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1 Introduction

The Cosmic Microwave Background (CMB) is one of the only probes we have of physics in

the early universe. Through a detailed mapping of anisotropies in the temperature of those

photons which decoupled from visible matter in the era of recombination, we are able to

determine the relativistic energy density in that era. From this, we gain information about
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the number of light species in our universe. In the massless limit, we can accomplish this

by a fit to only one number, the relativistic degrees of freedom g∗ [1–5]. This parameter

is often expressed in terms of an effective number of neutrinos, Neff , defined such that

in the Standard Model (SM) of particle physics Neff is roughly the number of neutrino

generations. Beyond the Standard Model (BSM) physics models which contain new light

species with masses O(eV) or less can contribute to this measurement. Consequently, we

have new terrain in which to test the SM through its prediction of g∗ = 3.38, corresponding

to an Neff of 3.046 [6–16].

There has been a statistically insignificant but consistent excess in the measured value

of g∗ [17–20]. Prior to the results from the Planck satellite, the most precise reported

measurement was g∗ = 3.69± 0.16, corresponding to Neff = 3.71± 0.35 [19], coming from

a combination of data from the South Pole Telescope (SPT) and the Wilkinson Microwave

Anisotropy Probe (WMAP). A similar excess is present in measurements from the Atacama

Cosmology Telescope (ACT) [18]. Very recently, however, the Planck collaboration released

the first results from its measurement of CMB anisotropies, obtaining a result of g∗ = 3.50±
0.12, corresponding toNeff = 3.30±0.27 [21]. Future Planck results will continue to improve

the precision of this measurement, with a projected final g∗ sensitivity of ±0.09 [22, 23]. In

addition, future measurements of the polarization of the CMB are projected to constrain

g∗ to within ±0.02, corresponding to constraints on Neff of ±0.044 [23]. We are entering an

era of being able to contrast the SM prediction for g∗ with the predictions of BSM physics

models containing new light species to an unprecedented precision.

The power of this probe of new physics is that in any BSM theory containing new

species with masses ≪ 0.1 eV which were once in thermal equilibrium with the SM, the

effect of these species is contained in a single number, the correction ∆g∗ to the SM

prediction for g∗. Therefore, a map from the parameters of a BSM model to the number

∆g∗ can be constructed in order to determine the consistency of regions of the parameter

space with the measured value of g∗. Although useful approximations of such a map

exist [24, 25], we are entering the exciting era of precision cosmology experiments, and

consequently it has become imperative to form precise theoretical predictions. The subject

of this paper is the precise numerical computation of this map of model parameters to

∆g∗ for a wide variety of natural, minimal BSM theories containing new light or massless

species. We approach this problem in a largely model-independent effective field theory

framework to fully characterize the effects of all such models.

Although there are other existing constraints on new light species present in the early

universe coming from the study of Big Bang Nucleosynthesis (BBN) [26–28], this probe does

not have the same resolving power as the Planck satellite. Unlike BBN, Planck and future

polarization experiments have the power to probe the actual values of the couplings of new

light species to the SM, as we shall demonstrate in this work. Even in the absence of a signal

for new physics from future experiments, the results of this work provide new constraints

on the couplings of SM species to new light particles which are competitive with, and

sometimes even surpass, existing constraints from other areas of physics. This establishes

a new arena for testing the predictions of BSM physics models with new light species.
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The recent results for g∗ from Planck are in tension with independent measurements of

the Hubble expansion rate today [21]. Specifically, combining those measurements with the

results from Planck leads to a preference for higher values of g∗ than quoted above. There-

fore, these results are not capable of confirming or rejecting the hypothesis of new light

degrees of freedom being present in the early universe. Regardless, in order to demonstrate

the constraining power of measurements of the CMB, we proceed as if this tension were

not present. Motivated by the Planck results given above, we proceed by supposing that

values of g∗ ≥ 3.74 (Neff ≥ 3.84) are excluded at the 95% confidence level. We interpret

our results in this framework in order to illustrate how further data could be utilized.

In section 2 of this paper, we review the relevant details of the determination of g∗
using the CMB, as well as details of thermodynamics in an expanding universe, providing a

framework for the rest of the paper. In section 3 of this paper, we discuss all BSM physics

models compatible with our criteria of naturalness and minimality. Specifically, we discuss

the parameters which provide the interaction strength between various fields in the SM and

the new light species present in the model. We present the current experimental constraints

on each of these scenarios, as well as our findings for the contribution of each new light

species to g∗ as a function of the parameters in the underlying theory. We also interpret

the viable parameter space of each model in terms our aforementioned interpretation of

the recent results from the Planck satellite, placing additional constraints on theories using

this new CMB data.

2 Methodology

We study the effects of adding new light or massless particles to the SM on the evolution

of the universe and the CMB. Specifically, we investigate new particles which at some time

in the early universe were in equilibrium with the SM and decouple prior to recombination.

Translating between additional fields in the Lagrangian and the measurement of the effec-

tive number of light degrees of freedom, g∗, requires a detailed analysis of the quasi-thermal

evolution of the universe. The effects of new light degrees of freedom depend on both when

and how they decouple from the thermal bath. As we shall see, a direct measurement of

anisotropies in the CMB then leads to a resultant measure of g∗ at recombination.

In this section, we first review how light species predominantly affect the CMB, namely

via Silk damping and the early integrated Sachs-Wolfe (ISW) effect. We also review the

thermodynamics of the early universe, as well as the effects of decoupling and other non-

equilibrium events. We then discuss the range of decoupling temperatures which can signif-

icantly impact the CMB. Finally, we briefly review the most important existing constraint

on new light degrees of freedom, namely their effect on Big Bang Nucleosynthesis. As this

section is predominantly a review, readers familiar with early universe thermodynamics

can potentially skip to the summary provided in subsection 2.6.

2.1 Relativistic species and the CMB

The early universe was not perfectly homogeneous, but instead had small perturbations in

the distribution of energy density, which are currently believed to be seeded by inflation.
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These regions of under- or overdensity correspond to small perturbations in the metric

away from the pure Friedmann-Robertson-Walker form. CMB anisotropies provide a di-

rect measurement of these early universe perturbations, whose distribution and structure

are sensitive to the thermodynamic conditions leading up to recombination. The CMB

therefore gives us insight on the properties and structure of the universe in its infancy.

The measurement of g∗ using the CMB is performed through a precise determination of

the expansion rate, H, in the era of recombination. The relationship between H and g∗
arises because the expansion rate is determined solely by the total energy density, ρ, and

the curvature. Increasing the value of g∗ at a fixed temperature leads to a larger overall ρ,

which then leads to more rapid expansion. Silk damping is sensitive to the value of H lead-

ing up to and during recombination, while the early ISW effect is affected by the evolution

of H once photons are effectively free-streaming, which lasts from recombination onwards.

For more detailed and thorough explanations of these effects than those presented here,

consult [29–31] and references therein.

2.1.1 Silk damping

Prior to recombination, protons, electrons, and photons interacted very strongly to form

a tightly-coupled plasma. Despite the high frequency of interactions, the mean free path

for photons was nonzero, and photons were able to diffuse outward. The rate of photon

diffusion grew as the protons and electrons combined into hydrogen, up until the point of

last scattering. The overall diffusion scale at the end of recombination is therefore pre-

dominantly determined by the mean free path during recombination and the duration of

recombination. The diffusion of photons results in a partial thermalization of the baryon-

photon plasma, damping any inhomogeneities on scales smaller than the photon diffusion

length. This reduction of inhomogeneities below some length scale in turn leads to a damp-

ing of temperature anisotropies, commonly called Silk damping [32], above some multipole

moment ld. A larger value for H then leads to a decrease in the amount of time available

for this diffusion, restricting the damping to smaller angular scales and reducing the mag-

nitude of the damping. An increase in g∗ would therefore lead to reduced Silk damping,

or equivalently a larger damping moment.

Any map between the predicted diffusion length and the precise value for ld is sensitive

to experimental uncertainty in the angular distance to the last scattering surface. In

practice, it is simpler to remove this uncertainty by considering the ratio of ld to the smaller

sound horizon moment ls. This sound horizon arises independently of photon diffusion,

due to the spread of inhomogeneities in the baryon-photon plasma. These oscillations

propagate at the corresponding speed of sound, setting an acoustic oscillation length scale at

recombination. The addition of new light species reduces the time for these inhomogeneities

to spread, which increases the value of ls, in addition to the increase in ld. These two

processes, photon diffusion and sound wave propagation, have different time dependencies.

This difference results in an increase of the ratio ls/ld as H grows, leading to damping of

more of the acoustic peaks, despite the fact that the overall damping has been reduced.

– 4 –
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2.1.2 Early integrated Sachs-Wolfe effect

Following recombination, photons propagate freely without scattering but pass through

points of matter over- or underdensity. If the gravitational potential of these inhomo-

geneities is constant in time, there is no net effect on the CMB photons. However, if the

gravitational potential has any time-dependence, the photons will experience some net loss

or gain in energy as they pass through a single gravitational perturbation and be red-

or blueshifted as a result. The alteration of CMB anisotropies due to time-dependent

gravitational potentials is the ISW effect [33].

The evolution of gravitational potentials is determined by the expansion rate, which

depends on the overall particle content. In a universe consisting solely of nonrelativistic,

pressureless matter, the competing effects of gravitational clustering and universe expan-

sion cancel, such that potentials are time-independent. However, any nonnegligible pressure

alters the expansion rate such that the potentials do evolve with time. There are therefore

two points in time at which the ISW effect could contribute to the CMB. The first occurs

when the universe contains a nonnegligible radiation density, which is the case immedi-

ately following recombination. This alteration to the CMB shortly after its formation is

commonly referred to as the early ISW effect. The second era corresponds to the point at

which the vacuum energy becomes a significant fraction of the total energy density. This

second case, which begins near modern times, is the late ISW effect.

Unsurprisingly, new light species increase the radiation energy density following re-

combination, altering H and enhancing the early ISW effect. Specifically, the presence of

additional species causes gravitational potentials to evolve more rapidly, resulting in more

substantial red- and blueshifts to CMB photons passing through these evolving potentials.

On very small scales, photons will pass through multiple such potentials, and the net effect

cancels. However, the potentials rapidly become time-independent, such that photons are

unable to pass through multiple large-scale perturbations before this effect ends. An in-

crease to g∗ therefore enhances the variance in temperature anisotropies on angular scales

corresponding to the largest structures immediately following recombination. The size of

the largest structures at this point coincides with the acoustic horizon, such that the early

ISW effect leads to an increase in the first acoustic peaks of the CMB. In practice, this

effect is measured by comparing the height of the first acoustic peak to that of latter peaks.

The effects of Silk damping and early ISW, which can be seen in figure 1, are comple-

mentary means of measuring H, and therefore g∗, near recombination. However, they are

still sensitive to two different points in time. Silk damping probes H prior to and during

recombination, while the early ISW effect is sensitive to H immediately after recombina-

tion. This has two important consequences for constraints on light species. The first is that

experiments which focus on precision measurement at smaller values of l, such as WMAP,

are sensitive mainly to the early ISW effect. The resulting constraints are therefore more

limited experimentally by the effects of cosmic variance. Experiments which instead focus

on anisotropies at larger l, such as ACT, SPT, and Planck, are predominantly sensitive to

Silk damping and are less affected by cosmic variance.
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Neff = 5, g* = 4.27
Neff = 4, g* = 3.82
Neff = 3, g* = 3.36
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Figure 1. Projected CMB anisotropy power spectrum for three different values of g∗ (or equiv-

alently Neff). The addition of new light degrees of freedom increases the height of the first peak

through the early ISW effect and decreases the height of later peaks through Silk damping. The

power spectrum, and therefore these effects, are measured by multiple observational experiments,

such as the Planck satellite. These spectra were calculated using CAMB [34, 35]. The magenta,

blue, and orange curves (dark gray, black, and light gray curves, when viewed in black and white)

correspond to an Neff of 3, 4, and 5, respectively.

The second consequence to note is that particles with masses near the temperature

scale of recombination (∼ 0.1 − 1 eV) will potentially contribute very different signals to

these two sets of experiments. The detection of such species would involve a detailed analy-

sis of each individual effect, rather than a simple fit to all the experimental data. While we

consider massless particles for the majority of this work, we will return to this possibility

later in subsection 3.6.

2.2 Early universe thermodynamics

As mentioned earlier, CMB measurements of light species are predominantly sensitive to

the relativistic energy density, which is characterized by an effective number of relativistic

degrees of freedom g∗. For more details on the material discussed in this subsection, see [36–

38]. We can then define g∗ in terms of ρrel, the energy density of all relativistic species,

and a reference temperature T , which we take to be the photon temperature (T ≡ Tγ),

ρrel ≡ g∗
π2

30
T 4. (2.1)
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The light species content of the SM, which consists of photons and neutrinos, can

then be used to make a prediction for the measured value of g∗ at recombination. This

prediction can be written in the form

g∗ = gγ +
7

8
gνNeff

(

Tν
T

)4

= 2 +
7

8
· 2 ·Neff

(

4

11

)4/3

, (2.2)

where the factor of 7
8 is due to the effect of Fermi-Dirac statistics on energy density, and Tν

is the calculated neutrino temperature assuming neutrinos instantaneously decouple from

the rest of the SM at T ∼MeV. The parameter Neff is the effective number of neutrino

species. This historically defined parameter, which is 3.0461 for the SM, is often used to

parametrize the effect of any light species other than photons on g∗. The contribution of

neutrinos and any new light2 species to g∗ is given solely by Neff . Any measured deviation

from the SM prediction of g∗ = 3.38 would then indicate the need for new physics.

This paper calculates the full contribution ∆g∗ of new light species present in a large

number of beyond the SM theories. This contribution to the relativistic degrees of freedom

is found by calculating the energy density of new species near the point of recombination.

The contribution can also be expressed as a change to Neff as

∆Neff =
8

7

∆g∗
gν

(

T

Tν

)4

≈ 2.2∆g∗. (2.3)

To find the energy density of a light species at recombination, we must track the evo-

lution of its phase space density f(t, p). This form for the distribution function relies on

the assumption that the universe is homogeneous and isotropic.3 We must first determine

f at high temperatures, when the new species is in equilibrium with the SM, then calculate

the changes to f as the universe expands and cools, with various species annihilating or

decoupling.

As the universe expands, the evolution of each individual phase space density is con-

trolled by both the rate of expansion H ≡ ȧ
a , where a(t) is the scale factor for the expanding

universe, and the rate of interaction with the other particle species. This dependence is

expressed using the Boltzmann equation

E
∂f

∂t
−Hp2

∂f

∂E
= C[f ], (2.4)

where p = |~p| and the collision functional C[f ] accounts for changes to f due to interactions.

If we assume that the dominant interactions will consist of 2-to-2 scattering, then C[f ] for

1This effective number of neutrinos is defined such that if neutrinos truly did decouple instantaneously,

Neff would be 3. However, detailed calculations have shown this to not be the case, and the actual energy

density of neutrinos is slightly larger than in the instantaneous decoupling approximation due to their

interactions with annihilating electrons. This then results in the slightly larger predicted value for Neff .

For details on these calculations, see [6–16].
2By light, we mean m ≪ eV. The contribution of species with masses ∼ eV is more complicated, as we

shall discuss later.
3As discussed earlier, the universe is in fact not perfectly homogeneous or isotropic, and the distribution

functions therefore have some spatial and directional dependence. However, these deviations are quite small

in magnitude, and any resulting correction to the CMB is below the experimental resolution. Consequently,

any inhomogeneities and anisotropies in the distribution functions are negligible for our purposes.
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some new species X is defined as the sum over all such possible interactions involving X.

If each interaction process is time-reversal invariant,

C[fX ] =
1

2

∑

X,i→j,k

∫





∏

s=i,j,k

gs
d3ps

(2π)32Es



 (2π)4δ4(p)S |M|2Ω(fX , fi, fj , fk), (2.5)

with the squared amplitude |M|2 averaged over the spins of both incoming and outgoing

particles. The term S corresponds to a symmetry factor whose value is 1
2 when j and k

are identical particles, to avoid overcounting of states in the phase space integral, and is 1

otherwise. The Ω({f}) function is the phase space weighting term

Ω(fX , fi, fj , fk) = fjfk(1± fX)(1± fi)− fXfi(1± fj)(1± fk), (2.6)

where the ± term is + for bosons (Bose enhancement) and − for fermions (Pauli exclusion).

The collision terms therefore couple together the Boltzmann equations for various particle

species.

A detailed treatment of the full evolution of species in the early universe can be found

in [39]. For our purposes, the most important fact is that during non-equilibrium events,

specifically the decoupling or annihilation of a species, the momentum dependence of the

collision functional C[f ] can alter the phase space density of a decoupling species away

from the standard thermal distributions. For these cases, a general phase space density

must be numerically evolved in time to find the precise contribution to g∗ at lower temper-

atures. The focus of this work includes both decoupling and annihilation, necessitating our

numerical treatment. So far we have treated the expansion of the universe as an indepen-

dent process, but it is in fact coupled to the evolution of its particle content through the

Einstein field equations. Assuming a flat, isotropic, and homogeneous universe, we obtain

the Friedmann equations,

H2 =
8πG

3
ρ,

∂ρ

∂t
= −3H(ρ+ P ),

(2.7)

where ρ and P refer to the total energy density and pressure of the full particle content.

The Boltzmann equations and Friedmann equations then combine to give a coupled set of

integro-differential equations governing the full evolution of the early universe.

2.3 Decoupling, recoupling, and the redistribution of entropy

While a full solution to the Boltzmann and Friedmann equations is necessary to understand

the detailed evolution of any species X and its exact contribution to g∗, we can first gain a

qualitative understanding by considering the approximation of instantaneous decoupling.

Once we have developed this conceptual framework, we will then turn to more precise

statements about the complete evolution of distribution functions.

In the instantaneous decoupling approximation, the point of decoupling can be found

by comparing the rate of expansion H to the rate of interaction ΓX , defined as

ΓX =
∑

j,k→X,i

njnk
nX

〈σv〉j,k→X,i, (2.8)

– 8 –
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where 〈σv〉 is the thermally-averaged cross-section for any interaction j, k → X, i. This

average cross-section can be formally defined as

〈σv〉j,k→X,i =

∫





∏

s=X,i,j,k

gs
d3ps

(2π)32Es



 (2π)4δ4(p)S |M|2 fjfk
njnk

(1± fX)(1± fi). (2.9)

Note that the symmetry factor S now includes an additional factor of 1
2 if the initial

state consists of identical particles, as well as the original 1
2 for an identical-particle final

state. The full set of thermally-averaged cross-sections can be related to the collisional

term C[f ] via
∫

gX
d3pX

(2π)3EX
(2π)4δ4(p)C[fX ]S =

∑

X,i,j,k

(njnk〈σv〉j,k→X,i − nXni〈σv〉X,i→j,k) . (2.10)

Conceptually, ΓX corresponds to the rate of production per particle for species X. As

the universe expands, both H and ΓX will decrease, though generically at different rates. If

ΓX decreases more quickly than H, then it is possible for a species originally in equilibrium

to ‘freeze out’ and decouple from the remainder of the SM.

Conversely, if H decreases more quickly than ΓX , a species originally out of equilib-

rium may actually recouple to the SM. In this case, however, X will generically not have

the same temperature as the SM, if it even has a well-defined temperature, prior to recou-

pling. Instead, the initial distribution will depend on any other particle content that could

potentially couple to X, making this scenario very model-dependent.

In this framework, the point of instantaneous decoupling/recoupling is defined simply

as the temperature at which ΓX = H. It is common to assume that species are in full

equilbrium prior to decoupling, then evolve freely immediately after freezing out. This ap-

proximate description is correct only when all relevant species are relativistic and originally

in full equilibrium. However, if X decouples during other nonequilibrium processes, such

as nonrelativistic annihilation, the full set of Boltzmann equations must be used.

Once T drops below the mass of any particle, that species begins to annihilate away,

with the number density quickly falling to a negligible amount. The entropy of the anni-

hilating species is redistributed amongst the remaining interacting species, such that the

temperature of all remaining species decreases less quickly than would be the case in free

expansion. If X has decoupled from the SM prior to this annihilation, it will not partic-

ipate in the resulting entropy redistribution, and therefore reaches a temperature lower

than that of the SM following the annihilation.

To determine the impact of these entropy redistributions, we need to track the rela-

tivistic entropy density s as a function of temperature. If the entropy density of all SM

species in equilibrium (excluding X) was initially s0 when X instantaneously decoupled

from the SM at temperature T0, conservation of total entropy gives us the resulting temper-

ature ratio following an entropy redistribution. This ratio can be expressed as a function

of the entropy density s of all species in equilibrium at any future temperature T ,

TX
T

=

(

s/T 3

s0/T 3
0

)1/3

. (2.11)

– 9 –
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In practice, because the entropy of annihilating species is only being distributed

amongst relativistic species in full thermal equilibrium, it is much simpler and equivalent

to instead use the relativistic degrees of freedom, rather than s/T 3, to calculate the ratio

TX
T

=

(

gafter∗

gbefore∗

)1/3

, (2.12)

where gbefore∗ and gafter∗ are the relativistic degrees of freedom of all SM species in equi-

librium immediately before and after the entropy redistribution. This decrease in relative

temperature also decreases the ∆g∗ due to X,

∆g∗ = ∆g∗0

(

gafter∗

gbefore∗

)4/3

, (2.13)

where ∆g∗0 is simply the initial contribution of X to g∗ at T0. For multiple entropy re-

distributions, the overall ratio TX

T can be found simply by multiplying together the ratios

from each individual redistribution, giving the full contribution of X to g∗.

Again, this discussion has made the simplifying assumption of instantaneous decou-

pling. In general, we cannot simply use comparisons of ΓX to H to determine the exact

evolution of the phase space density fX(t, E) if the species X decouples during nonequilib-

rium processes. Our treatment must instead be made more precise by numerically solving

the Boltzmann equation for X, as well as the Friedmann equations, which govern the evo-

lution of the SM temperature T (t) and the expansion scale factor a(t). More details on

our numerical treatment can be found in appendix B.

The evolution of a given model of new light species is determined by calculating the

collision functional C[fX ] in terms of the model parameters, such as the suppression scale

Λ of nonrenormalizable operators in an effective theory. This interaction term then governs

the process of decoupling X from the SM. Any SM annihilation and entropy redistribution

that occurs after this decoupling reduces the change in effective degrees of freedom ∆g∗
at the point of recombination. The contribution to g∗ for a specific model can be found

by using the resulting fX near the point of recombination to calculate the energy density

ρX . Solving this contribution in terms of generic couplings establishes a direct relationship

between model parameters and ∆g∗.

It is important to note that in this work we consider the effective field theory of each

model at very low energies (as low as ∼MeV). In order to match to any full UV theory

which generates the operators in this effective theory, one should in principle treat operator

couplings as Wilson coefficients and run these couplings from the high energy theory down

to the scale of interest using the renormalization group. We assume that this running has

already been done when we write down our effective operators, such that we are working

with the matched coefficient.

2.4 Relevant decoupling temperatures

For new light species to currently be detectable with the CMB, they must decouple at low

enough temperatures such that their contribution ∆g∗ is within the experimental sensitiv-

ity of Planck [21]. The full dependence of ∆g∗ on the decoupling temperature for various
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Figure 2. Additional light degrees of freedom ∆g∗ at recombination for a new light species

as a function of the decoupling temperature (in the instantaneous decoupling approximation),

calculated using eq. (2.13). The contribution of various particle species is shown, specifically a

real scalar boson (magenta), a Weyl fermion (blue), a real gauge boson (orange), and a Dirac

fermion pair (green). The dashed line indicates the current sensitivity of the Planck observational

experiment [21]. The gray region corresponds to the QCD phase transition, where the precise

evolution of g∗(T ) for the SM is not well-understood. The provided values of ∆g∗ should therefore

only be interpreted qualitatively in that region.

particle types is shown in figure 2. This functional dependence is calculated in the instan-

taneous decoupling approximation by using eq. (2.13) in combination with g∗ of the SM as

a function of temperature, which is shown in figure 3.

As we see in figure 2, for a species to be within the sensitivity of Planck, it must decou-

ple at temperatures T . 200MeV, which corresponds to the approximate scale of the QCD

phase transition (see [40] and references therein for details). Prior to this point, quarks and

gluons are the relevant degrees of freedom for the QCD sector, such that the total number of

SM degrees of freedom is g∗ = 61.75. As the universe cools to lower temperatures, the SM

transitions to a regime where mesons and baryons are the appropriate degrees of freedom.

Specifically, the relevant hadrons present below the QCD phase transition are pions and

charged kaons, such that g∗ = 19.25. This significant reduction in the degrees of freedom

results from the rapid annihilation or decay of any more massive hadrons which may have

formed during the transition. The QCD phase transition therefore corresponds to a large

redistribution of entropy into the remaining degrees of freedom, such that any species which

decouples from the SM prior to the transition will not contribute significantly to the CMB.
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Figure 3. Effective degrees of freedom g∗ in the SM as a function of temperature. The gray

region corresponds to the QCD phase transition, where the precise evolution of g∗(T ) is not

well-understood. The provided values of g∗ should therefore only be interpreted qualitatively in

that region.

In principle, it is possible to discover species which decouple during the QCD phase

transition, as those species could contribute values of ∆g∗ above the experimental sensitiv-

ity. However, the precise details of this phase transition are not well-understood because of,

e.g., strong coupling effects, and this transition is an area of active study (see [41–43] and

references therein). Consequently, we do not know how to make precise predictions for ∆g∗
for species decoupling in this era. These computations are beyond the scope of our work, so

we choose to restrict our focus to species which decouple after the QCD phase transition.

For new species which do decouple immediately after this point, the calculation of ∆g∗
is sensitive to whether the species couples to leptons or to quarks. Species which couple

solely to leptons have a straightforward decoupling process, as all relevant interactions are

sufficiently weakly renormalized. Species which couple to quarks will then couple to pions

and kaons, whose couplings can be strongly renormalized. We must restrict ourselves to

quark and meson couplings which involve conserved currents, as these are then protected

against strong renormalization effects. For this set of couplings, we can still make pre-

cise predictions for the contribution of new light species which couple to quarks, even at

temperatures immediately below the QCD phase transition.
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2.5 Big bang nucleosynthesis

Most models which include additional light degrees of freedom will have other model-

dependent constraints, such as those from collider signals or various astrophysical obser-

vations. Arguably the most important model-independent bound other than that of the

CMB is that placed by Big Bang Nucleosynthesis (BBN). The measurement of the primor-

dial relic abundance of light elements formed by BBN provides an independent probe of

new light species, although at times earlier than recombination. While here we only give a

brief summary of the relevant aspects of BBN, an excellent introduction to the topic can

be found in [26–28].

The resulting abundances of the light elements, particularly helium-4 (4He), are sen-

sitive to the number density of neutrons at the start of BBN. When neutrons and protons

were in full equilibrium, the number of neutrons relative to that of protons continued to

fall due to their mass splitting. The neutron abundance is then determined by the point

at which the weak interactions, which interconvert protons and neutrons, freeze out. A

larger expansion rate results in earlier freezeout, which in turn leads to a larger number of

neutrons and therefore more 4He.

The precise value of H at the time of BBN, which would be increased by the presence of

additional light species, therefore determines the relic abundance of 4He. This abundance

is often expressed in terms of the so-called ‘helium mass fraction’

YP ≡ 4nHe

nH + 4nHe
. (2.14)

Observational determinations of YP therefore provide another means of constraining

the relativistic energy density of the early universe, though it is important to remem-

ber that these constraints apply at a different period of time than those placed by direct

CMB measurements of g∗. The SM prediction for the primordial helium abundance is

YP = 0.2487±0.0006 [26], and this prediction can be tested by both extracting the primor-

dial abundance from direct observations of the modern helium abundance and observing

the effects of YP on CMB anisotropies.

Multiple primordial helium extractions have yielded results near YP = 0.240 ±
0.006 [26], which are consistent with SM predictions, but two recent observational studies

have indicated a higher abundance of YP = 0.2565± 0.0010 (stat) ±0.0050 (syst) [44] and

YP = 0.2561 ± 0.0108 [45], which are consistent with a larger rate of expansion. This in

turn allows for the presence of new light species. In addition, combined CMB constraints

from SPT and WMAP are consistent with YP = 0.296 ± 0.030 [46], and combined results

from Planck and WMAP are consistent with YP = 0.266 ± 0.021 [21]. These results are

therefore currently incapable of either completely confirming or excluding the existence of

new light species, but instead increase the importance of the precision CMB measurements

of g∗ possible with future experiments.

Lastly, it is important to note that there is tension between the SM prediction and

observational determinations of the abundance of lithium-7 (7Li), with a lower observa-

tionally inferred primordial 7Li abundance than that predicted by BBN. Unfortunately,

this discrepancy is not immediately remedied simply by the presence of new light species,
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and the detailed model-building necessary to address this tension is beyond the scope of

this paper. However, the 7Li problem does present another exciting opportunity for the

possible discovery of new physics [47–51].

2.6 Summary

We have now introduced the framework necessary for the remainder of this paper. The

focus of this work is the effects of light species in BSM theories on the CMB, which we

determine by computing the energy density of the new light species at recombination. We

specifically concern ourselves with species which were in thermal equilibrium with the SM

and then decouple after the QCD phase transition, potentially during the annihilation of

a SM species. Any species which decouples from the SM before the QCD phase transition

cannot be probed by the Planck satellite, as its energy density is much smaller than

that of the SM. The energy density of light species is calculated by numerically solving

the coupled Boltzmann and Friedmann equations, found in eqs. (2.4) and (2.7), in order

to compute the potentially nonthermal distribution function of the new species. The

distribution function immediately following decoupling can then be used to calculate the

energy density at recombination, which determines g∗ using eq. (2.1).

3 Models

In this section, we consider the set of models which can contribute to the CMB mea-

surement of g∗,
4 mainly restricting ourselves to models where the additional degrees of

freedom were in thermal equilibrium immediately following the QCD phase transition.5

Such models must either contain new species with mass . eV or alter the neutrino energy

density. While there are a very large number of possible models one could write down, we

choose to restrict ourselves to those which are both minimal and natural.

We consider a model to be minimal if it contains the smallest possible hidden sector in

the low-energy theory. In particular, this restricts our discussion to models of elementary

particles, ignoring the possibility of light composite states. We then direct our attention

to the low-energy effective field theory (EFT) and ignore any additional particle content

which may arise at higher energies, as these are irrelevant for our calculations.

For this work, we define naturalness as technical naturalness. We therefore require

that the size of quantum corrections not exceed the size of the physical observables in

the theory, i.e. | δλλ | < 1 for all parameters λ, as large corrections require an artificial

fine-tuning of parameters.

A large number of potential models of light species are unnatural, due to large correc-

tions to the mass of that new species. There are two predominant methods of suppressing

4We only consider models with light degrees of freedom. It is possible to construct models where

heavier species mimic the effects of light degrees of freedom through a nonzero presure resulting from

non-equilibrium distribution functions [52].
5There are models where out-of-equilibrium effects such as decays generate a contribution to g∗ [53–62],

but no generic model-independent statements can be made about such scenarios, so we do not consider

them in this work.
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quantum corrections to a particle’s mass. The first method is the introduction of an addi-

tional symmetry which prohibits the existence of a mass term for that species. The second

option is the use of strong dynamics in a hidden sector to generate large anomalous di-

mensions for mass terms, such that those terms become irrelevant operators, giving rise to

a vanishing mass in the low-energy EFT. However, most models of the latter type tend to

contain a relatively rich spectrum, violating our minimality principle. Although this is an

interesting direction for future research, it is outside the class of models we consider. We

therefore focus solely on theories of light species which contain a protective symmetry.

The classes of possible new light species can be divided up by spin, as this restricts

the protective symmetries available. We progress through each possible case, from spin-0

to spin-2, considering all minimal, natural models. For each model, we then scan over

all allowed couplings, numerically solving the Boltzmann and Friedmann equations to cal-

culate the full process of decoupling for any species which decouples during SM entropy

redistributions. The details of our numerical approach can be found in appendix B. Using

the resulting distribution function after the decoupling of our new light species, we then

calculate the energy density at recombination, which is reported as the contribution to g∗ as

a function of the coupling parameters of the theory. This calculation of ∆g∗ is specifically

done in the massless limit, and is accurate for new species with m≪ eV. In subsection 3.6,

we briefly discuss the potential effects of non-negligible masses.

As discussed in subsection 2.4, each new light species must also decouple after the QCD

phase transition in order to be constrained by Planck, which limits the dimensionality of the

operators we choose to consider. If our new species couples to the SM with an operator of

scaling dimension d, the operator is suppressed by Λ4−d, where Λ is the approximate cutoff

scale of the EFT. Dimensional analysis then indicates that, given independent experimental

constraints, only operators of dimension d . 6 will be able to maintain equilibrium between

a new species and the SM until after the QCD phase transition.

Finally, we discuss possible extensions to the SM which do not contain new light

species, but instead alter the neutrino distribution, through such means as decay or

neutrino asymmetry. These models then enhance the neutrino energy density relative to

SM predictions, leading to an increase in g∗.

3.1 Spin-0: Goldstone boson

The first possibility for new light species is a spinless scalar boson. However, the mass

of any new scalar particle is generically sensitive to quantum contributions resulting from

interactions. While supersymmetry could potentially preserve the naturalness of scalar

masses, the observed particle spectrum indicates that any couplings between the SM and

new light scalars would mediate supersymmetry-breaking mass terms significant enough to

require fine-tuning. The only viable symmetry which can protect the mass term of such

light scalar bosons is then a shift symmetry, φ → φ + ǫ. This is precisely the symmetry

present in the Goldstone modes of a spontaneously broken global symmetry. In the limit of

an exact global symmetry, the mass of the corresponding Goldstone boson is restricted to

be zero, with any quantum corrections forbidden by the symmetry. Even if the symmetry is

inexact, the mass of the pseudo-Goldstone is proportional to the symmetry-breaking terms
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in the original Lagrangian, rather than the cutoff of the effective theory. We therefore

restrict ourselves to the study of Goldstone bosons, as other theories of light scalars are

generically tuned and unnatural. These particles arise in many theories, such as the QCD

axion and the so-called ‘String Axiverse’ of string compactifications [63].

Since we only discuss thermodynamics after the QCD phase transition, the only allowed

interactions are those with leptons, mesons, baryons, and the photon. In this low energy

effective theory, any combination of such couplings may conceivably be allowed. We explore

all of these possibilities, finding that current collider and astrophysical bounds are such that

almost all scenarios are excluded, and minimal models of Goldstone bosons must have a neg-

ligible impact on g∗. There are small corners in (flavor-dependent) parameter space which

are still viable and in which they could in principle have a small but non-negligible impact

on the effective number of relativistic degrees of freedom. We conclude that unless we are

very lucky, the addition of a natural massless or near massless scalar will have, at best, a tiny

impact on the CMB and thus would require significant advances in our ability to measure g∗.

First, we consider couplings to leptons. Due to the shift symmetry, any coupling

between an exact Goldstone boson and SM fermions must only contain derivatives of the

field φ. We parameterize our effective field theory as

L ⊃ 1

2
(∂µφ)

2 +
∂µφ

2Λ
ψ†
Lσ̄

µψL +
∂µφ

2Λ
ψc†
R σ̄

µψc
R + h.c. (3.1)

Using identities found in [64], we can also write our Lagrangian in Dirac notation,

resulting in

L ⊃ 1

2
(∂µφ)

2 − ∂µφ

Λ
Ψ̄γµγ5Ψ+ h.c. (3.2)

In this form, it is simple to see that the interaction is specifically a derivative coupling

between φ and the axial current of Ψ. One might suspect that some theories could

potentially generate a similar coupling between φ and the vector current for Ψ. However,

any interaction of that form must vanish due to vector current conservation. The

conservation of the axial current is broken by the mass term for Ψ, meaning that the axial

coupling does not similarly vanish. However, this does imply that any interaction rate

involving the axial coupling is necessarily proportional to the fermion mass m, and thus

vanishes in the m→ 0 limit.

In simple UV completions of this effective field theory, the couplings of φ to the

SM are flavor-blind. More sophisticated UV model-building could potentially result in

flavor-specific couplings. However, a flavor-specific basis generically leads to interactions

which mix generations. There are greatly restrictive constraints coming from flavor

physics, as we shall discuss briefly below.

Due to the Λ suppression of the derivative couplings, the interaction rate between

φ and leptons will be dominated by processes which only involve one Goldstone in-

teraction term, shown in figure 4. Note that, as this dominant process involves the

emission/absorption of a photon, the interaction rate Γφ has no dependence on the

coupling between φ and neutrinos. Because of this, the only relevant lepton interactions

for φ are those with electrons and muons.
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Figure 4. Dominant interaction process for the Goldstone-lepton coupling.

In the relativistic limit, dimensional analysis would expect the interaction rate between

φ and a SM lepton Ψ to scale as Γφ ∼ T 3

Λ2 . However, the broken axial symmetry for Ψ

restricts the interaction rate to take the form Γφ ∼ m2T
Λ2 . The expansion rate will therefore

drop more quickly than the interaction rate as the universe expands. This implies that φ

could have been out of thermal equilibrium after the time of global symmetry breaking,

and come back into thermal equilibrium with the SM leptons at some point before the

leptons annihilated.

As the universe cools to temperatures comparable to the relevant lepton mass, this

simplified form for the interaction rate will be substantially modified and needs to be

computed numerically. The interaction rate Γφ will begin to drop rapidly as the leptons

annihilate away, redistributing their entropy amongst the remaining coupled species. If

Λ is very large and substantially suppresses Γφ, φ will not have recoupled by the time

the leptons annihilate, meaning that φ will forever remain out of equilibrium. Additional

couplings beyond the lepton-only couplings we consider in this paragraph would be needed

in order to have SM-φ interactions. For each lepton, there is then some maximum Λ for

recoupling. Any Goldstone boson with a larger Λ will not be reheated by the entropy

redistribution and therefore cannot substantially contribute to g∗ at recombination.

The distribution function for φ prior to recoupling is dependent on the original process

of decoupling at high energies, which is then sensitive to details of the UV theory, including

the relative timings of global symmetry breaking and inflation. It is then impossible to

make fully model-independent predictions for the contribution of φ to g∗ in the case where

φ only couples to leptons. However, in a large class of models, φ will also couple to quarks

and photons, which results in qualitatively different evolution.

For the case where φ has similar couplings to quarks, we must examine the resulting

interactions between φ and mesons, specifically pions and charged kaons, since we con-

sider temperatures below the QCD phase transition. At these temperatures, however, the

number density of kaons will be much lower than that of pions, such that any φ-kaon inter-

actions will be subdominant. We can then simply focus on those couplings which involve

pions. Following [65], the original coupling of φ to quarks can be rewritten in terms of

the axial quark current. After the phase transition to mesons, interactions with the quark

current are replaced by those with the axial pion current, which is safe from QCD renor-

malization effects. The full Lagrangian can be expanded to leading order in Λ and fπ and

subsequently studied, and depends on the details of the flavor structure in the UV. We
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assume flavor-blind couplings, as flavor-specific couplings in the UV do not alter our pre-

dictions for the thermodynamic properties of φ, but such couplings must obey additional

constraints coming from flavor physics. With this assumption, we find that those terms

which dominate the interaction rate between φ and pions are

L ⊃ − 2rm
3fπΛ

π+π−∂µφ∂
µπ0 +

rm
3fπΛ

π0π+∂µφ∂
µπ− +

rm
3fπΛ

π0π−∂µφ∂
µπ+. (3.3)

We have defined the ratio rm = md−mu

md+mu
, where mu and md are the up and down

current-quark masses. We use the approximate value rm = 1/3, based on lattice QCD

calculations [66], as well as the convention fπ = 93MeV. Interactions of this type will

potentially keep the Goldstone boson φ in thermal equilibrium until the pions fully

annihilate and redistribute their equilibrium, depending on the suppression scale Λ. The

corresponding interaction rates decrease more rapidly than the expansion rate, leading to

the freezing out of the φ-π interactions.

Finally, there can be couplings of φ to photons via operators of the form

L ⊃ − e2

32π2Λγ
φFµνF̃µν . (3.4)

This operator arises because the axial symmetry in question can be anomalous. This

Λγ is not necessarily precisely the same as the Λ which couples φ to SM fermions, though

their orders of magnitude are similar in a large number of UV completions. This is because

the operator can be induced by loops of SM fermions. The additional loop factor in

the parameterization of Λγ is present because in these cases, the operator appears in the

Lagrangian suppressed by a loop factor relative to the fermion couplings. As mentioned

earlier, depending on the UV structure of the model, this operator may or may not be

present in the low-energy theory. Similar to pion couplings, this operator gives rise to a

rate such that φ-γ interactions freeze out as we go to lower temperatures.

We now outline the constraints on these scenarios, working in a general framework

with no assumptions regarding the operator or flavor structure of couplings in the UV.

The bounds are best stated in terms of the effective operators

L ⊃ −∂µφ
Λf

Ψ̄fγ
µγ5Ψf − e2

32π2Λγ
φFµνF̃µν , (3.5)

where Ψf can either be a charged lepton or the proton. The strongest bounds for these

models come primarily from observations of stellar and supernova cooling, which will also

greatly constrain other models within this work. The production of new light species

which interact weakly enough to escape the interior of a star provides an efficient energy

loss mechanism, affecting both stellar cooling and evolution. Comparison of SM predictions

to astrophysical observations then provides a strong constraint on the interactions of such

new species. The resulting constraints for Goldstone interactions are

Λe & 2.9× 109 GeV,

Λp & 3.5× 109 GeV,

Λγ & 1.2× 107 GeV.

(3.6)
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More details about these bounds can be found in [67–70]. The relationship between

the effective proton scale Λp and the UV quark coupling scale Λ ≡ Λq present in eq. (3.3)

depends on phenomenological parameters in the baryon chiral Lagrangian, as well as details

of the UV theory. However, Λp and Λq are related by an O(1) number. Consequently, we

use the conservative bound Λq & 5× 108GeV.

In addition, there are constraints on the set of off-diagonal operators schematically of

the form 1
Λµe

∂µφµ̄γ
µγ5e coming from µ→ e+ /E [66]. These bounds restrict

Λµe & 1.6× 109 GeV. (3.7)

These off-diagonal operators’ contributions to early universe thermodynamics are

not significantly different from that of muon couplings during the era following the QCD

phase transition. Consequently, we do not consider this case to be qualitatively distinct

from the case with muon couplings, but considerably more constrained, and so we do not

consider these operators further.

Finally, there are direct constraints on Λµ also coming from observations of supernovae.

We take the average temperature within the core of a supernova to be T ≈ 30MeV [68],

which allows for the presence of a non-negligible muon abundance. We can therefore apply

the same cooling bounds to muon couplings, with a small suppression due to the lower

muon number density. Based on [68], we calculate the approximate bound

Λµ & 2.0× 106 GeV. (3.8)

In order to consider the general list of all possible models, we present our results for

each interaction separately. For a large number of models, multiple such interactions will

be present, such that these results will be even more restrictive.

Electrons/photons. Electron interaction rates are suppressed by me

T , and photon inter-

action rates are suppressed by the loop factor e2

32π2 , such that these two heavily-constrained

interactions do not play a role in the thermal evolution of Goldstone bosons.

Pions. For Goldstone bosons to be in thermal equilibrium with pions and receive any of

the pion entropy redistribution, the coupling suppression scale must be Λ . 5× 106GeV.

This is illustrated in figure 5. The maximum possible Λ necessary is far below the bound

on Λ quoted above, and therefore the decoupling of the Goldstone must have happened

during or before the QCD phase transition, making the Goldstone not a viable candidate

for a contribution to g∗ in theories containing only pion interactions.

Muons. In the case of muon-only couplings, it is not possible to give well-defined initial

conditions for the Goldstone boson distribution function just prior to the recoupling of

the Goldstone boson to muons. For all reasonable initial configurations of the Goldstone

distribution function, the maximum contribution possible would result from thermalization

of the Goldstone bosons with muons, leading to a contribution of ∆g∗ = 0.26, or ∆Neff =

0.57. We plan to pursue more precise predictions in future work.

However, if these couplings are present in conjunction with couplings to pions, then it is

possible to study the decoupling of Goldstones from the SM, as the Goldstones had been in
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Figure 5. ∆g∗ due to a single Goldstone boson which interacts with only pions. The contribution to

g∗ at recombination is given as a function of the effective scale Λ, which suppresses this interaction.

The gray region for Λ & 5× 106 GeV corresponds to models which decouple during the QCD phase

transition. The provided values of ∆g∗ should therefore only be interpreted qualitatively in that

region. Supernova and star cooling constraints on this scenario limit Λ & 109 GeV, and so this plot

demonstrates that the Goldstone must have decoupled during or before the QCD phase transition.

thermal equilibrium in the era leading up to muon annihilation. In order for a Goldstone to

have received any entropy at all from SM annihilations following the QCD phase transition,

it must have coupled with Λ < 1.5 × 107GeV. This is illustrated in figure 6. While such

couplings are allowed for muon interactions, this range is below the pion bounds quoted

above, and therefore the Goldstone is not a viable candidate for a contribution to g∗ in

this scenario.

To summarize, there are no parts of the minimal, natural parameter space where

the Goldstones had been in thermal equilibrium with the SM through the QCD phase

transition which do not directly conflict with bounds coming from star and supernova

cooling. As such, the effects of Goldstone bosons on the CMB in the predictive part of the

parameter space are well below the sensitivity of the Planck satellite. One can, however,

have couplings to only the muon with Λ in the narrow window between 2.0× 106GeV and

1.5 × 107GeV, and still obtain a nontrivial contribution to ∆g∗, though it is not possible

to give well-defined, model-independent initial conditions for the Goldstone distribution

function in this scenario. Therefore, the only viable set of theories must contain a highly

specific hierarchy of couplings, such that interactions with muons are much stronger than

those with other SM fields present after the QCD phase transition, without the generation

of significant off-diagonal couplings.
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Figure 6. ∆g∗ due to a single Goldstone boson which interacts with at least pions and muons.

The contribution to g∗ at recombination is given as a function of the effective scale Λ, which

suppresses this interaction. The blue-gray region for Λ & 1.5 × 107 GeV corresponds to models

which decouple during the QCD phase transition. The provided values of ∆g∗ should therefore

only be interpreted qualitatively in that region. Supernova and star cooling constraints on this

scenario limit Λ & 109 GeV, and so this plot demonstrates that the Goldstone must have decoupled

during or before the QCD phase transition.

3.2 Spin-1
2
: light fermion

Natural models of light spin-12 fermions are made more easily than those containing light

scalar bosons. This naturalness can arise due to chiral symmetry, which corresponds to a

rotation of the field by an arbitrary phase, χ→ eiαχ. This symmetry permits any fermion

gauge and kinetic terms, but forbids Majorana mass terms. Even if chiral symmetry

is explicitly broken by the presence of a small fermion mass, corrections to this mass

parameter are in general proportional to the original value, eliminating the need for any

fine-tuning. Similarly, Dirac mass terms can be protected by an axial symmetry.

Because of this protective symmetry, there are many allowed interactions for light

fermions. The possible models include interactions with SM gauge bosons, either through

direct gauge couplings or dipole moments, as well as interactions with SM fermions through

effectively pointlike operators, which result from the exchange of heavy intermediary

particles.

3.2.1 Gauge interactions

One possibility is that a new light fermion χ is charged under the SM gauge groups. The

coupling strength of a fermion in any representation of SU(3)C or SU(2)L is completely
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fixed by the representation theory of these groups. While χ could näıvely have any value

of hypercharge, the prospect of gauge unification indicates that hypercharge values are

also discrete. Any new fermion in non-trivial representations of the SM gauge groups will

therefore couple with the same strength as the SM fermions. Light species which possess

electromagnetic or color charge are completely excluded. The only remaining option is

a neutral fermion, which must couple to the Z, but these light fermions are excluded by

measurements of the Z-width [66]. As such, light fermions in any non-trivial representation

of the SM gauge groups are excluded as potential candidates for contributions to g∗.

However, if χ instead coupled to some new gauge boson, kinetic mixing between this

new field and the SM gauge bosons would lead to mixing-suppressed SM gauge couplings

for χ. Any such ‘millicharged’ light fermion therefore requires the existence of a new gauge

boson, which would also contribute to g∗. We consider the details of new gauge bosons and

the resulting millicharged interactions in subsection 3.3.

3.2.2 Dipole and anapole moments

While a new fermion cannot carry SM charges, χ could still interact via dimension-5 dipole

moment operators. The only nontrivial dipole interactions between χ and SM gauge bosons

are those with the hypercharge gauge boson, which are of the form

L ⊃ − 1

Λ
BµνχLσ

µνχc
R + h.c., (3.9)

where the structure of these operators is such that we must introduce two new Weyl

fermions, χL and χc
R. These interactions can arise from loops involving heavy charged

intermediaries, whose mass and couplings set the dipole moment scale Λ.

However, the charged intermediary loops that generate this operator necessarily

preserve only the vector U(1) global symmetry of χ, which is precisely the symmetry

structure allowed by a Dirac mass term mχLχ
c
R. Therefore, any UV completion reducing

to the theory containing the Lagrangian terms of eq. (3.9) must also allow for a Dirac

mass term. It is not apparent how to create a UV completion of this model which induces

only a dipole term corresponding to large mass scales, while generating the Dirac mass

. eV in a natural fashion. Experimental constraints from star cooling observations [71]

currently limit χ dipole moments to

Λ & 109 GeV. (3.10)

Due to the resulting large separation of scales in this highly constrained EFT, we do

not consider a theory with new light species possessing a SM dipole moment to be a viable,

natural candidate for a contribution to ∆g∗.

A similar interaction term corresponds to the anapole moment and charge radius op-

erators, which are of the form

L ⊃ − 1

Λ2
χ†σ̄µχ∂νBµν . (3.11)

Such interactions are dimension-6 and only require the existence of a single new Weyl

fermion χ. New species with such interactions were discussed in the context of dark
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matter in [72]. Unlike dipole moments, such anapole moment interactions do not break

chiral symmetry and are therefore compatible with new light or massless species, not just

nonrelativistic dark matter.

Assuming vanishing boundary terms, the anapole interaction can be rewritten as

L ⊃ 1

Λ2
∂µ

(

χ†σ̄µχ
)

∂νB
ν +

1

Λ2
χ†σ̄µχ∂2Bµ, (3.12)

which then results in couplings between χ and both the photon and Z. Similar to the case

of Goldstone bosons, processes involving the first interaction term will be proportional to

mχ, as this interaction involves the divergence of a current which is conserved in the limit

mχ → 0. As mχ ≪ T for all cases we consider, such processes are greatly suppressed and

this particular interaction is irrelevant to our discussion.

The second interaction term is not similarly suppressed but instead has the form

of a gauge coupling with additional momentum dependence. The dominant process

involving this interaction is the exchange of a photon between χ and SM fermions. In such

processes, the extra powers of momentum in this operator will cancel with those of the

photon propagator, resulting in an amplitude of the same form as four-fermion interactions

between χ and the SM. While the full models generating four-fermion interactions are

very different from those which generate anapole moments, the phenomenology and the

resulting bounds on the suppression scale Λ will be very similar for both models. The

results for four-fermion interactions, which are discussed in the following subsection, can

therefore easily be applied to models involving anapole moment interactions.

3.2.3 Four-fermion interactions

Another possibility for EFT interactions of light fermions is the dimension-6 couplings of

a single Weyl fermion χ or a Dirac pair of fermions X to SM fermions. Such couplings

can arise due to the exchange of a massive scalar or vector boson. Spontaneously broken

gauge symmetries, which generate such massive interactions, are present in a large class

of theories. Two well-motivated examples are the addition of light sterile neutrinos which

couple to the SM via a new massive gauge boson Z ′, corresponding to a spontaneously

broken U(1) [73–76], and theories where the axino, the supersymmetric partner of the

axion, remains light and interacts with the SM via other heavy superpartners.

As we will see below, light Weyl fermions with dimension-6 couplings are strong

candidates for significant contributions to g∗. Interactions suppressed by scales Λ ∼ 2TeV

will keep new species in equilibrium until after the QCD phase transition, leaving such

species with a detectable energy density at recombination. The strongest independent

bounds on such models are placed by collider experiments, which will continue to probe

the relevant parameter space. These theories will then potentially be discovered or fully

excluded with the LHC.
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In Dirac notation, the possible four-fermion operators present after electroweak sym-

metry breaking (EWSB) take four forms,

1

Λ2
X̄XΨ̄Ψ (Scalar),

1

Λ2
X̄γ5XΨ̄γ5Ψ (Pseudoscalar),

1

Λ2
X̄γµXΨ̄γµΨ (Vector),

1

Λ2
X̄γµγ5XΨ̄γµγ

5Ψ (Axial),

(3.13)

where Ψ corresponds to any SM fermion and the suppression scale Λ arises from the mass

and couplings of the exchanged intermediary. We instead discuss the couplings of a Weyl

fermion χ below, as our results can simply be scaled by a factor of 2 to account for the two

fermions in the Dirac case. As all four operators are dimension-6, the interaction rate will

drop more quickly thanH, leading to the decoupling of χ from the SM as the universe cools.

Couplings of this new fermion to quarks can induce couplings to pions in the low-energy

theory. However, any interaction arising from the scalar or pseudoscalar operators will not

be protected against strong renormalization effects, such that we cannot make precise

theoretical predictions for ∆g∗. If such a species is independently discovered, potentially in

collider experiments, and these interactions are precisely determined, a detailed calculation

could then be performed. In addition, the vector or axial interactions are such that mesons

will have no charge under such couplings, with no induced pion couplings in the EFT.6

For each of these interactions, therefore, we can scan over possible effective suppression

scales. The resulting contribution to g∗ as a function of Λ is given in figure 7 for only the

vector coupling, as the results for all four models are equivalent to within 5%. Therefore,

any distinction between these models is below the experimental resolution of Planck.

We also assume identical couplings to electrons and muons. For the possible case of

flavor-specific couplings, the resulting ∆g∗ will be the same as the flavor-blind case, where

the equivalent flavor-blind Λ is the smallest flavor-specific Λ.

The strongest experimental constraints on such couplings are indicated in figure 7

for both electron and quark interactions. These bounds come primarily from /ET +

monojet/monophoton searches at LEP and the LHC, again assuming universal coupling

to quarks. The LHC bounds specifically came from 10 fb−1 of data, so we expect these

experimental results to improve in the near future. Details of these exclusion limits can be

found in [77–79]. Couplings to muons are largely unconstrained in a flavor-specific model,

but in the universal coupling case, constraints on any species would therefore limit the

muon interactions.

As we see, theories with effective suppression scales Λ & 5TeV decouple prior to the

muon entropy redistribution and are therefore predominantly affected by the QCD phase

6Vector or axial interactions between pions and χ would result from models with couplings which are

not flavor-blind. Such couplings can only arise from the spontaneous breaking of nonabelian gauge groups

which do not commute with flavor symmetry. Such models require a significantly larger particle content,

thus violating our minimality requirement.
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Figure 7. ∆g∗ due to a single Weyl fermion which interacts with the SM via the exchange of a

massive vector boson. The contribution to g∗ at recombination is given as a function of the effective

scale Λ, which suppresses this interaction. Constraints on this operator are given for interactions

with electrons (purple) and quarks (blue), which come from the LEP and LHC collision experiments.

The green band indicates couplings which are 95% excluded by a Planck result of g∗ = 3.50± 0.12.

The gray region for Λ & 5TeV corresponds to models which decouple during the QCD phase

transition. The provided values of ∆g∗ should therefore only be interpreted qualitatively in that

region. The results for scalar, pseudoscalar and axial couplings are effectively the same. The results

for a Dirac fermion are double those given in this figure, indicating that they must have decoupled

during or before the QCD phase transition to be compatible with the Planck data.

transition. As such, our results beyond those scales can only place an approximate upper

bound on the possible contribution ∆g∗. However, there is a range of potential suppression

scales below 5TeV but above the current experimental bound which is compatible with the

constraints coming from a Planck measurement of g∗ = 3.50± 0.12. A model with a light

Weyl fermion with dimension-6 interactions with SM fermions is therefore a viable model

for substantial contributions to g∗. Our results indicate that a Dirac fermion contributes

double what a Weyl fermion does at the same Λ, and that scalar, pseudoscalar, vector and

axial vector operators give the same results to within 5%. Consequently, Dirac fermions

must have decoupled before or during the QCD phase transition in order to be compatible

with the data from Planck. Future results from the LHC will continue to probe these

interaction scales, providing an independent means of discovery or exclusion of such models.
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3.3 Spin-1: gauge boson

A massless spin-1 particle has fewer degrees of freedom than a massive one, and thus pertur-

bative quantum effects cannot generate a mass, rendering a massless spin-1 particle tech-

nically natural. These gauge bosons are then automatic candidates for new light species.

While gauge bosons can potentially acquire a mass through the Higgs mechanism, masses at

scales . eV are generically unnatural, unless there is a more complicated particle content.7

However, such non-minimal solutions are beyond the scope of this work, so we assume that

any additional vector bosons are precisely massless. Similar to the case of a Goldstone

boson, the corresponding gauge structure automatically restricts the available interactions

for light spin-1 particles. The only possible operators are direct gauge couplings or dipole

moment interactions with SM fermions, as well as kinetic mixing with SM gauge bosons.

3.3.1 Kinetic mixing and gauge interactions

As we will show, new massless gauge bosons with renormalizable couplings to SM fermions

are viable candidates for contributions to g∗. Long-range force constraints greatly restrict

the possible direct couplings of SM fermions charged under new gauge groups, such that

these interactions must be too weak to contribute to g∗ [80]. However, such couplings can

still arise due to kinetic mixing between the new and SM gauge fields. For such mixing

to give rise to non-negligible ∆g∗, there must also be new fermions charged under the new

gauge group. The additional fermions obtain millicharged couplings to SM gauge fields,

with astrophysical constraints such that these fermions must have masses &MeV. Such

models are sensitive to the details of the full UV theory, as the hidden sector must come into

equilibrium with the SM after originally being completely decoupled. The class of viable

models is then constrained to a particular region of model-dependent parameter space.

For minimality, we consider the addition of a single new U(1) gauge boson A′, with

associated field strength A′µν . The new field A′ can kinetically mix with the hypercharge

gauge boson B with the following operator

L ⊃ − ǫ
2
A′µνBµν , (3.14)

where ǫ is simply a dimensionless mixing parameter. Such hidden sector U(1) gauge bosons

which mix with hypercharge arise naturally in many models [81–89].

This term indicates that our originally defined fields A′ and B are not propagation

eigenstates, and must be redefined to diagonalize the propagation basis. If both gauge

bosons are precisely massless, then there is always a linear combination of gauge fields

which does not couple to the SM. We can always define this linear combination as A′ and

the orthogonal combination as B, such that A′ does not couple to the SM.

However, if A′ originally interacts with some new fermion χ, any field redefinition will

generically result in couplings between χ and the SM gauge bosons. The new fermion can

7It is, of course, possible to Higgs the group at the TeV-scale, but have such a small gauge coupling that

its mass is sub-eV (g . 10−12). However, such a small gauge coupling implies that it will only recouple at

very low temperatures, and even then, only to neutrinos. As neutrinos would have already decoupled from

the SM, such interactions can only redistribute the neutrino energy density and cannot increase the total

energy density. Thus there are no contributions of such a model to g∗.
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then act as an intermediary between A′ and the SM, keeping all species in equilibrium.

The most minimal theory involving new direct gauge couplings must contain both a new

gauge boson A′ and a new Dirac fermion χ, with the resulting interaction terms

L ⊃− ǫgA cos θW χ̄ /Aχ− ǫgA sin θW χ̄ /Zχ− gAχ̄ /A
′χ. (3.15)

We see that after the field redefinition χ interacts with both the photon and Z, with

interaction strength that depends on the coupling gA of χ to A′, the original mixing ǫ

between A′ and B, and the weak mixing angle θW .

This particular choice of basis is technically arbitrary. It is also possible to redefine

gauge fields such that the SM fermions possess millicharged couplings to A′ and χ possesses

no couplings to the photon. The physics must be and is independent of the choice of

basis. These rotations do not affect any physical observable, provided the observable is

phrased in a basis-independent manner. Thermodynamic observables such as the overall

energy density of massless gauge bosons, and therefore their contribution to g∗, are also

basis-independent. We specifically choose to work in the basis of eq. (3.15), where A′ does

not interact with the SM, because the resulting early universe thermodynamics are more

transparent. However, it is important to stress that the same results are true, but less

obvious, in other bases.

The dominant interactions between χ and the SM are dimension-4 gauge couplings with

the photon, as any interactions with the Z are suppressed at temperatures below the weak

scale. Dimensional analysis then implies that at temperatures large compared to mχ, the

interaction rate is linear in temperature, Γχ ∼ T . Similar to the Goldstone couplings to lep-

tons, this means that at high temperatures χ will be fully decoupled from the SM and then

potentially recouples as the universe cools and the expansion rate drops when ǫ≪ 1. Unlike

the Goldstone case, χ is always interacting with A′, provided the A′ coupling is sufficiently

large, such that χ and A′ can maintain equilibrium distributions. Therefore, the hidden

sector has a well-defined temperature. The precise ratio of temperature of the hidden sector

to the temperature of the SM prior to the recoupling of the two sectors is model-dependent,

as more complicated hidden sectors will generally result in a wide range of possible tem-

peratures. Consequently, we choose to explore a wide range of such initial ratios.

The thermodynamics are sensitive to whether A′ and χ are in equilibrium, rather

than the precise coupling gA, so we can simply fix the value of gA to be sufficiently large,

without loss of generality. We select the value g2A = 0.1, but our final results can be simply

related to other values of gA. Once gA is fixed, there are only three remaining parameters

that can change: the kinetic mixing ǫ, the new fermion mass mχ, and the ratio of initial

temperatures Thid/T .

Multiple star and supernova cooling observations, as well as various collider results,

place significant constraints on millicharged fermions (for details see [84, 90]). Specifically,

models with mχ . 100 keV are restricted to ǫ . 10−13, such that these species will never

thermally couple to the SM for all reasonable initial values of Thid. Light millicharged

fermions can therefore not directly contribute to g∗, but more massive fermions can instead

indirectly alter the CMB by maintaining equilibrium between the SM and A′, which then
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contributes a nonnegligible ∆g∗. However, for this to occur, we need mχ . 150MeV,

such that χ is still present below the QCD phase transition. This therefore limits us

to a very narrow range of allowed masses mχ for models of millicharged species which

affect the CMB. For models of this type, χ must couple to the SM prior to or during its

annihilation, otherwise the hidden sector will again never couple to the SM. This limits

the possible values for ǫ and Thid for any given mass mχ, in addition to constraints placed

by independent observational and experimental bounds.

To illustrate the general behavior of these models, we consider four possible fermion

masses within the allowed mass range. The corresponding results are shown in figure 8. In

each case, the millicharged fermion has mass mχ & 10MeV, which are unconstrained by

star and supernova cooling observations and therefore have the largest available ranges for

ǫ and Thid. The lowest mass shown in figure 8 is actually mχ = 50MeV, as the results are

equivalent for masses between 10-50MeV. For each of these cases, we scan over possible

values for the mixing parameter ǫ, as well as possible values for the original hidden sector

temperature Thid when the SM temperature T = 200MeV. We specifically consider Thid
below the SM temperature T , assuming a minimal hidden sector model containing less

particle content than the SM. The hidden sector will thus be colder due to fewer entropy

redistributions. This procedure involved a modified version of the original code, the details

of which can be found in appendix B.

As we see in figure 8, there is a basic pattern to the dependence of ∆g∗ on both ǫ

and Thid. For very small values of ǫ, the hidden sector is never coupled to the SM, and A′

receives all of the χ entropy redistribution. The contribution to g∗ is then dependent solely

on the energy available in the hidden sector. The energy density increases as the initial

temperature increases relative to the SM temperature. Initial temperatures of Thid & 4
5T

are excluded by a Planck result of g∗ = 3.50± 0.12.

For increasing values of ǫ, the hidden sector begins to couple with the SM, until at large

values the two sectors quickly become fully coupled, regardless of the initial temperature

Thid. In this regime, the contribution of A′ to g∗ is precisely that of a new gauge boson which

is originally coupled to the SM then decouples before the electron annihilation, ∆g∗ ≈ 0.5.

In the transitional region from completely decoupled to completely coupled, the contri-

bution rapidly climbs to ∆g∗ ≈ 1, then rapidly decreases to the fully coupled limit for large

ǫ. This enhanced contribution to g∗ corresponds to a fortuitous combination of coupling

and mass values, in which A′ participates in the muon entropy redistribution but is able

to receive all of the χ entropy. This occurs because χ briefly couples to the SM, sharing

the muon entropy, then quickly decouples as the muon and χ number densities begin to

plummet, such that the SM receives none of the χ entropy. The result is a superheated

population of A′ bosons, which contain a large fraction of the total energy density.

While the majority of this behavior has been largely mχ-independent, we do observe

a slight decrease in the transitional region values of ∆g∗ as the χ mass increases. Larger

fermion masses result in the hidden sector decoupling earlier from the SM, and therefore

receiving less of the muon entropy. Finally, there are no major distinctions between

mχ ∼ 20MeV and mχ ∼ 50MeV, as these masses are proximate to neither the muon nor

the electron mass.
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Figure 8. ∆g∗ due to a single gauge boson which couples to a new fermion with mixing-induced SM

gauge couplings. The contribution to g∗ at recombination is given as a function of both the mixing

parameter ǫ and the hidden sector temperature Thid when the SM temperature T = 200MeV.

Results are presented for (a) mχ = 50MeV, (b) mχ = 75MeV, (c) mχ = 100MeV, and (d)

mχ = 125MeV. Blue and purple regions to the left of the black line are allowed by a Planck

measurement of g∗ = 3.50 ± 0.12, although these regions were never in thermal equilibrium with

the SM. Regions to the right of the black line are excluded by this result from Planck.

For initial hidden sector temperatures below T
20 , the behavior will be largely unchanged

from the low-temperature results presented here. Theories with small mixing parameters

will remain fully decoupled and contribute negligibly to g∗, while theories with larger ǫ

values will rapidly reach equilibrium with the SM, such that their contribution ∆g∗ is

insensitive to the initial temperature.

We find that for any value of the initial temperature, ǫ is restricted to be . 10−8 when

there is a Dirac fermion χ with masses between 10−150MeV, forcing the SM and the hidden
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sector to never have been in thermal equilibrium. In addition, a scenario withmχ . 10MeV

is inconsistent with constraints from star and supernovae cooling, and one where mχ &

150MeV causes the A′s to decouple before or during the QCD phase transition. The result

in the absence of χ is the same result as obtained by raising the χmass and integrating it out

of the theory; there exists a basis in which there are no couplings between the hidden sector

and the SM, thus preventing the thermalization of A′. The scenario of new gauge bosons

which mix with SM hypercharge is therefore further constrained by results from Planck.

3.3.2 Dipole moments

While it is always possible to eliminate any mixing-induced renormalizable couplings be-

tween SM fermions and a new unbroken gauge boson A′
µ, there could generically still be

higher-order nonrenormalizable couplings after integrating out A′-SM interaction media-

tors in the full theory. If the low-energy effective theory contains no light species charged

under U(1)A′ , then the dominant interactions between A′ and the SM are of the form

L ⊃ − 1

M2
A′

µνψ
c
Rσ

µνh†ψL + h.c., (3.16)

where A′µν is again the associated field-strength tensor and M is the mass scale associated

with the heavy species integrated out of the theory. After EWSB, the expansion of the

Higgs field about its expectation value v will lead to dipole moment interactions of the form

L ⊃ − v

M2
A′

µνψ
c
Rσ

µνψL + h.c.→ − 1

Λ
A′

µνψ
c
Rσ

µνψL + h.c., (3.17)

where we have now defined an effective dipole scale Λ ≡ M2

v . Without knowledge of the

full UV theory, it’s possible for the resulting dipole interactions to have generic flavor

structure, rather than be flavor-blind. We consider all such structure in this section.

The induced dipole couplings for pions must involve a composite pion operator which

is antisymmetric in its two Lorentz indices. If the quark dipole moments are flavor-blind,

such that the up and down quarks have the same couplings to A′, then all such antisym-

metric operators vanish. If, instead, the dipole couplings are not flavor-blind, interactions

between A′ and pions will potentially appear. However, there is no symmetry protecting

against renormalization of such operators. We then expect these pion interactions to be

strongly renormalized, thereby preventing us from making robust predictions about such

contributions to g∗. We therefore focus solely on the dipole couplings of A′ to leptons.

With the interaction Lagrangian of the form

L ⊃ − 1

Λf
Ψ̄fσ

µνΨfA
′
µν , (3.18)

where Ψf can either be an elementary lepton or a composite nucleon, we obtain the bounds

Λe & 2.0× 1010 GeV,

Λp,n & 9.8× 109 GeV.
(3.19)
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These bounds again come from star and supernova cooling, and details can be found

in [67, 91, 92]. There are also constraints on off-diagonal couplings Λµe coming from

µ→ e+ /E [91], which limit such couplings to

Λµe & 2.3× 109 GeV. (3.20)

For direct muon constraints, we again calculate the approximate supernova cooling

bounds

Λµ & 2.7× 106 GeV. (3.21)

We find that the electron-only and electron-muon off-diagonal coupling scenarios are

constrained to decouple before or during the QCD phase transition, preventing A′ from

contributing to g∗ in this part of parameter space. However, when the coupling of A′

to those species in the SM present after the QCD phase transition is dominated by its

coupling to the muon, there is still a potentially allowed range for Λµ. Our results for

muon-dominated couplings are shown in figure 9. We find that Λµ < 107GeV in order

for the A′ to remain coupled after the QCD phase transition, and consequently contribute

to g∗. This requires a significant hierarchy between the electron-A′ coupling and the

muon-A′ coupling, but such a hierarchy is compatible with an MFV-like framework, as

the hierarchy does not need to be much larger than ye/yµ. Values of Λµ . 106GeV are

inconsistent with a Planck result of g∗ = 3.50 ± 0.12, providing constraints which are

approximately equivalent to those placed by supernova observations.

3.4 Spin-3
2
: gravitino

Any model of supergravity contains the gravitino, which is the unique elementary spin-32
particle. If supersymmetry were unbroken, the gravitino would be precisely massless. In a

method similar to that of gauge symmetries, the spontaneous breaking of supersymmetry

gives rise to a massless fermion, the Goldstino, which then becomes the longitudinal mode

of the gravitino. As a result, the gravitino acquires a massm3/2 ∼ F
Mpl

, where F is generally

the largest supersymmetry breaking scale squared in the theory. The gravitino can poten-

tially remain a light degree of freedom for sufficiently low supersymmetry-breaking scales.

Näıvely, the gravitino would interact solely with gravitational strength and would

therefore decouple at very high temperatures. However, at energy scales far above

the gravitino mass, the Goldstino equivalence theorem ensures that the longitudinal

components of the gravitino interact with Goldstino strength, potentially maintaining

equilibrium with the SM down to lower temperatures. As is well known [93], the Goldstino

couplings to the SM are of the form

L ⊃ − 1

F 2
χ†σµ∂νχT

µν , (3.22)

where Tµν is the stress-energy tensor comprised of SM fields. While this coupling is no

longer gravitationally suppressed, it is still a dimension-8 operator, such that the gravitino

will still decouple above the QCD phase transition for all viable supersymmetry-breaking

parameters F and not contribute significantly to g∗.
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Figure 9. ∆g∗ due to an A′ which interacts primarily with muons. The contribution to g∗ at

recombination is given as a function of the effective scale Λ, which suppresses this interaction.

Constraints on this muon interaction resulting from observations of supernova cooling are given in

purple, restricting Λ & 2.7 × 106. The gray region for Λ & 107 GeV corresponds to models which

decouple during the QCD phase transition. The provided values of ∆g∗ should therefore only

be interpreted qualitatively in that region. The green region corresponds to values of Λ excluded

by a Planck result of g∗ = 3.50 ± 0.12, which are comparable to, but slightly weaker than, the

constraints placed by supernova cooling.

3.5 Spin-2: graviton

The unique elementary spin-2 particle is the graviton. The graviton interacts solely with

gravitational strength, such that it either decouples from the SM at very high temperatures

or is never even in thermal equilibrium. Similar to the discussion of subsection 2.4, the

contribution to g∗ of gravitons which decouple at such large temperatures is well below

the sensitivity of Planck.

3.6 Models with light masses

Up to this point, we have considered any new species to be precisely massless, which

allows their contribution to g∗ to be directly computed from the distribution function near

recombination. This approximation is valid for any particles with massesm≪ eV, for these

particles will still be fully relativistic during and shortly after the formation of the CMB.

This range of validity can be explicitly seen in figure 10, which shows the ratios of both the

energy density and pressure of a massive particle which decouples at high temperatures to

those of a massless particle which decouples at the same high temperature, all as a function
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Figure 10. Ratios of the (a) energy density ρ and (b) pressure P of a massive particle which

decouples at some high temperature to those of a massless particle which decouples at the same

temperature, expressed as a function of m
T
, where m is the particle mass and T is the temperature

of interest. These calculations assume that the particle decoupled such that it maintained an

equilibrium distribution, specifically the Bose-Einstein (blue) or Fermi-Dirac (red) distribution.

At temperatures below the mass of the particle, the pressure of the massive particle rapidly drops,

while the energy density rapidly becomes much larger than that of a massless particle. The resulting

deviations of physical observables, such as the expansion rate H, can be extracted from these ratios

to see the sensitivity of such observables to the particle’s mass.

of the particle’s mass over the relevant temperature. For any given temperature, such as

that of recombination, we can then use these simple ratios to determine the range of masses

which can be treated as negligible, such that our massless approximation is valid.

It is still possible for there to be natural models with m ∼ eV. One example is the

addition of 1-3 light sterile neutrinos, which are motivated by multiple short baseline os-

cillation results suggesting the existence of neutrino mass splittings distinct from those
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required to fit solar and atmospheric neutrino data (for details, see [94] and references

therein). Various analyses of these sterile neutrino models can be found in [95–103].

The presence of nonzero masses alters the relation between the energy density and

the pressure of a species, such that the full effects cannot be captured by a single number

∆g∗. In order to interpret the constraints of CMB measurements on species which become

nonrelativistic during recombination, we must consider the resulting differences between

Silk damping and early ISW. Both of these processes are sensitive to the precise evolution

of H, whose time-dependence is sensitive to the mass of new light species. In addition,

there are new mass-dependent effects which can arise, such as alterations to the matter

power spectrum and to gravitational lensing of the CMB, which are similar to the effects

caused by nonzero neutrino masses. Such discussion is beyond the scope of our current

work, but more details can be found in [21, 104].

Silk damping is primarily sensitive to the overall expansion rate, and therefore the

overall energy density, near the point of recombination. Any additional light species will

add more energy density than is predicted solely by the SM. However, if such species

have non-negligible masses, these new particles behave as relatively hot dark matter, as

they will have become nonrelativistic by the modern era. Consequently, they contribute

to measurements of ΩDMh
2 today, whereas they did not impact the CMB in the same

fashion as standard cold dark matter. The exact contribution of a massive species to Silk

damping is therefore sensitive to the amount of dark matter in our universe, which is

dominated by uncertainty in the overall dark matter content, and a more careful analysis

of the effects of new light species is needed.

Similarly, the early ISW effect is sensitive to the radiation/matter ratio following

the formation of the CMB. New massive species will be transitioning to a nonrelativistic

distribution during this period, behaving as neither pure radiation nor pure matter.

Again, the exact prediction of early ISW effects is also dependent on the precise energy

density of cold dark matter.

The main complication to the calculation of ∆g∗ for such models arises from the

use of the specific ΛCDM framework in calculating cosmological parameters from CMB

data, in which the mass of dark matter is significantly higher than the temperature of

recombination. This leads to model-dependence in the reported bounds, which do not

necessarily exclude models which fall outside of this framework.

It is important to stress that the difficulty arises due to uncertainty in the precise ex-

pansion rate and dark matter content, not due to any calculational uncertainty in the new

light species sector. For example, one can precisely calculate the decoupling of light sterile

neutrinos which potentially accomodate the recent short baseline results. We used both the

normal and inverted hierarchy best-fit models of [105], which includes two light sterile neu-

trinos, and calculated the evolution of the two mostly-sterile mass eigenstates. We find that,

for both hierarchies, these species decouple from the SM near the end of the muon entropy

redistribution, such that they would contribute ∆Neff ≈ 1.9 if they were massless. However,

due to their non-negligible mass, the effects of these particles on the CMB is not fully char-

acterized simply by a contribution to Neff or g∗. In order to fully probe the effect of models

such as this on the CMB, a more general analysis of the CMB anisotropy data must be
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taken, which includes the possibility of nonzero masses for various additional light species.

Such an analysis is beyond the scope of this paper, but will be pursued in future work.

3.7 Models without new light species

Up to this point, we have considered the addition of new light species to the SM in order to

increase the total relativistic energy density, ρrel, at recombination. The other possibility

is a modification of the distribution functions of light species already present in the SM.

The distribution function of photons is well-established as Bose-Einstein by measurements

of the CMB, such that the energy density of photons at recombination is known to high

precision. The only remaining option is therefore a modification of the distribution func-

tion of neutrinos. If this change were to occur while neutrinos were still in equilibrium

with the SM, then interactions with SM species would thermalize the distribution func-

tions, washing out any original alteration. Therefore, new physics must only affect the

neutrino energy density at temperatures below the MeV scale. Here we briefly discuss the

possible mechanisms which can alter the distribution function of neutrinos to increase g∗
at recombination: a neutrino asymmetry, interactions with new massive species, and new

interactions between neutrinos and the remaining SM species.

A simple modification to the distribution function of a species is the introduction of

a chemical potential µ, such that

f(t, E) =
1

e(E−µ)/T + 1
, (3.23)

for fermions, with µ → −µ for antifermions. Such a chemical potential results in an

asymmetry between the number of particles and antiparticles. Once a species has fully

decoupled and freely evolves, the Boltzmann equation constrains f to remain solely a

function of a(t)p, such that ξ ≡ µ
T is then time-independent. We can then express any

resulting effects in terms of this constant ξ.

Although the neutrino distribution function is no longer Fermi-Dirac after decoupling

from the SM, we shall assume it is for illustrative purposes. The total energy density stored

in neutrinos and antineutrinos with nonzero ξ is given by

ρν = −3NνT
4
ν

π2

(

Li4(−eξ) + Li4(−e−ξ)
)

=
7Nνπ

2T 4
ν

120

(

1 +
30ξ2

7π2
+

15ξ4

7π4

)

. (3.24)

The presence of a nontrivial chemical potential for neutrinos would therefore increase

the energy density, thereby increasing g∗. The electron neutrino chemical potential affects

the neutron-to-proton ratio prior to the start of BBN through reactions of the form p+ ν̄ →
n + ē. This ratio directly affects the helium-4 abundance after BBN, and so bounds can

be placed on the electron neutrino chemical potential. Furthermore, since all neutrino

mass eigenstates contain some wavefunction overlap with the electron neutrino, all of the

neutrino mass eigenstate chemical potentials are constrained. The result is ξ . 0.1 for each

of the three neutrino species ([106, 107] and references therein).

A second possibility is the interaction of some new massive species with neutrinos.

This heavy species can alter the neutrino distribution through annihilation or decay [108].
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For the case of annihilation, the new species must interact predominantly with neutrinos

and possess a mass . 10MeV, such that the resulting entropy redistribution occurs after

neutrinos decouple from the SM. For the case of decay, the heavy species must have fully

decoupled at some higher temperature, leaving a significant relic energy density, with a

decay rate such that it decays predominantly to neutrinos after neutrino decoupling but

prior to recombination. These decays would then significantly alter the neutrino distribu-

tion, creating a large number of neutrinos with energies comparable to the particle mass.

For both cases, the mass, number density, and coupling to neutrinos for this new species

determine the precise contribution to g∗, making these scenarios highly model-dependent.

Finally, the existence of higher-dimensional operators coupling the neutrinos to other

SM species could potentially maintain thermal equilibrium between neutrinos and the

SM until lower temperatures. A later point of neutrino decoupling would result in a

larger share of the electron entropy being distributed to neutrinos, raising their energy

density. The possible interactions with the lowest dimensionality are electromagnetic

dipole moments or four-fermion interactions between neutrinos and electrons, which are

significantly constrained by star cooling [71] and the LEP collider [79].

4 Conclusions

The Standard Model of particle physics represents our current knowledge of the quantum

field theory that best describes all short-distance interactions down to 10−17 cm. Knowing

that this model is incomplete leads us to search for fundamental particles outside the

Standard Model. While the search for heavier particles continues at colliders, we focus

on another class of new physics — light, stable particles — which can be probed via

their effects on cosmology, most strikingly on the Cosmic Microwave Background. In this

article, we have surveyed what we call the most ‘natural’ (or least contrived) models and

their parameter spaces. By doing so we lay out the reach of current and future experiments

detailing the power spectra in the Cosmic Microwave Background and other probes of the

initial density perturbations and cosmological parameters.

We have been able to analyze the effects on the radiation density of the universe

of new light degrees of freedom which decouple after the QCD phase transition. This

includes species that decouple at ‘complicated’ cosmological times, such as the time around

which the muon becomes non-relativistic. We are able to compute the energy density, and

consequently ∆g∗, to an accuracy of 1%. This allows us to place constraints on the couplings

in those well-motivated BSM effective models which contain new light degrees of freedom,

which are competitive with constraints coming from other areas of physics. We do this

using a program which solves the Boltzmann and Friedmann equations for the case of one

new light species, calculating the resulting evolution of that species’ distribution function,

while approximating the SM species using fully thermalized equilibrium distributions and

only considering the effects of leading order interaction terms. Using these calculations, we

have demonstrated the ability of Planck and future experiments to place exclusion limits

on all natural, minimal models with new light species. The compatibility of each model

with the recent Planck results is given in table 1.
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Model Operator Results

Goldstone bosons 1
Λ∂µφΨ̄γ

µγ5Ψ Flavor-blind: decouple during/before

QCD PT

Muon-only: Λ > 2× 103TeV

Four-fermion V 1
Λ2χ

†σ̄µχΨ̄γµΨ Weyl: Λ > 1TeV

(S, P, A same to 1
Λ2 X̄γ

µXΨ̄γµΨ Dirac: Λ > 5TeV

5%; see text)

U(1)′ ǫeχ̄ /Aχ ǫ < 10−8 for 10MeV ≤ mχ ≤ 150MeV

mχ > 150MeV: decouple during/before

QCD PT

A′-dipole 1
ΛA

′
µνΨ̄σ

µνΨ Flavor-blind: decouple during/before

QCD PT

Muon-only: Λ > 3× 103TeV

Massive Particles Any Inconclusive; mass-dependent

(e.g. Sterile Neutrinos)

Table 1. Compatibility of those natural, minimal models considered here with the recent results of

the Planck satellite, g∗ = 3.50± 0.12 and Neff = 3.30± 0.27 [21]. While the current Planck results

are in tension with other observational measurements, future experiments will greatly improve the

precision and reach of these exclusion limits.

Higher levels of calculational accuracy could be achieved if we used a different

numerical algorithm which was better adapted for the integro-differential equations

considered in this paper, or used a larger and finer momentum grid. In addition, loop

corrections to the amplitudes, three-body final states, and finite-temperature QFT effects

all contribute at the 0.1% level. If much higher precision is ever achieved observationally,

potentially through next-generation polarization measurements, then these improvements

would be warranted. Such a high-precision measurement of g∗ would better reveal degrees

of freedom which decouple before or during the QCD phase transition. In such a scenario,

this measurement, combined with independent measurements of the nature and couplings

of a new light degree of freedom could potentially even allow us, in this way, to probe the

structure of the QCD phase transition.

The future work we intend to pursue is the inclusion of the mass effects on different

observables in the Cosmic Microwave Background. While this is only relevant in a narrow

mass range (close to recombination temperatures), it turns out to be quite important for a

number of specific models, such as those of sterile neutrinos. The more accurately we can

describe their impact on the ISW effect and on Silk damping, the greater the possibility

of finding a ‘smoking gun’ for such models.

If we coarsely divide the types of possible undiscovered particles into four types, catego-

rized by stable or unstable and light or heavy, this work is an attempt to help push forward
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our probe of one of these types — new stable light particles. As the challenge to build new,

more powerful high-energy colliders intensifies, it is exciting to see this new frontier mature

as an additional source of information about the world beyond the Standard Model.
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A Notations and conventions

We take the metric signature to be (+,−,−,−). We set ~ = c = kB = 1 and give

temperatures in units of energy. We use fπ ≈ 93MeV. We useMpl ≈ 1.22×1019GeV, with

G = M−2
pl . a(t) represents the scale factor of the universe. We use both Weyl and Dirac

notation for fermions, depending on need. Where there is an ambiguity, we use capital

Ψ and X for Dirac spinors, and lowercase Greek ψs and χs with subscripts L and c
R for

Weyl spinors. All of our Weyl spinors are left-handed. We use the notation of (the mostly

minus version of) [64] for two-component spinor Feynman rules. The SM Higgs doublet is

called h, and SM fermions are generically referred to as ψ, when not referencing a specific

fermion. All BSM light fields not coming from special UV completions are given by φ for

scalars, χ for fermions and A′ for gauge bosons, with associated field strength A′µν .

B Details of code

In order to solve the Boltzmann equation to obtain the distribution functions and conse-

quently ∆g∗, a numerical code was written in C++. The code evolves a universe forward

in time subject to some initial boundary conditions. The inputs to the code are the masses

mi, statistics σi and degrees of freedom of species gi in the universe, as well as the ini-

tial temperature Ti. Interactions between the various species in the SM sector are strong

enough that it is safe to assume that the distribution functions are Fermi-Dirac or Bose-

Einstein until down to temperatures well below their mass, as discussed in subsection 2.2.

At that point, their number density has become low enough that their interactions to our

new species have frozen out, and we work in an effectively radiation-dominated universe,

so the error in the distribution function does not affect our evolution. In order to work

with O(1) numbers for the distribution functions which are decoupling, we track v(p, t) ≡ v

instead, defined implicitly through the equation f(p, t) = 1
ev−σ , where σ is 1 for bosons

and −1 for fermions. The code solves for the following quantities:
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• vi(p, t) for all BSM species i

• TSM = Tγ ≡ T (as we work above the neutrino decoupling temperature)

• ρi, Pi, ni for all species i

• H and a

The following equations are used to solve for the aforementioned quantities:

E
∂v

∂t
−HpE

∂v

∂p
=
∂v

∂f
C[f ], (B.1)

where we discuss computation of C[f ] below,

∂ρtot
∂t

= ySM
∂TSM
∂t

+
∂ρχ
∂t

= −3H(ρtot + ptot), (B.2)

where ySM =
∑

i⊂SM yi and

yi =
gi
2π2

1

T 2

∫ ∞

0
dp p2E2evif2i , (B.3)

H =

√

8πG

3
ρtot, (B.4)

∂a

∂t
= aH, (B.5)

ρi =
gi
2π2

∫ ∞

0
dp p2Efi, (B.6)

Pi =
gi
2π2

∫ ∞

0
dp

p4

3E
fi, (B.7)

ni =
gi
2π2

∫ ∞

0
dp p2fi, (B.8)

g∗,i =
30ρi
π2T 4

. (B.9)

The various quantities are tracked over 2000 timesteps, spaced logarithmically. We

begin at T = 200MeV and typically end at around 1MeV. As we only have earlier time

information, time derivatives that cannot be computed analytically are typically computed

by forming an interpolating polynomial to the previous four pieces of data and taking

an exact derivative of the resulting polynomial. Furthermore, this technique is also used

to obtain an estimate of the next value of the variable in question, in order to improve

the accuracy of the code. We found that this technique is considerably more accurate at

numerically evaluating derivatives than more elementary finite difference methods.

Our distribution function is evaluated on a grid of 100 momentum-steps, logarith-

mically spaced between 10 keV and 10GeV. All derivatives with respect to momentum

that cannot be computed analytically are computed with the interpolating polynomials

method described previously.

The algorithm used is as follows:
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• Set boundary conditions: Bose-Einstein or Fermi-Dirac distributions for every species

with temperature Ti, and ai = 1

• Compute all initial ρi, pi, ni, H, g∗,i

• Compute the next SM temperature with eq. (B.2)

Iterate the following at timestep j until 2000 timesteps:

• Approximate Hj at the next timestep by extrapolating the previous values of H(t)

• Solve the Boltzmann equations of all BSM species i for vi,j , described more thoroughly

below

• Compute all remaining undetermined parameters, as well as H(tj)

• Compute the next SM temperature with eq. (B.2)

The Boltzmann eq. (B.1) was solved using a generalization of a predictor-corrector

method. The objective was to simultaneously vary vi at all points on the momentum grid,

attempting to minimize the quantity

∑

i⊂BSM

100
∑

k=1

1

pk

∣

∣

∣

∣

Ek
∂vi(pk)

∂t
−HpkEk

∂vi(pk)

∂pk
− ∂vi
∂fi

|pkC(fi(pk))
∣

∣

∣

∣

. (B.10)

Because the collisional integral is the most computationally intensive part of the al-

gorithm, we attempted to minimize the number of calls of it. This was accomplished by

primarily studying the effects of the variation of vi on the left-hand side of the Boltzmann

equation, as the right-hand side varied more slowly, only recomputing C when we had

settled on a v that minimized the local error
∣

∣

∣

∣

Ek
∂vi(pk)

∂t
−HpkEk

∂vi(pk)

∂pk
− ∂vi
∂fi

|pkC(fi(pk))
∣

∣

∣

∣

, (B.11)

with a relative accuracy of ≈ 10−6.

The collisional integral in eq. (2.5) has been computed by following the method

devised by [8]. We briefly summarize the algorithm; see [8] for more details. Define the

following quantities:

• The angle between ~p1 and ~p2 is α

• The angle between ~p1 and ~p3 is θ

• The azimuthal angle between ~p2 and ~p3 is β

• x = cosα

• z = cos θ

• Q = m2
1 +m2

2 +m2
3 −m2

4
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In the amplitude |M|2, we plug in

p1 · p2 = E1E2 − |~p1||~p2|x, (B.12)

p1 · p3 = E1E3 − |~p1||~p3|z, (B.13)

p1 · p4 = m2
1 + E1E2 − |~p1||~p2|x− E1E3 + |~p1||~p3|z, (B.14)

p2 · p3 = E1E2 − |~p1||~p2|x− E1E3 + |~p1||~p3|z +Q/2, (B.15)

p2 · p4 = E1E3 − |~p1||~p3|z +m2
2 −Q/2, (B.16)

p3 · p4 = E1E2 − |~p1||~p2|x−m2
3 +Q/2. (B.17)

We can change variables to |~p1|, |~p2|, |~p3|, ~p4, x, z, β and µ, where µ is an integration

variable parameterizing the SO(2) rotational symmetry about ~p1. The collisional integral

has no dependence on µ, and it can therefore be done trivially. After using the momentum-

conserving delta function to integrate ~p4, we can use the energy-conserving delta function to

integrate β. Now that there are no more four-vectors in our expression, we switch notation

|~pi| → pi. After some algebra, it has been shown that C can be written in the form

C(f(p1)) =

∫ ∞

0
dp2

∫ ∞

0
dp3

p22p
2
3Ω(f)F

(2π)516E2E3
, (B.18)

where Ω was defined before as f3f4(1 + σ1f1)(1 + σ2f2) − f1f2(1 + σ3f3)(1 + σ4f4) and

F = F (p1, p2, p3) is

F =

∫ 1

−1
dz

∫ x+

x−

dx
|M |2(x, z)

√

a(z)x2 + b(z)x+ c(z)
Θ(A), (B.19)

where

a(z) =
(

−4p22(p
2
1 + p23)

)

+
(

8p22p1p3
)

z, (B.20)

b(z) = (p1p2(8γ + 4Q)) + p2p3
(

8p21 − 8γ − 4Q
)

z +
(

−8p1p2p
2
3

)

z2, (B.21)

c(z) =
(

4p22p
2
3 − 4γ2 − 4γQ−Q2

)

+ (−p1p3(8γ + 4Q)) z +
(

−4p23(p
2
1 + p22)

)

z2, (B.22)

γ = E1E2 − E3(E1 + E2), (B.23)

x± =
−b∓

√
b2 − 4ac

2a
. (B.24)

Note that since a ≤ 0, we know that x+ ≥ x−. If we define

z± =
1

2p1p3

(

−2γ − 2p22 −Q± 2p2

√

2γ + p21 + p22 + p23 +Q

)

, (B.25)

then Θ(A) is 1 when 2γ + p21 + p22 + p23 +Q > 0, z+ > −1, and z− < 1, and is 0 otherwise.

The amplitudes |M|2 were computed with the assistance of Tracer [109]. After the

substitutions above, |M|2 can be written as a rational function in x and z. We first expand

it in x, and integrate it analytically with Mathematica. Afterwards, if it is possible to ana-

lytically integrate with respect to z, we do so and store the results at all 106 combinations

{p1, p2, p3}. Otherwise, we numerically integrate with respect to z at all 106 points in the

resulting phase space. These are stored and then loaded into our C++ code.
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The code has been verified to give the same answer for Teff,ν(p) as that given in [6],

giving the same values for ∆g∗ to the percent level. In addition, the results were computed

and compared to all cases where it is possible to use the instantaneous decoupling approx-

imation or otherwise solve the problem analytically, and agreement was again found to the

percent level or better in all cases. Percent-level accuracy is more precise than the resolu-

tion of the Planck satellite, and so we do not quote theoretical errors throughout the paper.

In subsection 3.3.1, we reference a modified version of the code suitable for tracking

two separate thermalized sectors which undergo partially thermalizing interactions. The

structure of the code is very similar to the code outlined above, but with a few changes:

• The initial conditions are TSM, Thid and ǫ.

• The distribution functions are always Bose-Einstein or Fermi-Dirac, and so only

the two temperatures are tracked, eliminating the need for storing any distribution

functions.

• We use a modified set of equations to track the distribution functions:

∂TSM
∂t

=
−3H(ρSM + PSM)− Γ

ySM
, (B.26)

∂Thid
∂t

=
−3H(ρhid + Phid) + Γ

yhid
, (B.27)

Γ =
g

2π2

∫ ∞

0
dp1 p

2
1 C[f1(p1)]. (B.28)

• A semi-implicit Euler method was used to compute the temperatures at the next

timesteps, in order to minimize the amount of time spent computing Γ.
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