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1 Introduction

Recently there has been significant progress in understanding low-energy effective theories

of multiple M2-branes. The simplest case of such theories is the so-called ABJM theory [1],

which is the 3d N = 6 supersymmetric Chern-Simons matter theory (CSM) with the

gauge group U(N)k × U(N)−k. The authors in [1] discussed that this theory describes

N M2-branes on C
4/Zk in the low-energy limit. Furthermore it has been shown by the

localization method [2–7] (see also [8–10]) that a class of supersymmetric observables in

N = 2 theory on S3 have representations in terms of certain matrix integrals. Thanks

to the localization technique, several works have extensively studied the partition function

and BPS Wilson loops in the ABJM theory on S3 [11–35]. Especially a breakthrough

was caused by a seminal paper [20], which rewrites the ABJM partition function as an

ideal Fermi gas system (see also [17, 19, 36, 37]). Based on this formalism, recent studies

have revealed structures of the partition function [27–31] and half-BPS Wilson loop [33]

including worldsheet and membrane (D2-brane) instanton effects [18, 38, 39].

In this paper we study the N = 6 CSM with more general gauge group U(N)k ×

U(N +M)−k known as the ABJ theory [40]. This theory has been expected to arise when

we have N M2-branes on C
4/Zk, together with M fractional M2-branes sitting at the

singularity. The authors in [40] also argued that the ABJ theory has good approximations

by the 11d SUGRA on AdS4×S
7/Zk with discrete torsion for N1/5 ≫ k, and the type IIA

SUGRA on AdS4×CP
3 with nontrivial B-field holonomy for N1/5 ≪ k ≪ N , respectively.

Furthermore the recent works [41, 42] have also conjectured that the ABJ theory is dual

to N = 6 parity-violating Vasiliev theory on AdS4 with a U(N) gauge symmetry when

M,k ≫ 1 with M/k and N kept fixed. Thus it is worth studying the ABJ theory in detail.

Here we study the partition function of the U(N)k ×U(N +M)−k ABJ theory on S3.

By using the localization method, the partition function is given by [3–7]

Z
(N,N+M)
ABJ (k) =

i−
1
2
(N2−(N+M)2)sign(k)

(N +M)!N !

∫ ∞

−∞

dN+Mµ

(2π)N+M

dNν

(2π)N
e−

ik
4π (

∑N+M
j=1 µ2

j−
∑N

a=1 ν
2
a)

×

[

∏

1≤j<l≤N+M 2 sinh
µj−µl

2

∏

1≤a<b≤N 2 sinh νa−νb
2

∏N+M
j=1

∏N
b=1 2 cosh

µj−νb
2

]2

. (1.1)
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For M 6= 0, this representation is not suitable for the Fermi gas approach since the Cauchy

identity is not helpful in contrast to the ABJM case [20]. Nevertheless, Awata, Hirano and

Shigemori (AHS) recently proposed [43] that the ABJ partition function is equivalent to

Z
(N,N+M)
AHS (k) =

i−
1
2
(N2+(N+M)2)sign(k)+N+M

2 (−1)
N
2
(N−1)

2NkN+M/2N !
(1− q)

M(M−1)
2 G2(M + 1; q)

∫ i∞−2πη

−i∞−2πη

dNs

(−2πi)N

N
∏

a=1

1

2 sin sa
2

(

q
sa
2π

+1
)

M
(

−q
sa
2π

+1
)

M

∏

1≤a<b≤N

(

1−q
sb−sa

2π

)2

(

1+q
sb−sa

2π

)2 , (1.2)

where

q=e−
2πi
k , (a)n=

n−1
∏

m=0

(1−aqm), G2(z+1; q)=(1−q)−
z
2
(z−1)

∞
∏

m=1

[

(

1−qz+m

1−qm

)m

(1−qm)z

]

.

Here η specifies the integral contour. The authors in [43] have determined η for N = 1 as

η =

{

0+ for |k|
2 −M ≥ 0

− |k|
2 +M + 0+ for |k|

2 −M ≤ 0
, (1.3)

to be consistent with the Seiberg-like duality [40] but not for general N .

One expects that the AHS formula (1.2) gives a generalization of the “mirror” descrip-

tion of the ABJM partition function. One of the strongest evidence is that ZAHS|M=0,k=1

is the same as the partition function of the N = 4 super QCD with one adjoint and funda-

mental hypermultiplets [36] related through 3d mirror symmetry [1, 44, 45]. There is also

an interpretation for general k from the S-dual brane construction [46–48].

The AHS representation also has several advantages. First, this is suitable for the

Fermi gas approach and Tracy-Widom theorem [49], which reduces the grand canonical

analysis to Thermodynamic Bethe Ansatz-like equation. Second, it is easier to perform

Monte Carlo simulation as in the ABJM case [21, 22] than the original formula (1.1).

Finally, the AHS formula highly simplifies analysis in the Vasiliev limit. Despite of the

advantages, the AHS proposal is still conjecture in the following senses:

• The derivation of ZAHS started with an analytic continuation [11–15] from the par-

tition function of the L(2, 1) lens space matrix model [50, 51]. The analytic con-

tinuation has not been rigorously justified in spite of much strong evidence [11–

15, 18, 21, 22, 27–31, 52–54].

• While we can represent the partition function of the L(2, 1) matrix model in terms of a

convergent series, its analytic continuation to the ABJ theory yields a non-convergent

series. The AHS formula corresponds to its well-defined integral representation and

reproduces the series order by order in the perturbative expansion by 2πi/k although

there would be non-perturbative ambiguity generically.

In this paper we prove the AHS conjecture ZABJ = ZAHS and determine the inte-

gral contour for arbitrary parameters as discussed in section 2. It will turn out that the

choice (1.3) of η is still correct even for general N . Section 3 is devoted to discussion.
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2 Proof

In this section we prove ZABJ = ZAHS. Let us start with the localization formula (1.1).

For M = 0, the Cauchy determinant identity is quite useful to derive its “mirror”

description [19, 20, 36], but not for M 6= 0. Here instead we use a generalization1 of

the Cauchy identity (corresponding to Lemma. 2 of [55]):

∏

j<l(xj − xl)
∏

a<b(ya − yb)
∏

j,b(xj − yb)

= (−1)−
N
2
(N−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

xM−1
1 xM−2

1 · · · 1 1
x1−y1

1
x1−y2

· · · 1
x1−yN

xM−1
2 xM−2

2 · · · 1 1
x2−y1

1
x2−y2

· · · 1
x2−yN

...
...

...
...

...
...

...
...

xM−1
N+M xM−2

N+M · · · 1 1
xN+M−y1

1
xN+M−y2

· · · 1
xN+M−yN

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (2.1)

where j, l, a and b run 1 ≤ j, l ≤ N +M , 1 ≤ a, b ≤ N . One of easiest way to prove this

identity is to use Boson-Fermion correspondence in 2d CFT. More concretely, the left-hand

side corresponds to a correlation function on P
1 of a bc system in “Boson” representation:

〈M |b(x1) · · · b(xN+M )c(yN ) · · · c(y1)|0〉, (2.2)

where we have identified as b↔: eϕ : and c↔: e−ϕ : by using a free boson satisfying

ϕ(z) = q̃ + a0 log z −
∑

n 6=0

an
n
z−n, [am, q̃] = δm,0, [am, an] = mδm+n,0,

an≥0|0〉 = 0, 〈0|q̃ = 〈0|an<0 = 0, 〈0|0〉 = 1, |M〉 = eMq̃|0〉, (2.3)

while the right-hand side is the one in “Fermion” representation with identifications: b↔ ψ̄

and c↔ ψ in terms of charged fermions satisfying

ψ̄(z) =
∑

n∈Z+1/2

ψ̄nz
−n− 1

2 , ψ(z) =
∑

n∈Z+1/2

ψnz
−n− 1

2 , (2.4)

{

ψ̄m, ψ̄n

}

= {ψm, ψn} = 0,
{

ψ̄m, ψn

}

= δm+n,0,

ψ̄n>0|0〉 = ψn>0|0〉 = 0, 〈0|ψ̄n<0 = 〈0|ψn<0 = 0, |M〉= ψ̄−M+ 1
2
· · · ψ̄− 1

2
|0〉.

If we take xj = eµj and ya = −eνa in the determinant identity (2.1), then we find

∏

j<l 2 sinh
µj−µl

2

∏

a<b 2 sinh
νa−νb

2
∏

j,b 2 cosh
µl−νb

2

=
N+M
∏

j=1

e−M
µj

2

N
∏

a=1

eM
νa
2 det

(

θN,l

2 cosh
µj−νl

2

+ e(N+M+ 1
2
−j)µjθl,N+1

)

, (2.5)

1We thank Sanefumi Moriyama to tell us about this identity and suggest that the identity would be

useful for analyzing the ABJ matrix model (1.1). He showed us a different proof for the identity in April

2012. In the meanwhile, we remembered the identity when we read a (Japanese) textbook on conformal

field theory written by Yasuhiko Yamada. Therefore we are also grateful to Yasuhiko Yamada.
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where

θj,l =

{

1 for j ≥ l

0 for j < l
. (2.6)

Plugging this into (1.1), we find

Z
(N,N+M)
ABJ (k) =

NABJ

N !

∑

σ

(−1)σ
∫ ∞

−∞

dN+Mµ

(2π)N+M

dNν

(2π)N

N+M
∏

j=1

e−
ik
4π

µ2
j−Mµj

N
∏

a=1

e
ik
4π

ν2a+Mνa

2 cosh µa−νa
2

N+M
∏

l=N+1

e(N+M+ 1
2
−l)µl

N+M
∏

j=1

(

θN,j

2 cosh
µσ(j)−νj

2

+ e(N+M+ 1
2
−j)µσ(j)θj,N+1

)

,

where

NABJ = i−
1
2(N

2−(N+M)2)sign(k). (2.7)

Making a Fourier transformation

1

2 cosh p
2

=
1

π

∫ ∞

−∞
dx

e
i
π
px

2 coshx
, (2.8)

and introducing auxiliary variables yN+1, · · · , yN+M constrained by

yl =
π

i

(

N +M +
1

2
− l

)

with l = N + 1, · · · , N +M, (2.9)

the partition function becomes

ZABJ =
NABJ

N !

∑

σ

(−1)σ
∫ ∞

−∞

dNx

πN
dN+My

πN+M

dN+Mµ

(2π)N+M

dNν

(2π)N

N+M
∏

j=1

e−
ik
4π

µ2
j−Mµj

×
N
∏

a=1

e
ik
4π

ν2a+Mνa+
i
π
xa(µa−νa)+

i
π
(yσ(a)µa−yaνa)

2 coshxa · 2 cosh ya

×
N+M
∏

l=N+1

[

πδ
(

yl −
π

i
(N +M + 1/2− l)

)

e(N+M+ 1
2
−l)µl+

i
π
yσ(l)µl

]

. (2.10)

Here we used
∑N+M

j=1 yjµσ(j) =
∑N+M

j=1 yσ−1(j)µj and redefined the permutation symbol as

σ−1 → σ. Performing the Fresnel integrals over µi and νa allows us to find

ZABJ =
e−

iMπ
4

sign(k)NABJ

N !|k|N+M
2

∑

σ

(−1)σ
∫ ∞

−∞

dNx

πN
dN+My

πN+M

N
∏

a=1

e−
2i
kπ

xa(ya−yσ(a))+ 2
k
M(ya−yσ(a))

2 coshxa · 2 cosh ya

N+M
∏

l=N+1

[

πe−
iπ
k (N+ 1

2
−l)

2

δ
(

yl −
π

i
(N +M + 1/2− l)

)

e
i
kπ

y2
l
+ 2

k (N+ 1
2
−l)yσ(l)

]

. (2.11)

Note that the integration over xa is convergent only for2
∣

∣

2
kπ Im

(

ya − yσ(a)
)
∣

∣ ≤ 1. Since

yσ(a) would be −iπ(M − 1/2) depending on the permutation, the integration is always

2The saturated case
∣

∣

2
kπ

Im
(

ya − yσ(a)

)
∣

∣ = 1 is understood as a limit from
∣

∣

2
kπ

Im
(

ya − yσ(a)

)
∣

∣ < 1.

– 4 –
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safe for 2M ≤ |k| + 1. On the other hand, a part of the integrations is divergent for

2M > |k|+1. However, these divergences must be apparent and cancel out after summing

over the permutation since this case is equivalent to the safe case through the Seiberg-like

duality [40] between the ABJ theories with gauge groups

U(N)k ×U(N +M)−k and U(N + |k| −M)k ×U(N)−k, (2.12)

which has been proven for the S3 partition functions [56, 57]. Although we could regularize

the divergences, instead we will adopt another way as discussed in section 2.2.

2.1 For 2M ≤ |k| + 1

We can continue our computation straightforwardly for this case. Integrating over xa
leads us to

Z
(N,N+M)
ABJ (k) =

e−
iMπ
4

sign(k)NABJ

N !|k|N+M
2

∑

σ

(−1)σ
∫ ∞

−∞

dN+My

πN+M

N
∏

a=1

e
2
k
M(ya−yσ(a))

2 cosh
ya−yσ(a)

k · 2 cosh ya
N+M
∏

l=N+1

[

πe−
iπ
k (N+ 1

2
−l)

2

δ
(

yl −
π

i
(N +M + 1/2− l)

)

e
i
kπ

y2
l
+ 2

k (N+ 1
2
−l)yσ(l)

]

.

Noting
∑

a

(

ya − yσ(a)
)

= −
∑N+M

l=N+1

(

yl − yσ(l)
)

and rescaling ya as ya → ya/2, one finds

ZABJ =
e−

iMπ
4

sign(k)NABJ

N !|k|N+M
2

∫ ∞

−∞

dN+My

(2π)N+M

N
∏

a=1

1

2 cosh ya
2

×
N+M
∏

l=N+1

[

πe−
iπ
k (N+ 1

2
−l)

2

δ
(yl
2
−
π

i
(N +M + 1/2− l)

)

e
i

4kπ
y2
l
−M

k
yl

]

× det

(

θN,l

2 cosh
yj−yl
2k

+ e
1
k
(N+M+1/2−l)yjθl,N+1

)

. (2.13)

If we use the identity (2.5) again and integrate over yN+1, · · · , yN+M , then we obtain

Z
(N,N+M)
ABJ (k)

=
i−

sign(k)
2 (N2+(N+M)2)(−1)

N
2 (N−1)+M

2 (M−1)+NM iN+M
2

N !2NkN+M
2

q
M
12 (M

2−1)
∏

1≤l<m≤M

[

2i sin
π(l−m)

k

]

∫ ∞

−∞

dNy

(2π)N

∏

a<b

tanh2
ya − yb

2k

N
∏

a=1

[

1

2 cosh ya

2

M−1
∏

l=0

tanh
ya + 2πi(l + 1/2)

2k

]

. (2.14)

Taking account of

∏

1≤l<m≤M

[

2i sin
π(l−m)

k

]

= (−1)
M
2
(M−1)q−

M
12

(M2−1)(1− q)
M
2
(M−1)G2(M + 1; q),

M−1
∏

l=0

tanh
xj + 2πi(l + 1/2)

2k
= (−1)M

(

q
ixa
2π

+ 1
2

)

M
(

−q
ixa
2π

+ 1
2

)

M

,

– 5 –
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and making a transformation sa = iya − π, the partition function takes the form of

ZABJ =
i−

1
2
(N2+(N+M)2)sign(k)+N+M

2 (−1)
1
2
N(N−1)

2NkN+M/2N !
(1− q)

M(M−1)
2 G2(M + 1; q)

∫ i∞−2πη

−i∞−2πη

dNs

(−2πi)N

N
∏

a=1

1

2 sin sa
2

(

q
sa
2π

+1
)

M
(

−q
sa
2π

+1
)

M

∏

1≤a<b≤N

(

1− q
sb−sa

2π

)2

(

1 + q
sb−sa

2π

)2 . (2.15)

Although η is naively η = 1/2, we can change η in a range 0 < η < 1 by the Cauchy

integration theorem. If we take η = 0+ for 2M ≤ |k| and η = 1
2 + 0+ for 2M = |k| + 1,

then this is nothing but the AHS formula for 2M ≤ |k| and 2M = |k|+1 (as a special case

of 2M ≥ |k|), respectively. Note that the choice (1.3) of η is still correct for general N .

For a later convenience, we introduce the U(M)k pure Chern-Simons partition function

(without level shift) on S3 as [50, 51, 58, 59]

Z
(M)
CS (k) = i−sign(k)M

2

2 i
M
2 k−

M
2 q−

M
12

(M2−1)(1− q)
M
2
(M−1)G2(M + 1; q)

= |k|−
M
2

M−1
∏

l=1

(

2 sin
πl

|k|

)M−l

. (2.16)

In terms of this, the ABJ partition function can be rewritten as

ZABJ =
i−sign(k)N(N−1)(−1)

N
2
(N−1)

N !2N |k|N
q

M
12

(M2−1)Z
(M)
CS (k) (2.17)

∫ i∞−2πη

−i∞−2πη

dNs

(−2πi)N

N
∏

a=1

1

2 sin sa
2

M
∏

l=1

tan
s+ 2lπ

2|k|

∏

1≤a<b≤N

(

1− q
sb−sa

2π

)2

(

1 + q
sb−sa

2π

)2 .

Remark

We can also express the ABJ partition function as

Z
(N,N+M)
ABJ (k) =

e−
iMπ

4 sign(k)q
M
12 (M

2−1)NABJ

N !|k|N+M
2

∫ ∞

−∞

dN+My

(2π)N+M

∏

j<l 2 sinh
yj−yl

2k

∏

a<b 2 sinh
ya−yb

2k
∏

j,b 2 cosh
yj−yb

2k

N
∏

a=1

1

2 cosh ya

2

N+M
∏

l=N+1

[

2πδ

(

yl −
2π

i
(N +M + 1/2− l)

)

]

. (2.18)

Each factor in this integrand has an interpretation from the brane picture. Recall that

the type IIB brane construction for the U(N)k × U(N +M)−k ABJ theory consists of N

circular D3-branes, (1,−k)5-brane, NS5-brane and M D3-branes suspended between the

two 5-branes [40]. Taking S-transformation, the (1,−k)5-brane and NS5-brane become

(−k, 1)5-brane and D5-brane, respectively. First, note that the second factor

N
∏

a=1

1

2 cosh ya
2

– 6 –
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agrees with the contribution from a bi-fundamental hypermultiplet [3–7]. This multiplet

comes from strings ending on the D5-brane and D3-branes. Next, the first factor

1

N !|k|N+M
2

∏

1≤j<l≤N+M 2 sinh
yj−yl
2k

∏

1≤a<b≤N 2 sinh ya−yb
2k

∏N+M
j=1

∏N
b=1 2 cosh

yj−yb
2k

(2.19)

is a bit nontrivial. ForM = 0, the authors in [46] argued that this factor comes from a sys-

tem of the (1,−k)5-brane and D3-branes (see also [47, 48]). Hence we can interpret (2.19)

as natural generalization of this contribution. Finally, the last factor

N+M
∏

l=N+1

δ

(

yl −
2π

i
(N +M + 1/2− l)

)

reflects a fact that theM suspended D3-branes are locked into position by the two 5-branes.

2.2 For 2M ≥ |k| − 1

The integration (2.11) is apparently divergent for this case. Instead of imposing some

regularizations, we use the Seiberg-like duality (2.12) for the ABJ theory [40]. Note that

this duality has been already proven for the S3 partition functions because the duality

comes [57] from the Giveon-Kutasov duality [60] proven in [56]. Since the dual ABJ par-

tition function is given by (2.17) for 2M ≥ |k| − 1, we can express Z
(N,N+M)
ABJ (k) in terms

of Z
(N+|k|−M,N)
ABJ (−k) through the duality.

Let us show ZABJ = ZAHS for3 2M ≥ |k| − 1. Via the Seiberg-like duality (2.12) as

mathematical identity, the ABJ partition function is given by

Z
(N,N+M)
ABJ (k) = (−1)

N+M
2

(N+M−1)+
N+|k|−M

2
(N+|k|−M−1)i−

1
2(2N

2−(N+M)2−(N+|k|−M)2)sign(k)

e
πi
12(k

2+6N |k|−6|k|+2)sign(k)Z
(N,N+|k|−M)
ABJ (−k) . (2.20)

Here the phase factor has been determined4 in [57]. Plugging (2.17) into this leads us to

Z
(N,N+M)
ABJ (k) =

i−sign(k)N(N−1)(−1)
N
2
(N−1)

N !2N |k|N
q

M
12

(M2−1)Z
(|k|−M)
CS (−k)

∫ i∞−0+

−i∞−0+

dNs

(−2πi)N

N
∏

a=1

1

2 sin sa
2

M
∏

l=1

tan
s+ 2lπ

2|k|

∏

1≤a<b≤N

(

1− q
sb−sa

2π

)2

(

1 + q
sb−sa

2π

)2 .

By using the level-rank duality5 for the pure CS theory: Z
(|k|−M)
CS (−k) = Z

(M)
CS (k) and

eq. (E.2) in [43]:

1

sin s
2

M
∏

l=1

tan
s+ 2πl

2|k|
=

1

sin s
2

M
∏

l=1

tan
s+ 2πl

2|k|

∣

∣

∣

∣

∣

s→s+2π
(

−
|k|
2
+M

)

,M→|k|−M

, (2.21)

3For 2M = |k| and 2M = |k| + 1, we can also apply the argument in section 2.1. We set the condition

2M ≥ |k| − 1 such that the dual ABJ partition function is given by (2.17).
4Note that our normalization for the partition function differs from the original paper [57] by

Z
(N,N+M)
ours (k) = (−1)

N
2
(N−1)+N+M

2
(N+M−1)NABJZ

(N,N+M)
KWY (k).

5See e.g. appendix. B of [57] for a proof.
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we obtain

Z
(N,N+M)
ABJ (k)=

i−
1
2
(N2+(N+M)2)sign(k)+N+M

2 (−1)
1
2
N(N−1)

2NkN+M/2N !
(1− q)

M(M−1)
2 G2(M + 1; q)

∫ i∞−2πη

−i∞−2πη

dNs

(−2πi)N

N
∏

a=1

1

2 sin sa
2

(

q
sa
2π

+1
)

M
(

−q
sa
2π

+1
)

M

∏

1≤a<b≤N

(

1−q
sb−sa

2π

)2

(

1+q
sb−sa

2π

)2 , (2.22)

where

η = −
|k|

2
+M + 0+ . (2.23)

For 2M ≥ |k|, this exactly agrees with ZAHS. For 2M = |k|−1, we can show that making a

transformation sa → −sa with a choice η = 0− and using the periodicity of the integrand:

sa ∼ sa + 4kπi give the AHS formula. Thus we find again that the choice (1.3) of the

integral contour is valid for general N .

Remark

As already discussed in [43], the ABJ partition function vanishes for M > k since the

pure CS partition function in the prefactors vanishes for this case. This manifests an

expectation that the supersymmetries are spontaneously broken in this case [40, 61–63]

(see also [64, 65]).

3 Discussion

In this paper we have proven that the ABJ partition function on S3 is exactly the same

as the formula (1.2) recently proposed by Awata, Hirano and Shigemori [43], which can be

interpreted as the “mirror” description of the ABJ partition function. It has also turned

out that the choice (1.3) of the integral contour, previously determined only for N = 1, is

still correct for general N . Our proof heavily relied on the determinant identity (2.1) and

the following illuminating structure:

ZABJ ∼

∫

dN+MµdNν
[

〈M |b(eµ1) · · · b(eµN+M )c(−eνN ) · · · c(−eν1)|0〉
]2
e−

ik
4π (

∑

i µ
2
i−

∑

a ν2a),

(3.1)

which might be reminiscent of the AGT relation [66]. This would imply that somehow

the Boson-Fermion correspondence knows how to simplify the ABJ partition function on

S3. One can see similar structure also in general N = 3 quiver CSM. It is interesting if

we find any physical origin of this structure. A recent work [67] in three dimensions and

topological string perspective [68] might provide valuable insights along this direction.

For 2M > |k| + 1, we have to change the integral contour. We can also express the

partition function for this case as

ZABJ|2M>|k|+1 ∼

∫ ∞

−∞
dN+My

∏

j<l 2 sinh
yj−yl
2k

∏

a<b 2 sinh
ya−yb
2k

∏

j,b 2 cosh
yj−yb
2k

N
∏

a=1

1

2 cosh ya
2

N+M
∏

l=N+1

[

2πδ

(

yl −
2π

i
(N +M + 1/2− l)

)

]
∣

∣

∣

∣

∣

ya→ya+2πi
(

−
|k|+1

2
+M

)

.
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The similar representation (2.18) was useful to find the brane interpretation for 2M≤|k|+1.

Formally this shift is similar to anomalous R-charge, imaginary mass and voertex loop [3–7].

It would be intriguing to interpret this shift in the integrand from the brane picture.

As mentioned in section 1, the AHS representation (1.2) is suitable for the Fermi gas

approach and Monte Carlo simulation, and easier to study the higher spin limit than the

original representation (1.1). Therefore it is illuminating to apply these approaches to the

ABJ partition function and investigate wide parameter region.

Finally we comment on a relation between the ABJ theory and L(2, 1) matrix model.

The authors in [43] obtained (1.2) by an analytic continuation from the partition function

of the L(2, 1) matrix model represented by a convergent series. Because its analytic con-

tinuation to the ABJ theory yields an ill-defined series, the AHS formula corresponds to

its well-defined integral representation and correctly reproduces the formal series order

by order in the perturbative expansion. Since here we have proven ZABJ = ZAHS, our

argument combined with the one in [43] might give key idea for rigorous proof of the

analytic continuation.
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