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Viale Marconi 5, 24044 Dalmine (Bergamo), Italy
cINFN — Sezione di Milano,

Via Celoria 16, Milan, Italy

E-mail: flobo@cii.fc.ul.pt, Remo.Garattini@unibg.it

Abstract: In this work, we find exact gravastar solutions in the context of noncommuta-

tive geometry, and explore their physical properties and characteristics. The energy density

of these geometries is a smeared and particle-like gravitational source, where the mass is

diffused throughout a region of linear dimension
√
α due to the intrinsic uncertainty en-

coded in the coordinate commutator. These solutions are then matched to an exterior

Schwarzschild spacetime. We further explore the dynamical stability of the transition layer

of these gravastars, for the specific case of β = M2/α < 1.9, where M is the black hole

mass, to linearized spherically symmetric radial perturbations about static equilibrium so-

lutions. It is found that large stability regions exist and, in particular, located sufficiently

close to where the event horizon is expected to form.

Keywords: Non-Commutative Geometry, Classical Theories of Gravity, Black Holes

ArXiv ePrint: 1004.2520

c© SISSA 2013 doi:10.1007/JHEP12(2013)065

mailto:flobo@cii.fc.ul.pt
mailto:Remo.Garattini@unibg.it
http://arxiv.org/abs/1004.2520
http://dx.doi.org/10.1007/JHEP12(2013)065


J
H
E
P
1
2
(
2
0
1
3
)
0
6
5

Contents

1 Introduction 1

2 Structure equations of gravastars in noncommutative geometry 3

2.1 Spacetime metric and field equations 3

2.2 Gravitational collapse and gravity profile 5

3 Thin-shell formalism 6

3.1 Exterior spacetime 7

3.2 Junction interface 8

3.3 Extrinsic curvature 8

3.4 Lanczos equation and surface stresses 9

3.5 Energy conditions on the junction surface 9

3.6 Conservation identity 10

4 Linearized stability analysis 11

4.1 Equation of motion 11

4.2 Parametrization of the stable equilibrium 12

4.3 Stability regions 13

5 Summary and conclusion 14

1 Introduction

About a decade ago, an alternative picture for the final state of gravitational collapse has

emerged [1–4]. The latter, denoted as a gravastar (grav itational vacuum star), consists

of an interior compact object matched to an exterior Schwarzschild vacuum spacetime, at

or near where the event horizon is expected to form. Therefore, these alternative models

do not possess a singularity at the origin and have no event horizon, as its rigid surface is

located at a radius slightly greater than the Schwarzschild radius. More specifically, the

gravastar picture, proposed by Mazur and Mottola [1–4], has an effective phase transition

at/near where the event horizon is expected to form, and the interior is replaced by a

de Sitter condensate. This new emerging picture consisting of a compact object resembling

ordinary spacetime, in which the vacuum energy is much larger than the cosmological

vacuum energy, is also denoted as a “dark energy star” [5, 6]. In fact, a wide variety

of gravastar models have been considered in the literature [7–17] and their observational

signatures have also been explored [18–25]. It was argued that the resulting gravitational

condensate star configuration resolve all black hole paradoxes, and provides a testable

alternative to black holes as the final state of complete gravitational collapse [26].
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In this work, we consider a further extension of the gravastar picture in the context

of noncommutative geometry. The dynamical stability of the transition layer of these

gravastars to linearized spherically symmetric radial perturbations about static equilibrium

solutions is also explored. The analysis of thin shells [27–34] and the respective linearized

stability analysis of thin shells has been recently extensively considered in the literature,

and we refer the reader to refs. [35–50] for details. Relative to the context of the stability

analysis, the radial stability of the continuous pressure gravastar was studied using the

conventional Chandrasekhar method, for radial pulsations and small perturbations around

a stable equilibrium [51]. The study of the oscillation spectrum was also studied [52] in

the context of dark energy stars, where the frequencies of the fundamental mode and the

higher overtones are strongly affected by the dark energy content. It was also argued that

this can be used in the future to detect the presence of dark energy in neutron stars and

to constrain the dark-energy models.

In the context of noncommutative geometry, an interesting development of string/M-

theory has been the necessity for spacetime quantization, where the spacetime coordinates

become noncommuting operators on a D-brane [53, 54]. The noncommutativity of space-

time is encoded in the commutator [xµ,xν ] = i θµν , where θµν is an antisymmetric matrix

which determines the fundamental discretization of spacetime. It has also been shown that

noncommutativity eliminates point-like structures in favor of smeared objects in flat space-

time [55]. Thus, one may consider the possibility that noncommutativity could cure the

divergences that appear in general relativity. The effect of the smearing is mathematically

implemented with a substitution of the Dirac-delta function by a Gaussian distribution

of minimal length
√
α. In particular, the energy density of a static and spherically sym-

metric, smeared and particle-like gravitational source has been considered in the following

form [56]

ρα(r) =
M

(4πα)3/2
exp

(

− r2

4α

)

, (1.1)

where the mass M is diffused throughout a region of linear dimension
√
α due to the

intrinsic uncertainty encoded in the coordinate commutator.

The Schwarzschild metric is modified when a non-commutative spacetime is taken into

account [56, 57]. Although one may consider the analysis in a general static and spherically

symmetric line element in the following form

ds2 = −A(r)dt2 +A−1(r)dr2 +R2(r)(dθ2 + sin2 θ dφ2) (1.2)

or in isotropic coordinates where the line element is given by by ds2 = −e2ϕ(r)dt2 +

eψ(r)[dr2 + r2(dθ2 + sin2 θ dφ2], where the ϕ(r) and ψ(r) are finite everywhere, we em-

phasize that physically correct results do not depend on the coordinate system used. In

this context, we use Schwarzschild coordinates throughout this work.

Thus, the solution obtained is described by the following spacetime metric

ds2 = −f(r) dt2 + dr2

f(r)
+ r2 (dθ2 + sin2 θ dφ2) , (1.3)
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with f(r) = 1− 2m(r)/r, where the mass function is defined as

m(r) =
2M√
π
γ

(

3

2
,
r2

4α

)

, (1.4)

and

γ

(

3

2
,
r2

4α

)

=

r2/4α
∫

0

dt
√
t exp(−t) , (1.5)

is the lower incomplete gamma function [56]. The classical Schwarzschild mass is recovered

in the limit r/
√
α → ∞. It was shown that the coordinate noncommutativity cures the

usual problems encountered in the description of the terminal phase of black hole evapora-

tion. More specifically, it was found that the evaporation end-point is a zero temperature

extremal black hole and there exist a finite maximum temperature that a black hole can

reach before cooling down to absolute zero. The existence of a regular de Sitter at the

origin’s neighborhood was also shown, implying the absence of a curvature singularity at

the origin. Recently, further research on noncommutative black holes has been undertaken,

with new solutions found providing smeared source terms for charged and higher dimen-

sional cases [58–62]. Furthermore, exact solutions of semi-classical wormholes [63, 64] in

the context of noncommutative geometry were found [65], and their physical properties

and characteristics were analyzed.

Despite the fact that both concepts have their own scale of observability, in particular,

non-commutativeness manifests itself only at sufficiently high energies and small distances,

and the gravastar concept is applicable to larger scales, one may argue that due to gravi-

tational instabilities inhomogeneities may arise. Thus, the gravastar solutions outlined in

this paper may possibly originate from density fluctuations in the cosmological background,

resulting in the nucleation through the respective density perturbations.

This paper is outlined in the following manner. In section 2, we present the generic

structure equations of gravastars, and specify the mass function in the context of noncom-

mutative geometry. In section 3, the linearized stability analysis procedure is outlined,

and the stability regions of the transition layer of gravastars are determined. Finally in

section 5, we conclude. We adopt the convention G = c = 1 throughout this work.

2 Structure equations of gravastars in noncommutative geometry

2.1 Spacetime metric and field equations

Consider the interior spacetime, without a loss of generality, given by the following metric,

in curvature coordinates

ds2 = −e2Φ(r) dt2 +
dr2

1− 2m(r)/r
+ r2 dΩ2, (2.1)

where dΩ2 = (dθ2 + sin2 θ dφ2); Φ(r) and m(r) are arbitrary functions of the radial coor-

dinate, r. The function m(r) is the quasi-local mass, and is denoted as the mass function.

– 3 –
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The Einstein field equation, Gµν = 8πTµν provides the following relationships

m′ = 4πr2ρ , (2.2)

Φ′ =
m+ 4πr3pr
r(r − 2m)

, (2.3)

p′r = −(ρ+ pr)(m+ 4πr3pr)

r(r − 2m)
+

2

r
(pt − pr) , (2.4)

where the prime denotes a derivative with respect to the radial coordinate. ρ(r) is the en-

ergy density, pr(r) is the radial pressure, and pt(r) is the tangential pressure. Equation (2.4)

corresponds to the anisotropic pressure Tolman-Oppenheimer-Volkoff (TOV) equation.

Using the equation of state, pr = −ρ, and taking into account the field equations (2.2)

and (2.3), we have the following relationship

Φ′(r) =
m− rm′

r (r − 2m)
, (2.5)

which provides the solution given by

Φ(r) =
1

2
ln

[

1− 2m(r)

r

]

. (2.6)

One now has at hand three equations, namely, the field eqs. (2.2)–(2.4), with four

unknown functions of r, i.e., ρ(r), pr(r), pt(r), and m(r). We shall consider the approach

by choosing a specific choice for a physically reasonable mass function m(r), thus closing

the system.

Despite the fact that one may consider the general line element given by eq. (1.2), and

determine a generalized mass function, we emphasize that we have considered the analysis

using curvature coordinates. Thus, in this context, we are interested in the noncommutative

geometry inspired mass function given by eq. (1.4), in curvature coordinates. The latter is

reorganized into the following form

m(r) =
2M√
π
γ

(

3

2
, β

(

r

2M

)2
)

, (2.7)

where β is defined as β =M2/α.

Note that three cases need to be analyzed [56]:

a) if β < 1.9, no roots are present;

b) if β > 1.9, we have two roots, r− and r+, with r+ > r−;

c) if β = 1.9, we have r+ = r−, which may be interpreted as an extreme situation, such

as the extreme Reissner-Nordström metric.

The function f(r) = (1− 2m(r)/r) is depicted in figure 1 for these three cases for the

following values β = 1.5, β = 1.9 and β = 3.5, respectively. Note that all the roots lie

within the Schwarzschild radius rb = 2M , where M is the total mass of the system.

– 4 –
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Figure 1. The function f(r) = (1 − 2m(r)/r) is depicted for the three cases with the following

values β = 1.5, β = 1.9 and β = 3.5, respectively.

Note that for the specific equation of state that yields the solution (2.6), the stress-

energy profile is given by the following relationships

ρ(r) = −pr(r) =
1

4π

m′(r)

r2
, (2.8)

pt(r) =
1

8π

m′′(r)

r
, (2.9)

respectively. Taking into account the mass function given by eq. (2.7), these take the

following form

ρ(r) = −pr(r) =
M

(4πα)3/2
exp

(

− r2

4α

)

, (2.10)

pt(r) =
M

(4πα)3/2

(

1− r2

4α

)

exp

(

− r2

4α

)

. (2.11)

The stress-energy profile is qualitatively represented in figure 2. The plots are depicted

in terms of dimensionless quantities, M2pr(r) and M2pt(r), respectively. Note that the

radial pressure is essentially negative, taking extremely low negative values for high values

of the parameter β and low values of the radial coordinate, and tends asymptotically to

zero at spatial infinity. Note that as the equation of state pr(r) = −ρ(r) is assumed, the

energy density is positive and tends to zero as r → ∞. The tangential pressure, depicted

in the right plot of figure 2, possesses a positive patch, but is also essentially negative

throughout the spacetime geometry.

2.2 Gravitational collapse and gravity profile

In this work we analyse the linearized stability analysis around a stable solution, but it is

also important to consider the instabilities which arise from the gravitational collapse of

– 5 –



J
H
E
P
1
2
(
2
0
1
3
)
0
6
5

Figure 2. The stress-energy profile is represented in the plots, in terms of dimensionless quantities,

M2pr(r) and M2pt(r), respectively. The radial pressure, depicted in the left plot, is essentially

negative, taking extremely low negative values for high values of the parameter β and low values

of the radial coordinate. The tangential pressure, depicted in the right plot, possesses a positive

patch, but is also essentially negative throughout the spacetime geometry. See the text for more

details.

the star. Note that, in particular, an expression for m(r) is deduced, and it is not clear

whether such a mass distribution can be maintained. It is generally believed that any star

which crosses its Schwarzschild radius collapses due to gravitational attraction. Thus, it is

important to comment on the mechanism which prevents such a collapse.

To this effect, consider the locally measured acceleration due to gravity, given by

the following relationship: A =
√

1− 2m(r)/rΦ′(r) [17], where the factor Φ′(r) may be

considered the “gravity profile”. Now, the convention used is that Φ′(r) is positive for

an inwardly gravitational attraction, and negative for an outward gravitational repulsion.

The gravity profile Φ′(r) is plotted in figure 3. Note that for large values of the radial

coordinate and large values of the parameter β, the gravity profile is positive, implying an

attractive nature of the geometry.

However, one encounters a repulsive nature of the spacetime geometry, as Φ′ < 0,

for the following cases: (i) low values of the radial coordinate, especially in the range of

0.5 ≤ β < 1.9; (ii) for arbitrary values of r, in the range β ≤ 0.5. In this context, one

may argue that due to the gravitational collapse of the star, the matter does not cross the

Schwarzschild horizon due to the repulsive character of the spacetime, and it is possible

that an equilibrium stability region is attained. Thus, it is the repulsive character of the

geometry that stops the gravitational collapse from crossing the Schwarzschild horizon and

that sustains this gravastar configuration.

3 Thin-shell formalism

The thin-shell is not necessary for all solutions. In fact, the original Maur-Mottola gravastar

picture considered a finite thick shell of stiff matter, p = ρ, situated near where the event

– 6 –
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Figure 3. Depicted is the dimensionless quantity for the “gravity profile”, MΦ′(r). The latter

is positive for an inwardly gravitational attraction and negative for an outwardly gravitational

repulsion. One verifies qualitatively from the plot that Φ′ > 0 for values of 0.5 ≤ β < 1.9, rendering

the geometry attractive in this range. The geometry possesses a repulsive character for a wide range

of values of the radial coordinate and for β ≤ 0.5. In this context, we argue that this repulsive

nature of the geometry stops the gravitational collapse from crossing the Schwarzschild horizon.

Thus, it is possible that an equilibrium stability region is attained. See the text for details.

horizon is expected to form. However, considering an idealization of a thin shell, one may

simplify considerably the dynamic stability analysis of the setup, in particular, consider

the linearized stability analysis outlined in the present work. Indeed, the simplified model

considered shares the key features of the Mazur-Mottola scenario, and is sufficiently simple

to be amenable to a full dynamical analysis.

3.1 Exterior spacetime

We shall model specific gravastar geometries by matching an interior gravastar geometry,

given by eq. (2.1), where the metric functions are given by eqs. (2.6) and (2.7), with an

exterior Schwarzschild solution

ds2 = −
(

1− 2M

r

)

dt2 +

(

1− 2M

r

)−1

dr2 + r2 (dθ2 + sin2 θ dφ2) , (3.1)

at a junction interface Σ, situated outside the event horizon, a > rb = 2M . We emphasize

that the larger root r+ lies inside the Schwarzschild event horizon. More specifically, if one

considers the case β > 1.9, one would have two roots, i.e., two event horizons lying within

the Schwarzschild radius. Thus, in this work we are only interested in the case of β < 1.9,

which corresponds to the absence of event horizons for the inner solution. This is in order

to have a gravastar solution without an event horizon, as its rigid surface is located at a

radius slightly greater than the Schwarzschild radius.

– 7 –



J
H
E
P
1
2
(
2
0
1
3
)
0
6
5

3.2 Junction interface

Consider the junction surface Σ as a timelike hypersurface defined by the parametric equa-

tion of the form f(xµ(ξi)) = 0. ξi = (τ, θ, φ) are the intrinsic coordinates on Σ, where τ

is the proper time on the hypersurface. The three basis vectors tangent to Σ are given by

e(i) = ∂/∂ξi, with the following components eµ(i) = ∂xµ/∂ξi. The induced metric on the

junction surface is then provided by the scalar product gij = e(i) · e(j) = gµνe
µ
(i)e

ν
(j). Thus,

the intrinsic metric to Σ is given by

ds2Σ = −dτ2 + a2 (dθ2 + sin2 θ dφ2) . (3.2)

Note that the junction surface, r = a, is situated outside the event horizon, i.e., a > rb, to

avoid a black hole solution, and we are only interested in the case of β < 1.9, of eq. (2.7),

as emphasized above.

For the specific cases considered in this work, namely, the interior and exterior space-

times given by eqs. (2.1) and (3.1), respectively, the four-velocity of the junction surface

xµ(τ, θ, φ) = (t(τ), a(τ), θ, φ) is given by

Uµ± =

(

dt

dτ
,
da

dτ
, 0, 0

)

=





√

1− 2m±

a + ȧ2

1− 2m±

a

, ȧ, 0, 0



 , (3.3)

where the overdot denotes a derivative with respect to the proper time, τ . The (±) su-

perscripts correspond to the exterior and interior spacetimes, respectively, so that m± are

defined as m− = m(a) and m+ =M , respectively.

The unit normal 4−vector, nµ, to Σ is defined as

nµ = ±
∣

∣

∣

∣

gαβ
∂f

∂xα
∂f

∂xβ

∣

∣

∣

∣

−1/2 ∂f

∂xµ
, (3.4)

with nµ n
µ = +1 and nµe

µ
(i) = 0. The Israel formalism requires that the normals point

from the interior spacetime to the exterior spacetime [66–69]. Thus, for the interior and

exterior spacetimes given by the metrics (2.1) and (3.1), respectively, the normals may be

determined from eq. (3.4), or from the contractions Uµnµ = 0 and nµnµ = +1, and are

provided by

n±µ =



−ȧ,

√

1− 2m±

a + ȧ2

1− 2m±

a

, 0, 0



 , (3.5)

respectively, with m± defined as m− = m(a) and m+ =M , as before.

3.3 Extrinsic curvature

The extrinsic curvature is defined as Kij = nµ;νe
µ
(i)e

ν
(j). Differentiating nµe

µ
(i) = 0 with

respect to ξj , we have nµ
∂2xµ

∂ξi ∂ξj
= −nµ,ν ∂x

µ

∂ξi
∂xν

∂ξj
, so that the extrinsic curvature is finally

given by

K±
ij = −nµ

(

∂2xµ

∂ξi ∂ξj
+ Γµ±αβ

∂xα

∂ξi
∂xβ

∂ξj

)

. (3.6)

– 8 –
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Note that, in general, Kij is not continuous across Σ, so that for notational convenience,

the discontinuity in the extrinsic curvature is defined as κij = K+
ij −K−

ij .

Taking into account the interior spacetime metric (2.1) and the Schwarzschild solu-

tion (3.1), the non-trivial components of the extrinsic curvature are given by

Kτ +
τ =

M
a2

+ ä
√

1− 2M
a + ȧ2

, (3.7)

Kτ −
τ =

m
a2

− m′

a + ä
√

1− 2m(a)
a + ȧ2

, (3.8)

and

Kθ +
θ =

1

a

√

1− 2M

a
+ ȧ2 , (3.9)

Kθ −
θ =

1

a

√

1− 2m(a)

a
+ ȧ2 , (3.10)

respectively. The prime henceforth shall denote a derivative with respect to a.

3.4 Lanczos equation and surface stresses

The Einstein equations may be written in the following form,

Sij = − 1

8π
(κij − δijκ

k
k) , (3.11)

denoted as the Lanczos equations, where Sij is the surface stress-energy tensor on Σ. Con-

siderable simplifications occur due to spherical symmetry, namely κij = diag(κττ , κ
θ
θ, κ

θ
θ).

The surface stress-energy tensor may be written in terms of the surface energy density,

σ, and the surface pressure, P, as Sij = diag(−σ,P,P). Thus, the Lanczos equation,

eq. (3.11), then provide us with the following expressions for the surface stresses

σ = − 1

4πa

(

√

1− 2M

a
+ ȧ2 −

√

1− 2m

a
+ ȧ2

)

, (3.12)

P =
1

8πa





1− M
a + ȧ2 + aä

√

1− 2M
a + ȧ2

− 1− m
a −m′ + ȧ2 + aä
√

1− 2m
a + ȧ2



 . (3.13)

3.5 Energy conditions on the junction surface

It is interesting to consider whether the surface stresses, given by eqs. (3.12)–(3.13) satisfy

the energy conditions on the thin-shell. We shall only consider the weak energy condition

(WEC) and the null energy condition (NEC). The WEC implies σ ≥ 0 and σ+P ≥ 0, and

by continuity implies the null energy condition (NEC), σ+P ≥ 0. These will be evaluated

for a static solution at a0.

Taking into account eqs. (3.12)–(3.13), then the NEC is given by

σ + P =
1

8πa0





1− 3m0

a0
+m′(a0)

√

1− 2m(a0)
a0

−
1− 3M

a0
√

1− 2M
a0



 , (3.14)

– 9 –
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Figure 4. The weak energy condition (WEC) and the null energy condition (NEC) profiles are

represented in the plots, in terms of dimensionless quantities, i.e., Mσ(a0) and M(σ(a0) + P(a0)).

We verify that both quantiites are positive, consequently satisfying the WEC and NEC. See the

text for more details.

where the mass function, evaluated at the junction interface a0, is given by eq. (2.7). In

order to verify whether the NEC and the WEC are satisfied, we plot the latter using the

following dimensionless quantities: Mσ(a0) andM [σ(a0)+P(a0)]. We verify from figure 4,

both quantities are positive throughout the spacetime, thus satisfying the WEC and NEC

on the thin-shell.

3.6 Conservation identity

We also use the conservation identity given by Sij|i =
[

Tµνe
µ
(j)n

ν
]+

−
, where [X]+− denotes

the discontinuity across the surface interface, i.e., [X]+− = X+|Σ−X−|Σ. The conservation
identity is given by

[

Tµν e
µ
(τ) n

ν
]+

−
= [Tµν U

µ nν ]+− =



(−T tt + T rr)
ȧ

√

1− b(a)
a + ȧ2

1− b(a)
a





+

−

, (3.15)

where T tt and T rr are the stress-energy tensor components, in the interior and exterior

spacetimes. The momentum flux term in the right hand side corresponds to the net discon-

tinuity in the momentum flux Fµ = Tµν U
ν which impinges on the shell. The conservation

identity is a statement that all energy and momentum that plunges into the thin shell,

gets caught by the latter and converts into conserved energy and momentum of the surface

stresses of the junction.

For the present case, note that −T tt+T rr = ρ(r)+pr(r) = 0 in the interior spacetime

and T tt = T rr = 0 in the exterior vacuum Schwarzschild geometry, so that the momentum

flux is zero, i.e.,
[

Tµνe
µ
(j)n

ν
]+

−
= 0. We refer the reader to refs. [70, 71] for a more detailed

analysis. Thus, the conservation identity reduces to the following conservation law Sij|i = 0.

– 10 –
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Note that Siτ |i = −[σ̇+2ȧ(σ+P)/a], so that the conservation identity provides us with

σ′ = −2

a
(σ + P) . (3.16)

This relationship will be used in the linearized stability analysis considered below.

Consider that A = 4πa2 is the surface area of the thin shell, so that the conservation

equation provides the following relationship

d(σA)

dτ
+ P dA

dτ
= 0 . (3.17)

The first term represents the variation of the internal energy of the shell, the second term

is the work done by the shell’s internal force.

4 Linearized stability analysis

4.1 Equation of motion

Equation (3.12) may be rearranged to provide the thin shell’s equation of motion given by

the following relationship

ȧ2 + V (a) = 0 . (4.1)

The potential is given by

V (a) = F (a)−
[

ms(a)

2a

]2

−
[

aG(a)

ms(a)

]2

, (4.2)

where, for notational convenience, the factors F (a) and G(a) are defined as

F (a) = 1− m(a) +M

a
, (4.3)

G(a) =
M −m(a)

a
. (4.4)

Linearizing around a stable solution situated at a0, we consider a Taylor expansion of

V (a) around a0 to second order, given by

V (a) = V (a0) + V ′(a0)(a− a0) +
1

2
V ′′(a0)(a− a0)

2 +O[(a− a0)
3] . (4.5)

The first and second derivatives of V (a) are given by

V ′(a) = F ′ − 2

(

ms

2a

)(

ms

2a

)′

− 2

(

aG

ms

)(

aG

ms

)′

(4.6)

V ′′(a) = F ′′ − 2

[(

ms

2a

)′]2

− 2

(

ms

2a

)(

ms

2a

)′′

− 2

[(

aG

ms

)′]2

− 2

(

aG

ms

)(

aG

ms

)′′

, (4.7)

respectively.
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Evaluated at the static solution, at a = a0, so that ȧ = ä = 0, we verify that V (a0) = 0

and V ′(a0) = 0. From the condition V ′(a0) = 0, one extracts the following useful equilib-

rium relationship

Γ ≡
(

ms

2a0

)′

=

(

a0
ms

)[

F ′ − 2

(

a0G

ms

)(

a0G

ms

)′]

, (4.8)

which will be used in determining the master equation, responsible for dictating the stable

equilibrium configurations.

4.2 Parametrization of the stable equilibrium

Using the surface mass of the thin shell ms = 4πa2σ, the conservation law of the surface

stresses, i.e., eq. (3.16), can be rearranged to provide the following relationship

(

ms

2a

)′′

= Υ− 4πσ′η , (4.9)

with the parameter η defined as η = P ′/σ′, and for notational simplicity, the function Υ is

given by

Υ ≡ 4π

a
(σ + P) . (4.10)

Equation (4.9) will play a fundamental role in determining the stability regions of the

respective solutions. Note that η is used as a parametrization of the stable equilibrium, so

that there is no need to specify a surface equation of state. The parameter
√
η is normally

interpreted as the speed of sound, so that one would expect that 0 < η ≤ 1, based on the

requirement that the speed of sound should not exceed the speed of light. We refer the

reader to refs. [49, 50] for further discussions on the respective physical interpretation of η

lying outside the range 0 < η ≤ 1.

The solution is stable if and only if V (a) has a local minimum at a0 and V ′′(a0) > 0 is

verified. Thus, from the latter stability condition, after a rather lengthy but straightforward

calculation, one deduces the master equation for the stability regions, given by

η0
dσ2

da

∣

∣

∣

a0
> Θ , (4.11)

where η0 = η(a0). Note that to deduce this inequality, we have used eq. (4.9), and for

notational simplicity, we have defined the function Θ by

Θ ≡ 1

2π

[

σΥ+
1

2πa0
(Γ2 −Ψ)

]

, (4.12)

with Γ given by eq. (4.8), and the function Ψ defined as

Ψ =
F ′′

2
−
[(

aG

ms

)′]2

−
(

aG

ms

)(

aG

ms

)′′

. (4.13)

– 12 –



J
H
E
P
1
2
(
2
0
1
3
)
0
6
5

Now, from the master inequality (4.11), we find that the stable equilibrium regions are

dictated by the following inequalities

η0 > Ω , if
dσ2

da

∣

∣

∣

a0
> 0 , (4.14)

η0 < Ω , if
dσ2

da

∣

∣

∣

a0
< 0 , (4.15)

with the definition

Ω ≡ Θ

(

dσ2

da

∣

∣

∣

a0

)−1

. (4.16)

4.3 Stability regions

We now determine the stability regions dictated by the inequalities (4.14)–(4.15). In the

specific cases that follow, the explicit form of Ω is extremely messy, so that we find it more

instructive to show the stability regions graphically.

For the case of interest under consideration, namely, β < 1.9, the specific expression

for dσ2/da|a0 is given by

dσ2

da

∣

∣

∣

∣

a0

=
1

8πa4







√

1− 2M
a −

√

1− 2m(a)
a

√

1− 2M
a

√

1− 2m(a)
a






×

×
{

[a− 3m(a) + am′(a)]

√

1− 2M

a
− (a− 3M)

√

1− 2m(a)

a

}

. (4.17)

It is useful to consider the dimensionless quantity M3dσ2/da|a0 , which is depicted in fig-

ure 5. From the latter, it is transparent that dσ2/da|a0 < 0, so that the stability regions

are dictated by inequality (4.15).

The respective stability regions are given by the plot depicted below the surface in

figure 6. It is interesting to note that the stability regions are sufficiently close to where

the event horizon is expected to form, which is extremely promising. Indeed, large stability

stability regions exist in the neighbourhood of where the event horizon is expected to form,

for arbitrary values of the parameter β. For low values of the parameter, the stability

regions decrease for increasing values of a. For large values of β the stability regions

decrease for increasing values a, and then increase again as a increases. Thus large stability

regions exist also for large values of β, for regions sufficiently far from the where the event

horizon is expected to form.

The message that one may extract, is that the above analysis shows that stable config-

urations of the surface layer, located sufficiently near to where the event horizon is expected

to form, do indeed exist. Therefore, considering these models, one may conclude that the

exterior geometry of a noncommutative geometry inspired gravastar would be practically

indistinguishable from a black hole.

– 13 –
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Figure 5. The sign of the dimensionless quantity M3dσ2/da|a0
is depicted in the plot, where it is

transparent that dσ2/da|a0
< 0. Thus, the stability regions are dictated by inequality (4.15). See

the text for more details.

Figure 6. The respective stability regions are given by the plot depicted below the surface. Large

stability stability regions exist in the neighbourhood of where the event horizon is expected to

form, for arbitrary values of the parameter β. For low values of the parameter, the stability regions

decrease for increasing values of a. For large values of β the stability regions decrease for increasing

values a, and then increase again as a increases. See the text for more details.

5 Summary and conclusion

The gravastar model was proposed as an alternative picture for the final state of gravita-

tional collapse. It remains an open problem if alternatives to standard black holes as the

final state of gravitational collapse do really exist and only a full quantum theory of gravity
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could answer this question adequately. This justifies the research on black hole mimickers

that could explain observational data without the paradoxical problems regarding black

holes.

In this work, we have found exact gravastar solutions in the context of noncommu-

tative geometry, and briefly explored their physical properties and characteristics. More

specifically, the energy density of these geometries is a smeared and particle-like gravi-

tational source, where the mass is diffused throughout a region of linear dimension
√
α

due to the intrinsic uncertainty encoded in the coordinate commutator. Furthermore, the

mass function was deduced from the Einstein field equations, and the equation of state

pr(r) = −ρ(r) was imposed.

A fundamental aim in this work was to analyse the linearized stability analysis of

the transition layer of these noncommutative geometry inspired gravastars around static

equilibrium solutions. However, it is also important to consider the instabilities which

arise from the gravitational collapse of the star. It is generally believed that any star

crosses its Schwarzschild radius collapses due to gravitational attraction. Therefore, we

have also commented on a mechanism which prevents such a collapse. We have shown that

the spacetime has a repulsive character for a wide range of the parameters of the model.

Therefore, we have argued that it is the repulsive nature of the geometry that stops the

gravitational collapse of the star, and it is possible that an equilibrium stability region is

attained, thus sustaining this gravastar configuration.

We further explored the dynamical stability of the transition layer of these noncommu-

tative geometry inspired gravastars to linearized spherically symmetric radial perturbations

about static equilibrium solutions. More specifically, we considered the speed of sound pa-

rameter η defined as η = P ′/σ′, where ρ and P, are the surface energy density and surface

pressure, respectively. The parameter η was used as a parametrization of the stable equi-

librium, so that there was no need to specify a surface equation of state. Consequently, a

master equation was deduced that dictated the stability regions. It was found that large

stability regions do exist, which are located sufficiently close to where the event horizon

is expected to form, for a wide range of the parameters of the model. Thus, it would be

difficult to distinguish the exterior geometry of the gravastars, analyzed in this work, from

a black hole.

Indeed, in this work, we were only interested in the linearized spherically symmetric

radial perturbations of the transition layer around static equilibrium solutions. However, we

note that a thorough stability analysis of the whole system is in order to verify the stability

of the entire gravastar configuration. To this effect, one may consider the non-spherically

symmetric stability analysis explored in ref. [72], where general axial perturbations and

monopole-type polar perturbations were considered in the linear approximation, for two

classes of solutions, namely, wormholes with flat asymptotic behavior at one end and AdS

on the other (M-AdS wormholes) and regular black holes with asymptotically de Sitter

expansion far beyond the horizon (the so-called black universes). As a result of the analysis,

it was shown that all configurations under study are unstable under spherically symmetric

perturbations, except for a special class of black universes where the event horizon coincides

with the minimum of the area function. It will be interesting to apply the stability analysis
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outlined in ref. [72] to the entire gravastar configuration, which we leave for a future

publication.

In conclusion, it would be interesting to apply to the present case, the alternative for-

malism developed in two companion papers [70, 71], where an extremely general and robust

framework leading to the linearized stability analysis of dynamical spherically symmetric

thin-shell gravastars was developed. In the latter, the logic flow was reversed, where the

surface mass as a function of the potential was considered, so that specifying the latter

informs on how much surface mass one needs to put on the transition layer. Work along

these lines is currently underway.
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