

aj
bj

)

= 0 . (3.30)

Hence λj are the roots of

λ2j − µ2 − j2/R2 = 0 (3.31)

or

λj = ±
√

µ2 + j2/R2 , (3.32)

where
√

µ2 + j2/R2 > 0.

Since
1

2R
−
√

µ2 + j2/R2 ≤ 1

2R
−
√

µ2 + 1/4R2 < 0 (3.33)

the negative values of λj correspond to the negative eigenvalues of K(µ) as well.

We now have the eigenstates of K(µ):

λj = −
√

µ2 + j2/R2 = −|λj | : (3.34a)

φj,− = cj

(

ψ
(+)
j +

i

µ

(

j

R
+ |λj |

)

ψ
(−)
j

)

, (3.34b)

λj = +
√

µ2 + j2/R2 = +|λj | : (3.35a)

φj,+ = dj

(

ψ
(+)
j +

i

µ

(

j

R
− |λj |

)

ψ
(−)
j

)

, (3.35b)

where cj , dj ∈ C. Note the two-fold degeneracy of each eigenvalue λj of

K(µ)− 1/2R : φ±j,ǫ, are degenerate for each of ε = + and ε = −.

Boundary conditions. Let us next focus now on the boundary conditions for αj and βj .

Taking into account angular momentum conservation as well, the required boundary

conditions are

αj(R) = cj (3.36)

βj(R) = cj
i

µ

(

j

R
+ |λj |

)

. (3.37)

Solving for edge states. We want edge states with |Ej |/m≪ 1. Hence set ε2j = m2−E2
j ,

with 0 ≤ εj ≤ m. Then, up to a constant,

αj(r) = Ij+1/2(εjr) , (3.38)

where In(x) is the modified Bessel function of order n.

Using (3.25a) and the recursion relation

d

dx
Ij+1/2(x) +

j + 1/2

x
Ij+1/2 = Ij−1/2(x) (3.39)
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Figure 2. Edge State matching boundary condition (3.42) for m = 1

R
and j = − 1

2
with negative

sign in (3.41). The horizontal axis represents the dimensionless parameter εjR.

we get

βj(r) =
−iεj
Ej −m

Ij−1/2(εjr) , (3.40)

where

Ej = ±
√

m2 − ε2j . (3.41)

Note that Ej can have either sign.

Choosing cj , which is at our disposal, to be Ij+1/2(εjR), we find the equation deter-

mining Ej for edge-localised states:

µεj
m− Ej

Ij−1/2(εjR) = Ij+1/2(εjR)

(

j

R
+ |λj |

)

. (3.42)

If there are no real solutions Ej for this equation, that means that there are no edge states.

This is the case if j > 0 and Ej < 0 in (3.41) or j < 0 and Ej > 0 in (3.41) .

But that is not the case if j > 0 and Ej > 0 in (3.41) or j < 0 and Ej < 0 in (3.41).

We have solved this equation graphically and found solutions Ej with |Ej/m| ≪ 1. We

display the graphs and comment on them in figures 2–6.

Spin-momentum locking. An intuitive understanding of the mechanism for spin-

momentum locking comes from the expression for K(µ). In that equation, if

µR≫ 〈σ3J〉 , (3.43)

where 〈·〉 stands for the mean value in a state, then we expect the µσϕ term in K(µ) to

dominate. But since

K(µ) ≤ 0 , (3.44)

by the boundary condition,

〈σϕ〉 < 0 (3.45)

on ∂M .
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Figure 3. Edge State matching boundary condition (3.42) for m = 1

R
and j = − 3

2
with negative

sign in (3.41). The horizontal axis represents the dimensionless parameter εjR.
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Figure 4. Edge State matching boundary condition (3.42) for m = 1

R
and j = 1

2
with positive sign

in (3.41). The horizontal axis represents the dimensionless parameter εjR.
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Figure 5. Edge State matching boundary condition (3.42) for m = 1
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with positive sign

in (3.41). The horizontal axis represents the dimensionless parameter εjR.
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Figure 6. Edge State matching boundary condition (3.42) for µ = m, j = 1

2
with positive sign

in (3.41) and different masses m = 10/R,m = 100/R,m = 500/R.

Now if p̂ denotes the unit vector in the direction of momentum at the boundary, then

〈σ · p̂〉 =
{

< 0 if p̂ = ϕ̂,

> 0 if p̂ = −ϕ̂
(3.46)

by (3.20). Thus, if p̂ = ϕ̂, spin is anti-parallel to p̂ and if p̂ = −ϕ̂, spin is parallel to it.

In the two-dimensional model, this is spin-momentum locking. It leads to net transport

of spin anti-parallel to ϕ̂ in the direction of ϕ̂, see e.g. [4, 5].

We can quantify this reasoning by computing φ†j,−σϕφj,−. We get

φ†j,−σϕφj,− = − 1

µ
2|cj |2

(

j

R
+ |λj |

)

< 0 (3.47)

for all positive and negative j. Hence also

〈φj,−, σϕφj,−〉 < 0 , ∀j . (3.48)

This result is stronger than the qualitative reasoning.

But the mean momenta in the vector states φ±j,− are antiparallel:

φ†j,−(−i∂ϕ)φj,− = |cj |2
[

(j + 1/2) +
j − 1/2

µ2
(j/R+ |λj |)2

]

. (3.49)

This is positive if

j ∈ {1/2, 3/2, . . . } (3.50)

and negative if

j ∈ {−1/2,−3/2, . . . } . (3.51)

This is in particular true for j = ±1/2 which gives the lowest edge level.

The result on spin-momentum locking follows.

– 14 –



J
H
E
P
1
2
(
2
0
1
3
)
0
7
3

Remarks. We note that

σϕH(−)(∂M) 6⊂ H(−)(∂M) , (3.52)

−i∂ϕH(−)(∂M) 6⊂ H(−)(∂M) . (3.53)

Thus they do not preserve the domain DK of H implying that they are anomalous [20–22]

Majorana condition. We next show that K(µ) is invariant under the anti-unitary in-

volution

I : ψ → σ1ψ
∗, ψ ∈ H(∂M). (3.54)

The operator I is not charge conjugation, which interchanges H(−)(∂M) with H(+)(∂M).

The result is shown by calculating Iφ
(±)
j :

Iφj,− =
c̄j
c−j

(−i/µ)
[

j/R+ |λj |
]

φ−j,−, (3.55)

Iφj,+ =
d̄j
d−j

(−i/µ)
[

j/R− |λj |
]

φ−j,+ (3.56)

These equations already show that I maps H±(∂M) into H±(∂M) and is compatible with

our boundary conditions.

Since λj = λ−j , I actually commutes with K(µ) establishing our claim.

4 Chiral bag boundary conditions

It is possible to find another family of local boundary conditions, similar to MIT bag

boundary conditions used in the analysis of quark confinement [23] or their generalizations

like the chiral bag boundary conditions [24]. We now explain them using the most general

boundary conditions which lead to a self-adjoint Dirac Hamiltonian.

For arbitrary Ψ and Φ, the boundary term (3.4) can be written as the difference of the

two chiral components Ψ± = 1
2(1± ~γ · ~n )Ψ of spinors Ψ = Ψ+ +Ψ−,

Σ(Ψ,Φ) = i〈Ψ+,Φ+〉 − i〈Ψ−,Φ−〉. (4.1)

The most general boundary condition leading to a self-adjoint Hamiltonian H is given in

this approach by

(1− ~γ · ~n )ψ = Uγd+1(1 + ~γ · ~n )ψ, (4.2)

where U is any unitary operator on the boundary Hilbert space of spinors commuting

with ~γ · ~n . For simplicity, we assume ‘local’ boundary conditions where U is a finite

dimensional matrix acting only on spinor indices. Now (4.2) can be expressed as follows

using the Cayley transform:

~γ · ~nψ =
1− Uγd+1

I + Uγd+1
ψ. (4.3)

A very simple type of chiral boundary conditions are given by

U = e2i arctan eθ , (4.4)
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which because of the identities

1− Uγd+1

I + Uγd+1
=
1 + U

I − U
(1− γd+1) +

1− U

I + U
(1 + γd+1)

=i cot(arctan eθ)(1− γd+1)− i tan(arctan eθ)(1 + γd+1)

=ie−θ(1− γd+1)− ieθ(1 + γd+1) = −ieθγd+1
γd+1,

corresponds the chiral bag boundary conditions [24, 25]

1

2

(

1− iγd+1e−θγd+1
~γ · ~n

)

ψ = 0. (4.5)

A further reminder may be made. For θ = 0, the operator iγd+1~γ ·~n is the large µ limit of

K(µ) up to a constant and has been discussed by Altland and Zirnbauer [8]. For further

discussion, please see the final section.

Example: the half line (−∞, 0]. Consider the Dirac Hamiltonian H = −iσ1∂1+mσ2
on the half-line M = (−∞, 0]. So ∂M = {0} as we had for APS boundary conditions. The

Dirac Hamiltonian

H = −iσ1∂1 +mσ3 (4.6)

is self-adjoint when its domain obeys the chiral boundary condition

ψ(0) = ieθσ3σ3σ1ψ(0). (4.7)

To find the edge state of H with boundary conditions (4.7), we assume that

Ψ(x) = eµx

(

eθ/2

−ie−θ/2

)

, (4.8)

where µ > 0 to guarantee the normalisability of ψ as a bound state. The eigenvalue

equation reduces to

(−iµσ1 +mσ3)

(

eθ/2

−ie−θ/2

)

= E

(

eθ/2

−ie−θ/2

)

, (4.9)

i.e.
(m− E)eθ/2 − µe−θ/2 = 0

µeθ/2 − (m+ E)e−θ/2 = 0
, (4.10)

which has a solution if and only if

E = m− µe−θ = µeθ −m. (4.11)

This implies in particular that for an edge state to exist, the value of µ is fixed to be

µ =
m

cosh θ
, (4.12)

The value of E is also given by

E = m tanh θ, (4.13)
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in terms of m and θ. The solution ψ corresponds to a bound edge state attached to the

boundary wall at x = 0. An ansatz like (4.8) for µ < 0 is not square integrable and does

not correspond to a physical state vector.

However, with the alternative chiral boundary condition

1

2

(

1 + iγd+1e−θγd+1
~γ · ~n

)

ψ = 0 (4.14)

there is no edge states, that is, no normalisable eigenvector of H localised near x = 0.

Example: the disk B2. Let us consider a Dirac electron moving on a disk B2 of radius

R as we did for APS boundary conditions. The Dirac Hamiltonian

H = −iσ1∂1 − iσ2∂2 +mσ3 (4.15)

is subject to the boundary conditions (4.3)

Ψ(R cosϕ,R sinϕ) = −i~γ · ~n eθσ3σ3Ψ(R cosϕ,R sinϕ) (4.16)

with ~γ · ~n = σ1 cosϕ+ σ2 sinϕ.

The Hamiltonian is essentially self-adjoint in the space of smooth functions satis-

fying (4.16). Let us consider the spectrum of the Hamiltonian H. The Hamiltonian

is invariant under rotations with generators given by the total angular momentum

J3 = L3 +
1
2σ3. Let us consider stationary states of the form

Ψ(r, ϕ) =

(

eiϕ(j−1/2)φ1(r)

−ieiϕ(j+1/2)φ2(r)

)

(4.17)

satisfying the boundary conditions (4.16) which now read

φ2(R) = eθφ1(R), (4.18)

and the eigenvalue equation

HΨ(r, ϕ) = EΨ(r, ϕ). (4.19)

Then φ1 and φ2 are solutions of the pair of coupled differential equations,

(−E +m)eiϕ(j−1/2)φ1(r) + (i∂1 + ∂2)ie
iϕ(j+1/2)φ2(r) = 0 (4.20)

i(E +m)eiϕ(j+1/2)φ2(r)− (i∂1 − ∂2)e
iϕ(j−1/2)φ1(r) = 0, (4.21)

which can be decoupled into a pair of second order differential equations

(

∂2r +
1

r
∂r −

l2

r2

)

φ1(r) = (m2 − E2)φ1(r) where l = j − 1

2
(4.22)

(

∂2r +
1

r
∂r −

l′2

r2

)

φ2(r) = (m2 − E2)φ2(r) where l′ = j +
1

2
, (4.23)
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with boundary conditions (4.18), which imply by (4.20) and (4.21) the Robin boundary

conditions

φ′1(R) =
(

(E +m)eθ + 1
R(j − 1

2)
)

φ1(R), (4.24)

φ′2(R) =
(

(m− E)e−θ − 1
R(j +

1
2)
)

φ2(R). (4.25)

Let us consider the states with negative kinetic energies (T = |E|−m), i.e. −m < E <

m. The simplest one correspond to j = −1/2 and l = −1, l′ = 0, i.e. solutions of
(

∂2r +
1

r
∂r −

1

r2

)

φ1(r) = (m2 − E2)φ1(r) (4.26)

(

∂2r +
1

r
∂r

)

φ2(r) = (m2 − E2)φ2(r), (4.27)

with boundary conditions (4.18) and Robin boundary conditions

φ′1(R) =
(

(E +m)eθ − 1
R

)

φ1(R), (4.28)

φ′2(R) = (m− E)e−θφ2(R), (4.29)

respectively. Notice that in the limit θ → ∞, (4.28) leads to Dirichlet boundary conditions

for φ1, i.e. φ1(R) = 0 whereas (4.29) leads to Neumann boundary conditions for φ2, i.e.

φ′2(R) = 0. The solutions are the modified Bessel functions of the first kind,

φ1(r) = I1

(

r
√

m2 − E2
)

, φ2(r) = I0

(

r
√

m2 − E2
)

(4.30)

and correspond to edge states, localised at the boundaries. The dependence of the energy

on the boundary condition is derived from the boundary conditions (4.28) and (4.29) and

the recursion relation (3.39),

φ′1(R)

φ1(R)
= − 1

R
+
√

m2 − E2
I0

(

R
√
m2 − E2

)

I1

(

R
√
m2 − E2

) = (E +m)eθ − 1

R
, (4.31)

φ′2(R)

φ2(R)
=
√

m2 − E2
I1

(

R
√
m2 − E2

)

I0

(

R
√
m2 − E2

) = (m− E)e−θ, (4.32)

which lead to
√

m+ E

m− E

I1

(

R
√
m2 − E2

)

I0

(

R
√
m2 − E2

) = e−θ (4.33)

In particular, we have a zero mode for θ = log I0(Rm)− log I1(Rm) which corresponds to

the maximally localised edge state. The concentration of the state on the edge increases

as the mass gap increases, which provides the perfect situation for a topological insulator.

One can find more states with higher angular momenta and negative kinetic energy.

They are of the form

Ψn(r, ϕ) = einϕ





In

(

r
√
m2 − E2

)

−ieiϕIn+1

(

r
√
m2 − E2

)



 (4.34)
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Figure 7. Charge density distribution Ψ†Ψ of edge state with zero energy on a 2D disk B2 for

θ = 0 and mR = 10.

with n integer. The corresponding energies are given by

√

m+ E

m− E

In+1

(

R
√
m2 − E2

)

In

(

R
√
m2 − E2

) = e−θ. (4.35)

The number of such states is always finite and depends on the mass gap. For larger

masses, there is a larger number of edge states. For instance for unit mass m = 1
R , the

number of edge states for θ = 1, 2, 3, 4 is 2, 7, 18, 50, respectively.

Remark: there are similar spinorial edge states for QCD in a three-dimensional ball

with chiral boundary conditions. The MIT bag model uses the chiral bag boundary con-

ditions in the limit θ → ∞. In that case there is an infinity of edge states. In particular

the lowest energy state is an edge state. The states of pions and protons made of quarks

localised at the edges of the bag is not a very realistic picture for high energies where

according to asymptotic freedom, quarks will move freely inside hadron.

5 Final remarks

We plan to do detailed calculations for a spherical three-dimensional ball, where we also

hope to investigate the Majorana reality conditions.

Here we next show that there is spin-momentum locking for d = 3 as well, at least

for large µR. For d > 3, we expect a result of a similar sort. The reasoning for this

expectation, as we already saw for a disk, is that the generalised APS condition does not

involve momentum. Also, at least for large (µR), the mass term in K(µ) dominates leading

to a momentum independent state vector. The component of spin ~S in a fixed direction

ϕ̂ tangent to ∂M then has a momentum-independent mean value. From this we can infer

net spin transfer along ϕ̂ for large µ, and later check the exact result as we did on a disk.
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Unfortunately for d > 3 we do not know how to extract a vector like ~S from angular

momentum generators which are anti-symmetric tensors.

In the final subsection here, we propose a Hamiltonian HE for the edge excitations.

It clearly emerges from our preceding discussions and fulfills the P and T properties

mentioned in the Introduction.

Spin-momentum locking: the spherical ball B3. As we have postponed the analysis

of the eigenvalue problem for K(µ) to a future date, we focus on the mass term iµ~γ ·~nγd+1

in K(µ) which dominates for large µR.

We first do a local analysis. At any point p ∈ ∂B3 = S2, we can choose ~γ · ~n = γ3 and

γd+1 = γ4. Then, iγ3γ4 is a generator of the so(4), or rather the spin(4) Lie algebra. The

Lie algebra so(4) is the direct sum su(2)(1) ⊕ su(2)(2), where su(2)(j) are commuting su(2)

Lie algebras.

The angular momentum generators J (j)
i of su(2)(j) are

J (1)
i =

(

τi/2 0

0 0

)

, (5.1)

J (2)
i =

(

0 0

0 τi/2

)

. (5.2)

The generators for the conventional spin ~S are ~J (1) + ~J (2):

Si = J (1)
i + J (2)

i =

(

τi/2 0

0 τi/2

)

, (5.3)

The generators Mi4, i = 1, 2, 3 of rotations in the i− 4 plane are J (1)
i − J (2)

i :

Mi4 = J (1)
i − J (2)

i =

(

τi/2 0

0 −τi/2

)

. (5.4)

We can identify Mi4 with 1
2iγiγ4 by setting

γµ =

(

0 Σµ

Σ̃µ 0

)

= (γµ)
† , (5.5)

where

Σi = iτi,Σ4 = I, Σ̃i = −iτi, Σ̃4 = I. (5.6)

It follows that

K(µ) ≃ −2µ(J (1)
3 − J (2)

3 ) . (5.7)

The spectrum of J (j)
3 in the four -dimensional Dirac spinor representation is {±1/2, 0}.

The boundary condition requires that K(µ) < 0, that occurs for the following spinors:

ξ(1) =











1

0

0

0











K(µ)ξ(1) = −µξ(1) , (5.8)
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ξ(2) =











0

0

0

1











K(µ)ξ(2) = −µξ(2) . (5.9)

The mean values of ~S · ~m for a fixed ~m for the vectors ξi do not involve momentum,

indicating spin transport along ~m.

We also give here the analogues of the above spinors for all ~n. Their construction

involves the introduction of the Hopf bundle over ∂B3 = S2 [26, 27]. Let

ζ = (ζ1, ζ2) , ζi ∈ C , (5.10)
∑

|ζi|2 = 1 . (5.11)

Then set

ni = ζ†σiζ . (5.12)

The normalisation (5.11) gives ~n · ~n = 1 as required. The choice ζ = (1, 0) gives n3 = 1,

n1 = n2 = 0 and leads to our previous considerations.

Similar results hold for

iσ2ζ̄ = (ζ̄2,−ζ̄1). (5.13)

Now globally we can choose our spinors as follows:

ξ(1)(ζ) =











ζ1
ζ2
0

0











K(µ)ξ(1)(ζ) = −µξ(1)(ζ) , (5.14)

ξ(2)(ζ) =











0

0

ζ̄2
−ζ̄1











K(µ)ξ(2)(ζ) = −µξ(2)(ζ) . (5.15)

What leads to our domain DK? For completeness, we also now indicate our consid-

erations leading to the Dirac domain DK(µ).

Let us note that any K we can choose by (3.5) acts only on spinors ξ on ∂M and not

on functions of radial variables. Then if

H(∂M) = H(−)(∂M)⊕H(+)(∂M) , ξ ∈ H(−)(∂M) , (5.16)

where

K|H(+)(∂M) > 0 , K|H(−)(∂M) < 0 , (5.17)

then a wave function α which in X looks like

α(x) = ρ(r)ξ(ϕ) (5.18)

is a vector in the domain DK .
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But the Robin boundary condition involves only the radial variable. So we can choose

ρ̇(R) = νρ(R) , (5.19)

where we distinguish ν here from the µ in K(µ). We can in fact choose ρ to be the function

ρ(r) = e−
2νǫ
π

tan((1−r)π/2ǫ) (5.20)

of (2.3). Then (5.18) is edge localised and gives low-lying edge states for −∇2 +m2, with

m2 ≃ ν2. Thus it is a good candidate for the edge localised Dirac wave function.

But, if in fact (5.18) is a good choice, the quadratic form (HΨ, HΨ) will be small

compared to m2(Ψ,Ψ):

(HΨ, HΨ) ≪ m2(Ψ,Ψ) . (5.21)

Using Green’s formula for the Dirac operator and (5.19), we have the identity

(HΨ, HΨ) = 〈−i~γ · ~nΨ, HΨ〉+ (Ψ, H2Ψ) (5.22)

= ν〈Ψ,Ψ〉+ 〈Ψ,K(m)Ψ〉+ (Ψ, (−∇2 +m2)Ψ) , (5.23)

where we have used the fact that

HΨ|r=R = [−i~γ · ~n ν +A(m)]Ψ, (5.24)

by (5.19). The last term on the R.H.S of the second equation is small compared to

m2(Ψ,Ψ), but the first term can be large since ν2 ≃ m2. So we are led to the boundary

condition Ψ ∈ DK(m) which makes the second term on the R.H.S negative and may

become larger than the first term.

For greater flexibility, we chose instead Ψ ∈ DK(µ) since

〈Ψ,K(m)Ψ〉 = 〈Ψ,K(µ)Ψ〉+ (m− µ)〈Ψ, i~γ · ~nγd+1Ψ〉 (5.25)

and the last term is small if µ ≃ m. Thus we finally settle on the domain DK(µ).

We emphasise that the actual calculations in the earlier sections did not appeal to the

arguments here at all.

The Hamiltonian HE for edge excitations depends on µ, so let us write it as HE(µ).

It can be read off from (5.23):

HE(µ) = −K(µ)−m. (5.26)

Here we use ν ≈ m. Also for K(µ), all positive energy levels are projected out, that is they

are filled, while it is more conventional to have a filled negative energy sea. We have hence

judicially flipped signs in (5.26).

The Hamiltonian HE(µ) has an associated Lagrangian density. For the disk case, it is

LE(µ) = −Ψ̄

(

iσϕ∂t +
i

R
σr∂ϕ + µ+mσϕ

)

Ψ, (5.27)

where Ψ̄ = Ψ†σϕ, as is easily shown.
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Remarks on earlier work. As commented already, in the limit of large µ, our edge

Dirac Hamiltonian reduces to a product of γ matrices and can be analysed following

Altland and Zirnbauer [8].

Recent work on topological insulators has been performed by Ryu et al. [10], Le

Clair and Bernard [11] and references therein. Following their lead, we can examine the

symmetry properties of our edge Hamiltonian as a function of d and µ. We cannot set

m = 0 as that would eliminate the gap in the bulk.

The Dirac operator considered by Le Clair and Bernard [11] differs from ours because

of the presence of the m term. Its origin is the Robin boundary condition which is central

to our work. Their analysis thus needs to be redone in our case.

As regards Ryu et al., their work seems to require that ∂M is R
d−1 and that the

potential of the edge Hamiltonian has either the symmetry under the group Z
d−1 or at

least it is continuously deformable to a potential with such a symmetry. If that is the case,

the momentum space governing the edge Hamiltonian is diffeomorphic to a torus. The

occupied energy levels then determine a particular Grassmannian bundle on this torus.

Their properties under discrete symmetries are then studied in detail by these authors.

Our work is not focused on such symmetry properties. Rather our focus is on edge states

on manifolds with boundaries regardless of symmetries, although we have made occasional

comments on symmetries.

It seems possible to extend our work in the directions investigated in the above

papers. We plan to explore this possibility.
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[12] M. Asorey, A.P. Balachandran and J.M. Pérez-Pardo, Edge states in field theories, in

preparation.

[13] E.H. Lieb and W. Liniger, Exact analysis of an interacting Bose gas. 1. The general solution

and the ground state, Phys. Rev. 130 (1963) 1605 [INSPIRE].

[14] A. Balachandran, L. Chandar and E. Ercolessi, Edge states in gauge theories: theory,

interpretations and predictions, Int. J. Mod. Phys. A 10 (1995) 1969 [hep-th/9411164]

[INSPIRE].

[15] T. Govindarajan and R. Tibrewala, Novel black hole bound states and entropy,

Phys. Rev. D 83 (2011) 124045 [arXiv:1102.4919] [INSPIRE].

[16] P.G. de Gennes, Boundary effects in superconductors, Rev. Mod. Phys. 36 (1964) 225.

[17] M. Atiyah, V. Patodi and I. Singer, Spectral asymmetry and Riemannian geometry 1,

Math. Proc. Cambridge Phil. Soc. 77 (1975) 43 [INSPIRE].

[18] M. Atiyah, V. Patodi and I. Singer, Spectral asymmetry and Riemannian geometry 2,

Math. Proc. Cambridge Phil. Soc. 78 (1976) 405 [INSPIRE].

[19] M. Atiyah, V. Patodi and I. Singer, Spectral asymmetry and Riemannian geometry 3,

Math. Proc. Cambridge Phil. Soc. 79 (1976) 71 [INSPIRE].

[20] J. Esteve, Anomalies in conservation laws in the Hamiltonian formalism,

Phys. Rev. D 34 (1986) 674 [INSPIRE].

[21] J. Esteve, Origin of the anomalies: the modified Heisenberg equation,

Phys. Rev. D 66 (2002) 125013 [hep-th/0207164] [INSPIRE].

– 24 –

http://dx.doi.org/10.1137/110856800
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://arxiv.org/abs/1002.3895
http://inspirehep.net/search?p=find+J+Rev.Mod.Phys.,82,3045
http://dx.doi.org/10.1007/978-3-642-32858-9
http://dx.doi.org/10.1103/PhysRevD.29.2366
http://inspirehep.net/search?p=find+J+Phys.Rev.,D29,2366
http://dx.doi.org/10.1103/PhysRevLett.52.18
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,52,18
http://dx.doi.org/10.1103/PhysRevB.55.1142
http://inspirehep.net/search?p=find+J+Phys.Rev.,B55,1142
http://dx.doi.org/10.1088/1751-8113/44/4/045001
http://arxiv.org/abs/1005.3213
http://dx.doi.org/10.1088/1367-2630/12/6/065010
http://inspirehep.net/search?p=find+J+NJOPF,12,065010
http://dx.doi.org/10.1088/1751-8113/45/43/435203
http://arxiv.org/abs/1205.3810
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.3810
http://dx.doi.org/10.1103/PhysRev.130.1605
http://inspirehep.net/search?p=find+J+Phys.Rev.,130,1605
http://dx.doi.org/10.1142/S0217751X95000966
http://arxiv.org/abs/hep-th/9411164
http://inspirehep.net/search?p=find+J+Int.J.Mod.Phys.,A10,1969
http://dx.doi.org/10.1103/PhysRevD.83.124045
http://arxiv.org/abs/1102.4919
http://inspirehep.net/search?p=find+J+Phys.Rev.,D83,124045
http://dx.doi.org/10.1103/RevModPhys.36.225
http://dx.doi.org/10.1017/S0305004100049410
http://inspirehep.net/search?p=find+J+Math.Proc.CambridgePhilos.Soc.,77,43
http://dx.doi.org/10.1017/S0305004100051872
http://inspirehep.net/search?p=find+J+Math.Proc.CambridgePhilos.Soc.,78,405
http://dx.doi.org/10.1017/S0305004100052105
http://inspirehep.net/search?p=find+J+Math.Proc.CambridgePhilos.Soc.,79,71
http://dx.doi.org/10.1103/PhysRevD.34.674
http://inspirehep.net/search?p=find+J+Phys.Rev.,D34,674
http://dx.doi.org/10.1103/PhysRevD.66.125013
http://arxiv.org/abs/hep-th/0207164
http://inspirehep.net/search?p=find+J+Phys.Rev.,D66,125013


J
H
E
P
1
2
(
2
0
1
3
)
0
7
3

[22] A. Balachandran and A.R. de Queiroz, Mixed states from anomalies,

Phys. Rev. D 85 (2012) 025017 [arXiv:1108.3898] [INSPIRE].

[23] A. Chodos, R. Jaffe, K. Johnson, C.B. Thorn and V. Weisskopf, A new extended model of

hadrons, Phys. Rev. D 9 (1974) 3471 [INSPIRE].

[24] M. Rho, A. Goldhaber and G. Brown, Topological soliton bag model for baryons,

Phys. Rev. Lett. 51 (1983) 747 [INSPIRE].

[25] C. Beneventano, E. Santangelo and A. Wipf, Spectral asymmetry for bag boundary

conditions, J. Phys. A 35 (2002) 9343 [hep-th/0205199] [INSPIRE].

[26] A.P. Balachandran, G. Marmo, B.S. Skagerstam and A. Stern, Gauge symmetries and fibre

bundles — applications to particle dynamics, Lect. Notes Phys. 188, Springer Verlag, Berlin

Germany (1988).

[27] A.P. Balachandran, Classical topology and quantum states, World Scientific, Singapore

(1991).

– 25 –

http://dx.doi.org/10.1103/PhysRevD.85.025017
http://arxiv.org/abs/1108.3898
http://inspirehep.net/search?p=find+J+Phys.Rev.,D85,025017
http://dx.doi.org/10.1103/PhysRevD.9.3471
http://inspirehep.net/search?p=find+J+Phys.Rev.,D9,3471
http://dx.doi.org/10.1103/PhysRevLett.51.747
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,51,747
http://dx.doi.org/10.1088/0305-4470/35/44/305
http://arxiv.org/abs/hep-th/0205199
http://inspirehep.net/search?p=find+J+J.Phys.,A35,9343
http://dx.doi.org/10.1007/3-540-12724-0

	Introduction
	Scalar fields
	The Dirac Hamiltonian
	APS boundary conditions

	Chiral bag boundary conditions
	Final remarks

