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1 Introduction

Entanglement and Rényi entropies have emerged as diagnostic probes of considerable prac-

tical and formal interest in areas ranging from condensed matter physics, e.g., [1–5] to

quantum gravity, e.g., [6–14]. In this paper we will consider a generalization of these

entropies for systems with a conserved global charge.

Consider a quantum system consisting of two components, A and B, in a state described

by the density matrix ρ. We will consider quantum field theories, where A and B are spatial

regions separated by an entangling surface Σ. We then trace over the degrees of freedom

in region B to construct the reduced density matrix ρA = TrB ρ. The latter contains

information about the entanglement between A and B. The Rényi entropies [15–18]

Sn =
1

1− n
log Tr ρnA , (1.1)

are the moments of this reduced density matrix. The limit n → 1 gives the entanglement

entropy, SEE = limn→1 Sn = −Tr[ρA log ρA].

In this paper, we will consider quantum field theories with a conserved (global) charge.

In this case we can ask whether the entanglement between A and B depends on how charge

is distributed between the two subsystems. This is characterized by the following ‘grand

canonical’ generalization of the Rényi entropy:

Sn(µ) =
1

1− n
log Tr

[
ρA

eµQA

nA(µ)

]n
. (1.2)

Here µ is a chemical potential conjugate to QA, the charge contained in subsystem A. We

have also introduced nA(µ) ≡ Tr
[
ρA e

µQA
]

to ensure that the new density matrix (enclosed

by the square brackets above) is properly normalized with unit trace. The µ-dependence

of these ‘charged’ Rényi entropies Sn(µ) encodes the dependence of the entanglement on

the charge.

We will also be interested in the entropies constructed with an imaginary chemical

potential

S̃n(µE) =
1

1− n
log Tr

[
ρA

eiµEQA

ñA(µE)

]n
, (1.3)

where µE is real and ñA(µ) ≡ Tr
[
ρA e

iµEQA
]
. As we will see below, the analytic continua-

tion between (1.2) and (1.3) is typically straightforward in the vicinity of the origin µ = 0,

but one typically encounters an interesting structure of singularities along the imaginary

µ-axis.

In quantum field theory, Rényi entropies can be evaluated using the replica trick [4, 5],

which relates them to a Euclidean path integral on an n-sheeted geometry. These path

integral calculations of Sn are easily extended to compute our new charged Rényi entropies.

As we will describe below, the key new ingredient is a Wilson line encircling the entangling

surface. This generalizes the twist operator σn appearing in the replica trick to include a

‘magnetic flux’ proportional to µ.
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In conformal field theories, these entropies can be studied rather explicitly. A useful

approach was introduced in [19] to evaluate the entanglement entropy across a spherical

entangling surface for an arbitrary d-dimensional CFT in flat space. The latter entropy

is related by a conformal mapping to the thermal entropy of the CFT on a hyperbolic

cylinder R × Hd−1, where the temperature and curvature are fixed by the radius of the

original entangling surface. If the temperature is allowed to vary, the thermal entropy

calculates Rényi entropies [20, 21]. In theories with holographic gravity duals, the thermal

entropy is the horizon entropy of a black hole with Hd−1 horizon. Our charged entropies

Sn(µ) can also be computed for spherical entangling surfaces with a simple extension of

this procedure. The same conformal mapping leads to a grand canonical ensemble with

chemical potential µ for the CFT on the hyperbolic cylinder. In the holographic context,

the presence of a global symmetry in the boundary CFT leads to a gauge field in the dual

gravity theory. Sn(µ) is then related to the entropy of a hyperbolic black hole which is

charged under this gauge field.

This paper is organized as follows: in section 2, we will discuss general features of

the charged Rényi entropy and outline its computation in CFT. We also describe the var-

ious properties of the corresponding twist operators. In section 3, we compute Sn(µ) in

holographic CFT’s (in spacetime dimensions d ≥ 3) by considering the charged hyperbolic

black holes of the dual Einstein-Maxwell theory. We conclude with a discussion and general

comments on the properties of the charge Rényi entropy in section 4. Three appendices are

also included. Appendix A describes computations of S̃n(µE) in simple free field theories

and appendix B gives the holographic computation in AdS3/CFT2. The latter case is

notable in that the dependence of the charged Rényi entropy on n agrees with the free field

theory result. Finally appendix C contains various details of the holographic calculations,

which are used in section 3.

Charged Rényi entropies arose in several recent papers which appeared while this paper

was in preparation. First, they were briefly considered in [22, 23]. Charged Rényi entropies

appear in [24], which investigates the dynamical evolution of entanglement entropy in

two-dimensional CFT’s. The supersymmetric Rényi entropies three-dimensional N ≥ 2

superconformal theores calculated in [25] can be cast in the form (1.3) with an imaginary

chemical potential for a circular entangling surface, using the conformal mappings presented

in [19, 20]. In this case, QA corresponds to the R-charge of the underlying theory.

2 Charged Rényi entropies for CFT’s

In this section, we begin with some general comments about the charged Rényi en-

tropies (1.2). We then focus on their computation in conformal field theories, extending

the approach of [19, 20], to relate charged Rényi entropies for spherical entangling surfaces

in flat space to the thermal entropy of the CFT on R×Hd−1 in grand canonical ensemble.

We also describe the calculation of the conformal weight and magnetic response of the

corresponding twist operator. Finally, we describe the computation of these entropies for

two-dimensional CFT using twist operators.
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2.1 Replica trick

To begin, let us recall the replica trick [4–9]. For simplicity, we focus on entanglements in

the ground state of a QFT in d-dimensional flat space. One begins by introducing an entan-

gling surface Σ which divides the spatial slice at time tE = 0 into two regions, A and B.1 In-

teger powers of the reduced density matrix ρA are represented by a Euclidean path integral

Tr ρnA = Zn/(Z1)n . (2.1)

Here Zn is the partition function on an n-fold cover of (Euclidean) flat space with cuts

introduced on region A at tE = 0. At the cut, copy n is connected to copy n+1 when

approaching from tE → 0− and to copy n-1 when approaching from tE → 0+. In this

construction, the entangling surface Σ becomes the branch-point of the branch-cut which

separates different copies in the n-fold covering geometry. It is convenient to think of these

boundary conditions as produced by the insertion of a (d-2)-dimensional surface operator

at Σ, i.e., a twist operator σn [4, 5].2 The factors of Z1 appear above to ensure that the

density matrix is properly normalized with Tr [ρA] = 1. With the usual definition (1.1),

the Rényi entropies become

Sn =
1

n− 1
(n logZ1 − logZn) . (2.2)

Of course, one would like to consider an analytic continuation to real values of n to de-

termine the entanglement entropy with SEE = limn→1 Sn. Similarly, two other interesting

limits are given by n→ 0 and ∞, which yield expressions which are known as the Hartley

entropy and the min-entropy, respectively [29]. In particular, one finds S0 = log(d) where

d is the number of nonvanishing eigenvalues of ρA and S∞ = − log(λ1) where λ1 is the

largest eigenvalue of ρA.

We wish to extend these path integral calculations of Sn to compute charged Rényi en-

tropies. Let us first recall how a chemical potential µ is included in the standard Euclidean

path integral representation of a (grand canonical) thermal ensemble. In this framework,

the chemical potential is represented by a fixed background gauge potential3 Bµ which

couples to the relevant conserved current. Of course, in the ‘thermal’ path integral, the

Euclidean time direction is compactified with period ∆tE = 1/T and then the chemical

potential appears as a nontrivial Wilson line on this thermal circle, i.e.,
∮
B = −iµ/T .

To evaluate the charged Rényi entropies (1.2), we must compute a grand canonical

version of eq. (2.1), i.e.,

Tr

[
ρA

eµQA

nA(µ)

]n
=

Zn(µ)

(Z1(µ))n
. (2.3)

with nA(µ) ≡ Tr
[
ρA e

µQA
]
. Here Zn(µ) is computed as above, except with the insertion of

a Wilson line encircling the entangling surface Σ. That is, we introduce a fixed background

1Implicitly, an initial step in these calculations is to Wick rotate the time coordinate: tE = it.
2For further discussion of twist operators beyond d = 2, see also [20, 26–28].
3We use Bµ to distinguish this nondynamical gauge field from the bulk gauge potential Aµ appearing

in our holographic calculations. This background gauge field is imaginary in the Euclidean path integral,

corresponding to a real chemical potential.
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gauge field coupling to the conserved current. This background field is such that loops

encircling the entangling surface carry a nontrivial Wilson line,
∮
C B = −inµ.4 Here the

factor n is analogous to the 1/T factor appearing for the thermal ensemble above and

arises here because the loop C circles n times around Σ, passing through all n sheets of

the covering geometry. The Wilson line should be the same on all such curves and so

the background gauge field is flat, i.e., dB = 0, away from the entangling surface. By

Stokes’ theorem these loops enclose a fixed flux, i.e.,
∫
M dB =

∮
C=∂M B = −inµ for any

two-dimensional surface pierced by Σ. Thus the entangling surface carries a ‘magnetic flux’

−inµ of the background gauge field. An alternative perspective is that eq. (2.3) defines a

generalized class of twist operators σ̃n(µ), which are constructed by binding to the original

twist operators σn, a (d-2)-dimensional ‘Dirac sheet’ carrying the magnetic flux −inµ.

Another noteworthy comment is that with the above definitions, the chemical potential

in our charged Rényi entropy (2.3) is dimensionless, in contrast to the standard chemical

potential in a thermal context, which carries the units of energy.5 In any event, given the

path integral construction describing eq. (2.3), the charged Rényi entropies (1.2) become

Sn(µ) =
1

n− 1
(n logZ1(µ)− logZn(µ)) . (2.4)

Above, we considered a real chemical potential µ, as would appear in standard ther-

modyanmics. We will also consider analytic continuations of the chemical potential to

imaginary values, as in eq. (1.3). As motivation, we note that working with an imaginary

chemical potential has proven to be a useful way to probe the confinement phase transition

in QCD [30] and to avoid the sign problem in the lattice fermion algorithms [31]. Com-

putations of the Witten index can also be interpreted in a similar fashion [32]. Replacing

µ = iµE in our analysis above, the Wilson loop of the background gauge field now becomes

real with
∮
C B = nµE. Further the corresponding magnetic flux carried by the generalized

twist operators is also real. Hence the effect of the imaginary chemical potential is to intro-

duce a simple phase as a charged operator circles around the entangling surface. Note that

the analytic continuation between real and imaginary values requires care because, as we

will see below, the partition function has an interesting singularity structure in the complex

µ-plane. We will consider both real and imaginary chemical potentials in the following.

These two cases will always be distinguished by the notation µ and µE, respectively.

2.2 Spherical entangling surfaces

For the remainder of this section we will focus on computations of charged Rényi entropy in

d-dimensional conformal field theories. We will consider a CFT in flat space in its vacuum

state, and choose the entangling surface to be a sphere of radius R (in a constant time

slice). In this case, the argument of [19] implies that the usual entanglement entropy equals

the thermal entropy of the CFT on a hyperbolic cylinder R×Hd−1, where the temperature

and curvature are fixed by the radius of the original entangling surface. A simple extension

4The orientation of the contour will become evident in our examples below.
5In the thermal context, these units have a natural meaning by comparing the chemical potential to the

temperature. In the entanglement context, there is no such natural reference scale with which to compare µ.
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of this approach also allows one to calculate Rényi entropies [20]. We will compute charged

Rényi entropies by further extending the procedure to include a background gauge field.

For simplicity of notation we will use an imaginary chemical potential, but of course the

same construction applies for a real chemical potential.

We begin with a brief review of [19, 20]. First, we write the metric on flat Euclidean

space in terms of a complex coordinate ω = r + itE:

ds2
Rd = dωdω̄ +

(
ω + ω̄

2

)2

dΩ2
d−2 , (2.5)

where tE is the Euclidean time coordinate, r is the radial coordinate on the constant time

slices and dΩd−2 is a standard round metric on a unit (d − 2)-sphere. The entangling

surface is the sphere at (tE, r) = (0, R).

We will perform a conformal transformation of the above Rd geometry to Hd−1×S1 as

follows. Introducing a second complex coordinate σ = u+ i τER , we perform the coordinate

transformation, which, in terms of the complex coordinate σ defined by

e−σ =
R− ω
R+ ω

. (2.6)

the metric (2.5) then takes the form

ds2
Rd = Ω−2R2

[
dσdσ̄ + sinh2

(
σ + σ̄

2

)
dΩ2

d−2

]
, (2.7)

where

Ω =
2R2

|R2 − ω2|
= |1 + coshσ| . (2.8)

The Ω−2 prefactor can now be removed by a simple Weyl rescaling. Letting σ = u + i τER ,

the resulting conformally transformed metric is

ds2
Hd−1×S1 = Ω2 ds2

Rd = dτ2
E +R2

(
du2 + sinh2u dΩ2

d−2

)
. (2.9)

This is S1×Hd−1; u is the (dimensionless) radial coordinate on the hyperboloid Hd−1 and

τE is the Euclidean time coordinate on S1. The curvature radius of Hd−1 is R, the radius

of the original spherical entangling surface. The periodicity of the τE circle is 2πR. Note

that the original entangling surface has been pushed out to the asymptotic boundary, i.e.,

u→∞, in the conformally transformed geometry (2.9).

The key point is that, under this conformal mapping, the density matrix describing

the CFT vacuum state on the interior of the entangling surface is transformed to a thermal

density matrix with temperature

T0 =
1

2πR
(2.10)

on the new hyperbolic geometry. That is, the reduced density matrix related to the

thermal density matrix as

ρA = U−1 e
−H/T0

Z(T0)
U , (2.11)

– 6 –
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where U is the unitary transformation implementing the conformal transformation. Since

the entropy is insensitive to unitary transformations, the desired entanglement entropy

just equals the thermal entropy in the transformed space. This same conformal mapping

can also be used to evaluate the Rényi entropy. The only difference is that it would be

applied to the n-fold cover of flat space used to evaluate eq. (2.1). In this case the period

of τE is 2πRn, so the corresponding thermal ensemble has a temperature T = T0/n.

We can compute charged Rényi entropies (1.3) by generalizing this approach. First

after having identified the appropriate charge Q, we introduce a (dimensionless) chemical

potential µ and the previous density matrix (2.11) becomes

ρtherm =
e−H/T0+µQ

Z(T0, µ)
. (2.12)

Now, in fact, our discussion is slightly simplified if we consider instead an imaginary chem-

ical potential µE = −iµ with which the above expression turns into

ρtherm =
e−H/T0+iµEQ

Z(T0, µE)
. (2.13)

As discussed above, this chemical potential is incorporated into the thermal path integral

via a background gauge field with a nontrivial Wilson line on the Euclidean time circle:

µE =

∮
B =

∫ 2πR

0
BτEdτE . (2.14)

In this case the potential is just constant: BτE = µE/(2πR). The background gauge field is

invariant under the conformal transformation mapping between the hyperbolic geometry

and flat space. Therefore in the flat space coordinates, we may express this gauge field as

B =
iR

2π
µE

[
dω

R2 − ω2
− dω̄

R2 − ω̄2

]
= −R

π
µE

2tEr dr + (R2 − r2 + t2E) dtE
(R2 − r2 + t2E)2 + 4t2Er

2
. (2.15)

Now one can readily verify that this background gauge field yields
∮
B = µE for any contour

encircling the entangling surface at (tE, r) = (0, R) in the flat space geometry.6 Of course,

we also have dB = 0 and so this is precisely the background required to evaluate the

charged Rényi entropy (1.3) in this particular case.

Hence we must simply supplement the conformal mapping approach of [19, 20] with

the background gauge field (2.15) to evaluate the charged Rényi entropy across a spherical

entangling surface for the CFT vacuum in flat space. The effective reduced density matrix

in eq. (1.3) is again simply related to the thermal density matrix (2.13) on the hyperbolic

space:

ρA

eiµEQA

ñA(µE)
= U−1 ρtherm U = U−1 e

−H/T0+iµEQ

Z(T0, µE)
U , (2.16)

6An interesting exercise to gain better intuition for this background gauge field (2.15) is to expand the

coordinates near the spherical entangling surface: tE = ρ sin θ and r = R+ ρ cos θ with ρ� R. To leading

order in ρ/R, one then finds that the potential reduces to B ' µE
2π
dθ.

– 7 –
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where as in eq. (2.11), U is the unitary transformation implementing the conformal

transformation between the two geometries. Given this expression, the charged Rényi

entropy (1.3) can be evaluated in terms of the corresponding thermal partition function

for the CFT on the hyperbolic geometry as

S̃n(µE) =
1

1− n
log

Z(T0/n, µE)

Z(T0, µE)n
. (2.17)

Recall that in evaluating Z(T0/n, µE), the period of τE is extended to 2πRn, however, the

gauge potential remains fixed as BτE = µE/(2πR). Hence the total Wilson line around

the thermal circle increases by a factor of n as desired, i.e.,
∮
B = nµE. Now using the

standard thermodynamic identity for the grand canonical ensemble

Stherm(T, µE) = − ∂F (T, µE)

∂T

∣∣∣∣
µE

=
∂

∂T
(T logZ(T, µE))

∣∣
µE
, (2.18)

one easily derives the following relation between the charged Rényi entropy and the

thermal entropy [20]:

S̃n(µE) =
n

n− 1

1

T0

∫ T0

T0/n
Stherm(T, µE) dT . (2.19)

At this point, we may remind the reader that the above discussion makes no reference

to the AdS/CFT correspondence. In the special case of a holographic CFT, this analysis

may be further extended by evaluating the thermal entropy on the hyperbolic background

in terms of the horizon entropy of a topological black hole in the bulk with a hyperbolic

horizon [19, 20] — see also [33, 34]. In the context of the charged Rényi entropy (1.2),

the boundary CFT also contains a conserved current corresponding to the charge probed

by these entropies and hence the bulk theory will also include a dual gauge field. The

holographic representation of the grand canonical ensemble considered above will then

be a topological black hole which is charged under this gauge field. We will turn to such

holographic calculations in section 3. First, however, we continue below with some further

remarks which apply to general CFT’s.

2.3 Properties of generalized twist operators

As discussed at the beginning of this section, the calculation of (either ordinary or charged)

Rényi entropies can be viewed as involving the insertion of a twist operator at the entangling

surface. A generalized notion of conformal dimension can be defined for these surface

operators by considering the leading singularity in the correlator 〈Tµν σn〉. This leading

singularity is fixed by symmetry, as well as the tracelessness and conservation of the stress

tensor. To be precise, consider inserting the stress tensor Tµν at a perpendicular distance

y from the twist operator σn, such that y is much smaller than any scales defining the

– 8 –
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geometry of the entangling surface Σ. Then the leading singularity takes the following form7

〈Tab σn〉 = −hn
2π

δab
yd

, 〈Tai σn〉 = 0 , (2.20)

〈Tij σn〉 =
hn
2π

(d− 1)δij − dninj
yd

,

where a, b (i, j) denote tangential (normal) directions to the twist operator and ni is the unit

vector directed orthogonally from the twist operator to the Tµν insertion. Thus the singu-

larity is completely fixed up to the constant hn, which is referred to as the conformal dimen-

sion of σn. The approach reviewed in the previous section can be applied to determine the

value of hn in terms of the thermal energy density E(T, µ) on the hyperbolic cylinder [20],8

hn(µ) =
2πn

d− 1
Rd
(
E(T0, µ = 0)− E(T0/n, µ)

)
. (2.21)

The first term above arises because of the anomalous behaviour of the stress tensor under

conformal transformations. Of course, as is implicit above, these remarks apply equally well

for the original twist operators σn and for the generalized twist operators σ̃n(µ) appearing

in the calculation of the charged Rényi entropy. In particular, the arguments of [20] yielding

eq. (2.21) apply without any change in the presence of the background gauge potential.

In the context of the charged Rényi entropies, another operator in the underlying CFT

is the current Jµ, associated with the global charge appearing in eq. (1.2), i.e.,

QA =

∫
A
dd−1x Jt . (2.22)

Again, symmetries and conservation of the current dictate the form of the leading singu-

larity in the correlator 〈Jµ σ̃n(µ)〉. In this case, the singularity takes the form9

〈Ji σ̃n(µ)〉 =
i kn(µ)

2π

εij n
j

yd−1
, 〈Ja σn〉 = 0 , (2.23)

where εij is the volume form in the two-dimensional space transverse to Σ. This parity-odd

tensor appears in the correlator because of the magnetic flux carried by the generalized

twist operator. We refer to kn as the ‘magnetic response,’ since this parameter characterizes

the response of the current to the magnetic flux.

Following [20], we can determine the value of kn using the conformal mapping in

the above discussion of spherical entangling surfaces. In this case, one begins with the

charge density that appears in the grand canonical ensemble on the hyperbolic cylinder:

〈JτE〉 = −iρ(n, µ). Now conformally mapping to the n-fold cover of Rd, this expectation

value becomes

〈Jµ σ̃n(µ)〉flat = Ωd−2 ∂X
α

∂Y µ
〈Jα〉hyperbolic . (2.24)

7These correlators (2.20) should be normalized by dividing by 〈σn〉. However, we leave this implicit to

avoid further clutter.
8Note that in the Euclidean background, E(T, µ) = −〈TτEτE〉. Also observe that we phrase the discussion

in this subsection in terms of a real chemical potential µ.
9Note that the correlators here and in eq. (2.20) are implicitly evaluated in the Euclidean path integral.

– 9 –



J
H
E
P
1
2
(
2
0
1
3
)
0
5
9

The form of the transformation is fixed because the current has conformal dimension d-1.10

Now as indicated on the left-hand side of eq. (2.24), this mapping yields the correlator of

the current with the spherical twist operator. Further, taking the limit where the current

insertion approaches the twist operator, one recovers the leading singularity in eq. (2.23).

Hence using eqs. (2.6) and (2.8), the magnetic response can be evaluated as

kn(µ) = 2πnRd−1 ρ(n, µ) . (2.25)

Here, the additional factor of n appears because the correlators in eq. (2.23) are understood

to involve the the total current for the entire n-fold replicated CFT whereas eq. (2.24)

corresponds to the insertion of Jµ on a single sheet of the n-fold cover. Hence we must

multiply by an extra factor of n to compare the two expressions.

An interesting universal property of hn was obtained for higher dimensional twist

operators in [20, 28] (see also [35]):

∂nhn|n=1 = 2π
d
2

+1 Γ (d/2)

Γ(d+ 2)
CT . (2.26)

Here CT is the central charge defined by the two-point function of the stress tensor11

〈Tµν(x)Tρσ(0)〉 =
CT
x2d
Iµν,ρσ (2.27)

where

Iµν,ρσ =
1

2
(IµρIνσ + IµσIνρ)−

1

d
δµνδρσ with Iµν(x) = δµν − 2

xµxν

|x|2
. (2.28)

In fact, similar universal properties is also found for higher derivatives of hn in the vicinity

of n = 1.

The above universal behaviour does not immediately extend to the conformal weight of

the generalized twist operators σ̃(µ). Instead, the natural extension involves an expansion

about both n = 1 and µ = 0, as follows:

hn(µ) =
∑
a,b

1

a! b!
hab (n− 1)a µb (2.29)

where we defined the coefficients

hab ≡ (∂n)a(∂µ)b hn(µ)
∣∣
n=1,µ=0

. (2.30)

Note that the twist operator becomes trivial when n = 1 and µ = 0 and hence the first

term in this expansion vanishes, i.e., h00 = 0. Further h10 = ∂nhn(µ)
∣∣
n=1,µ=0

is precisely

10One can also verify that this transformation (2.24) ensures that the charge operator (2.22) defined on

the interior of the sphere, i.e., QA = i
∫
tE=0,r<R

dd−1xJtE , is just the conformal transformation of the charge

defined by integrating JτE over the entire hyperbolic plane Hd−1 — as is implicit in our discussions above.
11Note that our normalization for CT here is a standard one but it is not the same as in [20]. Hence the

numerical factors in eq. (2.26) are slightly different than in that reference.
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the term appearing in eq. (2.26). Now recall the expression (2.21) for the weight, which

we rewrite as

hn(µ) =
2πn

d− 1
Rd
(
〈TτEτE〉

∣∣
T0/n,µ

− 〈TτEτE〉
∣∣
T0,µ=0

)
. (2.31)

in terms of the Euclidean stress tensor. Here both expectation values are in the grand

canonical ensemble on the hyperbolic space. That is, in terms of the thermal density

matrix given in eq. (2.12), the density matrix determining the second expectation value

is ρtherm(µ = 0) while that in the first is [ρtherm]n. Now we can produce the same double

expansion as in eq. (2.29) by re-expressing the latter with[
e−H/T0+µQ

]n
= e−H/T0

[
e−(n−1)H/T0+nµQ

]
(2.32)

and expanding the last factor in terms of n − 1 and µ [28, 35]. Here, we note that the

manipulation in eq. (2.32) is valid since Q is a conserved charge and hence [H,Q] = 0. Now

it is straightforward to show that the expansion coefficients hab in eq. (2.30) are given by

hab =
2π

d− 1
Rd(∂n)a(∂µ)b

(
n
Z(T0, µ = 0)

Z(T0/n, µ)
〈TτEτEe

−(n−1)H/T0+nµQ〉 − n 〈TτEτE〉
) ∣∣∣

n=1,µ=0

(2.33)

Note that both of the expectation values above are evaluated in the thermal ensemble

with T = T0 and µ = 0. Hence these coefficients can be determined in terms of correlators

of the stress tensor and the conserved current in the thermal bath on the hyperbolic

geometry at temperature T0. However, by applying the conformal transformation, these

correlators may also be evaluated for the CFT vacuum in flat space.

Let us focus here on the corrections to the conformal dimension of the twist operator

coming from a small chemical potential µ at n = 1, i.e.,

h0b =
2π Rd

d− 1
ib〈TτEτE

b∏
i=1

∫
Hd−1

dd−1σi JτE(σi) 〉c (2.34)

where the subscript c denotes the connected correlator. Again, this correlator is evaluated

in the thermal ensemble on the hyperbolic space with T = T0 and µ = 0. However, as

noted above, it is convenient to transform back to flat space where the correlators will

be evaluated in the CFT vacuum. First, however, we observe that if we evaluate the

correlator in eq. (2.34) with a Euclidean path integral on S1×Hd−1, then the stress tensor

maybe inserted at any position in this background. Hence we choose to place TτEτE at

(τE, σ) = (πR, 0) which the conformal transformation then maps to (tE, r) = (∞, 0) in

the corresponding flat space background. To be precise, with this choice, the conformal

transformation yields the following simple expression:

TτEτE = lim
tE→∞

(
t2E

2R2

)d
TtEtE . (2.35)

and so eq. (2.34) becomes

h0b =
2π Rd

d− 1
ib lim
tE→∞

(
t2E

2R2

)d
〈TtEtE

b∏
i=1

∫
r<R
dd−1xi JtE(xi) 〉c (2.36)
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One immediate observation is that in the CFT vacuum in flat space, the two-point corre-

lator 〈TJ〉 will vanish and hence we must have h01 = 0. That is, the linear correction in µ

to the conformal weight of the twist operator vanishes at n = 1.

Hence the leading contribution should appear at order µ2 and is determined by the

three-point correlator 〈TJJ〉. The latter correlation function has a universal form dictated

by conformal symmetry, up to a few constants which are determined by the underlying

CFT [36]. Therefore h02 can be determined entirely in terms of these few parameters.

More explicitly, the 〈TJJ〉 correlator takes the following form in a d-dimensional CFT [36]

〈Tµν(x1) Jγ(x2) Jδ(x3) 〉 =
tµναβ(X23) Iγ

α(x21) Iδ
β(x31)

|x12|d|x13|d|x23|d−2
, (2.37)

where

x12 = x1 − x2, X23 =
x21

|x21|2
− x31

|x31|2
, X̂ =

X

|X|
, (2.38)

where |x| is the norm of the vector. Recall that Iµν(x) was defined in eq. (2.28) and further

we have

tµνρσ(X) = â h1
µν(X̂) δρσ + b̂ h1

µν(X̂)h1
ρσ(X̂) + ĉ h2

µνρσ(X̂) + ê h3
µνρσ(X̂) ,

h1
µν(X̂) = X̂µX̂ν − 1

d
δµν , (2.39)

h2
µνρσ(X̂) = X̂µX̂ρ δνσ + {µ↔ ν, ρ↔ σ}

−4

d
X̂µX̂νδρσ −

4

d
X̂ρX̂σδµν +

4

d2
δµνδρσ ,

h3
µνρσ(X̂) = δµρδνσ + δµσδνρ −

2

d
δµνδρσ .

The coefficients â, b̂, ĉ, ê are the parameters characterizing the underlying CFT. However,

only two of these constants are independent as they satisfy the following constraints [36]:

d â− 2 b̂+ 2(d− 2) ĉ = 0 , b̂− d(d− 2) ê = 0 . (2.40)

Notice that in the special case d = 2, both â and b̂ vanish.

Now we only need to consider the correlator 〈TtEtE(x1)JtE(x2)JtE(x3)〉 in the limit that

x0
1 ≡ χ→∞, xi1 = 0, while x0

2 = x0
3 = 0 and |x2|, |x3| < R. To leading order in χ, we find

I00 = −1 + · · · , Iij = δij + · · · , Ii0 = O(1/χ) (2.41)

This immediately implies that for µ = ν = γ = δ = 0 in eq. (2.37), we need only consider

t0000 to leading order and further we have

t0000 →
1

d2
(−d â+ b̂+ 4 ĉ+ 2d(d− 1) ê) =

2

d
ĉ+ ê . (2.42)

Then for h02 in eq. (2.36), we are left with

〈T00(x0
1 →∞)

∫
|x2|<R

dd−1x2J0(x2)

∫
|x3|<R

dd−1x3J0(x3)〉
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=

∫
|x2|<R

dd−1x2

∫
|x3|<R

dd−1x3

2
d ĉ+ ê

x2d
1 |x23|d−2

. (2.43)

The integral can be evaluated exactly. Using equation (2.36), we finally arrive at

h02 = − 4πd−1

Γ(d+ 1)

(
2

d
ĉ+ ê

)
. (2.44)

Now an analogous double expansion about n = 1 and µ = 0 can also be applied to the

magnetic response:

kn(µ) =
∑
a,b

1

a! b!
kab (n− 1)a µb (2.45)

where we defined the coefficients

kab ≡ (∂n)a(∂µ)bkn(µ)
∣∣
n=1,µ=0

. (2.46)

Next we recall the expression (2.25), which we rewrite in terms of the Euclidean current as

kn(µ) = 2πinRd−1 〈JτE〉
∣∣
T0/n,µ

. (2.47)

Again this expectation value is in the grand canonical ensemble on the hyperbolic

space. Now following the same manipulations of the corresponding density matrix as in

eq. (2.32), we arrive at the following expressions for kab

kab = 2πiRd−1 (∂n)a(∂µ)b
(
n
Z(T0, µ = 0)

Z(T0/n, µ)
〈JτEe

−(n−1)H/T0+nµQ〉
) ∣∣∣

n=1,µ=0
(2.48)

where the remaining expectation value above is evaluated in the thermal ensemble with T =

T0 and µ = 0. Hence these coefficients can again be determined in terms of correlators of

the stress tensor and the conserved current in the thermal bath on the hyperbolic geometry

at temperature T0. However, by conformally mapping to flat space, the correlators may

alternatively be evaluated in the CFT vacuum.

Let us evaluate a few coefficients for the low order contributions in the expansion (2.45).

First, let us note that the coefficient k10 will determined in terms of the two-point correlator

〈JT 〉 and so upon mapping this correlator back to flat space, we will find a vanishing result,

i.e., k10 = 0. Considering the next two coefficients, eq. (2.48) yields

k01 = 2πiRd−1 〈JτE Q〉c , (2.49)

k11 = −2πiRd−1

(
1

T0
〈JτE QH〉c − 2〈JτE Q〉c

)
, (2.50)

where subscript c again denotes the connected correlators. These correlators can be eval-

uated following the approach described above in evaluating h02. In particular, we con-

formally map these expressions back to flat space after making a judicious choice for the

position of the current insertion. The resulting three-point function in eq. (2.50) can be

evaluated using the 〈TJJ〉 correlator given in eq. (2.37). Similarly, the two-point function

appearing in both expressions can be evaluated using the current-current correlator

〈Jµ(x)Jν(0)〉 =
CV

x2(d−1)
Iµν(x) , (2.51)
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where Iµν(x) was defined in eq. (2.28). Note that a Ward identity relates the constant CV
to the parameters appearing in the three-point correlator (2.37) with [36]

CV =
2πd/2

Γ
(
d+2

2

) (ĉ+ ê) . (2.52)

Without discussing the calculations in more detail, let us present the following results

〈JτE Q〉c = −i π(d−1)/2

2d−2(d− 1)Γ((d− 1)/2)

CV
Rd−1

,

〈JτE QH〉c = −i 2πd−2

dΓ(d− 1)

1

Rd

(
2

d
ĉ+ ê

)
. (2.53)

Substituting these results (2.53), as well as eq. (2.52), into eqs. (2.49) and (2.50) then yields

k01 =
8πd

Γ(d+ 1)
(ĉ+ ê) , (2.54)

k11 =
8πd

dΓ(d+ 1)
(2ĉ− d(d− 3)ê) . (2.55)

We might re-express the result for k01 in a form similar to that appearing in eq. (2.26) for

the conformal weight, namely,

∂µkn(µ)|n=1,µ=0 = 4πd/2
Γ
(
d+2

2

)
Γ(d+ 1)

CV , (2.56)

where CV is the central charge appearing in the current-current correlator (2.51).

2.4 Generalized twist operators in d = 2

In this subsection, we compute charged Rényi entropies using twist operators in a simple

two-dimensional CFT.12 In particular, we consider a free massless Dirac fermion ψ on

an infinite line and we are interested in the Rényi entropy of a subsystem x ∈ [u, v]. In

accord with the review at the beginning of this section, the Rényi entropy can determined

by evaluating the partition function of ψ on an n-sheeted cover of R2, which is equivalent

to the correlation function of twist operators inserted at the entangling surface, i.e., the

two points x = u, v [4, 5]. Let us first review the computation of the free fermion without

the Wilson loop, as in [38–42]. On a n-fold cover, there is a branch cut connecting x = u

and v and each time we cross the branch cut, we change from one sheet to the next. Let

us label the fermion on k-th sheet as ψk, where k runs from 1 to n. Then the fields on the

different sheets are identified as follows:

ψk(e
2πi(w − u)) = ψk+1(w − u) , ψk(e

2πi(w − v)) = ψk−1(w − v) , (2.57)

where we used the complexified coordinate w = x + itE. These boundary conditions can

be ‘diagonalized’ by defining n new fields

ψ̃m =
1

n

n∑
k=1

e2πikm/n ψk (2.58)

12The analysis in this section was first done by T. Takayanagi [37]. We thank him for sharing these

results with us.
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for which the boundary conditions (2.57) become

ψ̃m(e2πi(w − u)) = e2πim/nψ̃m(w − u) , ψ̃m(e2πi(w − v)) = e−2πim/nψ̃m(w − v) (2.59)

where m = −(n − 1)/2,−(n − 1)/2 + 1, · · · , (n − 1)/2. The phase shifts in eq. (2.59) are

generated by standard twist operators σm/n, each of which act only on the corresponding

ψ̃m and which have conformal dimension ∆m = 1
2(m/n)2. The full twist operator σn

appearing in evaluating the Rényi entropy can then be written as σn =
∏
σm/n and hence

the desired correlator of the twist operators σn and σ−n yields:

Zn = 〈σn(u)σ−n(v)〉 =

n−1
2∏

m=−n−1
2

〈σm/n(u)σ−m/n(v)〉 ∼ |u− v|−4∆n , (2.60)

where total conformal dimension ∆n appearing above is given by

∆n =

n−1
2∑

m=−n−1
2

1

2

(m
n

)2
=

1

24

(
n− 1

n

)
. (2.61)

Then applying eq. (2.2) to evaluate the Rényi entropy, we recover the well-known result

Sn =
1

6

(
1 +

1

n

)
log |u− v| . (2.62)

We now generalize the above discussion to evaluate the charged Rényi entropy. In

particular, the charge, which we consider here, will be that associated with global phase

rotations of the fermion, ψ → eiθψ. If we consider an imaginary chemical potential µE,

the effect of the Wilson loop is easily represented by extending the original boundary

conditions (2.57) to include a additional phase:

ψk(e
2πi(w − u)) = eiµEψk+1(w − u) , ψk(e

2πi(w − v)) = e−iµEψk−1(w − v) (2.63)

Since this additional phase is added uniformly, the ‘diagonal’ fields (2.58) now satisfy

ψ̃m(e2πi(w − u)) = e2πim/n+iµEψ̃m(w − u) ,

ψ̃m(e2πi(w − v)) = e−2πim/n−iµEψ̃m(w − v) . (2.64)

These phase shifts are accomplished by introducing twist operators, σα(m,µE) and

σ−α(m,µE), where

α(m,µE) =
m

n
+
µE

2π
+ `m , (2.65)

where m runs from −n−1
2 to n−1

2 as, before. The conformal dimension of these twist

operators is now

∆α(m,µE) =
1

2
α(m,µE)2 =

1

2

(m
n

+
µE

2π
+ `m

)2
. (2.66)

The constant `m appearing above is an integer which is chosen to minimize the conformal

dimension of the corresponding twist operator. This freedom arises because of the
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ambiguity in defining the phase factors in eq. (2.64) modulo 2π. For example, shifting `m
from 0 to 1 changes the corresponding phase factor by 2π and so leaves the corresponding

boundary condition in eq. (2.64) unchanged. The conformal dimension (2.66) is always

minimized by choosing `m so that the phase factor generated by the twist operator lies

between −π and π, i.e., such that −1
2 ≤ α(m,µE) ≤ 1

2 .

When µE is small enough that all of the phase factors lie between −π and π, i.e.,∣∣∣m
n

+
µE

2π

∣∣∣ ≤ 1

2
for m ∈

[
−n− 1

2
,
n− 1

2

]
, (2.67)

we will have `m = 0 for all m. If we assume the latter holds, the conformal dimension of

the generalized twist operator σ̃n =
∏
σ̃α(m,µE) becomes

∆n =
1

24

(
n− 1

n

)
+
n

2

(µE

2π

)2
, (2.68)

and the charged Rényi entropy is given by

S̃n(µE) =
1

6

(
1 +

1

n

)
log |u− v| . (2.69)

That is, for small µE, the charged Rényi entropy is exactly the same as the result in

eq. (2.62), i.e., the Rényi entropy without the Wilson line. As µE increases, we can no

longer choose all of the `m to be zero. The first transition occurs for m = n−1
2 when

n− 1

2n
+
µE

2π
=

1

2
←→ µE =

π

n
(2.70)

beyond which the naive phase factor would be larger than π. Setting `n−1
2

= −1 and using

the appropriate conformal dimension, we find that the charged Rényi entropy within the

range π
n ≤ µE <

3π
n becomes

S̃n(µE) =

[
1

6

(
1 +

1

n

)
− 4

n− 1

(
µE

2π
− 1

2n

)]
log |u− v| . (2.71)

Further phase transitions occur whenever µE = π
n(2k+ 1). For example, for 3π

n ≤ µE <
5π
n ,

the charged Rényi entropy becomes

S̃n(µE) =

[
1

6

(
1 +

1

n

)
+

4

n− 1

(
µE

2π
− 5

2n

)]
log |u− v| . (2.72)

Of course, it is straightforward to extend these results to all values of µE. As can be

anticipated from eq. (2.63), the charged Rényi entropy exhibits a periodicity

S̃n(µE) = S̃n(µE + 2π) . (2.73)

Hence within a single period, there will be n separate branches running from µE = π
n(2k−1)

to π
n(2k + 1) for integer k. The result for n = 3 is shown in figure 1. Of course, these

results show that the charged Rényi entropy is a non-analytic function of µE and n. In

particular, we might note that the apparent singularities at n = 1 in eqs. (2.71) and (2.72)

are not physical. As a final comment, we remark that the results derived here using twist

operators agree with those coming from the heat kernel computations in appendix A.
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Figure 1. Charged Rényi entropy with n = 3 for a two-dimensional free fermion as a function of

µE.

3 Holographic computations

In this section we calculate holographic Rényi entropies for boundary theories dual to Ein-

stein gravity coupled to a Maxwell gauge field in the bulk. The relevant bulk solutions

are charged topological black holes with hyperbolic horizons. These solutions represent the

grand canonical ensemble of the boundary CFT on the hyperbolic cylinder. We only present

the salient steps in the following calculations and refer the reader to [20] for a detailed de-

scription of how the holographic Rényi entropies are calculated. We consider boundary the-

ories in dimension d ≥ 3 here and provide holographic calculations for d = 2 in appendix B.

3.1 Charged black hole solution

In d+ 1 bulk dimensions, we write the Einstein-Maxwell action with negative cosmological

constant as13

IE−M =
1

2`d−1
P

∫
dd+1x

√
−g
(
d(d− 1)

L2
+R− `2∗

4
FµνF

µν

)
. (3.1)

For d ≥ 3, the metric for the charged topological black hole takes the form

ds2 = −f(r)
L2

R2
dτ2 +

dr2

f(r)
+ r2 dΣ2

d−1 , (3.2)

13The scale `∗ appearing in the prefactor of the Maxwell term should be fixed by the details of the

boundary theory. With this notation, the (d+1)-dimensional gauge coupling becomes g 2
5 = 2`d−1

P /`2∗.
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with

f(r) =
r2

L2
− 1− m

rd−2
+

q2

r2d−4
(3.3)

where dΣ2
d−1 = du2 + sinh2u dΩ2

d−2 is the metric on Hd−1 with unit curvature. Note

that the time coordinate is normalized here [19] so that the boundary metric naturally

becomes ds2
CFT = −dτ2 + R2dΣ2

d−1, i.e., the Minkowski continuation of eq. (2.9). The

corresponding bulk gauge field is

A =

(√
2(d− 1)

(d− 2)

Lq

R`∗ rd−2
− µ

2πR

)
dτ , (3.4)

The chemical potential µ is fixed by requiring that the gauge field vanish at the horizon

r = rH , i.e.,

µ = 2π

√
2(d− 1)

(d− 2)

Lq

`∗r
d−2
H

. (3.5)

The mass parameter m is related to the horizon radius rH by

m =
rd−2
H

L2
(r2
H − L2) +

q2

rd−2
H

. (3.6)

Hence, we may rewrite the function f(r) (3.3) in terms of the horizon radius rH and the

charge q, giving

f(r) =
r2

L2
− 1 +

q2

r2d−4
−
(rH
r

)d−2
(
r2
H

L2
− 1 +

q2

r2d−4
H

)
. (3.7)

The temperature of this black hole is given by

T =
T0

2
Lf ′(rH) =

T0

2

[
d
rH
L
− (d− 2)

L

rH

(
1 +

d− 2

2(d− 1)

(
µ `∗
2πL

)2
)]

(3.8)

where T0 is the temperature given in eq. (2.10) and the ‘prime’ denotes differentiation

with respect to r. The thermal entropy is given by the Bekenstein-Hawking formula

S =
2π

`d−1
P

VΣ r
d−1
H , (3.9)

where VΣ denotes the regulated (dimensionless) volume of the hyperbolic plane Hd−1, as

described in [20]. Recall that this volume is a function of R/δ, the ratio of the radius of

the entangling sphere to the short-distance cut-off in the boundary theory. Further the

leading contribution takes the form

VΣ '
Ωd−2

d− 2

Rd−2

δd−2
+ · · · , (3.10)

where Ωd−2 = 2π(d−1)/2/Γ((d − 1)/2) is the area of a unit (d-2)-sphere. Hence the

corresponding Rényi entropies in the following begin with an area law contribution.

– 18 –



J
H
E
P
1
2
(
2
0
1
3
)
0
5
9

As a final comment, we note that we have presented the Minkowski-signature solu-

tion here with a real chemical potential µ. This gives the holographic representation of the

grand canonical ensemble on the hyperbolic cylinder R×Hd−1. One can easily transform to

Euclidean signature by replacing τ = −iτE to produce the dual of the thermal ensemble for

the boundary CFT on S1×Hd−1. In this replacement, the form of the metric function f(r)

is unchanged and as usual, the Euclidean time is made periodic with ∆τE = 1/T to ensure

that the bulk geometry is smooth at r = rH . The gauge field becomes imaginary for this Eu-

clidean bulk solution. Of course, the latter is in keeping with our discussion of the Euclidean

path integral in section 2, where an imaginary background gauge field was introduced to

describe the grand canonical ensemble. Here, this background field in the boundary theory

is simply given by the non-normalizable of the bulk gauge field, i.e., Bµ = − limr→∞Aµ.

3.2 Charged Rényi entropies

Applying eq. (2.19) with a real chemical potential, we see that the charged Rényi entropy

for a spherical entangling surface can be expressed as

Sn(µ) =
n

n− 1

1

T0

∫ x1

xn

S(x, µ) ∂xT (x, µ) dx , (3.11)

where x = rH/L and S(x, µ) is the horizon entropy (3.9). Evaluating eq. (3.8) in terms of

x gives

T (x, µ) =
T0

2x

(
dx2 − (d− 2)− (d− 2)2

2(d− 1)

(
µ`∗
2πL

)2
)
. (3.12)

Then xn is the largest solution of T (xn, µ) = T0/n and is given by

xn =
1

dn
+

√
1

d2n2
+
d− 2

d
+

(d− 2)2

2d(d− 1)

(
µ`∗
2πL

)2

. (3.13)

Combining these expressions then yields

Sn(µ) = πVΣ

(
L

`P

)d−1 n

n− 1

[(
1 +

d− 2

2(d− 1)

(
µ`∗
2πL

)2
)

(xd−2
1 − xd−2

n ) + xd1 − xdn

]
.

(3.14)

Note that when `∗ = 0, eqs. (3.13) and (3.14) reduce to the results found in [20].

Expressions for the charged Rényi entropy with specific choices for n are:

lim
n→0

Sn = πVΣ

(
L

`P

)d−1(2

d

)d 1

nd−1
(3.15)

SEE = lim
n→1

Sn = πVΣ

(
L

`P

)d−1 (d− 2)xd−2
1

dx1 − 1

(
1 +

d− 2

2(d− 1)

(
µ`∗
2πL

)2

+
d x2

1

d− 2

)

S2 = 2πVΣ

(
L

`P

)d−1
((

1 +
d− 2

2(d− 1)

(
µ`∗
2πL

)2
)

(xd−2
1 − xd−2

2 ) + xd1 − xd2

)

lim
n→∞

Sn = πVΣ

(
L

`P

)d−1
((

1 +
d− 2

2(d− 1)

(
µ`∗
2πL

)2
)

(xd−2
1 − xd−2

∞ ) + xd1 − xd∞

)
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Figure 2. The d = 3 charged Rényi entropy (normalized by (a) S1(0) and (b) S1(µ)) as a function

of µ. The curves correspond to (from top to bottom) n=1,2,3,4,10.

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Μ{*�H2ΠLL

0.8

1.0

1.2
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SnHΜL�S1H0L
(b)

0.0 0.2 0.4 0.6 0.8 1.0
Μ{*�H2ΠLL

0.6

0.7

0.8

0.9

1.0

SnHΜL�S1HΜL

Figure 3. The d = 4 charged Rényi entropy (normalized by (a) S1(0) and (b) S1(µ)) as a function

of µ. The curves correspond to (from top to bottom) n=1,2,3,4,10.

where

x 2
∞ =

d− 2

d

(
1 +

d− 2

2(d− 1)

(
µ`∗
2πL

)2
)
. (3.16)

Another interesting limit to consider is holding n fixed while µ→∞, which yields

lim
µ→∞

Sn(µ) = 2πVΣ

(
(d− 2)2

2d(d− 1)

) d−1
2
(
`∗
`P

)d−1 ( µ
2π

)d−1
. (3.17)

Hence we have the curious result that, to leading order in µ, the Rényi entropies are

independent of n in this limit.

The results for the charge Rényi entropy (3.14) are illustrated in figures 2 and 3, which

plot Sn(µ) as a function of µ for various values of n in d = 3 and 4. In these figures, it is

evident that for fixed µ, the Rényi entropy decreases as n increases. This behaviour is also

shown in figure 4a where the charged Rényi entropy in d = 3 is shown as a function of n.

The figure shows very clearly in this example that ∂nSn(µ) < 0. As discussed in [20] (see

also [17, 18]), standard Rényi entropies must satisfy various inequalities:

∂Sn
∂n
≤ 0 ,

∂

∂n

(
n− 1

n
Sn

)
≥ 0 , (3.18)
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(a)

0 2 4 6 8 10
n
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SnHΜL�S1H0L (b)
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Hn-1L�n SnHΜL�S1H0L

Figure 4. The charged Rényi entropy (normalized by S1(0)) in d = 3 shown function of n in

panel (a). In panel (b), we show n−1
n Sn(µ) as a function of n. Note that the slope of the curves is

negative in panel (a) and positive in panel (b). In both cases, the curves correspond to (from top

to bottom) µ`∗
2πL = 1.0, 0.8, 0.6, 0.4, 0.2 and 0.0.

∂

∂n
((n− 1)Sn) ≥ 0 ,

∂2

∂n2
((n− 1)Sn) ≤ 0 .

By examining plots of the numerical results, e.g., see n−1
n Sn(µ) in figure 4b, we find that

these inequalities still appear to hold in the charged case. The analysis in [20] found

that this result essentially follows from the connection between the Rényi entropies for a

spherical entangling surface and the thermal entropy on the hyperbolic cylinder R×Hd−1.

In particular, it follows that these inequalities (3.18) will be satisfied for any CFT, as long as

the corresponding thermal ensemble is stable. Thus we expect that the inequalities (3.18)

will continue to hold for charged Rényi entropies. Of course, the arguments in [20] will not

apply where the Rényi entropies exhibit phase transitions [43], as discussed in section 3.4.

As we mentioned above, both real and imaginary chemical potentials are of interest.

Our holographic results are easily analytically continued to imaginary chemical potential

by simply replacing µ = iµE and q = iqE. Note that with this replacement, the root xn
in eq. (3.13) fails to exist if µE becomes too large. The region of validity of analytically

continued solutions is given by

µ2
E ≤

8π2(d− 1)

d− 2

(
L

`∗

)2(
1 +

1

d(d− 2)n2

)
. (3.19)

If µE increases beyond this bound (with fixed n), the event horizon disappears and we

are left with a naked singularity. Typical results for the charged Rényi entropy with

imaginary chemical potential are shown in figure 5. In comparing the figures, we see that

while the charged Rényi entropy increases slowly with increasing µ in figures 2 and 3,

S̃n(µE) decreases, and in a much more dramatic fashion, as µE increases in figure 5.

3.3 Twist operators

In section 2.3, we derived various expressions for the conformal weight and the magnetic

response of the twist operators, as well as various expansion coefficients appearing in these.
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(a)
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(b)
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Figure 5. The d = 4 charged Rényi entropy (normalized by (a) S̃1(0) and (b) S̃1(µE)) as a

function of the imaginary chemical potential µE. The curves correspond to (from top to bottom)

n=1,2,3,4,10.

Here we wish to examine these properties of the twist operators in the boundary CFT dual

to the Einstein-Maxwell theory (3.1).

To begin, recall eq. (2.21) for the conformal weight of the twist operator,

hn(µ) =
2πn

d− 1
Rd (E(T0, µ = 0)− E(T0/n, µ)) . (3.20)

The details of the holographic calculation of the corresponding energy densities are given

in appendix C.1. Then using eq. (C.4), the desired conformal weight can be written as

hn(µ) = nπ
Ld−1

`d−1
P

(
xd−2
n (1− x2

n)− xd−2
n (d− 2)

2(d− 1)

(
µ`∗
2πL

)2
)
. (3.21)

Here we might note that this result can be expressed entirely in terms of parameters in

the boundary theory using eqs. (C.15) and (C.18), which show that Ld−1/`d−1
P ∼ CT and

`2∗L
d−3/`d−1

P ∼ CV .

Next we would like to recover eqs. (2.26) and (2.44) for the expansion coefficients of the

above conformal weight. Hence given eq. (3.21), we evaluated the following two coefficients:

h10 = ∂nhn(µ)|n=1,µ=0 =
2π

d− 1

Ld−1

`d−1
P

, (3.22)

h02 = ∂2
µhn(µ)|n=1,µ=0 = −(d− 2)(2d− 3)

4π(d− 1)2

`2∗ L
d−3

`d−1
P

. (3.23)

At this point, using eq. (C.18), we can substitute for CT in terms of the ratio Ld−1/`d−1
P

in eq. (2.26) and we recover precisely eq. (3.22). Similarly, using eqs. (C.16) and (C.17)

in eq. (2.44), we reproduce exactly the expression in eq. (3.23). We also note that

h01 = ∂µhn(µ)|n=1,µ=0 = 0 from eq. (3.21), which is in agreement with our general

expectations in section 2.3.

Now we turn our attention to the magnetic response, which was given by eq. (2.25),

kn(µ) = 2πnRd−1ρ(n, µ) . (3.24)
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Now in the holographic framework, we know that the charge density, i.e., 〈Jτ 〉 is determined

by the normalizable component of the gauge field (3.4), however, we leave its determina-

tion, including the precise normalization, to appendix C.2. Substituting the holographic

result (C.8) into eq. (3.24), we find the magnetic response in our holographic model is

kn(µ) =
d− 2

2

`2∗ L
d−3

`d−1
P

nxd−2
n µ . (3.25)

Again, this result can be expressed entirely in terms of parameters of the boundary CFT

using eq. (C.15). As above, we would like to examine the expansion coefficients of the

above magnetic response and hence we calculate

k01 = ∂µkn(µ)|n=1,µ=0 =
d− 2

2

`2∗ L
d−3

`d−1
P

, (3.26)

k11 = ∂n∂µkn(µ)|n=1,µ=0 =
d− 2

2(d− 1)

`2∗ L
d−3

`d−1
P

. (3.27)

These two coefficients can then be compared with eqs. (2.54) and (2.55) using the results

in appendix C.3. As expected, the holographic expression (C.15) of CV yields a precise

agreement of eq. (3.26) above with eqs. (2.54) and (2.56) in section 2.3. Similarly, eqs. (2.55)

and (3.27) match exactly using eqs. (C.16) and (C.17).

3.4 Thermodynamics, stability and phase transitions

It is natural to investigate the thermodynamical properties of the charged hyperbolic black

holes. Thermodynamical instability in some regions of phase space could be responsi-

ble for interesting features in the Rényi entropies. One could also imagine that at low

temperatures, a different geometry would be prefered over the black hole phase, and the

system would go through a Hawking-Page phase transition as the temperature is increased.

It turns out none of these features occur for charged hyperbolic black hole in the grand

canonical ensemble. The Gibbs free energy G = (M−Mc)−TS−µq was calculated in [44]:

G = −
VΣ r

d−2
H

2 `d−1
P

(
1 +

(d− 2)

2(d− 1)

(
µ `∗
2π L

)2

+
r2
H

L2
−mc(µ)

)
(3.28)

where mc(µ) is the critical mass at which the temperature vanishes, i.e.,

mc = −2(d− 1)rn−1
c

(
1− (d− 1)r2

c

(d− 2)L2

)
with

r2
c

L2
=
d− 2

d

(
1 +

(d− 2)

2(d− 1)

(
µ `∗
2π L

)2
)

(3.29)

One can check that the Gibbs energy is always negative and equals zero when the black

hole is extremal, excluding any Hawking-Page phase transition. The specific heat was

calculated in [44] as well:

Cµ = T

(
∂S

∂T

)
µ

=
8π2(d− 1)VΣTr

d
H

(d− 2)`d−1
P

(
1 +

d

d− 2

r2
H

L2
+
d− 2

d− 1

(
µ `∗
2πL

)2
)−1

(3.30)

which is always positive, meaning the black holes are thermodynamically stable.
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Before leaving the subject of instabilities, it is interesting to note that the presence

of a light scalar in the bulk would render the black holes unstable at low temperatures.

Indeed, the extremal charged black hole has a AdS2 ×Hd−1 near horizon geometry, where

the relative radii of the two spaces depends on the charge:

L2
AdS2

=
2L2

AdSd+1

f ′′(rH)
L2
Hd−1 = r2

H (3.31)

with f(r) is the metric function in eq. (3.3) above. For simplicity, let us consider a neutral

scalar. The extremal black hole will develop scalar hair if the mass of the scalar is below the

BF bound of the near-horizon AdS2. We wish to consider normalizable modes and these

must depend on the hyperbolic coordinates, as the volume of the hyperboloid is infinite.

Normalizable modes can be expanded in eigenvalues of the Laplacian as ∇2
Hd−1φ = −λφ

with λ > (d− 2)2/4 and near the horizon, this Laplacian will generate an effective shift of

the mass of the scalar. Thus we exepct an instability if the scalar mass M lies in the range

− d2

4
< M2L2 < −f

′′(rH)

8
− (d− 2)2

4r2
H

. (3.32)

It turns out the two terms on the right-hand side of this equation combine in such a way

that the answer does not depend on charge:

− d2

4
< M2L2 < −d(d− 1)

4
(3.33)

found in [43]. It seems that at zero temperature, a neutral scalar will not detect changes

in the geometry induced by charge. Turning our attention to charged scalars, it was noted

in [45] that the effect of the charge will be to induce a shift in the scalar mass. This only

makes things worse and a scalar instability is therefore expected as well. We leave the

detailed analysis of these effects for future work but note that the Rényi entropies should

exhibit phase transitions as n is varied, if light scalars are present in the bulk spectrum.

4 Discussion

We have examined a new class of entanglement measures (1.2) which extend the usual

definition of Rényi entropy to include a chemical potential for a conserved global charge.

These charged Rényi entropies measure the degree of entanglement in different charge

sectors of the theory. As described in section 2, the evaluation of these entropies proceeds

as usual with a Euclidean path integral, but with the addition of a (fixed) background

gauge field which introduces a Wilson line, proportional to the chemical potential, around

the entangling surface. The latter can be interpreted as binding a sheet of magnetic flux

to the standard twist operators which appear in evaluating the Rényi entropy.

For the special case of a CFT with a spherical entangling surface, we can apply a

conformal transformation to map charged Rényi entropies to the thermal entropies of a

grand canonical ensemble, albeit on the hyperbolic cylinder R × Hd−1. This allows us

to study the properties of the generalized twist operators, as discussed in section 2.3. In
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particular, the conformal weight and the magnetic response of these twist operators are

related to the energy density and the charge density, respectively, in the thermal ensemble

on the hyperbolic cylinder. These two parameters are functions of both n and µ and exhibit

certain universal characteristics when expanded in the vicinity of n = 1 and µ = 0.

In section 3, we considered computations of charged Rényi entropies using holography,

where they are related to the thermal entropy of charged black holes with hyperbolic hori-

zons. In addition to determining the charged Rényi entropy, we were able to determine

the conformal weight and magnetic response of the corresponding twist operators in this

holographic model. In a particular, we were able to recover the universal behaviour exhib-

ited by the expansion coefficients in, e.g., eq. (2.56). In section 2.4 and appendix A, we

described the computation of charged Rényi entropies for free field theories. We found the

results to be in qualitative agreement with our holographic calculations. A particularly in-

teresting point of comparison is d = 2, which was considered in section 2.4 for free fermions,

and in appendix B for holographic models. For free bosons, we observed that the Rényi

entropy is non-analytic at µE = 0. Thus, while there is a range where free fermions can be

analytically continued to the real chemical potential, free bosons can not be so continued.

We found that the charged Rényi entropy in the holographic model obeyed various in-

equalities (3.18), which were originally established for the standard Rényi entropy without

a chemical potential. Following [20], we argued that the stability of the grand canonical

ensemble on the hyperbolic geometry was sufficient to guarantee these inequalities would be

satisfied by the charged Rényi entropy. However, if one examines the origin of these inequal-

ities [17, 18], the derivation only relied on the fact that the Rényi entropies are moments of

a probability distribution with pi > 0 and
∑

i pi = 1. The same statement applies for the

charged Rényi entropies (with real chemical potential) and so we can expect that eq. (3.18)

will be satisfied quite broadly for these new entanglement measures. It would be interest-

ing to explicitly study the validity of these inequalities for more general QFT’s and choices

of entangling surface. At the same time, it would be interesting to investigate whether

derivatives of Sn(µ) with respect to µ also satisfy any general properties. For example, in

figures (2) and (3), it seems that µ∂Sn(µ)
∂µ ≥ 0 for our holographic model. Note that an

imaginary chemical potential does not respect the above inequality. In particular, the Rényi

entries and the free energies can take negative values. The analytic continuation between

the imaginary and the real chemical potentials is non-trivial because of poles and branch

cuts. In gravity, the regular black hole space time ceases to exist for large µE, i.e., eq. (3.19).

There are several natural generalizations of the investigations presented here. For

example, the holographic computations could be extended to consider bulk theories with

higher derivative interactions (e.g., Gauss-Bonnet or F 4 terms), following [46–48]. Another

interesting direction would be to connect our holographic calculations to the large-N limit

of super Rényi entropy for the ABJM model in [25].

It may also be of interest to consider a generalization of the Rényi entropy for fixed

charge ensembles (instead of fixing the chemical potential). Here, the holographic compu-

tations may produce some interesting new behaviour. Finally, in the case of a spherical

entangling surface (where the system is rotationally invariant) it is natural to label the

states by their angular momentum and introduce a conjugate chemical potential to pro-
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duce a ‘rotating Rényi entropy’ — see also [22]. The corresponding holographic calculations

would involve more general classes of spinning hyperbolic black holes. A study of such ro-

tating Rényi entropies at fixed angular potential, as well as charge, could follow very closely

the present discussion. Results along these lines will be presented in [49].

Acknowledgments

We would like to thank Horacio Casini, Steve Shenker and especially Tadashi Takayanagi

for helpful discussions. Research at Perimeter Institute is supported by the Government

of Canada through Industry Canada and by the Province of Ontario through the Ministry

of Research & Innovation. AM and RCM gratefully acknowledge support from NSERC

Discovery grants. Research by RCM is further supported by funding from the Canadian

Institute for Advanced Research. TS acknowledges support from an NSERC Graduate

Fellowship.

A Free QFT computations

Here we consider various calculations of charged Rényi entropies for free fields using the

heat kernel methods on hyperbolic spaces, and also by direct summing of appropriate modes

on spheres. These QFT computations are most readily done if the chemical potential takes

is purely imaginary values, i.e., µ = iµE where µE is real. In this case, the chemical

potential produces to a non-trivial boundary condition. As in section 2, we are interested

in conformal theories and hence we consider calculations for a massless conformally coupled

and complex scalar and for a free massless Dirac fermion. In both cases, the global charge

is simply related with phase rotations of the corresponding field.

A.1 Heat kernels on S1 × Hd−1

To begin, we gather a few useful results for heat kernel methods [50–55]. First, heat kernels

on a product manifold factorize, for both fermions and bosons,

KS1×Hd−1({xi}, {yi}, t) = KS1(x1, y1, t)KHd−1(x2,··· ,d, y2,··· ,d, t) (A.1)

The total free energy in S1 ×Hd−1 is

F = −(−)f

2

∫
ddx

dt

t
e−mc(1−f)tKS1×Hd−1(x, x, t) (A.2)

where f = 1 for spin half Dirac fermions, and f = 0 for scalars. The conformal mass mc

in Hd−1 for the conformally coupled scalar is

mc = −(d− 2)2

4R2
, (A.3)

where R is the radius of Hd−1. For convenience, we will set R = 1 in the following.

We will consider finite temperature and purely imaginary chemical potential µE = iµE

for a U(1) global symmetry. This can be incorporated into the heat kernel by setting
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appropriate boundary conditions. For example, with inverse temperature β = 2πn we have

the boundary condition

KS1×Hd−1({x1 + 2πn, · · · , xd}, {y1, · · · , yd}, t) = (−)feinµEKS1×Hd−1({x}, {y}, t). (A.4)

Let us first focus on KS1(x1, y1, t). It is not hard to show that

KR1(x1, y1, t) =
1√
4πt

e−
(x1−y1)

2

4t . (A.5)

Summing over images we find

KS1(x1, y1, t) =
1√
4πt

∑
m∈Z

e
−(y1−x1+2πm)2

4t e(−inµE−iπf)m, (A.6)

which satisfies the boundary condition A.5. Note that using this method, nµE < 1. The

final result for µEn > 1 should be obtained from µEn < 1 by folding. We therefore expect

discontinuities in the free energies when µEn takes integer values.

In the case where µE = 0 we recover the usual heat kernel at finite temperature

β = 2πn. The S1 circle has radius 2πn.

The heat kernel for massless scalars in HD takes the form

Kb
H2x+1(ρ, t) =

1

(4πt)1/2

(
−1

2πR2 sinh ρ

∂

∂ρ

)n
e−x

2t/R2−ρ2R2/(4t), (A.7)

for hyperbolic spaces of odd dimensions, and

Kb
H2(x+1)(ρ, t) = e−(2x+1)2t/(4R2)

(
−1

2πR2 sinh ρ

∂

∂ρ

)n
fH2(ρ, t), (A.8)

where x is an integer, and ρ is the geodesic distance between two points x and y. The

function fH2(ρ, t) is defined as

fH2(ρ, t) =

√
2

(4πt)3/2

∫ ∞
ρ

dρ̃
ρ̃e−ρ̃

2/(4t)

√
cosh ρ̃− cosh ρ

(A.9)

For fermions, we have

Kf
H2x+1(ρ, t) = U(x, y) cosh(ρ/2)

(
−1

2π

∂

∂ cosh ρ

)n
cosh(ρ/2)−1 e

−ρ2/(4t)
√

4πt
(A.10)

and

Kf
H2x(ρ, t) = U(x, y) cosh(ρ/2)

(
−1

2π

∂

∂ cosh ρ

)n
cosh(ρ/2)−1kH2(ρ, t) (A.11)

and

KH2(ρ, t) =

√
2 cosh−1(ρ/2)

(4πt)3/2

∫ ∞
ρ

dρ̃
ρ̃ cosh ρ̃/2e−ρ̃

2/(4t)

√
cosh ρ̃− cosh ρ

(A.12)

The matrix U(x, y) has a trace given by 2[d/2], where [· · · ] denotes the integer part. It

counts the dimension of spinor space in d dimensions.

From eq. (2.4), we can write the charged Rényi entropy as

Sn =
F (n, µE)− nF (1, µE)

n− 1
(A.13)

where F (n, µE) ≡ − logZn(µE) is the free energy evaluated at temperature β = 2πn and

chemical potential µE. We are thus ready to compute free energies at different dimensions.
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A.1.1 d = 2

At temperature βn = 2πn and finite chemical potential µE, the free energy is

F (n, µE) =
(−)f

2
(2πn)VHd−1

∫
dt

t

∑
m

e−π
2m2/t

√
4πt

e(−inµE−iπf)mKH1(ρ = 0, t). (A.14)

The heat kernel is

KH1(0, t) = KR(0, t) =
1√
4πt

. (A.15)

The free energy F (n, µE) is divergent due to the m = 0 mode in the S1 heat kernel. For

m = 0 the contribution is linear in n, where n appears as the overall volume factor from S1.

This dependence therefore drops out from Sn. We could therefore rewrite the regulated

free energy F̂ (n, µE) as

F̂ (n, µE) =
(−)f

2
(2πn)VHd−1

∫
dt

t

∑
m∈Z+

e−π
2m2/t

√
4πt

2 cos((nµE + πf)m)KH1(0, t)

=
(−)f

2
VHd−1

∑
m∈Z+

8 cos(nmµE) cos(mπf)

8π2nm2

=
(−)f

4π2n
VHd−1

(
Li2(einµE+iπf ) + Li2(e−inµE−iπf )

)
(A.16)

For 0 ≤Re(x) < 1 and Im(x) ≥ 0, or Re(x) ≥ 1 and Im(x) < 0

Li2(e2πix) + Li2(e−2πix) = −(2πi)2

2
B2(x) = −(2π)2

Γ[2]
ζ(−1, x), (A.17)

where B2 is the Bernoulli polynomial, and ζ(a, b) the Hurwitz zeta function. We are left

with

F̂ (n, µE) =
(−)fVH1

2n
B2

(
nµE

2π
+
f

2

)
=

(−)fVH1

2n

(
1

12
(2−6f+3f2)+

(f − 1)nµE

2π
+
n2µ2

E

4π2

)
.

(A.18)

For fermions, the linear term in µE vanishes, as expected. However, for bosons there is

a linear µE term despite the fact that the sum is explicitly even. This term appears from

a term nµE ln(nµE) − nµE ln(−nµE) in the expansion of the poly-log in µE. This suggests

that we are actually taking the absolute value of the linear term. This can be readily

confirmed by computing the sum numerically. As a result, the free energy has a diverging

slope at µE = 0, suggesting a phase transition there. There are also phase transitions

whenever µEn is an integer, as noted above. At precisely µEn = 1/2, the first derivative

w.r.t. µE jumps from zero to VH1 .

The µ2
E term cancels out in the Rényi entropy (since it is linear in n) for µEn < 1/2.

The result for a Dirac fermion is

Sfn =
c

6

(
1 +

1

n

)
VH1 (A.19)
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Note that c = 1/2 for a single Majorana fermion, but this should be doubled for a charged

fermion. This reproduces the result obtained via the twist operator method in the main

text.

For bosons we obtain instead

Sbn = c

(
1

6

(
1 +

1

n

)
− |µE|

2π

)
VH1 , (A.20)

Again, c = 1 for a real boson, which must be doubled for a charged boson. One might

worry that the result for bosons does not appear to agree with that of fermions given

that they are related by bosonization in 1+1 dimensions. We note however that via

bosonization of U(1) charged fermions, the corresponding bosons transform by translation,

and thus should instead satisfy the following boundary condition :φ(τ + 2π) = φ(τ) +nµE.

Therefore, our computation for charged bosons is not related to charged fermions by

bosonization. Another point to note is that with the absolute sign, the bosonic result is

not analytic even for arbitrarily small µE, such that it does not analytically continue to

the complex plane, as in the case for fermions.

A.1.2 d = 4

Let us work out one more example where there is non-trivial µE dependence. At d = 3 + 1,

the main difference is the heat kernel for both bosons and fermions on H3. For bosons, the

equal-point heat kernel is

e−mstKb
H3(0, t) =

1

(4πt)3/2
, (A.21)

where we have substituted in the conformal mass of the scalar. For a Dirac fermion, the

heat kernel is

Kf
H3(0, t) = 4

1

(4πt)3/2
(1 +

t

2
) (A.22)

Following the same steps as in d = 3 + 1, and again ignoring the m = 0 term, the Rényi

entropy becomes, for bosons:

Sn = tr(1)VH3

∑
m∈Z+

n4 cos(mµE)− cos(mnµE)

8m4π5(n− 1)n3

= − 1

8π5(n− 1)n3

(
− n4(Li4(e−iµE) + Li4(eiµE)) +

+Li4(e−inµE) + Li4(einµE)

)
(A.23)

where tr(1) = 2 for a pair of real bosons (which together form a complex U(1) charged

boson ). The above combinations of poly-logs again admit a representation in terms of the

Bernoulli polynomial. Altogether we have

Sbn =
VH3

2π

(
1 + n+ n2 + n3

180n3
− (n+ 1)µ2

E

24π2n
+

µ3
E

24π3

)
(A.24)
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Again we are left with a µ3
E term that is odd in µE, and we argue that this term should be

enclosed inside an absolute sign since our summation is even. As a result, once again we

lose analyticity even for arbitrarily small values of µE.

Now let us also look at the corresponding result for fermions. The Rényi entropy is

Sfn = VH3

∑
m∈Z+

(−1)m(2 +m2π2n2) cos(mnµE)

m44π5n3

= VH3

(1 + n)(7 + n2(37− 120µ2
E)

1440πn3
, (A.25)

which interestingly, is again automatically even in µE, and that for purely imaginary µE, is

positive definite. We note that the above expression is not positive definite in µE. We find

that for sufficiently large value of µE while within the interval nµE < 1/2 that the above

expression can turn negative. This is as expected since the trace

trρn = tr(e−n(H−iµEQ)) (A.26)

is not necessarily positive definite quantity. When µE is purely imaginary, we return to the

usual thermodynamic chemical potential and the trace should be positive definite. Note

that the Rényi entropy for the fermions, which admit analytic continuation for small values

of µE, is indeed positive definite when µE is purely imaginary.

Remark: d = 2 + 1. Here the complication is the more complicated form of the heat

kernel in H2. Because of that, it doesn’t have a neat analytic result, but one can evaluate

these results numerically. We find precise agreement with the calculation obtained on a

sphere in later sections, and we will not repeat the details here.

A.2 Wavefunctions on S1 × Hd−1

We can reproduce the heat kernel results by analyzing the wave functions on the hyperbolic

space. This method was used in [21] to study the Rényi entropy of the free theories

without the chemical potential. In this subsection, we generalize [21] to include the chemical

potential.

A.2.1 Free scalar field

We consider a free boson on a S1 ×Hd−1 with Hd−1 radius R

S =

∫
ddr
√
g(|∂µφ|2 +M2|φ|2) (A.27)

where M is the conformal mass. The metric is

ds2 = dθ2 +R2(dη2 + sinh2 ηdΩ2
d−2). (A.28)

The periodicity of the S1 time circle (θ) is 2πn. The Wilson loop changes boundary

condition around the time circle from φ(2πn) = φ(0) to

φ(2πn) = einµEφ(0). (A.29)
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The mode function satisfying this boundary condition is

ei(
m
n

+
µE
2π )θ, (A.30)

where m is an integer. The eigenvalue of the Laplace operator −∆−M2 is

λ+
(m
n

+
µE

2π

)2
, λ ≥ 0. (A.31)

We define the free energy

Fn = Tr log
(
−∆−M2

)
=
∑
m∈Z

∫ ∞
0

dλD(λ) log

(
λ+

(m
n

+
µE

2π

)2
)

(A.32)

=

∫ ∞
0

dλD(λ)
(

2πn
√
λ+ log

(
1− 2 cos(nµE)e−2πn

√
λ + e−4πn

√
λ
))

(A.33)

where D(λ) is the density of states. In the last equation, we used the following formula for

the regularized sum∑
k∈Z

log

(
(k + α)2

n2
+ a2

)
= log[2 cosh(2πn|a|)− 2 cos(2πα)]. (A.34)

In the case of scalar bosons, the density of states D(λ) on Hd−1 is given by [56–58]

D(λ)dλ =
vol(Hd−1)

(4π)
d−1
2 Γ

(
d−1

2

) |Γ(i
√
λ+ d−2

2 )|2
√
λ|Γ(i

√
λ)|2

dλ. (A.35)

The explicit forms for low dimensions are

d− 1 = 1; D(λ)dλ =
vol(H1)

2π
√
λ
dλ

d− 1 = 2; D(λ)dλ =
vol(H2)

4π
th(π
√
λ)dλ

d− 1 = 3; D(λ)dλ =
vol(H3)

(2π)2

√
λdλ (A.36)

vol(H) is the regularized volume of the hyperbolic space.

The first term in (A.33) is divergent and needs a regularization. However, it will not

contribute to the Rényi entropy since it linearly depends on n. One can show that this

integration reproduces the heat kernel results.

A.2.2 Free Dirac fermion

We also consider a free Fermion

S =

∫
ddx
√
gψ̄(i /D)ψ, (A.37)

The free energy is

Fn = −Tr log(i /D), (A.38)
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In the presence of the Wilson loop, the boundary condition of ψ along the time circle

changes from ψ(2πn) = −ψ(0) to

ψ(2πn) = −einµEψ(0) (A.39)

So the eigenfunction along θ is eimθ/n with

m ∈ Z +
1

2
+
nµE

2π
. (A.40)

The eigenvalue spectrum of (i /D) is

±
√
λ2 +

m2

n2
. (A.41)

The free energy is

Fn = −1

2

∑
m∈Z+ 1

2

∫ ∞
0

dλD(λ) log

(
λ2 +

m2

n2

)
= −1

2

∫ ∞
0

dλD(λ) log (2 cosh(2πnλ) + 2 cos(nµE)) (A.42)

As before, we used (A.34) in the last equation.

The density of states D(λ) in d− 1 dimensions is [56–58]

D(λ)

vol(Hd−1)
=

(
Γ
(
d−1

2

)
2d−4

π(d−1)/2+1
2

[
(d−1)

2

])
24−2(d−1)

(Γ((d− 1)/2))2
cosh(πλ)

∣∣∣∣Γ(iλ+
(d− 1)

2

)∣∣∣∣2 .
(A.43)

Here, D(λ) is normalized so that the spinor ζ-function per unit volume is given by

tr(− /D2
+m2)−s =

∫ ∞
0

(λ2 +m2)−s
D(λ)

vol(Hd−1)
dλ. (A.44)

For odd d− 1, it is

D(λ)

vol(Hd−1)
=

π

22(d−3)(Γ((d− 1)/2))2

(d−3)/2∏
j= 1

2

(λ2 + j2) (A.45)

and for even d− 1

D(λ)

vol(Hd−1)
=

πλ coth(πλ)

22(d−3)(Γ((d− 1)/2))2

(d−3)/2∏
j=1

(λ2 + j2) (A.46)

The explicit forms for low dimensions are

d− 1 = 1; D(λ)dλ =
vol(H1)

π
dλ

d− 1 = 2; D(λ)dλ =
vol(H2)

π
λ coth(πλ)dλ
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d− 1 = 3; D(λ)dλ = vol(H3)

(
λ2 +

1

4

)
dλ (A.47)

The first term in (A.42) diverges and needs a regularization, while the second term is

finite. We can regularize the divergence using zeta function regularization or flat space sub-

traction. In any case, it doesn’t contribute to the Rényi entropy since it is linear in n. The

final result agrees with the twist operator computation (section 2.4), the heat kernel com-

putation (appendix A.1) and the wave function computation on a sphere (appendix A.3)

A.3 Wavefunctions on Sd

Another convenient way of computing the Rényi entropy of CFT is to map onto a sphere.

Let us consider a scalar field on S3. The metric is

ds2 = cos2 θdτ2 + dθ2 + sin2 θdφ2 (A.48)

with 0 ≤ τ < 2πn, 0 ≤ φ < 2π, and 0 ≤ θ < π/2. Because of the periodicity of τ , there is

a conical singularity at cos θ = 0. We can do the heat kernel analysis on the sphere in a

similar way to the hyperbolic case. However, we need to set a regularity condition at the

conical singularity. An alternative way to compute the free energy is to look at the wave

functions and their eigenvalues directly. The analysis below is a generalization of [21] and

we cite several results from their paper.

A.3.1 Free scalar field

The free energy of the free scalar field on the sphere is

Fn = tr log

(
−∆ +

R
8

)
(A.49)

where R = 6 for 3d case. We assume that the eigenfunction of the Laplacian takes the

form f(θ)eimτ τ+imφφ. The function f(θ) obeys the following equation

f ′′(θ) + 2 cot θf ′(θ)−

(
m2
τ

cos2 θ
+

m2
φ

sin2 θ

)
f(θ) = λf(θ). (A.50)

From the regularity of f(θ), the eigenvalue λ is fixed to

λ = −s(s+ 2), s = |mτ |+ |mφ|+ 2a, a ∈ N (A.51)

The periodicity of φ requires mφ to be quantized in Z. In the presence of the Wilson loop,

the boundary condition of φ becomes

φ(2πn) = einµEφ(0) (A.52)

Therefore, mτ is quantized in Z
n + µE

2π .

Let us denote

mτ =
α

n
+
µE

2π
, mφ = β, (α, β ∈ Z) (A.53)
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and

α = kn+ p, k ∈ Z, p ∈ [0, n− 1]. (A.54)

The free energy (A.49) is

Fn =

∞∑
k=−∞

n−1∑
p=0

∞∑
β=−∞

∞∑
a=0

log

(
s(s+ 2) +

3

4

)
(A.55)

with

s =
∣∣∣k +

p

n
+
µE

2π

∣∣∣+ |β|+ 2a. (A.56)

We want to count the degeneracied for a given value of s. Let us first assume that µE

satisfies 0 ≤ µE
2π <

1
q . Then the degeneracy for

s = m+
p

n
+
µE

2π
, m− p

n
− µE

2π
+ 1 (p ∈ [0, n− 1], m ∈ N), (A.57)

is

(m+ 1)(m+ 2)

2
. (A.58)

Therefore, the free energy is

Fn=

q∑
p=0

∞∑
m=0

[
(m+1)(m+2)

2

{
log

((
m+

p

q
+
µE

2π
+1

)2

− 1

4

)
+log

((
m− p

q
−µE

2π
+2

)2

− 1

4

)}]
=

q∑
p=0

a4∑
a=a1

[
−1

2

(
ζ ′(−2, a) + (3− 2a)ζ ′(−1, a) + (a2 − 3a+ 2)ζ ′(0, a)

)]
(A.59)

where ζ ′(s, a) = ∂ζ(s,a)
∂s and

a1 =

(
p

n
+
µE

2π
+

1

2

)
, a2 =

(
p

n
+
µE

2π
+

3

2

)
, a3 =

(
− p

n
− µE

2π
+

3

2

)
, a4 =

(
− p

n
− µE

2π
+

5

2

)
.

(A.60)

The expansions near µE = 0 are

F1 =
log 2

4
− 3ζ(3)

8π2

− µ2
E

96π2

(
2

(
− 12ζ(1,1)

(
−1,

1

2

)
−24ζ(1,1)

(
−1,

3

2

)
−12ζ(1,1)

(
−1,

5

2

)
+3ζ(1,2)

(
−2,

1

2

)
+6ζ(1,2)

(
−2,

3

2

)
+ 3ζ(1,2)

(
−2,

5

2

)
+ 6ζ(1,2)

(
−1,

1

2

)
− 6ζ(1,2)

(
−1,

5

2

)
+28− 36 log 2 + 6 log 3

)
+ 3π2

)
+O(µ4

E), (A.61)

F2 =
log 2

4
+
ζ(3)

8π2

+
µ2

E

4π2

(
1

12

(
12ζ(1,1)

(
−1,

1

2

)
+24ζ(1,1)(−1, 1)+24ζ(1,1)

(
−1,

3

2

)
+24ζ(1,1)(−1, 2)+
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+12ζ(1,1)

(
−1,

5

2

)
− 3ζ(1,2)

(
−2,

1

2

)
− 6ζ(1,2)(−2, 1)− 6ζ(1,2)

(
−2,

3

2

)
−6ζ(1,2)(−2, 2)− 3ζ(1,2)

(
−2,

5

2

)
− 6ζ(1,2)

(
−1,

1

2

)
− 6ζ(1,2)(−1, 1) + 6ζ(1,2)(−1, 2)

+6ζ(1,2)

(
−1,

5

2

)
− 40− 6 log(3) + 12 log(16π)

)
− π2

8

)
+O(µ4

E). (A.62)

Each of the functions ζ(1,1), ζ(1,2) etc has some subtlety in evaluation. We may always go

back to the expression (A.59) when we evaluate the free energy explicitly. The leading

terms agrees with the results in [21].

The expression (A.59) is not valid for µE
2π > 1

n . In this case, there is a number

p1 ≤ n− 1 satisfying

−1 +
p1

n
+
µE

2π
< 0, − 1 +

p1 + 1

n
+
µE

2π
< 0. (A.63)

By using this number, the eigenvalues and their degeneracies become

(m+ 1)(m+ 2)

2
for s = m+

p

n
+
µE

2π
, m− p

n
− µE

2π
+ 2 (p ∈ [0, n− 1]),

(m+ 1) for s = m− p

n
− µE

2π
+ 1 (p ∈ [0, p1]),

(m+ 1) for s = m+
p

n
+
µE

2π
− 1 (p ∈ [p1 + 1, n− 1]). (A.64)

The free energy is

Fn =
n−1∑
p=0

∞∑
m=0

(m+1)(m+2)

2

(
log

((
m+

p

n
+
µE

2π
+1

)2

− 1

4

)
+log

((
m− p

n
−µE

2π
+3

)2

− 1

4

))
+

p1∑
p=0

∞∑
m=0

(m+ 1)

(
log

((
m− p

n
− µE

2π
+ 2

)2

− 1

4

))

+

n−1∑
p=p1+1

∞∑
m=0

(m+ 1)

(
log

((
m+

p

n
+
µE

2π

)2

− 1

4

))

=

n∑
p=0

b4∑
a=b1

(
− 1

2
(ζ ′(−2, a) + (3− 2a)ζ ′(−1, a) + (a2 − 3a+ 2)ζ ′(0, a))

)

+

p1∑
p=0

c2∑
a=c1

(−(ζ(−1, a)+(1−a)ζ(0, a)))+

n−1∑
p=p1+1

c4∑
a=c3

(−(ζ(−1, a)+(1−a)ζ(0, a))) (A.65)

where

b1 =

(
p

q
+
µE

2π
+

1

2

)
, b2 =

(
p

q
+
µE

2π
+

3

2

)
, b3 =

(
−p
q
−µE

2π
+

5

2

)
, b4 =

(
−p
q
−µE

2π
+

7

2

)
, (A.66)

and

c1 =

(
−p
q
−µE

2π
+

3

2

)
, c2 =

(
−p
q
−µE

2π
+

5

2

)
, c3 =

(
p

q
+
µE

2π
−1

2

)
, c4 =

(
p

q
+
µE

2π
+

1

2

)
. (A.67)

We show the numerical result in figure 6. It is remarkable that the function is smooth

around µE = 1
n .
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Figure 6. Boson free energy n = 2.
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Figure 7. Boson Rényi entropy n = 2.
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A.3.2 Free Dirac fermion

Next, we consider a spinor ψ on S3. It satisfies the Dirac equation

iσµaγ
a

(
∂µψ +

1

4
ωabµ γabψ

)
= λψ. (A.68)

The periodic part of the spinor ψ in τ and φ directions can be written as eimτ τ+imφφ. As

shown in [21], the regularity condition at θ = 0 restricts the allowed eigenvalue λ. There

are four types of eigenvalues:

Two positive λ

Case 1 λ = mτ +mφ +
3

2
+ 2a, mτ ≥ 0, mφ ≥ −

1

2
− a, a ∈ N,

Case 2 λ = −mτ +mφ +
1

2
+ 2a, mτ < 0, mφ ≥

1

2
− a, a ∈ N, (A.69)

and two negative λ

Case 3 λ = −
(
mτ +mφ +

1

2
+ 2a

)
, mτ ≥ 0, mφ ≥

1

2
− a, a ∈ N,

Case 4 λ = −
(
−mτ +mφ +

3

2
+ 2a

)
, mτ < 0, mφ ≥ −

1

2
− a, a ∈ N, (A.70)

where

mτ ∈
1

q

(
Z +

1

2
+
qµE

2π

)
, mφ ∈ Z +

1

2
(A.71)

As before, we first consider the case 0 ≤ nµE
2π < 1

2 . In this case, the eigenvalues and

the degeneracies are

(k + 1)(k + 2)

2
for λ = ±

(
k +

p

q
+

1

2q
+
µE

2π
+ 1

)
, ±

(
k +

p

q
+

1

2q
− µE

2π
+ 1

)
(A.72)

where k ∈ N.

The free energy is

Fn = −2

q−1∑
p=0

∞∑
k=0

(k + 1)(k + 2)

2
log

(
k + 1 +

p

n
+

1

2n
+
µE

2π

)

−2
n−1∑
p=0

∞∑
k=0

(k + 1)(k + 2)

2
log

(
k + 1 +

p

n
+

1

2n
− µE

2π

)

=

q−1∑
p=0

a2∑
a=a1

(ζ ′(−2, a) + (1− 2a)ζ ′(−1, a) + a(a− 1)ζ ′(0, a)) (A.73)

where

a1 = 1 +
p

n
+

1

2n
+
µE

2π
, a1 = 1 +

p

n
+

1

2n
− µE

2π
(A.74)
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We show the explicit form of the free energy near µE = 0.

F1 =
log 2

4
+

3ζ(3)

8π2

+

(
− log 8− 4ζ(1,1)

(
− 1,

3

2

)
+ ζ(1,2)

(
− 2,

3

2

)
− 1

4
ζ(1,2)

(
0,

3

2

))
µ2

E

4π2
+O(µ4

E)

F2 =
3ζ(3)

32π2
+

3 log 2

16
+
G

2π

+

(
− 9 log 2+2 log 3−4ζ(1,1)

(
− 1,

5

4

)
−4ζ(1,1)

(
− 1,

7

4

)
−ζ(1,1)

(
0,

5

4

)
+ζ(1,1)

(
0,

7

4

)
+ζ(1,2)

(
− 2,

5

4

)
+ ζ(1,2)

(
− 2,

7

4

)
+

1

2
ζ(1,2)

(
− 1,

5

4

)
− 1

2
ζ(1,2)

(
− 1,

7

4

)
− 3

16
ζ(1,2)

(
0,

5

4

)
− 3

16
ζ(1,2)

(
0,

7

4

))
µ2

E

4π2
+O(µ4

E) (A.75)

where G is the Catalan constant. Again, the functions ζ(1,1), ζ(1,2) etc are a formal expres-

sion and one may use (A.73) to evaluate the free energy. The leading terms agree with [21].

Notice that only even powers of µE appears in the expansion. The expression (A.73) is not

valid for µE >
1

2n . In this region there is a number p1 which satisfies

−1 +
p1

n
+

1

2n
+
µE

2π
< 0, − 1 +

p1 + 1

n
+

1

2n
+
µE

2π
≥ 0. (A.76)

Then the eigenvalues, their degeneracies, and the range of p are as follows:

(k + 1)(k + 2)

2
for λ = ±

(
k + 1 +

p

n
+

1

2n
+
µE

2π

)
, p ∈ [0, n− 1]

(k + 1)(k + 2)

2
for λ = ±

(
k + 3− p

n
− 1

2n
− µE

2π

)
, p ∈ [0, n− 1]

(k + 1) for λ = ±
(
k + 2− p

n
− 1

2n
− µE

2π

)
, p ∈ [0, p1]

(k + 1) for λ = ±
(
k +

p

n
+

1

2n
+
µE

2π

)
, p ∈ [p1+1, n−1] (A.77)

where k ∈ N.

The free energy is

Fn =
n−1∑
p=0

a2∑
a=a1

(
ζ ′(−2, a) + (3− 2a)ζ ′(−1, a) + (a2 − 3a+ 2)ζ ′(0, a)

)
+

p1∑
p=0

2(ζ(−1, c1)+(1−c1)ζ(0, c1))+
n−1∑

p=p1+1

2(ζ(−1, c2)+(1−c2)ζ(0, c2)) (A.78)

with

a1 = 1+
p

q
+

1

2q
+
µE

2π
, a2 = 3−p

q
− 1

2q
−µE

2π
, c1 = 2−p

q
− 1

2q
−µE

2π
, c2 =

p

q
+

1

2q
+
µE

2π
. (A.79)

The numerical result is shown in figure 8. There are phase transitions at µE
2π = 1

2n + Z
n

for the free energy and µE
2π = 1

2n + Z
n and 1

2 + Z for the Rényi entropy.
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Figure 8. Fermion free energy n = 2.
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Figure 9. Fermion Rényi entropy n = 2.
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B Holographic computations for d = 2

We now compute the holographic charged Rényi entropies for d = 2 using a three-

dimensional bulk dual. In this case there are two interesting bulk duals: Einstein-Maxwell

theory and Einstein-Chern-Simons theory.

B.1 Einstein-Maxwell theory

Starting with the Einstein-Maxwell action in a three-dimensional bulk

IE−M =
1

2`P

∫
d3x
√
−g
(

2

L2
+R− `2∗

4
FµνF

µν

)
. (B.1)

The charged black hole solution analogous to eq. (3.2) for this theory is [59]

ds2 = −f(r)
L2

R2
dt2 +

dr2

f(r)
+ r2dθ2 , (B.2)

with

f(r) =
r2

L2
−m− q2

2
log

(
r

L
√
m

)
. (B.3)

With the above parametrization, the horizon radius is simply rH = L
√
m. Note that

the geometry is not asymptotically AdS because of the logarithmic term appearing in f(r).

Similar situations were considered in [60–62] and this logarithmic behaviour is the signature

of broken conformal invariance, even in the UV. The solution for bulk gauge field is

A = − qL

`∗R
log

(
r

L
√
m

)
dt . (B.4)

The integration constant in eq. (B.4) was chosen to ensure that A = 0 at the horizon.

However, because of the logarithmic running of the bulk gauge field, one can not discern

the chemical potential and the expectation value of the dual charge density as easily as in

section 3 for d ≥ 3. Following [61, 62], we arbitrarily chose a renormalization scale which

will be defined by the radius r = rR. Then the chemical potential is given by

µ = −q log
rH
rR

. (B.5)

Hence we find that the chemical potential runs logarithmically with the renormalization

scale.

The temperature of the black hole (B.2) is

T =
Lf ′(rH)

4πR
=

rH
2πRL

(
1− L2 µ2

4r2
H log[rH/rR]2

)

= T0

x− µ2

4x log
(
xL
rR

)2

 , (B.6)
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Figure 10. Charged Rényi entropy evaluated for the charged BTZ black hole at various values of

n, setting L = rR = 1.

where as before, we have introduced the parameter x = rH/L. The horizon entropy is

given by

S = 2πrH = 2πLx . (B.7)

The charged Rényi entropy for this solution is again determined with eq. (3.11), however,

we note that in this integral, both the chemical potential and the renormalization scale rR
are held fixed. The endpoints of the integral are again chosen such that T (x1, µ, rR) = T0

and T (xn, µ, rR) = T0/n. Given the form of eq. (B.6), the xn can only be solved

numerically for given µ (and rR). Combining the previous results, we can write the

charged Rényi entropy as follows:

Sn(µ) =
πL

n− 1

(
2nx1 − 2xn + n(x2

n − x2
1) + µ(

√
nxn(nxn − 1)− n

√
x1(x1 − 1))

)
. (B.8)

In figure 10, we show the behaviour of the charge Rényi entropy as a function of

µ for various values of n. For large values of µ, all of the Sn(µ) appear to increase

linearly. From figure 11, we see that in the limit n → ∞, Sn(µ) seems to approach a

finite asymptotic value (which depends on µ), and we have included a plot in figure 10.

This may be contrasted with the behaviour in eq. (3.15) for the same limit in higher

dimensions. Further, the n→ 0 limit appears to diverge, in agreement with the analogous

limit in higher dimensions, as given in eq. (3.15).

It is again interesting to consider imaginary chemical potentials, which is accomplished

here by replacing µ = iµE and q = iqE in the above results. The horizon radius for which

T = T0/n is now given by

xn =
1 +

√
1− n2q2

E

2n
. (B.9)
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Figure 11. Charged Rényi entropy evaluated for the charged BTZ black hole at various values of

µ, setting L = rR = 1.

Clearly, we only have real solutions here when q2
E < 2/n2 and so the charge can only take

values in a finite range. If we re-write eq. (B.9) as

(2nxn − 1)2 + n2q2
E = 1 , (B.10)

we see the horizon radius and the charge can be parameterized by

xn =
1 + cosφ

2n
, qE =

sinφ

n
. (B.11)

This is again reminiscent of the free field calculation where analytic continuation is only

possible within a finite window for µ.

B.2 Einstein-Chern-Simons theory

We first consider the boundary duals of Einstein-Chern-Simons theory. The entropy of the

charged BTZ black hole is (see e.g. (6.17) of [63])

S = 2π

(√
c

6

(
L0 −

c

24
− 1

4
q2

)
+

√
c̃

6

(
L̃0 −

c̃

24
− 1

4
q2

))
. (B.12)

where L0(L̃0) and c(c̃) are the Virasoro generator and the central charge of the left (right)

movers. Here q denotes the charge of the black hole. The expression inside the square root

is independent of spectral flow. In terms of the horizon radius rH ,

L0 −
c

24
− 1

4
q2 =

π r2
H

2`P L
= L̃0 −

c̃

24
− 1

4
q2 . (B.13)
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The Hawking temperature of the BTZ black hole is

T =
rH

2πL2
. (B.14)

Using c = 12πL/`P, the entropy is the usual expression

S = 2π2LTc

3
=
πc

3n
. (B.15)

To obtain the Rényi entropy, we integrate S. However, since q cancels out, there is

no dependence on the chemical potential. We note that this is in complete agreement

with the free fermion results at least for sufficiently small µE . To be more precise, the

above statement is as follows: since the gauge potential does not couple to the metric in

Chern-Simons theory, the solution of the equation of motion is a flat connection, dF = 0,

or a constant gauge potential. Without any source term in the bulk, the gauge potential

has to be zero. The charge q we mentioned above is a charge along the spatial direction

θ. The result suggests that the linear term in the Rényi entropy (2.71) is not protected by

a symmetry or an anomaly.

C Holographic minutiae

In this appendix, we present various useful details of the holographic calculations, which

are used in section 3.

C.1 Energy density

To evaluate the conformal weight of the twist operators using eq. (3.20), we need to

evaluated the difference of energy densities: E(T0/n, µ) − E(T0, µ = 0). Now in principle,

with the introduction of appropriate boundary counterterms [64, 65], one can evaluate

each of these energy densities individually. However, since we only need to determine a

difference of energy densities, it is simpler to use ‘background subtraction,’ in which case

the counterterms play no role.

To begin, we will denote the metric of a surface of constant r by γµν = gµν−δµrδνr/grr,
and the boundary hyperbolic metric (2.9) by γ̂. Following [66], we write the boundary

stress tensor

τab =
2√
−γ

δI

δγab
=

1

`d−1
P

(γabK
c
c −Kab), (C.1)

where Kab is the extrinsic curvature taken on a regulator surface at some constant radius

r. To leading order as r →∞,

τ00(T0/n, µ)− τ00(T0, µ = 0) =
(d− 1)Lm

2`d−1
P R2rd−2

, (C.2)

where m is given by (3.6). We can then evaluate the energy density of the boundary field

theory with [67] √
−γ̂γ̂00(Tττ (T0/n, µ)− Tττ (T0, µ = 0))

= lim
r→∞

√
−γγ00(τ00(T0/n, µ)− τ00(T0, µ = 0)).

(C.3)
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Now using the notation E = Tττ from the main text, this equation yields the desired

difference of energy densities:

E(T0/n, µ)− E(T0, µ = 0) =
(d− 1)Lm

2`d−1
P Rd

=
(d− 1)

2Rd
Ld−1

`d−1
P

(
x d−2
n (x2

n − 1) +
q2

(LrH)d−2

)
.

(C.4)

C.2 Charge density

In order to determine the magnetic response for our holographic model, we must evaluate

the charge density ρ(n, µ) = 〈Jτ 〉 in eq. (3.24). Of course, the standard AdS/CFT dictio-

nary indicates this expectation value is given by the normalizable component of the gauge

field (3.4), i.e., 〈Jτ 〉 ∝ q. However, to make precise comparisons with the expansion coeffi-

cients derived in section 2.3, we need the exact normalization of the current. We evaluate

the latter here with a simple thermodynamic analysis.

Recall that the first law of thermodynamics of our ensemble is given by

dE = Tds+
µ

2πR
dρ , (C.5)

where E , s and ρ denote the energy, entropy and charge densities respectively. Hence if the

entropy density is held fixed, it follows that

µ

2πR
=

(
∂E
∂ρ

)
s

(C.6)

Now as observed above, we have ρ(n, µ) = α q where α is some numerical factor which

we aim to determine. From eq. (3.9), we can see that holding the entropy density fixed is

equivalent to holding rH constant. Hence it follows that

α =
2πR

µ

(
∂E
∂q

)
rH

=

√
(d− 1)(d− 2)

2

`∗

`d−1
P Rd−1

(C.7)

where up to a constant independent of q, E is given by eq. (C.4). Therefore, our final result

for the charge density is

ρ(n, µ) =
(d− 2)xd−2

n

4π Rd−1

Ld−3`2∗
`d−1
P

µ . (C.8)

C.3 Boundary CFT parameters

Here, we provide the values of various parameters, i.e., CV , ĉ, ê and CT , for the boundary

CFT dual to the Einstein-Maxwell theory (3.1). This allows us to verify various expressions

derived in section 2.3 for the expansion coefficients of the twist operator’s conformal weight

and magnetic response within the holographic framework of section 3.

To begin, we follow the calculation of [68] to evaluate the two-point correlator of a

current dual to a bulk Maxwell field, however, we will be careful to include all of the
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numerical factors. This allows us to evaluate the constant CV appearing in eq. (2.51) for

the Einstein-Maxwell theory studied in section 3. From [68], the bulk solution for the gauge

field A, which near the AdS boundary approaches limz→0A→
∑

iBi(x)dxi, is given by

A(z, x) = N
∫
ddx′

[
zd−2

(z2 + (x− x′)2)d−1
Bi(x

′)dxi − zd−3dz
(x− x′)iBi(x′)

(z2 + (x− x′)2)d−1

]
, (C.9)

where the normalization constant is given by

N =
Γ(d− 1)

πd/2Γ(d/2− 1)
. (C.10)

This coefficient N is chosen to ensure that

lim
z→0
N zd−2

(z2 + x2)d−1
= δd(x) . (C.11)

Now our (Euclidean) Maxwell action (3.1) is given by

IMax =
`2∗

8`d−1
P

∫
ddxdz

√
GGACGBD FABFCD , (C.12)

where A,B range over i = 1, · · · d and z. Further, we work in Poincaré coordinates where

GAB = (L2/z2) δAB. To extract the leading boundary contribution, we only need to

consider the terms with z derivatives. That is,

IMax =
`2∗L

d−3

4`d−1
P

∫
dz ddx

zd−3

[
(∂zAi)

2 − 2∂iAz∂zAi + (∂iAz)
2
]
. (C.13)

Using the bulk equations of motion for Ai, Az and integrating by parts, the above expression

yields a boundary term at z → 0:

IMax = lim
z→0

`2∗L
d−3

4`d−1
P

∫
ddx

zd−3
[Ai∂zAi −Ai∂iAz]

=
(d− 1)N `2∗L

d−3

4`d−1
P

∫ ∫
ddx1d

dx2
Bi(x1)Bj(x2)

|x12|2d−2

(
δij − 2

xi12x
j
12

|x12|2

)
, (C.14)

where the second line follows from substituting in eq. (C.9). Finally, we may differentiate

this action twice with respect to the sources Bi(x) to produce the two-point function of the

corresponding current and we see the form matches precisely that given in eq. (2.51). Then

we may read off the central charge CV in the boundary theory with the normalization of

the bulk Maxwell term given in eq. (C.12):

CV =
(d− 1)N `2∗L

d−3

2`d−1
P

=
Γ (d)

2πd/2 Γ (d/2− 1)

`2∗L
d−3

`d−1
P

. (C.15)

Now eq. (2.52) relates this central charge to (ĉ+ê), the sum of the two CFT parameters

which define the 〈TJJ〉 correlator (2.37). Now for the boundary CFT dual to the Einstein-

Maxwell theory (3.1), this correlator does not take the most general form possible [69, 70],

i.e., ĉ and ê are not independent parameters. Rather one finds that

ĉ = d(d− 2) ê . (C.16)
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Combining this constraint with eq. (2.52), we can also evaluate ĉ and ê for our holographic

theory. In particular, we find

ê =
Γ
(
d+2

2

)
2πd/2(d− 1)2

CV =
(d− 2) Γ(d+ 1)

16πd(d− 1)2

`2∗L
d−3

`d−1
P

(C.17)

and then ĉ follows from eq. (C.16).

Finally, it is convenient to have the central charge CT , which appears in the two-point

correlator of the stress tensor (2.27), for our holographic theory. In this case, the calculation

analogous to that above for the Maxwell field was carried out for the metric in [71]. Hence

we can simply quote the result for CT :

CT =
Γ(d+ 2)

πd/2(d− 1)Γ(d/2)

Ld−1

`d−1
P

. (C.18)
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