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1 Introduction

Three-dimensional Chern-Simons matter theories have been studied extensively in the last

few years due to their rich mathematical structure and their connection with different sys-

tems of condensed matter physics. In particular, the Aharony-Bergman-Jafferis-Maldacena

(ABJM) theory [1] has provided a highly non-trivial example of the AdS/CFT correspon-

dence [2, 3]. The ABJM theory is an N = 6 supersymmetric U(N) × U(N) gauge theory

with Chern-Simons levels k and −k, coupled to matter fields which transform in the bifun-

damental representations (N, N̄) and (N̄ ,N) of the gauge group. The ABJM construction

was based on the analysis of [4–7], in which the supersymmetric Chern-Simons theories

were proposed as the low energy theories of multiple M2-branes. When N and k are large

the ABJM theory admits a gravity dual in type IIA supergravity in ten dimensions. The

corresponding background is a geometry of the form AdS4×CP
3 with fluxes (see refs. [8–11]

for reviews of different aspects of the ABJM theory).

One of the possible generalizations of the ABJM theory is the addition of flavor fields

transforming in the fundamental representations (N, 1) and (1, N) of the gauge group. In

the supergravity description these flavors can be added by considering D6-branes extended

along the AdS4 directions and wrapping a three-dimensional submanifold of CP
3. By

imposing the preservation of N = 3 supersymmetry one finds that the D6-brane must

wrap a RP
3 submanifold of the internal space [12, 13]. When the number of flavors is small

one can treat the D6-branes as probes, which is equivalent to the quenched approximation

on the field theory side. This is the approach followed in refs. [14–17] (see also [18]).

In order to go beyond the quenched approximation, one must be able to solve the

supergravity equations of motion including the backreaction induced by the source terms

generated by the flavor branes. The sources modify the Bianchi identities satisfied by the

forms and the Einstein equations satisfied by the metric. These equations with sources

are, in general, very difficult to solve, since they contain Dirac δ-functions whose support

is the worldvolume of the branes. In order to bypass this difficulty we will follow here

the approach proposed in [19] in the context of non-critical holography, which consists of

considering a continuous distribution of flavor branes. When the branes are smeared in

this way there are no δ-function sources in the equations of motion and they become more

tractable. Substituting a discrete set of branes by a continuous distribution of them is only

accurate if the number Nf of flavors is very large. Therefore, this approach is valid in the

so-called Veneziano limit [20], in which both N and Nf are large and their ratio Nf/N is
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fixed. The smearing procedure was successfully applied to obtain supergravity solutions

that include flavor backreaction in several systems [21–31] (see [32] for a detailed review

and further references).

A holographic dual to ABJM with unquenched massless flavors in the Veneziano limit

was found in [33]. In this setup the flavor branes fill the AdS4 and are smeared in the

internal CP3 space in such a way that N = 1 supersymmetry is preserved. Notice, that

since the flavor branes are not coincident, the flavor symmetry is U(1)Nf rather than

U(Nf ). A remarkable feature of the solution found in [33] is its simplicity and the fact

that the ten-dimensional geometry is of the form AdS4 ×M6, where M6 is a compact six-

dimensional manifold whose metric is a squashed version of the unflavored Fubini-Study

metric of CP3. The radii and squashing factors of this metric depend non-linearly on the

flavor deformation parameter
Nf

N λ, where λ = N/k is the ’t Hooft coupling of the theory.

Moreover, the dilaton is also constant and, since the metric contains an AdS4 factor, the

background is the gravity dual of a three-dimensional conformal field theory with flavor.

Actually, it was checked in perturbation theory in [34, 35] that the ABJM theory has

conformal fixed points even after the addition of flavor. This solution captures rather

well many of the effects due to loops of the fundamentals in several observables [33]. Its

generalization at non-zero temperature in [18] leads to thermodynamics which pass several

non-trivial tests required to a flavored black hole.

Contrary to other backgrounds with unquenched flavors, the supergravity solutions

dual to ABJM with smeared sources are free of pathologies, both at the IR and the UV.

This fact offers us a unique opportunity to study different flavor effects holographically

in a well-controlled setup. In this paper, we will study such effects when massive flavors

are considered. The addition of massive flavors breaks conformal invariance explicitly and,

therefore, the corresponding dual geometry should not contain an Anti-de Sitter factor

anymore. Actually, for massive flavors the quark mass is an additional parameter at our

disposal which we can vary and see what is the effect on the geometry and observables.

Indeed, let mq denote the quark mass. In the IR limit in which mq is very large we expect

the quarks to be integrated out and their effects to disappear from the different observable

quantities. Thus, in the IR limit we expect to find a geometry which reduces to the

unflavored ABJM background. On the contrary, when mq → 0, we are in the UV regime

and we should recover the deformed Anti-de Sitter background of [33]. The important

point to stress here is that the quark mass triggers a non-trivial renormalization group flow

between two fixed points and that we can vary mq to enhance or suppress the effects due

to the loops of the fundamentals.

To find the supergravity solutions along the flow, we will adopt an ansatz with brane

sources in which the metric and forms are squashed as in [33]. By imposing the preservation

of N = 1 supersymmetry, the different functions of the ansatz must satisfy a system of

first-order BPS equations, which reduce to a single second-order master equation. The full

background can be reconstructed from the solution to the master equation.

The flavor branes corresponding to massive flavors do not extend over the full range

of the holographic coordinate. Indeed, their tip should lie at a finite distance (related

to the quark mass) from the IR end of the geometry. Moreover, in the asymptotic UV
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region, the geometry we are looking for should reduce to the one in [33], since the quarks

should be effectively massless in that region. Therefore, we have to solve the BPS equations

without sources at the IR and match this solution with another one in which the D6-brane

charge is non-vanishing and such that it reduces to the massless flavored solution of [33]

in the deep UV. Amazingly, we have been able to find an analytic solution in the region

without sources which contains a free parameter which can be tuned in such a way that

the background reduces to the massless flavored geometry in the asymptotic UV. This

semi-analytic solution interpolates between two different conformal AdS geometries and

contains the quark mass and the number of flavors as control parameters.

With the supergravity dual at our disposal, we can study the holographic flow for

different observables. The general picture we get from this analysis is the following. Let

l be a length scale characterizing the observable. Then, the relevant parameter to explore

the flow is the dimensionless quantity mq l. When mq l is very large (small) the observable

is dominated by the IR unflavored (UV massless flavored) conformal geometry, whereas

for intermediate values of mq l we move away from the fixed points. We will put a special

emphasis on the study of the holographic entanglement entropy, following the prescription

of [36, 37]. In particular, we study the refined entanglement entropy for a disk proposed

in [38], which can be used as a central function for the F-theorem [39–43]. We check the

monotonicity of the refined entropy along the flow (see [44] for a general proof of this

monotonic character in three-dimensional theories). Other observables we analyze are the

Wilson loop and quark-antiquark potential, the two-point functions of high-dimension bulk

operators, and the mass spectrum of quark-antiquark bound states.

The rest of this paper is divided into two parts. The first part starts in section 2

with a brief review of the ABJM solution. In section 3 we introduce the squashed ansatz,

write the master equation for the BPS geometries with sources, and classify its solutions

according to their UV behavior. In section 4 we write the analytic solution of the unfla-

vored system that was mentioned above while, in section 5 we construct solutions which

interpolate between an unflavored IR region and a UV domain with D6-brane sources. The

backgrounds corresponding to ABJM flavors with a given mass are studied in section 6.

In the second part of the paper we study the different observables. In section 7 we

analyze the holographic entanglement entropy for a disk. Section 8 is devoted to the

calculation of the quark-antiquark potential from the Wilson loop. In section 9 we study

the two-point functions of bulk operators with high mass, while the meson spectrum is

obtained in section 10. Section 11 contains a summary of our results and some conclusions.

The paper is completed with several appendices with detailed calculations and extensions

of the results of the main text.

2 Review of the ABJM solution

The ten-dimensional metric of the ABJM solution in string frame is given by:

ds2 = L2
ABJM ds2AdS4 + 4L2

ABJM ds2
CP3 , (2.1)
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where ds2AdS4
and ds2

CP3 are respectively the AdS4 and CP
3 metrics. The former, in Poincaré

coordinates, is given by:

ds2AdS4 = r2 dx21,2 +
dr2

r2
, (2.2)

where dx21,2 is the Minkowski metric in 2+1 dimensions. In (2.1) LABJM is the radius of

the AdS4 part of the metric and is given, in string units, by:

L4
ABJM = 2π2

N

k
, (2.3)

where N and k are two integers which correspond, in the gauge theory dual, to the rank

of the gauge groups and the Chern-Simons level, respectively. The ABJM background

contains a constant dilaton, which can be written in terms of N and k as:

eφABJM =
2LABJM

k
= 2

√
π

(

2N

k5

) 1
4

. (2.4)

Apart from the metric and the dilaton written above, the ABJM solution of type IIA

supergravity contains a RR two-form F2 and a RR four-form F4, whose expressions can be

written as:

F2 = 2k J , F4 =
3

2
k L2

ABJMΩAdS4 =
3π√
2

√
kN ΩAdS4 , (2.5)

where J is the Kähler form of CP3 and ΩAdS4 is the volume element of the AdS4 metric (2.2).

It follows from (2.5) that F2 and F4 are closed forms (i.e., dF2 = dF4 = 0).

The metric of the CP3 manifold in (2.1) is the canonical Fubini-Study metric. Following

the approach of [33], we will regard CP
3 as an S

2-bundle over S
4, where the fibration is

constructed by using the self-dual SU(2) instanton on the four-sphere. This representation

of CP3 is the one obtained when it is constructed as the twistor space of the four-sphere. As

in [33], this S4-S2 representation will allow us to deform the ABJM background by squashing

appropriately the metric and forms, while keeping some amount of supersymmetry. More

explicitly, we will write ds2
CP3 as:

ds2
CP3 =

1

4

[

ds2
S4

+
(

dxi + ǫijk Aj xk
)2
]

, (2.6)

where ds2
S4

is the standard metric for the unit four-sphere, xi (i = 1, 2, 3) are Cartesian

coordinates that parameterize the unit two-sphere (
∑

i(x
i)2 = 1) and Ai are the compo-

nents of the non-Abelian one-form connection corresponding to the SU(2) instanton. Let

us now introduce a specific system of coordinates to represent the metric (2.6) and the

two-form F2. First of all, let ωi (i = 1, 2, 3) be a set of SU(2) left-invariant one-forms

satisfying dωi = 1
2 ǫijk ω

j ∧ ωk. Together with a new coordinate ξ, the ωi’s can be used to

parameterize the metric of the four-sphere S
4 as:

ds2
S4

=
4

(1 + ξ2)2

[

dξ2 +
ξ2

4

(

(ω1)2 + (ω2)2 + (ω3)2
)

]

, (2.7)
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where 0 ≤ ξ < +∞ is a non-compact coordinate. The SU(2) instanton one-forms Ai can

be written in these coordinates as:

Ai = − ξ2

1 + ξ2
ωi . (2.8)

Let us next parameterize the xi coordinates of the unit S2 by two angles θ and ϕ (0 ≤ θ < π,

0 ≤ ϕ < 2π),

x1 = sin θ cosϕ , x2 = sin θ sinϕ , x3 = cos θ . (2.9)

Then, it is straightforward to demonstrate that the S2 part of the Fubini-Study metric can

be written as:
(

dxi + ǫijk Aj xk
)2

= (E1)2 + (E2)2 , (2.10)

where E1 and E2 are the following one-forms:

E1 = dθ +
ξ2

1 + ξ2
(

sinϕω1 − cosϕω2
)

,

E2 = sin θ

(

dϕ− ξ2

1 + ξ2
ω3

)

+
ξ2

1 + ξ2
cos θ

(

cosϕω1 + sinϕω2
)

. (2.11)

Therefore, the CP
3 metric can be written in terms of the one-forms defined above as:

ds2
CP3 =

1

4

[

ds2
S4

+ (E1)2 + (E2)2
]

. (2.12)

We will now write the expression of F2 in such a way that the S
4-S2 split structure is

manifest. Accordingly, we define three new one-forms Si (i = 1, 2, 3) as:

S1 = sinϕω1 − cosϕω2 ,

S2 = sin θ ω3 − cos θ
(

cosϕω1 + sinϕω2
)

,

S3 = − cos θ ω3 − sin θ
(

cosϕω1 + sinϕω2
)

. (2.13)

Notice that the Si are just the ωi rotated by the two angles θ and ϕ. In terms of the forms

defined in (2.13) the line element of the four-sphere is obtained by substituting ωi → Si

in (2.7). Let us next define the one-forms Sξ and Si as:

Sξ =
2

1 + ξ2
dξ , Si =

ξ

1 + ξ2
Si , (i = 1, 2, 3) , (2.14)

in terms of which the metric of the four-sphere is ds2
S4

= (Sξ)2 +
∑

i(Si)2. Moreover,

the RR two-form F2 in (2.5) can be written in terms of the one-forms defined in (2.11)

and (2.14) as:

F2 =
k

2

(

E1 ∧ E2 −
(

Sξ ∧ S3 + S1 ∧ S2
)

)

. (2.15)

The solution of type IIA supergravity reviewed above is a good gravity dual of the U(N)k×
U(N)−k ABJM field theory when the AdS radius LABJM is large in string units and when

the string coupling constant eφ is small. From (2.3) and (2.4) it is straightforward to prove

that these conditions are satisfied if k and N are in the range N
1
5 ≪ k ≪ N .
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3 Squashed solutions

Let us consider the deformations of the ABJM background which preserve the S
4-S2 split-

ting. These deformed backgrounds will solve the equations of motion of type IIA supergrav-

ity (with sources) and will preserve at least two supercharges. We will argue below that

some of these backgrounds are dual to Chern-Simons matter theories with fundamental

massive flavors.

The general ansatz for the ten-dimensional metric of our solutions in string frame takes

the form:

ds210 = h−1/2dx21,2 + h1/2
[

dr2 + e2fds2
S4

+ e2g
(

(

E1
)2

+
(

E2
)2
)]

, (3.1)

where the warp factor h and the functions f and g depend on the holographic coordinate

r. Notice that f and g determine the sizes of the S
4 and S

2 within the internal manifold.

Actually, their difference f − g determines the squashing of the CP
3 and will play an

important role in characterizing our solutions. We will measure this squashing by means

of the function q, defined as:

q ≡ e2f−2g . (3.2)

Clearly, the ABJM solution has q = 1. A departure from this value would signal a non-

trivial deformation of the metric. Similarly, the RR two- and four-forms will be given by:

F4 = K d3x ∧ dr , (3.3)

F2 =
k

2

(

E1 ∧ E2 − η
(

Sξ ∧ S3 + S1 ∧ S2
))

, (3.4)

where k is a constant and K = K(r), η = η(r) are new functions. The background is

also endowed with a dilaton φ = φ(r). As compared with the ABJM value (2.15), the

expression of F2 in our ansatz contains the function η(r) which generically introduces an

asymmetry between the S
4 and S

2 terms. Moreover, when η 6= 1 the two-form F2 is no

longer closed and the corresponding Bianchi indentity is violated. Indeed, one can check

that:

dF2 = −k
2
(η − 1)

[

E1 ∧ (Sξ ∧ S2 − S1 ∧ S3
)

+ E2 ∧ (Sξ ∧ S1 + S2 ∧ S3
)

]

−k
2
η′ dr ∧

(

Sξ ∧ S3 + S1 ∧ S2
)

. (3.5)

The violation of the Bianchi identity of F2 means that we have D6-brane sources in our

model. Indeed, since F2 = ∗F8, if dF2 6= 0 then the Maxwell equation of F8 contains

a source term, which is due to the presence of D6-branes since the latter are electrically

charged with respect to F8. The charge distribution of the D6-brane sources is determined

by the function η, which we will call the profile function.

The function K of the RR four-form can be related to the other functions of the

ansatz by using its equation of motion d ∗ F4 = 0 and the flux quantization condition for

the integral of ∗F4 over the internal manifold. The result is [33]:

K = 3π2N h−2 e−4f−2g , (3.6)
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where the integer N is identified with the ranks of the gauge groups in the gauge theory

dual (i.e., with the number of colors).

It is convenient to introduce a new radial variable x, related to r through the differen-

tial equation:

x
dr

dx
= eg . (3.7)

From now on, all functions of the holographic variable are considered as functions of x,

unless otherwise specified. The ten-dimensional metric in this new variable takes the form:

ds210 = h−
1
2 dx21,2 + h

1
2

[

e2g
dx2

x2
+ e2f ds2

S4
+ e2g

(

(

E1
)2

+
(

E2
)2
)

]

. (3.8)

It was shown in [33] that the background given by the ansatz written above preserves

N = 1 supersymmetry in three dimensions if the functions satisfy a system of first-order

differential equations. It turns out that this BPS system can be reduced to a unique second-

order differential equation for a particular combination of the functions of the ansatz. The

details of this reduction are given in appendix A. Here we will just present the final result

of this analysis. First of all, let us define the function W (x) as:

W (x) ≡ 4

k
h

1
4 e2f−g−φ x . (3.9)

Then, the BPS system can be reduced to the following second-order non-linear differential

equation for W (x):

W ′′ + 4η′ + (W ′ + 4η)

[

W ′ + 10η

3W
− W ′ + 4η + 6

x(W ′ + 4η)

]

= 0 . (3.10)

We will refer to (3.10) as the master equation and toW (x) as the master function. Interest-

ingly, the BPS equations do not constrain the profile function η. Therefore, we can choose

η(x) (which will fix the type of supersymmetric sources of our system) and afterwards we

can solve (3.10) for W (x). Given η(x) and W (x) one can obtain the other functions that

appear in the metric. Indeed, as proved in appendix A, g(x) and f(x) are given by:

eg(x) =
x

W
1
3

exp

[

2

3

∫ x η(ξ)dξ

W (ξ)

]

,

ef(x) =

√

3x

W ′ + 4η
W

1
6 exp

[

2

3

∫ x η(ξ)dξ

W (ξ)

]

, (3.11)

while the warp factor h can be written as:

h(x) = 4π2
N

k
e−g (W ′ + 4η)

[ ∫ ∞

x

ξ e−3g(ξ)

W (ξ)2
dξ + β

]

, (3.12)

where β is a constant that determines the behavior of h as x → ∞ (β = 0 if we impose

that h→ 0 as x→ ∞). Finally, the dilaton is given by:

eφ(x) =
12

k

xh
1
4

W
1
3 (W ′ + 4η)

exp

[

2

3

∫ x η(ξ)dξ

W (ξ)

]

. (3.13)
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From the expression of f and g in (3.11) it follows that the squashing function q can be

written in terms of the master function W and its derivative as:

q =
3W

x(W ′ + 4η)
. (3.14)

3.1 Classification of solutions

Let us study the behavior of the solutions of the master equation in the UV region x→ ∞.

This analysis will allow us to have a classification of the different solutions. We will assume

that the profile function η(x) reaches a constant value as x→ ∞, and we will denote:

lim
x→∞

η(x) = η0 . (3.15)

Let us restrict ourselves to the case in which η0 6= 0. We will assume that W (x) behaves

for large x as:

W (x) ≈ A0 x
α , x→ ∞ , (3.16)

where A0 and α are constants. It is easy to check that this type of behavior is consistent

only when the exponent α ≥ 1 or, in other words, when W (x) grows at least as a linear

function of x when x→ ∞.

We will also characterize the different solutions by the asymptotic value of the squash-

ing function q, which determines the deformation of the internal manifold in the UV. Let

us denote

q0 = lim
x→∞

q(x) . (3.17)

It follows from (3.14) that the asymptotic value of the squashing function and that of

the profile function are closely related. Actually, this relation depends on whether the

exponent α in (3.16) is strictly greater or equal to one. Indeed, plugging the asymptotic

behavior (3.16) in (3.14) one immediately proves that:

q0 =











3

α
, for α > 1 ,

3A0

A0 + 4η0
, for α = 1 .

(3.18)

This result indicates that we have to study separately the cases α > 1 and α = 1. As

we show in the next two subsections these two different asymptotics correspond to two

qualitatively different types of solutions.

3.1.1 The asymptotic G2 cone

Let us assume that the master function behaves as in (3.16) for some α > 1. By plugging

this asymptotic form in the master equation (3.10) and keeping the leading terms as x→ ∞,

one readily verifies that the coefficient A0 is not constrained and that the exponent α takes

the value:

α =
3

2
. (3.19)

Therefore, it follows from (3.18) that the asymptotic squashing is:

q0 = 2 . (3.20)
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Let us evaluate the asymptotic form of all the functions of the metric. From (3.11), we

get, at leading order:

eg ≈ C
√
x , (3.21)

where C is a constant of integration. Moreover, since q0 = 2, the asymptotic value of the

function f is:

ef ≈
√
2C

√
x . (3.22)

Let us now evaluate the warp factor h from (3.12). Clearly, we have to compute the integral:

∫ ∞

x

ξ e−3g(ξ)

W (ξ)2
dξ ∼ x−

5
2 , (3.23)

which vanishes when x → ∞. Therefore, by choosing the constant β in (3.12) to be non-

vanishing we can neglect the integral (3.23) and, since egW ′ → constant, then the warp

factor h becomes also a constant when x → ∞. To clarify the nature of the asymptotic

metric, let us change variables, from x to a new radial variable ρ, defined as ρ = 2C
√
x.

Then, after some constant rescalings of the coordinates the metric becomes:

ds210 ≈ dx21,2 + ds27 , (3.24)

where ds27 is:

ds27 = dρ2 +
ρ2

4

[

2ds2
S4

+
(

E1
)2

+
(

E2
)2
]

. (3.25)

The metric (3.25) is a Ricci flat cone with G2 holonomy, whose principal orbits at fixed

ρ are CP
3 manifolds with a squashed Einstein metric. In the asymptotic region of large

ρ the line element (3.25) coincides with the metric of the resolved Ricci flat cone found

in [45, 46], which was constructed from the bundle of self-dual two-forms over S
4 and is

topologically S
4×R

3 (see [47] for applications of this manifold to the study of the dynamics

of M-theory).

3.1.2 The asymptotic AdS metric

Let us now explore the second possibility for the exponent α in (3.16), namely α = 1. In

this case the coefficient A0 cannot be arbitrary. Indeed, by analyzing the master equation

as x→ ∞ we find that A0 and η0 must be related as:

A2
0 + (9− η0)A0 − 20 η20 = 0 . (3.26)

On the other hand, A0 should be related to the asymptotic squashing q0 as in (3.18), which

we now write as:

A0 =
4q0

3− q0
η0 . (3.27)

By plugging (3.27) into (3.26) we arrive at the following quadratic relation between q0
and η0:

q20 − 3(1 + η0) q0 + 5η0 = 0 . (3.28)
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Using this equation we can re-express A0 as:

A0 =
q0(η0 + q0)

2− q0
. (3.29)

Moreover, we can solve (3.28) for q0 and obtain the following two possible asymptotic

squashings in terms of η0:

q±0 =
1

2

[

3 + 3η0 ∓
√

9η20 − 2η0 + 9
]

. (3.30)

Thus, there are two possible branches in this case, corresponding to the two signs in (3.30).

In this paper we will only consider the q+0 case, since this is the one which has the same

asymptotics as the ABJM solution when there are no D6-brane sources. Indeed, (3.30)

gives q+0 = 1 when η0 = 1, which means that the internal manifold in the deep UV is just

the un-squashed CP
3 (when η0 = 1 there are no D6-brane sources in the UV, see (3.5)).

Let us now study in detail the asymptotic metric in the UV corresponding to the

x→ ∞ squashing q+0 (which from now on we simply denote as q0). By substituting η → η0
and W → A0 x in (3.11) and performing the integral, we get:

eg(x) ≈ C x
2
3

(

1+
η0
A0

)

, (3.31)

where C is a constant of integration. Using (3.27) this expression can be rewritten as:

eg(x) ≈ C x
1
b , (3.32)

where b is given by:

b =
2 q0
q0 + 1

. (3.33)

The remaining functions of the metric can be found in a similar way. We get for f and h

the following asymptotic expressions:

ef(x) ≈ C
√
q0 x

1
b , h(x) ≈ 4π2

N

k

2− b

C4A0

1

x
4
b

. (3.34)

Let us write the above expressions in terms of the original r variable, which can be related

to x by integrating the equation:

x
dr

dx
= eg ≈ C x

1
b . (3.35)

For large x we get:

r ≈ bC x
1
b , (3.36)

and the functions g, f , and h can be written in terms of r as:

eg ≈ r

b
, ef ≈

√
q0

b
r , h ≈ L4

0

r4
, (3.37)

where L0 is given by:

L4
0 = 4π2

N

k

(2− b) b4

A0
. (3.38)
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In terms of the asymptotic values η0 and q0, L0 can be written as:

L4
0 = 128π2

N

k

(2− q0) q
3
0

(η0 + q0) (q0 + 1)5
. (3.39)

Using these results we find that the asymptotic metric takes the form:

ds2 ≈ L2
0 ds

2
AdS4 +

L2
0

b2

[

q0 ds
2
S4

+ (E1)2 + (E2)2
]

, (3.40)

where we have rescaled the Minkowski coordinates as xµ → L2
0 x

µ. The metric (3.40)

corresponds to the product of AdS4 space with radius L0 and a squashed CP
3. The

parameter b will play an important role in the following. Its interpretation is rather clear

from (3.40): it represents the relative squashing of the CP
3 part of the asymptotic metric

with respect to the AdS4 part.

It is now straightforward to show that in the UV the dilaton reaches a constant value

φ0, related to q0 and η0 as:

eφ0 ≈ 4
√
2π

[

(2− q0)
5

q0 (q0 + 1) (η0 + q0)5

] 1
4
(

2N

k5

) 1
4

, (3.41)

while the RR four-form approaches the value:

F4 ≈ 12
√
2π

[

q50 (η0 + q0)

(2− q0) (q0 + 1)7

] 1
2 √

k N ΩAdS4 , (3.42)

where ΩAdS4 is the volume element of AdS4.

Interestingly, when the profile function η is constant and equal to η0, the metric,

dilaton, and forms written above solve the BPS equations not only in the UV, but also in

the full domain of the holographic coordinate. Equivalently, W = A0 x is an exact solution

to the master equation (3.10) if η is constant and equal to η0 and A0 is given by (3.27).

Actually, when η0 = 1 one can check that q0 = b = 1 and the asymptotic background

becomes the ABJM solution (W = 2x for this case). Moreover, when η = η0 > 1 the

background corresponds1 to the one found in [33] for the ABJM model with unquenched

massless flavors, if one identifies η0 with 1 +
3Nf

4k , where Nf is the number of flavors.

The main objective of this paper is the construction of solutions which interpolate

between the η = 1 ABJM background in the IR and the AdS4 asymptotics with η0 > 1

in the UV. Equivalently, we are looking for backgrounds such that the squashing function

q(x) varies from the value q = 1 when x→ 0 to q = q0 > 1 for x→ ∞. These backgrounds

naturally correspond to gravity duals of Chern-Simons matter models with massive un-

quenched flavors. Indeed, in such models, when the energy scale is well below the quark

1Notice that the expression for b written in (3.33) is equivalent to the one obtained in [33], namely:

b =
q0(η0 + q0)

2(q0 + η0q0 − η0)
.

In order to check this equivalence it is convenient to use the following relation between q0 and η0: q0 +

η0q0 − η0 = (q0 + 1) (η0 + q0)/4 .
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mass the fundamentals are effectively integrated out and one should recover the unflavored

ABJM model. On the contrary, if the energy scale is large enough the quarks can be taken

to be massless and the corresponding gravity dual should match the one found in [33]. In

the next section we present a one-parameter family of analytic unflavored solutions which

coincide with the ABJM background in the deep IR and that have a squashing function

q which grows as we move towards the UV. In sections 5 and 6 we show that these run-

ning solutions can be used to construct the gravity duals to massive flavor that we are

looking for.

4 The unflavored system

In this section we will consider the particular case in which the profile is η = 1. In this

case dF2 = 0 and there are no flavor sources. It turns out that one can find a particular

analytic solution of the BPS system written in appendix A. This solution was found in [33]

in a power series expansion around the IR. Amazingly, this series can be summed exactly

and a closed analytic form can be written for all functions. Let us first write them in the

coordinate r. The functions f and g are given by:

ef = r

√

1 + c r

1 + 2c r
, eg = r

1 + c r

1 + 2c r
, (4.1)

where c is a constant. For c = 0 this solution is ABJM without flavor (i.e., AdS4 × CP
3

with fluxes), while for c 6= 0 it is a running background which reduces to ABJM in the IR,

r → 0. The squashing function q can be immediately obtained from (4.1):

q =
1 + 2c r

1 + c r
. (4.2)

For c 6= 0 the squashing function q interpolates between the ABJM value q = 1 in the IR

and the UV value:

q0 = 2 . (4.3)

The warp factor for this solution is:

h(r) =
2π2N

k

(1 + 2c r)2

r4 (1 + c r)2

[

1 + 2c r
(

3cr(1 + 2c r) − 1
)

+12c3 (1 + c r) r3
(

log
[ cr

1 + cr

]

+ α
)

]

, (4.4)

where α is a constant which has to be fixed by adjusting the behavior of the metric in the

UV. Finally, the dilaton can be related to the warp factor as:

eφ =
2

k

1 + c r

(1 + 2c r)2
r h

1
4 . (4.5)

Let us now re-express this running analytic solution in terms of the variable x, related

to r by (3.7), which in the present case becomes:

1

x

dx

dr
=

1 + 2c r

(1 + c r)r
. (4.6)
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This equation can be easily integrated:

γ x = c r(1 + c r) , (4.7)

where γ is a constant of integration which parameterizes the freedom from passing to the

x variable. By solving (4.7) for r we get:

r =
1

2c

[

√

1 + 4 γ x− 1
]

. (4.8)

It is straightforward to write the functions f and g in terms of x:

ef =
γ

c
x

[

2√
1 + 4 γ x (

√
1 + 4 γ x+ 1)

] 1
2

,

eg =
γ

c

x√
1 + 4 γ x

, (4.9)

while the squashing function is:

q = 2

√
1 + 4 γ x

1 +
√
1 + 4 γ x

. (4.10)

The warp factor h in terms of the x variable is:

h =
8π2Nc4

k

(

1 +
1

4γ x

)

[

(

1

2
+ 6γ x +

1 + (1− 6γ x)
√
1 + 4 γ x

4γ x

)√
1 + 4 γ x+ 1

γ2 x2

+24 log

[ √
4 γ x√

1 + 4 γ x+ 1

]

+ α

]

. (4.11)

By choosing appropriately the constant α in (4.11) this running solution behaves as the

G2-cone in the UV region x→ ∞. The dilaton as a function of x is:

eφ =
2

k

γ

c

x

1 + 4 γ x
h

1
4 . (4.12)

Working in the variable x, it is very interesting to find the function W (x). For the

solution described above, W can be found by plugging the different functions in the defi-

nition (3.9). We find:

W (x) =
4 (1 + 4 γ x)x

1 +
√
1 + 4 γ x

. (4.13)

One can readily check that the function written in (4.13) solves the master equation (3.10)

for η = 1. For large x, the function W (x) behaves as:

W ∼ 8
√
γ x

3
2 , (4.14)

which corresponds to an exponent α = 3/2 in (3.16). This is consistent with the asymptotic

value q0 = 2 of the squashing found above.

Let us finally point out that we have checked explicitly that the geometry discussed in

this section is free of curvature singularities.
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5 Interpolating solutions

Let us now construct solutions to the BPS equations which interpolate between an IR

region in which there are no D6-brane sources (i.e., with η = 1) and a UV region in which

η > 1 and, therefore, the Bianchi identity of F2 is violated. In the r variable the profile

η(r) will be such that η(r) = 1 for r ≤ rq, while η(r) > 1 for r > rq. In the region r ≤ rq
our interpolating solutions will reduce to the unflavored running solution of section 4 for

some value of the constant c. In order to match this solution with the one in the region

r > rq it is convenient to work in the x coordinate (4.7). The point r = rq will correspond

to some x = xq. Notice, however, that we have some freedom in performing the r → x

change of variables. This freedom is parameterized by the constant γ in (4.7). We will fix

this freedom by requiring that xq = 1, i.e., that the transition between the unflavored and

flavored region takes place at the point x = 1. Then, (4.7) immediately implies that γ is

given in terms of c and rq:

γ = c rq (1 + c rq) . (5.1)

We will use (5.1) to eliminate the constant c in favor of rq and γ. Actually, if we define

γ̂ as:

γ̂ ≡
√

1 + 4γ , (5.2)

then c is given by

c =
γ̂ − 1

2 rq
. (5.3)

In this running solution the squashing factor q is equal to one in the deep IR at x = 0.

When x > 0 the function q(x) grows monotonically until it reaches a certain value q̂ at

x = 1, which is related to the parameter γ̂ as:

γ̂ =
q̂

2− q̂
. (5.4)

In the region x ≥ 1 we have to solve the master equation (3.10) with η(x) > 1 and initial

conditions given by the values of W and W ′ attained by the unflavored running solution

at x = 1. These values depend on the parameter γ̂. They can be straightforwardly found

by taking x = 1 in the function (4.13) and in its derivative. We find:

W (x = 1) =
4 γ̂2

1 + γ̂
, W ′(x = 1) = 6 γ̂ − 4 . (5.5)

Let us now write the different functions of these interpolating solutions in the two regions

x ≤ 1 and x ≥ 1. For x ≤ 1 we have to rewrite (4.9) after eliminating the constant c by

using (5.3) (which implies that γ/c = (γ̂+1) rq/2). For the functions f , g, and the dilaton

φ we get:

ef = rq
γ̂ + 1√

2

x
[√

1 + 4 γ x (
√
1 + 4 γ x+ 1)

] 1
2

,

eg = rq
γ̂ + 1

2

x√
1 + 4 γ x

, (x ≤ 1) ,

eφ = rq
γ̂ + 1

k

x

1 + 4 γ x
h

1
4 , (5.6)
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where h is the function written in (4.11) for c = (γ̂ − 1)/(2 rq). By using the general

equations of section 3, the solution for x ≥ 1 can be written in terms of W (x), which can

be obtained by numerical integration of the master equation with initial conditions (5.5).

This defines a solution in the full range of x for every γ and rq. Notice that (3.11), (3.12),

and (3.13) contain arbitrary multiplicative constants, which we will fix by imposing conti-

nuity of f , g, and h at x = 1. We get for f , g and φ:

ef = rq

[

(γ̂ + 1)2

2 γ̂

] 1
3
√

3x

W ′ + 4η
W

1
6 exp

[

2

3

∫ x

1

η(ξ)dξ

W (ξ)

]

,

eg = rq

[

(γ̂ + 1)2

2 γ̂

] 1
3 x

W
1
3

exp

[

2

3

∫ x

1

η(ξ)dξ

W (ξ)

]

, (x ≥ 1) ,

eφ = rq

[(γ̂ + 1)2

2 γ̂

] 1
3 12

k

xh
1
4

W
1
3 (W ′ + 4η)

exp

[

2

3

∫ x

1

η(ξ)dξ

W (ξ)

]

. (5.7)

The warp factor h(x) for x ≥ 1 is given by (3.12), where the integration constant β is

related to the constant α of (4.11) by the following matching condition at x = 1:

lim
x→1−

h(x) = lim
x→1+

h(x) . (5.8)

For a given profile function η(x), the solution described above depends on the parameter

γ, which determines W (x) for x ≤ 1 through (4.13) and sets the initial conditions (5.5)

needed to integrate the master equation in the x ≥ 1 region. The solution W (x) obtained

numerically in this way grows generically as x3/2 for large x which, according to our analysis

in section 3.1.1, gives rise to the geometry of the G2-cone in the UV. We are, actually,

interested in obtaining solutions with the AdS asymptotics discussed in section 3.1.2, for

a set of profiles that correspond to flavor D6-branes with a non-zero quark mass. In order

to get these geometries we have to fine-tune the parameter γ to some precise value which

depends on the number of flavors. This analysis is presented in the next section.

6 Massive flavor

We now apply the formalism developed so far to find supergravity backgrounds representing

massive flavors in ABJM. These solutions will depend on a deformation parameter ǫ̂, related

to the total number of flavors Nf and the Chern-Simons level k as:

ǫ̂ ≡ 3Nf

4k
, (6.1)

where the factor 3/4 is introduced for convenience and Nf/k is just
Nf

N λ with λ = N/k

being the ’t Hooft coupling. The profile η, which corresponds to a set of smeared flavor D6-

branes ending at r = rq, has been found in [33]. The main technique employed in [33] was

the comparison between the smeared brane action for the distribution of flavor branes and

the action for a fiducial embedding in a background of the type studied here. This fiducial
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Figure 1. Representation of γ(ǫ̂).

embedding was determined by using kappa symmetry. With our present conventions,2

assuming as above that r = rq corresponds to x = xq = 1, the function η(x) is given by:

η(x) = 1 + ǫ̂
(

1− 1

x2

)

Θ(x− 1) , (6.2)

where Θ(x) is the Heaviside step function. It follows from (6.2) that the asymptotic value

η0 of the profile is:

η0 = 1 + ǫ̂ . (6.3)

We want to find interpolating solutions of the type studied in section 5 which have the AdS

asymptotic behavior in the UV corresponding to the value of η0 written in (6.3). These

solutions have an asymptotic squashing (corresponding to q+0 in (3.30)) given in terms of

ǫ̂ as:

q0 = 3 +
3

2
ǫ̂ − 2

√

1 + ǫ̂ +
9

16
ǫ̂ 2 . (6.4)

It follows from (6.4) that the asymptotic squashing q0 grows with the deformation param-

eter ǫ̂. Indeed, q0 = 1 for ǫ̂ = 0, whereas for ǫ̂ → ∞ the squashing reaches its maximum

value: q0 → 5/3. By using the relation between b and q0 (eq. (3.33)) we also conclude that

b→ 5/4 when ǫ̂→ ∞.

To find the solution for x ≥ 1 we have to solve numerically the BPS system in this

region. The most efficient way to proceed is by looking at the master equation for W (x)

with the initial conditions (5.5). For a generic value of γ the numerical solution either gives

rise to negative values of W (x) (which is unphysical for k > 0, see the definition (3.9))

or behaves in the UV as W (x) ∼ x
3
2 , which corresponds to the G2-cone asymptotics with

q0 = 2 discussed in section 3.1.1. Only when γ is fine-tuned to some particular value (which

depends on ǫ̂) we get in the UV that W (x) ∼ x and that q0 is given by (6.4). To determine

2The variable ρ used in section 8 of [33] is related to x by x = eρ.
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Figure 2. Representation ofW (x)/x and q(x) for different numbers of flavors (ǫ̂ = 0 (bottom, blue),

ǫ̂ = 1 (middle, red), and ǫ̂ = 9 (top, brown)). The plots on the left show that W (x)/x becomes

constant as we approach the IR and UV conformal points at x = 0 and x = ∞, respectively.

Similarly, the squashing function q(x) interpolates between q = 1 at x = 0 and q = q0 at large x.

this critical value of γ we have to perform a numerical shooting for every value of ǫ̂. In

what follows we understand that γ = γ(ǫ̂) is the function of the deformation parameter

which results of this shooting. The function γ(ǫ̂) is plotted in figure 1, where we notice

that γ(ǫ̂ = 0) = 0 and, therefore, we recover the unflavored ABJM background when the

deformation parameter vanishes. In the opposite limit ǫ̂ → ∞, the function γ(ǫ̂) grows as

ǫ̂2. Actually, γ(ǫ̂) can be accurately represented by a function of the type:

γ(ǫ̂) = γ1 ǫ̂ + γ2 ǫ̂
2 , (6.5)

with γ1 = 0.351 and γ2 = 0.309. In figure 2 we plot the function W (x) and the squashing

function q(x) for some selected values of ǫ̂.

From the function W (x) we can obtain f and g by performing the integrals in (5.7).

The whole metric is determined if h is known. We will compute h from (3.12) with β = 0,

which corresponds to requiring that h→ 0 in the UV. In the x ≤ 1 region the warp factor

h(x) is given by (4.11), with the constant α determined by the matching condition (5.8).

The limit on the left-hand side of (5.8) can be determined explicitly from (4.11):

lim
x→1−

h(x) =
π2

8 r4q

N

k

(

γ̂ − 1
)4

(1 + 4γ)

γ

[(

1

2
+ 6γ +

1 + (1− 6γ)γ̂

4γ

)

γ̂ + 1

γ2

+ 24 log

√
4γ

γ̂ + 1
+ α

]

, (6.6)

whereas h(x→ 1+) is given by:

lim
x→1+

h(x) =
48π2

rq

N

k

γ̂2

γ̂ + 1

∫ ∞

1

ξ e−3g(ξ)

[

W (ξ)
]2 dξ . (6.7)

Notice that rq (the value of the r coordinate at the tip of the flavor branes) appears as

a free parameter in eqs. (5.6) and (5.7). Actually, rq can be easily related to the mass mq of

the quarks which deform the geometry. Indeed, by computing the Nambu-Goto action of
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a fundamental string stretching along the holographic direction between r = 0 and r = rq
at fixed value of all the other spacelike coordinates in the geometry (3.1), we get that mq

and rq are linearly related as:

mq =
rq

2πα′ , (6.8)

where α′ is the Regge slope (which we will take to be equal to one in most of our equa-

tions). Equivalently, we can relate mq to the constant c appearing in the solution in the

x ≤ 1 region:

mq =

√

1 + 4γ(ǫ̂)− 1

4π

1

c
, (6.9)

where γ(ǫ̂) is the function obtained by the shooting and only depends on the deformation

parameter ǫ̂.

We have computed the curvature invariants for the flavored metric and we have checked

that the geometry is regular both in the IR (x → 0) and UV (x → ∞). However, the

curvature has a finite discontinuity at x = 1, as can be directly concluded by inspecting

Einstein’s equations (see appendix A). This “threshold” singularity occurs at the point

where the sources are added and could be avoided by smoothing the introduction of brane

sources with an additional smearing (see the last article in [21–24] for a similar analysis in

other background).

6.1 UV asymptotics

The full background in the x ≥ 1 region must be found by numerical integration and

shooting, as described above. However, in the UV region x→ ∞ one can solve the master

equation (3.10) in power series for large x. Indeed, one can find a solution where W (x) is

represented as:

W (x) = x
∞
∑

i=0

A2i

x2i
, (6.10)

where the coefficients A2i can be obtained recursively. The coefficient A0 of the leading

term was written in (3.27). The next two coefficients are:

A2 = − 40 η0 − 11A0

9 + 13 η0 − 2A0
ǫ̂ , A4 =

5A2
2 + 20 ǫ̂2 + 25 ǫ̂ A2

9(1 + 3η0 − 2A0)
. (6.11)

Notice that a linear behavior of W (x) with x corresponds to a conformal AdS background,

whereas the deviations from conformality are encoded in the non-linear corrections.

From the result written above one can immediately obtain the asymptotic behavior of

the squashing function for large x. Indeed, let us use in the expression of q in terms of W

and W ′ (eq. (3.14)) the following large x expansion:

x (W ′ + 4η ) = (A0 + 4η0)x − A2 + 4(η0 − 1)

x
+ · · · . (6.12)

We get:

q(x) = q0 +
q2
x2

+ · · · , (6.13)
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where q0 is the asymptotic value of the squashing (see (6.4)) and q2 is given by:

q2 =
2b

3(2− b)2

[

(3− 2b)
η0 − 1

η0
+ (3− b)

A2

A0

]

, (6.14)

where b is related to q0 and ǫ̂ by (3.33) and (6.4). Similarly, we can find analytically the

first corrections to the UV conformal behavior. The details of these calculations are given

in appendix B. In this section we just present the final results. First of all, let us define

the constant κ (depending on the deformation ǫ̂) as:

κ ≡ b

[

(γ̂ + 1)2

2 γ̂ A0

] 1
3

exp

[

2

3

∫ ∞

1

[

η(ξ)

W (ξ)
− η0
A0 ξ

]

dξ

]

. (6.15)

Then the functions g and f can be expanded for large x as:

eg =
κ rq
b

x
1
b

[

1 +
g2
x2

+ · · ·
]

, ef =
√
q0

κ rq
b

x
1
b

[

1 +
f2
x2

+ · · ·
]

, (6.16)

where the coefficients g2 and f2 are:

g2 =
3− 2b

6b

η0 − 1

η0
+

3− 4b

6b

A2

A0
,

f2 =
1

3

(

3

2b
+

1

2− b
− 1

)

A2

A0
+

(2 + b)(3− 2b)

6b(2− b)

η0 − 1

η0
. (6.17)

Moreover, the UV expansion of the warp factor h and the dilaton is:

h(x) =
L4
0

κ4 r4q
x−

4
b

[

1 +
h2
x2

+ · · ·
]

, eφ = eφ0

(

1 +
φ2
x2

+ · · ·
)

, (6.18)

with the coefficients h2 and φ2 given by:

h2 =
3− 2b

2b

(

1 +
8

3(b− 2)
− 3

3 + 2b

)

η0 − 1

η0
+

(

1 +
2

3(b− 2)
− 2

b
+

3

3 + 2b

)

A2

A0
,

φ2 =
3− 2b

8b

(

1 +
4b

2− b
− 3

3 + 2b

)

η0 − 1

η0
− 3

4

(

1− 2

3(2− b)
− 1

3 + 2b

)

A2

A0
. (6.19)

It is also interesting to write the previous expansions in terms of the r variable. Again, the

details are worked out in appendix B and the final result is:

eg(r) =
r − cq
b

[

1 + g̃2

(rq
r

)2b
+ · · ·

]

, ef(r) =

√
q0(r − cq)

b

[

1 + f̃2

(rq
r

)2b
+ · · ·

]

,

h(r) =

[

L0

r − cq

]4 [

1 + h̃2

(rq
r

)2b
+ · · ·

]

, eφ = eφ0

(

1 + φ̃2

(rq
r

)2b
+ · · ·

)

, (6.20)

where cq is the constant defined in (B.23) and the coefficients g̃2, f̃2, h̃2, and φ̃2 are related

to the ones in (6.17) and (6.19) as:

g̃2 =
2b

2b− 1
κ2b g2 , f̃2 = κ2b

(

f2 +
g2

2b− 1

)

,

h̃2 = κ2b
(

h2 − 4g2
2b− 1

)

, φ̃2 = κ2b φ2 . (6.21)
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Figure 3. Plot of κ as a function of the deformation parameter ǫ̂. The κ asymptotes to some

positive constant as ǫ̂→ ∞.

Recalling (see (6.8)) that rq = 2πmq, it is clear from (6.20) that the deviation from

conformality is controlled by the quark mass and that the parameter b determines the

power of the first mass corrections. In our holographic context this is quite natural if

one takes into account that b determines the dimension ∆ of the quark-antiquark bilinear

operator in the theory with dynamical quarks (∆ = 3 − b, see [18, 33] and below). The

coefficients of these mass corrections depend on the constants g2, f2, h2, and φ2 (whose

analytic expressions we know from eqs. (6.17) and (6.19)), as well as on the constant κ,

which must be determined numerically. κ as a function of the deformation parameter is

plotted in figure 3. From this plot we notice that κ(ǫ̂) interpolates continuously between

κ = 1 for ǫ̂ = 0 and some positive constant value at large ǫ̂.

7 Holographic entanglement entropy

In a quantum theory the entanglement entropy SA between a spatial region A and its

complement is defined as the entropy seen by an observer in A which has no access to the

degrees of freedom living in the complement of A. It can be computed as the von Neumann

entropy for the reduced density matrix obtained by taking the trace over the degrees of

freedom of the complement of A. For quantum field theories admitting a gravity dual,

Ryu and Takayanagi proposed in [36, 37] a simple prescription to compute SA from the

corresponding supergravity background. The holographic entanglement entropy between A

and its complement in the proposal of [36, 37] is obtained by finding the eight-dimensional

spatial surface Σ whose boundary coincides with the boundary of A and is such that it

minimizes the functional:

SA =
1

4G10

∫

Σ
d8ξ e−2φ

√

det g8 , (7.1)
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x=xmax

x

R
Σ

Figure 4. The surface Σ ends on the disk of radius R at the boundary x = xmax → ∞.

where the ξ’s are a system of eight coordinates of Σ, G10 is the ten-dimensional Newton

constant (G10 = 8π6 in our units) and g8 is the induced metric on Σ in the string frame.

The functional SA evaluated on the minimal surface Σ is precisely the entanglement entropy

between the region A and its complement.

In our case A is a region of the (x1, x2)-plane. In this section we will study in detail the

case in which the region A is a disk with radius R as depicted in figure 4 (see appendix C for

the analysis of the entanglement entropy of a strip in the (x1, x2)-plane). In order to deal

with the disk case it is convenient to choose a system of polar coordinates for the plane:

(dx1)2 + (dx2)2 = dρ2 + ρ2 dΩ2
1 . (7.2)

We will describe the eight-dimensional fixed time surface Σ by a function ρ = ρ(x) with ρ

being the radial coordinate of the boundary plane and x the holographic coordinate of the

bulk. The eight-dimensional induced metric is:

ds28 = h−
1
2
[

ρ ′ 2+G(x)
]

dx2 + h−
1
2 ρ2 dΩ2

1 +h
1
2

[

e2f ds2
S4
+e2g

(

(

E1
)2

+
(

E2
)2
) ]

, (7.3)

where ρ ′ denotes the derivative with respect to the holographic coordinate x and the

function G(x) is defined as:

G(x) ≡ e2g h

x2
. (7.4)

Let us next define a new function H(x) as:

H(x) ≡ h2 e−4φ e8f+4g . (7.5)

Then, the entanglement entropy as a function of R is given by:

S(R) =
2π V6
4G10

∫ ∞

x∗

dx ρ
√

H(x)
√

ρ ′ 2 +G(x) , (7.6)

where V6 = 32π3/3 is the volume of the internal manifold and x∗ is the x coordinate of

the turning point of Σ. The Euler-Lagrange equation of motion derived from the entropy
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functional (7.6) is:

d

dx

[

√

H(x)
ρ ρ′

√

ρ ′ 2 +G(x)

]

−
√

H(x)
√

ρ ′ 2 +G(x) = 0 . (7.7)

Notice that the integrand in (7.6) depends on the independent variable x and we therefore

cannot find a first-integral for the second-order differential equation (7.7). Thus, we have

to deal directly with (7.7), which must be solved with the following boundary conditions

at the tip of Σ:

ρ(x = x∗) = 0 , ρ′(x = x∗) = +∞ . (7.8)

Notice also that the radius R of the disk at the boundary is just the UV limit of ρ:

ρ(x→ ∞) = R . (7.9)

The integral (7.6) for S(R) diverges due to the contribution of the UV region of large x

. In order to characterize this divergence and to extract the finite part, let us study the

behavior of the integrand in (7.6) as x → ∞. From the definitions of the functions H(x)

and G(x) and the UV behavior written in (6.16) and (6.18), it follows that H and G display

a power-like behavior as x→ ∞,

H(x) ≈ H∞ x
4
b , G(x) ≈ G∞ x−2− 2

b , (x→ ∞) , (7.10)

where the coefficients H∞ and G∞ are

H∞ =
L8
0 κ

4 r4q q
4
0 e

−4φ0

b12
, G∞ =

L4
0

b2 r2q κ
2
. (7.11)

By taking the x→ ∞ values of ρ and ρ′ (ρ = R and ρ′ = 0) inside the integral in (7.6), as

well as the asymptotic form of H(x) and G(x) (eq. (7.10)), we get:

Sdiv(R) =
π V6
2G10

R
√

H∞G∞

∫ xmax

x
1
b
−1 dx , (7.12)

where xmax is the maximum value of the holographic coordinate x (which acts as a UV

regulator). After performing the integral, we obtain:

Sdiv(R) =
π V6
2G10

Rb
√

H∞G∞ x
1
b
max . (7.13)

Let us rewrite (7.13) in terms of physically relevant quantities. First of all, we notice that:

b
√

H∞G∞ =
L6
0 q

2
0 e

−2φ0

b6
κ rq =

3π2

2

FUV(S
3)

L2
0

κ rq , (7.14)
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where FUV(S
3) is the free energy3 of the massless flavored theory on the three-sphere:

FUV(S
3) =

2π

3

N2

√
2λ

ξ

(

Nf

k

)

, (7.17)

where the function ξ
(Nf

k

)

is given by:

ξ

(

Nf

k

)

≡ 1

16

q
5
2
0 (η0 + q0)

4

(2− q0)
1
2 (q0 + η0q0 − η0)

7
2

. (7.18)

In (7.18) η0 = 1 + ǫ̂ and q0 is written in (6.4) in terms of the deformation parameter. For

the unflavored ABJM theory the free energy is given by (7.17) with ξ = 1. This formula

displays the famous N
3
2 behavior. The function ξ(Nf/k) encodes the corrections to this

behavior due to the smeared massless flavors. It was first computed in [33], where it was

shown that it is remarkably close to the value found in [13] for localized embeddings. The

function ξ is a monotonic function of the deformation parameter which grows as
√
ǫ̂ for

large values of ǫ̂.

Using (7.14) and the fact that, in the deep UV region of large x, rmax = κ rq x
1
b
max

(see (B.22)), we can rewrite Sdiv(R) as:

Sdiv(R) =
FUV(S

3)

L2
0

rmaxR . (7.19)

We notice in (7.19) that Sdiv(R) diverges linearly with rmax. The coefficient of this divergent

term is linear in the disk radius R and in FUV(S
3). The latter is a measure of the effective

number of degrees of freedom of the flavored theory in the high-energy UV limit in which

the flavors can be considered to be massless. The appearance of FUV(S
3) in (7.19) is thus

quite natural.

The separation between the divergent and finite parts of S(R) has ambiguities. In

order to solve these ambiguities, Liu and Mezei proposed in [38] to consider the function

F(R), defined as:

F(R) ≡ R
∂S

∂R
− S . (7.20)

It was argued in [38] that F(R) is finite and a monotonic function of R which provides a

measure of the number of degrees of freedom of a system at a scale R.

In a 3d CFT the entanglement entropy for a disk of radius R has the form:

SCFT (R) = αR − β , (7.21)

3When the field theory is formulated on a three-sphere, its free energy is defined as:

F (S3) = − log |ZS3 | , (7.15)

where ZS3 is the Euclidean path integral. For a CFT whose gravity dual is of the form AdS4 × M6, the

holographic calculation of F (S3) gives [48]:

F (S3) =
πL2

2GN

, (7.16)

where L is the AdS4 radius and GN is the effective four-dimensional Newton’s constant.
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Figure 5. Plot of the running free energy F as a function of rq R for ǫ̂ = 0 (bottom, blue), 1

(middle, red), and 9 (top, brown).

where α is a UV divergent non-universal part and β is finite and independent of R. It

was shown in [49] that the finite part β is equal to the free energy of the theory on S
3.

Notice that F = β when S is of the form (7.21). Therefore, for a conformal fixed point the

function F is constant and equal to the free energy on the three-sphere of the corresponding

CFT. In the next subsection we will obtain the UV and IR values of F and we will show

that they coincide with the free energies on S
3 of the massless flavored theory and of the

unflavored ABJM model, respectively.

It is interesting to point out that the entanglement entropy of a disk in a (2+1)-

dimensional system at large R can also be written in the form (7.21), if one neglects

terms which vanish in the R → ∞ limit. In a gapped system, the R-independent part β

of the right-hand side of (7.21) is the so-called topological entanglement entropy [51, 52]

and serves to characterize topologically ordered many-body states which contain non-local

entanglement due to non-local correlations (examples of such states are the Laughlin states

of the fractional quantum Hall effect or the Z2 fractionalized states). The topological

entanglement entropy β is related to the so-called total quantum dimension D of the system

as β = logD. In general D > 1 (or β > 0) signals a topological order (for example D =
√
q

for the quantum Hall system with filling fraction ν = 1/q, with q an odd integer).

For our system, we can obtain the embedding function ρ(x) by numerical integration

of the differential equation (7.7) and then we can get the functions S(R) and F(R) by

using (7.6) and the definition of F(R) in (7.20). The results for the latter are plotted as

a function of Rrq ∝ Rmq in figure 5. We notice that F(R) is a monotonically decreasing

function that interpolates smoothly between the two limiting values at Rmq = 0 and

Rmq → ∞. The UV limit of F at small Rmq equals the free energy (7.17) of the massless

flavored theory, whereas for large Rmq the function F approaches the free energy of the
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unflavored ABJM model (i.e., the value in (7.17) with ξ = 1). This behavior is in agreement

with the general expectation in [38, 44] and corresponds to a smooth decoupling of the

massive flavors as their mass mq is increased continuously.

We will study the UV and IR limits of F analytically in the next two subsections.

Some details of these calculations are deferred to appendix C, where we also study the

entanglement entropy for the strip geometry.

7.1 UV limit

In order to study the UV limit of the disk entanglement entropy, let us write the Euler-

Lagrange equation (7.7) when H(x) and G(x) are given by their asymptotic values (7.10):

d

dx



x
2
b

ρ ρ′
√

ρ ′ 2 +G∞ x−2− 2
b



− x
2
b

√

ρ ′ 2 +G∞ x−2− 2
b = 0 . (7.22)

This equation can be solved exactly by the function:

ρUV(x) =

√

R2 − b2G∞ x−
2
b , (7.23)

which clearly satisfies the initial conditions (7.8), with the following value of the turning

point coordinate x∗:

x
2/b
∗ =

b2G∞
R2

. (7.24)

Since G∞ ∝ r−2
q , it follows from (7.24) that x

2/b
∗ ∝ (rq R)

−2. Therefore, the turning point

coordinate x∗ is large if rq or R are small. In this case it would be justified to use the

asymptotic UV values of the functions G and H, since the minimal surface Σ lies entirely

in the large x region. Notice also that (7.23) can be written in terms of x∗ as:

ρUV = R

√

1−
(

x∗
x

)2/b

. (7.25)

In order to calculate the entropy in this UV limit it is very useful to use the following

relation satisfied by the function ρUV(x) written in (7.23):

ρUV

√

(

ρ ′
UV

)2
+G∞ x−2− 2

b = R
√

G∞ x−1− 1
b . (7.26)

Making use of (7.26) in (7.6), we find the following expression for the entanglement entropy:

SUV(R) =
π V6
2G10

R
√

H∞G∞

∫ xmax

x∗

x
1
b
−1 dx . (7.27)

The divergent part of this integral is due to its upper limit and is just given by (7.19). The

finite part of S is:

Sfinite,UV = − π V6
2G10

b
√

H∞G∞ Rx
1
b∗ = − π V6

2G10
b2G∞

√

H∞ , (7.28)
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where, in the second step, we used (7.24) to eliminate x∗. Notice that the right-hand side

of (7.28) is independent of the disk radius R. Moreover, by using (7.11) and (7.14) we

find that:

Sfinite,UV = −FUV(S
3) . (7.29)

Therefore, in this UV limit, the dependence on R of the entanglement entropy takes the

form (7.21), where β is just the free energy of the massless flavored theory on the three-

sphere. It follows trivially from this form of SUV and the definition (7.20) that FUV = β

and therefore:

FUV ≡ lim
rqR→0

F(R) = FUV(S
3) . (7.30)

It is also possible to compute analytically the first correction to (7.30) for small values of

rq R. The details of this calculation are given in appendix C. Here we will just present the

final result, which can be written as:

F(R) = FUV(S
3) + cUV (rq R)

2(3−∆UV) + · · · , (7.31)

where cUV is a constant coefficient depending on the deformation parameter (see eq. (C.28))

and ∆UV = 3 − b is the dimension of the quark-antiquark bilinear operator in the UV

flavored theory (this dimension was found in section 7.3 of [33] from the analysis of the

fluctuations of the flavor branes, see also [18]). It is interesting to point out that (7.31) is the

behavior expected [38] for a flow caused by a source deformation with a relevant operator

of dimension ∆UV. Moreover, one can verify that cUV is negative for all values of the

deformation parameter ǫ̂, which confirms that the UV fixed point is a local maximum of F .

7.2 IR limit

Let us now analyze the IR limit of the entanglement entropy S(R) and of the function F(R).

This limit occurs when the 8d surface Σ penetrates deeply into the geometry and, therefore,

when the coordinate x∗ of the turning point is small (x∗ ≪ 1). This happens when either

the disk radius R or the quark mass mq = rq/2π are large. Looking at the embedding

function ρ(x) obtained by numerical integration of (7.7) one notices that, when x∗ is small,

the function ρ(x) is approximately constant and equal to its asymptotic value ρ = R in the

region x ≥ 1 (see figure 6). Therefore, the dependence of ρ on the holographic coordinate

x is determined by the integral of (7.7) in the region x ≤ 1, where the background is given

by the unflavored running solution. Actually, when x∗ is small it is a good approximation

to consider (7.7) for the unflavored background, i.e., when the constants c, γ → 0, with γ/c

fixed and given by γ/c = rq. In this limit the different functions of the background are:

ef ≈ eg ≈ rq x , h ≈ 1

r4q

2π2N

k

1

x4
. (7.32)

It follows that G(x) and H(x), as defined in (7.4) and (7.5), are then given by:

GIR(x) =
1

r2q

2π2N

k

1

x4
= G0 x

−4 , HIR(x) = r4q
4π4N2

k2
e−4φIR x4 = H0 x

4 , (7.33)
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Figure 6. Representation of the embedding function ρ(x) for different values of the turning point

x∗ = 0.1, 1, 5 and ǫ̂ = 9.

where, in the last step, we have defined the constants G0 and H0, and φIR is the constant

dilaton corresponding to the unflavored background,

eφIR = 2
√
π

(

2N

k5

) 1
4

. (7.34)

Let us now elaborate on the expression (7.6) for the entanglement entropy. We split the

integration interval of the variable x as [x∗,∞] = [x∗, 1]∪ [1,∞] and take into account that

one can put ρ = R = constant in the region x ≥ 1. We get:

SIR(R) =
π V6
2G10

∫ 1

x∗

dx ρ
√

HIR(x)
√

ρ ′ 2 +GIR(x) +
π V6
2G10

R

∫ xmax

1

√

H(x)G(x) .

(7.35)

The second term in (7.35) is linear in R and will not contribute to F(R). To evaluate the

first integral in (7.35) we must determine the embedding function ρ(x) by integrating (7.7)

when G(x) and H(x) are given by their IR values (7.33). The resulting equation is just the

same as (7.22) with G∞ and H∞ substituted by G0 and H0 and b = 1. Then, the function

ρ(x) can be written as in (7.23),

ρIR(x) =

√

R̂ 2 − G0 x−2 , (7.36)

where R̂ is a constant. By requiring that ρIR(x = 1) = R, we get:

R̂ 2 = R2 + G0 . (7.37)

It follows from (7.36) that the coordinate x∗ of the turning point is given by:

x2∗ =
G0

R̂2
=

G0

G0 +R2
. (7.38)
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Notice that when rq → ∞ (and G0 → 0) or R is large one can neglect the G0 in the denom-

inator of (7.38) and then x2∗ ≈ G0R
−2 ∝ (rq R)

−2, which is a small number. Moreover,

by using the explicit form (7.36) of ρ(x) in this IR region, we get:

ρIR

√

(ρ′IR)
2 +GIR = R̂

√

G0 x
−2 , (7.39)

and the first integral in (7.35) can be explicitly evaluated:

∫ 1

x∗

dx ρIR
√

HIR(x)
√

(ρ′IR)
2 +GIR(x) = R̂

√

G0H0 − G0

√

H0 . (7.40)

Notice that, at leading order R̂ ≈ R and, thus, the first term in (7.40) does not contribute

to F(R). Then, the IR limit of F is determined by the second contribution in (7.40) and

given by:

FIR =
π V6
2G10

G0

√

H0 . (7.41)

Moreover, from the values of G0 and H0 written in (7.33) we get:

G0

√

H0 =
π3√
2
N

3
2 k

1
2 =

3π2

2
FIR(S

3) , (7.42)

where FIR(S
3) is the free energy on the three-sphere of the unflavored ABJM theory:

FIR(S
3) =

π
√
2

3
k

1
2 N

3
2 . (7.43)

It follows that the IR limit of the F function is:

FIR ≡ lim
rqR→∞

F(R) = FIR(S
3) , (7.44)

as expected in the deep IR limit in which the flavors become infinitely massive and can

therefore be integrated out. The corrections to the result (7.44) near the IR fixed point

could be obtained by applying the techniques recently introduced in [50]. We will not

attempt to perform this calculation here.

8 Wilson loops and the quark-antiquark potential

In this section we evaluate the expectation values of the Wilson loop and the corresponding

quark-antiquark potential for our model. We will employ the standard holographic pre-

scription of refs. [53, 54], in which one considers a fundamental string hanging from the UV

boundary. Then, one computes the regularized Nambu-Goto action for this configuration,

from which the qq̄ potential energy can be extracted. In a theory with dynamical flavors

this potential energy contains information about the screening of external charges by the

virtual quarks popping out from the vacuum. In our case we expect having a non-trivial

flow connecting two conformal behaviors as we move from the UV regime of small qq̄ sepa-

ration (in units of the quark mass mq) to the IR regime of large qq̄ distance. We will verify

below that this expectation is indeed fulfilled by our model.
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Let us denote by (t, x1, x2) the Minkowski coordinates and consider a fundamental

string for which we take (t, x1) as its worldvolume coordinates. If the embedding is char-

acterized by a function x = x(x1), with x being the holographic coordinate, the induced

metric is:

ds22 = −h− 1
2 dt2 + h

1
2

[

e2g

x2
x′ 2 + h−1

]

(dx1)2 , (8.1)

where x′ denotes the derivative of x with respect to x1. The Nambu-Goto Lagrangian

density takes the form:

LNG =
1

2π

√

− det g2 =
1

2π

√

e2g

x2
x′ 2 + h−1 . (8.2)

As LNG does not depend on x1, we have the following conservation law:

x′
∂ LNG

∂x′
− LNG = constant . (8.3)

Therefore, if x∗ denotes the turning point of the string, we have the first integral of the

equations of motion:
√

1 +
e2g h

x2
x′ 2 =

√
h∗√
h
, (8.4)

where h∗ ≡ h(x = x∗). Then x′ is given by:

x′ = ±x
√

h∗ − h(x)

eg(x) h(x)
, (8.5)

where the two signs correspond to the two branches of the hanging string. The qq̄ separation

d in the x1 direction is:

d = 2

∫ ∞

x∗

eg(x) h(x)

x
√

h∗ − h(x)
dx . (8.6)

In order to compute the potential energy of the qq̄ pair, let us evaluate the on-shell action.

By using the first integral (8.4) it is straightforward to check that the on-shell value of the

Nambu-Goto Lagrangian density is:

LNG(on− shell) =
1

2π

√
h∗
h

. (8.7)

Therefore, the on-shell action becomes:

Son−shell =
T

π

∫ ∞

x∗

eg(x)

x

√
h∗

√

h∗ − h(x)
dx , (8.8)

where T =
∫

dt. The integral (8.8) is divergent and must be regularized as in [53, 54]

by subtracting the action of two straight strings stretched between the origin and the

UV boundary, which corresponds to subtracting the (infinite) quark masses in the static

limit. After applying this procedure we arrive at the following expression for the regulated

on-shell action:

Sreg
on−shell = Son−shell −

T

π

∫ ∞

0

eg(x)

x
dx , (8.9)
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Figure 7. Plot of the qq̄ potential energy for ǫ̂ = 9. The numerical result is compared to the UV

leading estimate (8.12) (black dashed curve on the left) and to the leading IR potential (red dashed

curve on the right).

from which we get the qq̄ potential energy:

Eqq̄ =
1

π

∫ ∞

x∗

eg(x)

x

[ √
h∗

√

h∗ − h(x)
− 1

]

dx − r∗
π
, (8.10)

where r∗ is the r coordinate of the turning point:

r∗ =

∫ x∗

0

eg(x)

x
dx . (8.11)

From (8.6) and (8.10) we have computed numerically the potential energy Eqq̄ as a

function of the qq̄ distance d. The result of this numerical calculation is shown in figure 7.

As mentioned above, we expect to have a potential energy which interpolates between

the two conformal behaviors with Eqq̄ ∝ 1/d at the UV and IR. Actually, in the limiting

cases in which rqd is small or large the function Eqq̄(d) can be calculated analytically (see

appendix D). In both cases Eqq̄ ∝ 1/d, but with different coefficients. Indeed, in the UV

limit rq d→ 0, the qq̄ potential can be approximated as:4

EUV
qq̄ ≈ −4π3

√
2λ

[

Γ
(

1
4

)]4 σ
1

d
, (rq d→ 0) , (8.12)

where λ = N/k is the ’t Hooft coupling and σ is the so-called screening function:

σ =

√

2− q0
q0(q0 + η0q0 − η0)

b2 =
1

4

q
3
2
0 (η0 + q0)

2 (2− q0)
1
2

(q0 + η0q0 − η0)
5
2

. (8.13)

4Also, the first correction to the UV conformal behavior (8.12) is computed in appendix D.
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Notice that σ encodes all the dependence of the right-hand side of (8.12) on the number

of flavors. Actually, the potential (8.12) is just the one corresponding to having massless

flavors (which was first computed for this model in [33]), as expected in the high-energy

UV regime in which all masses can be effectively neglected. The function σ characterizes

the corrections of the static qq̄ potential due to the screening produced by the unquenched

massless flavors (σ → 1 for Nf → 0, whereas σ decreases as σ ∝
√

k/Nf for Nf large).

In figure 7 we compare the leading UV result (8.12) with the numerical calculation in the

small rq d region.

Similarly, one can compute analytically the qq̄ potential in the region where rq d is

large. At leading order the result is (see appendix D):

EIR
qq̄ ≈ −4π3

√
2λ

[

Γ
(

1
4

)]4

1

d
, (rq d→ ∞) . (8.14)

In figure 7 we compare the analytic expression (8.14) to the numerical result in the large

distance region. Notice that the difference between (8.12) and (8.14) is that the screening

function σ is absent in (8.14). Therefore, in the deep IR the flavor effects on the qq̄ potential

disappear, which is consistent with the intuition that massive flavors are integrated out at

low energies.

9 Two-point functions of high dimension operators

In this section we study the two-point functions of bulk operators with high dimension.

The form of these correlators can be obtained semiclassically by analyzing the geodesics of

massive particles in the dual geometry [55–57],

〈O(x)O(y)〉 ∼ e−mLr(x,y) , (9.1)

where m is the mass of the bulk field dual to O. We are assuming that m is large in order

to apply a saddle point approximation in the calculation of the correlator. In (9.1) Lr(x, y)

is a regularized length along a spacetime geodesic connecting the boundary points x and

y. To find these geodesics, let us write the Einstein frame metric of our geometry as:

ds210 = e−
φ
2 h−

1
2 dx21,2 + e−

φ
2 h

1
2

[

e2g
dx2

x2
+ e2f ds2

S4
+ e2g

(

(

E1
)2

+
(

E2
)2
)

]

. (9.2)

Then, the induced metric for a curve parametrized as x = x(x1) is:

ds21 = e−
φ
2 h−

1
2

(

1 +G(x)x′ 2
)

(dx1)2 , (9.3)

with x′ = dx/dx1 and G(x) is the function defined in (7.4). Therefore, the action of a

particle of mass m whose worldline is the curve x = x(x1) is:

S = m

∫

ds1 = m

∫

e−
φ
4 h−

1
4

√

1 +G(x)x′ 2 dx1 . (9.4)
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The geodesics we are looking for are solutions of the Euler-Lagrange equation derived from

the action (9.4). This equation has a first integral which is given by:

e
φ(x)
4
[

h(x)
] 1
4
√

1 +G(x)x′ 2 = e
φ∗
4 h

1
4∗ , (9.5)

where φ∗ ≡ φ(x = x∗) and h∗ ≡ h(x = x∗), with x∗ being the x coordinate of the turning

point, i.e., the minimum value of x along the geodesic. It follows from (9.5) that:

x ′ = ± 1
√

G(x)

√

e
1
2
(φ∗−φ(x))

(

h∗
h(x)

) 1
2

− 1 . (9.6)

The spatial separation l of the two points in the correlator can be obtained by integrating

1/x′. We get:

l = 2

∫ ∞

x∗

dx

√

G(x)
√

e
1
2
(φ∗−φ(x))

(

h∗

h(x)

) 1
2 − 1

. (9.7)

Moreover, the length of the geodesic can be obtained by integrating ds1 over the worldline,

L = 2

∫ ∞

x∗

dx
e−

φ(x)
4

[

h(x)
]− 1

4
√

G(x)
√

1− e
1
2
(φ(x))−φ∗)

(h(x)
h∗

) 1
2

. (9.8)

This integral is divergent. In order to regularize it, let us study the UV behavior of

the integrand. For large x, the functions h(x) and G(x) behave as in (6.18) and (7.10),

respectively. Thus, at leading order for large x,

[

h(x)
]− 1

4
√

G(x) ≈ L0

b
x−1 . (9.9)

In the UV region x→ ∞, the integrand in L behaves approximately as 2 b−1 L0 e
−φ0/4 x−1,

which produces a logarithmic UV divergence when it is integrated. In order to tackle

this divergence, let us regulate the integral by extending it up to some cutoff xmax and

renormalize the geodesic length by subtracting the divergent part. Accordingly, we define

the renormalized geodesic length as:

Lr = 2

∫ xmax

x∗

dx
e−

φ(x)
4

[

h(x)
]− 1

4
√

G(x)
√

1− e
1
2
(φ(x))−φ∗)

(h(x)
h∗

) 1
2

− 2L0 e
−φ0

4

b
log(C xmax) , (9.10)

where C is a constant to be fixed by choosing a suitable normalization condition for

the correlator.

Our background interpolates between two limiting AdS4 geometries, at the UV and

IR, with different radii. For an equal-time two-point function
〈

O(t, l)O(t, 0)
〉

the UV and

IR limits should correspond to the cases in which rq l is small or large, respectively. At the

two endpoints of the flow, the theory is conformal invariant and the two-point correlator

behaves as a power law in l. We can use this fact to fix the normalization constant C
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Figure 8. Plot of mLr/
(

2∆IR log(rq l/
√
λ)
)

versus the logarithm of rq l/
√
λ. Notice that, accord-

ing to (9.1), mLr = − log〈O(t, l)O(t, 0)〉. The three curves correspond to ǫ̂ = 0 (bottom, blue),

ǫ̂ = 1 (middle, red), and ǫ̂ = 9 (top, brown). In the deep UV (rq l → 0) the curves approach the con-

stant value ∆UV/∆IR. The dashed curves correspond to the behavior (9.14), with the normalization

constant N given in (E.35).

in (9.10). Actually, we will assume that the field O is canonically normalized in the short-

distance rq l → 0 limit and, therefore, the UV limit of the two-point correlator is:

〈

O(t, l)O(t, 0)
〉

UV
=

1
(

rq l/
√
λ
)2∆UV

, (rq l → 0) , (9.11)

where the
√
λ and rq factors have been introduced for convenience. In (9.11) ∆UV is the

conformal dimension of the operator O in the UV CFT, which for the dual of a bulk field

of mass m is:

∆UV = mL0 e
−φ0

4 , (9.12)

where we have taken into account that m is large and that L0 e
−φ0

4 is the AdS4 radius

of the UV massless flavored geometry in the Einstein frame. It is shown in appendix E

that, indeed, the correlators derived from (9.10) display the canonical form (9.11) if the

constant C is chosen appropriately (see (E.8)). In appendix E we have also computed the

first deviation from the conformal UV behavior. In this case the numerator on the right-

hand side of (9.11) is not one but a function f∆(rq l/
√
λ) such that f∆(rq l/

√
λ = 0) = 1.

We show in appendix E that f∆(rq l/
√
λ)−1 ∝ (rq l/

√
λ)2b for small rq l. The explicit form

of the first correction to the non-conformal behavior can be computed analytically from

the mass corrections of section 6.1 and appendix B (see eqs. (E.19)–(E.21)).

When the distance rq l is large the theory reaches a new conformal point. Accordingly,

the two-point function should behave again as a power law. Notice, however, that the
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conformal dimension ∆IR in the IR of an operator dual to a particle of mass m is different

from the UV value (9.12). Indeed, in the IR the conformal dimension ∆IR for an operator

O of mass m is the one corresponding to the unflavored ABJM theory,

∆IR = mLABJM e−
φABJM

4 , (9.13)

where LABJM and φABJM are given, respectively, in (2.3) and (2.4). Actually, one can check

that ∆UV ≥ ∆IR and that ∆UV/∆IR ∝ ǫ̂
1
16 for large values of the deformation parameter

ǫ̂. The calculation of the two-point function in the IR limit of large rq l is performed in

detail in appendix E, with the result:

〈

O(t, l)O(t, 0)
〉

IR
=

N
(

rq l/
√
λ
)2∆IR

, (rq l → ∞) , (9.14)

where N is a constant whose analytic expression is written in (E.35). Notice that N 6= 1

due to our choice of the constant C in (9.10), which corresponds to imposing the canonical

normalization (9.11) to the two-point function in the UV regime.

The results obtained by the numerical evaluation of the integral (9.10) interpolate

smoothly between the conformal behaviors (9.11) and (9.14). This is shown in figure 8,

where we plot − log〈O(t, l)O(t, 0)〉/(2∆IR log(rq l/
√
λ)) as a function of log(rq l/

√
λ). For

small values of rq l/
√
λ the curve asymptotes to the ratio ∆UV/∆IR of conformal dimen-

sions, in agreement with (9.11), whereas for large rq l/
√
λ we recover the IR behavior (9.14).

10 Meson spectrum

Let us now test the flow encoded in our geometry by analyzing the mass spectrum of

qq̄ bound states. We will loosely refer to these bound states as mesons, although our

background is not confining and quarkonia would be a more appropriate name for them.

To carry out our analysis we will introduce additional external quarks, with a mass µq
not necessarily equal to the mass mq of the quarks which backreact on the geometry. To

distinguish between the two types of flavors we will call valence quarks to the additional

ones, whereas the unquenched Nf dynamical flavors of the geometry will be referred to as

sea quarks. The ratio µq/mq of the masses of the two types of quarks will be an important

quantity in what follows. Indeed, µq/mq is the natural parameter for the holographic

renormalization group trajectory. When µq/mq is large (small) we expect to reach a UV

(IR) conformal fixed point, whereas for intermediate values of this mass ratio the theory

should flow in such a way that the screening effects produced by the sea quarks decrease

as we move towards the IR.

Within the context of the gauge/gravity duality, the valence quarks can be introduced

by adding an additional flavor D6-brane, which will be treated as a probe in the backreacted

geometry. The mesonic mass spectrum can be obtained from the normalizable fluctuations

of the D6-brane probe. The way in which the D6-brane probe is embedded in the ten-

dimensional geometry preserving the supersymmetry of the background can be determined

by using kappa symmetry. For fixed values of the Minkowski and holographic coordinates,
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the D6-brane extends over a cycle inside the CP
3 which has two directions along the S

4

base and one direction along the S
2 fiber. In order to specify further this configuration,

let us parameterize the SU(2) left invariant one-forms ωi of the four-sphere metric (2.7) in

terms of three angles θ̂, ϕ̂ and ψ̂,

ω1 = cos ψ̂ d θ̂ + sin ψ̂ sin θ̂ dϕ̂ ,

ω2 = sin ψ̂ d θ̂ − cos ψ̂ sin θ̂ dϕ̂ ,

ω3 = dψ̂ + cos θ̂ dϕ̂ , (10.1)

with 0 ≤ θ̂ ≤ π, 0 ≤ ϕ̂ < 2π, 0 ≤ ψ̂ ≤ 4π. Then, our D6-brane probe will be extended

along the Minkowski directions and embedded in the geometry in such a way that the

angles θ̂ and ϕ̂ are constant and that the angle θ of the S2 fiber depends on the holographic

variable x. The pullbacks (denoted by a hat) of the left-invariant SU(2) one-forms (10.1)

are ω̂1 = ω̂2 = 0 and ω̂3 = dψ̂. The kappa symmetric configurations are those for which

the function θ(x) satisfies the first order BPS equation [33]:

x
dθ

dx
= cot θ , (10.2)

which can be integrated as:

cos θ =
x∗
x
. (10.3)

Here x∗ is the minimum value of the variable x for the embedding, i.e., the value of x

for the tip of the brane. This minimum value of the coordinate x for the embedding is

related to the mass µq of the valence quarks introduced by the flavor probe. Indeed, by

computing the Nambu-Goto action of a fundamental string stretched in the holographic

direction between x = 0 and x = x∗ we obtain µq as:

µq =
1

2πα′

∫ x∗

0

eg(x)

x
dx . (10.4)

In the following we will take the Regge slope α′ = 1. Moreover, to simplify the description

of the embedding, let us introduce the angular coordinate α, defined as follows:

ξ = tan

(

α

2

)

, (10.5)

and let us define new angles β and ψ as:

β =
ψ̂

2
, ψ = ϕ − ψ̂

2
, (10.6)

where ϕ is the angle in (2.9). One can check that the ranges of the new angular variables

are 0 ≤ α < π, 0 ≤ β , ψ < 2π. We will take the following set of worldvolume coordinates

for the D6-brane:

ζa = (xµ, x, α, β, ψ) . (10.7)

– 35 –



J
H
E
P
1
2
(
2
0
1
3
)
0
3
3

Then, it is straightforward to verify that the induced metric on the D6-brane worldvolume

takes the form:

ds27 = h−
1
2 dx21,2 +

h
1
2 e2g

x2 − x2∗
dx2 + h

1
2 e2f

[

dα2 + sin2 αdβ2
]

+(x2 − x2∗)
h

1
2 e2g

x2
(

dψ + cosαdβ
)2
. (10.8)

We will restrict ourselves to study a particular set of fluctuations of the D6-brane probe,

namely the fluctuations of the worldvolume gauge field Aa. The equation for these fluctu-

ations is:

∂a

[

e−φ
√

− det g gac gbd Fcd

]

= 0 , (10.9)

where gab is the induced metric (10.8). More concretely, we will study this equation for

the following ansatz for Aa:

Aµ = ξµ e
ikνxν

R(x) , (µ = 0, 1, 2) , Ax = Ai = 0 , (10.10)

where ξµ is a constant polarization vector and Ai denote the components along the angular

directions. These modes are dual to the vector mesons of the theory, with kµ being the

momentum of the meson (ηµν kµ kν = −m2, with m being the mass of the meson). The

non-vanishing components of the field strength Fab are:

Fµν = i(kµ ξν − kν ξµ) e
ikνxν

R(x) , Fxµ = ξµ e
ikνxν

R′(x) . (10.11)

The fluctuation equation (10.9) is trivially satisfied when b = i, whereas for b = x it is

satisfied if the polarization is transverse:

ηµν kµ ξν = 0 . (10.12)

Moreover, by taking b = µ in (10.9) we arrive at the following differential equation for the

radial function R:

∂x

[

h
1
4 e2f−φ

x
(x2 − x2∗) ∂xR

]

+ m2 h
5
4 e2f+2g−φ

x
R = 0 . (10.13)

The mass levels correspond to the values ofm for which there are normalizable solutions

of (10.13). They can be obtained numerically by the shooting technique. One gets in this

way a discrete spectrum depending on a quantization number n (n ∈ Z, n ≥ 0). The

numerical results for the first three levels are shown in figure 9 as functions of the mass

ratio µq/mq. One notices in these results that the meson masses increase as we move from

the IR (µq/mq → 0) to the UV (µq/mq → ∞). This non-trivial flow is due to the vacuum

polarization effects of the sea quarks, which are enhanced as we move towards the UV and

the sea quarks become effectively massless. This is the expected behavior of bound state

masses for a theory in the Coulomb phase, since the screening effects reduce effectively the

strength of the quark-antiquark force.
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Figure 9. Numerical values of the meson masses for the first three levels (n = 0, 1, 2) as a function

of the sea quark mass mq for deformation parameter ǫ̂ = 9. The solid curves depict the WKB

estimate (10.14).

One can get a very accurate description of the flow by applying the WKB approxima-

tion. The detailed calculation is presented in appendix F. The WKB formula for the mass

spectrum is:

mWKB =
π√

2 ξ(x∗)

√

(n+ 1)(2n+ 1) , (n = 0, 1, 2, · · · ) , (10.14)

where ξ(x∗) is the following integral:

ξ(x∗) =

∫ ∞

x∗

dx
eg(x)

√

h(x)
√

x2 − x2∗
. (10.15)

The WKB mass levels (10.14) are compared with those obtained by the shooting technique

in figure 9. We notice from these plots that the estimate (10.14) describes rather well

the numerical results along the flow. Moreover, we can use the UV and IR limits of the

functions g and h to obtain the asymptotic form of the WKB spectrum at the endpoints of

the flow. This analysis is performed in detail in appendix F (see eqs. (F.14) and (F.20)). As

expected, in the deep IR the mass levels coincide with those of the unflavored ABJM model.

In this latter model the mass spectrum of vector mesons can be computed analytically since

the fluctuation equation can be solved in terms of hypergeometric functions [14, 15]. When

µq/mq → ∞ the meson masses coincide with those obtained for the massless flavored

model of [33].

We can use the WKB formulas (F.14) and (F.20) for the spectrum at the endpoints of

the renormalization group flow to estimate the variation generated in the meson masses by

changing the sea quark mass mq and switching on and off gradually the screening effects. It
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is interesting to point out that, within the WKB approximation, the ratio of these masses

only depends on the number of flavors, and is given by:

m
(UV )

WKB

m
(IR)

WKB

=

√
π

2

Γ
(

b+1
2b

)

Γ
(

2b+1
2b

)

1

σ
, (10.16)

where σ is the screening function defined in (8.13). As expected, when Nf = 0 the right-

hand side of (10.16) is equal to one, i.e., there is no variation of the masses along the flow.

On the contrary, when Nf > 0 the UV/IR mass ratio in (10.16) is always greater than one,

which means that the masses grow as we move towards the UV and the screening effects

become more important. In appendix F we have expanded (10.16) for low values of the

deformation parameter ǫ̂ (see (F.21)). Moreover, for large ǫ̂ the UV/IR mass ratio grows

as
√
ǫ̂ (see (F.22) for the explicit formula).

11 Summary and conclusions

In this paper we obtained a holographic dual to Chern-Simons matter theory with un-

quenched flavor in the strongly-coupled Veneziano limit. The flavor degrees of freedom

were added by a set of D6-branes smeared along the internal directions, which backreacted

on the geometry by squashing it, while preserving N = 1 supersymmetry. We considered

massive flavors and found a non-trivial holographic renormalization group flow connecting

two scale-invariant fixed points: the unflavored ABJM theory at the IR and the massless

flavored model at the UV.

The quark massmq played an important role as a control parameter of the solution. By

increasing mq our solutions became closer to the unflavored ABJM model and we smoothly

connected the unquenched flavored model to the ABJM theory without fundamentals.

After this soft introduction of flavor no pathological behavior was found. Indeed, our

backgrounds had good IR and UV behaviors, contrary to what happens to other models

with unquenched flavor [32]. This made the ABJM model especially adequate to analyze

the effects of unquenched fundamental matter in a holographic setup.

We analyzed different flavor effects in our model. In general, the screening effects

due to loops of fundamentals were controlled by the relative value of the quark mass

mq with respect to the characteristic length scale l of the observable. If mq l was small,

which corresponds to the UV regime, the flavor effects were important, whereas they were

suppressed ifmq l is large, i.e., at the IR. Among the different observables that we analyzed,

the holographic entanglement entropy for a disk was specially appropriate since it counts

precisely the effective number of degrees of freedom which are relevant at the length scale

given by the radius of the disk. By using the refined entanglement entropy F introduced

in [38], we explicitly obtained the running of F and verified the reduction of the number of

degrees at the IR that was mentioned above. The other observables studied also supported

this picture.

We end this paper with a short discussion on the outlook. We are convinced that our

model could serve as a starting point to gain new insights on the effects of unquenched
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flavor in other holographic setups. One possible generalization could be the construction

of a black hole for the unquenched massive flavor. Such a background could serve to study

the meson melting phase transition which occurs when the tip of the brane approaches

the horizon. This system was studied in [18], in the case in which the massive flavors

are quenched and the corresponding flavor brane is a probe. Another possibility would

be trying to find a gravity dual of a theory in which the sum of the two Chern-Simons

levels is non-vanishing. According to [58, 59] we should find a flavored solution of type IIA

supergravity with non-zero Romans mass.

Our program is also to converge toward increasingly realistic holographic condensed

matter models capable of testable predictions. To make contact with any condensed matter

system, one is forced to consider non-vanishing components of the gauge field in the back-

ground or at the probe level. A natural flow of ideas taking one to land in the former case

typically requires a deep understanding of the probe brane dynamics with worldvolume

gauge fields turned on. As an initial step in this direction, we have started exploring what

physical phenomena we will encompass by turning on a charge density, magnetic field, and

internal flux on the worldvolume of an additional probe D6-brane. The variety of different

phenomena seems incredibly rich, much in parallel with recent works on the D3-D7’ sys-

tem [60–64] and the closely related D2-D8’ system [65–67]. Our findings will be reported

elsewhere.
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by the “Communauté Française de Belgique” through the ARC program and by the ERC

through the “SyDuGraM” Advanced Grant. Y. B. is supported by the Spanish FPU fel-

lowship FPU12/00481. N. J. is supported also through the Juan de la Cierva program.

N. J. and A. V. R. wish to thank Centro de Ciencias de Benasque Pedro Pascual and N. J.

the Kavli IPMU for warm hospitalities while this work was in progress.

A BPS equations

In this appendix we will derive the master equation (3.10), as well as the equations that

allow to construct the metric and dilaton from the master functionW (x) (i.e., (3.11), (3.12),

and (3.13)).

Let us begin by writing the BPS equations that guarantee the preservation of N = 1

SUSY. They can be written in terms of the function Λ introduced in [33], which is defined

as the following combination of the dilaton and the warp factor:

eΛ ≡ eφ h−
1
4 . (A.1)

– 39 –



J
H
E
P
1
2
(
2
0
1
3
)
0
3
3

Then, it was proved in [33] that Λ(r), f(r), and g(r) are solutions to the following system

of first-order differential equations:

dΛ

dr
= k η eΛ−2f − k

2
eΛ−2g ,

df

dr
=

k η

4
eΛ−2f − k

4
eΛ−2g + e−2f+g ,

dg

dr
=

k η

2
eΛ−2f + e−g − e−2f+g . (A.2)

Moreover, the warp factor h(r) can be recovered from Λ, f , and g through:

h(r) = e−Λ(r)

[

α − 3π2N

∫ r

e2Λ(z)−4f(z)−2g(z) dz

]

, (A.3)

where α is an integration constant. Given h and Λ, the dilaton φ is obtained from (A.1).

The functionK of the RR four-form can be related to the other functions of the background

by using (3.6). Alternatively, K can be obtained from the BPS system as:

K =
d

dr

(

e−φ h−
3
4

)

. (A.4)

In terms of the x variable defined in (3.7), the BPS system (A.2) becomes:

x
dΛ

dx
= k η eΛ−2f+g − k

2
eΛ−g ,

x
df

dx
=
k

4
η eΛ−2f+g − k

4
eΛ−g + e−2f+2g ,

x
dg

dx
=
k

2
η eΛ−2f+g + 1− e−2f+2g . (A.5)

In order to reduce this system, let us define as in [33] the functions Σ(x) and ∆(x),

Σ ≡ Λ− f , ∆ ≡ f − g . (A.6)

Then, one can easily show that Σ(x) and ∆(x) satisfy the system:

x
dΣ

dx
=
k

4
eΣ
(

3η e−∆ − e∆
)

− e−2∆ ,

x
d∆

dx
= −k

4
eΣ
(

η e−∆ + e∆
)

− 1 + 2e−2∆ , (A.7)

whereas g can be obtained from Σ and ∆ by integrating the equation:

x
dg

dx
=
k

2
η eΣ−∆ + 1− e−2∆ . (A.8)

Let us next define the master functionW (x) as in (3.9). One immediately verifies that,

in terms of the functions ∆ and Σ, this definition is equivalent to

W (x) =
4

k
e∆−Σ x . (A.9)
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By computing the derivative of (A.9) and using the BPS system (A.7), one can easily

prove that:
dW

dx
=

12

k
e−Σ−∆ − 4η . (A.10)

From (A.10) one immediately finds:

eΣ+∆ =
12

k

1

W ′ + 4η
, (A.11)

where the prime denotes derivative with respect to x. Moreover, from the BPS system we

can calculate the derivative of Σ +∆ and write the result as:

x
d

dx

(

eΣ+∆
)

=
2x η eΣ+∆

W
−
[

k

2
eΣ+∆ + 1

]

eΣ+∆ +
4

k

x

W
. (A.12)

Plugging (A.11) into (A.12), we arrive at the following second-order equation for W (x):

x
d

dx

(

1

W ′ + 4η

)

+
W ′ + 4η + 6

(W ′ + 4η)2
− x

3

W ′ + 10η

W (W ′ + 4η)
= 0 , (A.13)

which can be straightforwardly shown to be equivalent to the master equation (3.10).

Let us see now how one can reconstruct the full solution from the knowledge of the

function W (x). First of all, we notice that from the expression of W in (A.9), we get:

eΣ−∆ =
4

k

x

W
. (A.14)

By combining this expression with (A.11) we obtain Σ and ∆:

e2Σ =
48

k2
x

W (W ′ + 4η)
, e2∆ =

3W

x(W ′ + 4η)
. (A.15)

By noticing that e2∆ = q we arrive at the representation of the squashing function q written

in (3.14). Moreover, by using this result in (A.8), we obtain the differential equation

satisfied by g:
dg

dx
=

2η

3W
− W ′

3W
+

1

x
, (A.16)

which allows to obtain g(x) once W (x) is known. The result of this integration is just the

expression written in (3.11). Moreover, taking into account the expression of the squashing

factor q we get precisely the expression of f written in (3.11).

Let us now compute Λ by using Λ = Σ +∆+ g and (A.11). We get:

eΛ =
12

k

eg

W ′ + 4η
, (A.17)

and, after using (3.11), we arrive at:

eΛ =
12

k

x

W
1
3 (W ′ + 4η)

exp

[

2

3

∫ x η(ξ)dξ

W (ξ)

]

. (A.18)

By using this result and (3.11) in (A.3), we get that the warp factor can be written as

in (3.12). The expression (3.13) for the dilaton is just a consequence of the definition of Λ

in (A.1) and of (A.18).
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A.1 Equations of motion

Let us now verify that the first-order BPS system (A.2) implies the second-order equations

of motion for the different fields. Let us work in Einstein frame and write the total action as:

S = SIIA + Ssources , (A.19)

where the action of type IIA supergravity is given by:

SIIA =
1

2κ210

[ ∫ √−g
(

R − 1

2
∂µφ∂

µ φ

)

− 1

2

∫

[

e
3φ
2

∗F2∧F2+e
φ
2

∗F4∧F4

]

]

, (A.20)

and the source contribution is the DBI+WZ action for the set of smeared D6-branes. Let

us write this last action as in [33]. First of all, we introduce a charge distribution three-form

Ω. Then, the DBI+WZ action is given by:

Ssources = −TD6

∫

(

e
3φ
4 K − C7

)

∧ Ω , (A.21)

where the DBI term has been written in terms of the so-called calibration form (denoted

by K), whose pullback to the worldvolume is equal to the induced volume form for the su-

persymmetric embeddings. The expression of K has been written in [33]. Let us reproduce

it here for completeness:

K = −e012 ∧
(

e3458 − e3469 + e3579 + e3678 + e4567 + e4789 + e5689
)

, (A.22)

where the ei’s are the one-forms of the basis corresponding to the forms (2.11) and (2.14)

(see [33] for further details). Notice that the equation of motion for C7 derived from (A.19)

is just dF2 = 2πΩ. Therefore, the Ω for our ansatz can be read from the right-hand side

of (3.5).

The Maxwell equations for the forms F2 and F4 derived from (A.19) are:

d
(

e
3φ
2

∗F2

)

= 0 , d
(

e
φ
2

∗F4

)

= 0 , (A.23)

while the equation for the dilaton is:

d ∗dφ =
3

4
e

3φ
2

∗F2 ∧ F2 +
1

4
e

φ
2

∗F4 ∧ F4 +
3

2
κ210 TD6 e

3φ
4 K ∧ Ω . (A.24)

One can verify that, for our ansatz, (A.23) and (A.24) are a consequence of the BPS

equations (A.2). To carry out this verification we need to know the radial derivatives of

h(r) and φ(r) (which are not written in (A.2)). The derivative of h can be related to the

derivative of Λ(r),
dh

dr
= −h dΛ

dr
− 3π2N eΛ− 4f − 2g . (A.25)

The radial derivative of the dilaton can be put in terms of the derivative of Λ and h by

using (A.1):
dφ

dr
=

dΛ

dr
+

1

4h

dh

dr
. (A.26)
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It remains to check Einstein equations, which read:

Rµν − 1

2
gµν R =

1

2
∂µφ∂νφ − 1

4
gµν ∂ρφ∂

ρφ +
1

4
e

3φ
2

[

2F (2)
µρ F

(2) ρ
ν − 1

2
gµν F

2
2

]

+
1

48
e

φ
2

[

4F
(4)
µρσλ F

(4) ρσλ
ν − 1

2
gµν F

2
4

]

+ T sources
µν , (A.27)

where T sources
µν is the stress-energy tensor for the flavor branes, which is defined as:

T sources
µν = − 2κ210√−g

δSsources
δgµν

. (A.28)

In order to write the explicit expression for T sources
µν derived from the definition (A.28), let

us introduce the following operation for any two p-forms ω(p) and λ(p):

ωpyλ(p) =
1

p!
ωµ1...µpλµ1...µp . (A.29)

Then, by computing explicitly the derivative of the action (A.21) with respect to the metric,

one can check that:

T sources
µν = κ210 TD6 e

3φ
4

[

gµν
∗KyΩ − 1

2
Ω ρσ
µ

(∗K
)

νρσ

]

. (A.30)

It is now straightforward to compute explicitly the different components of this tensor.

Written in flat components in the basis in which the calibration form has the form (A.22),

we get:5

T00 = −T11 = −T22 = k

(

η − 1 +
eg

2

dη

dr

)

e−2f−g+ 3φ
2 h−

3
4 ,

T33 = k(η − 1) e−2f−g+ 3φ
2 h−

3
4 ,

Tab = −k
2

(

η − 1 +
eg

2

dη

dr

)

e−2f−g+ 3φ
2 h−

3
4 δab , (a, b = 4, . . . , 7) ,

T88 = T99 = −k
2

(

η − 1 + eg
dη

dr

)

e−2f−g+ 3φ
2 h−

3
4 . (A.31)

By using these values one can verify that, the Einstein equations (A.27) are indeed satisfied

as a consequence of the first-order system (A.2). Notice that, for the massive flavored

background of section 6, dη/dr (and, therefore, Tµν) has a finite discontinuity at r = rq. It

follows from (A.27) that the Ricci tensor Rµν has also a finite jump at this point.

B Mass corrections in the UV

In this appendix we show how to obtain the first corrections to the conformal behavior of

the metric and the dilaton from the UV asymptotic expansion of the master functionW (x)

written in (6.10). First we notice that the ratio η0/A0 can be written in terms of b as:

η0
A0

=
3

2b
− 1 , (B.1)

5As compared to the case studied in [33], now we have terms proportional to dη/dr that were absent for

massless flavors.
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leading to a useful identity:

x
1
b
− 2

3 exp

[

− 2

3

∫ x

1

η0
A0

dξ

ξ

]

= 1 . (B.2)

Inserting the unit written in this way in the integral appearing in the expression of eg

in (5.7), we get:

exp

[

2

3

∫ x

1

η(ξ)dξ

W (ξ)

]

= x
1
b
− 2

3 J G(x) , (B.3)

where J is the following constant integral (depending on ǫ̂):

J ≡ exp

[

2

3

∫ ∞

1

[

η(ξ)

W (ξ)
− η0
A0 ξ

]

dξ

]

, (B.4)

and G(x) is the function

G(x) ≡ exp

[

2

3

∫ x

∞

[

η(ξ)

W (ξ)
− η0
A0 ξ

]

dξ

]

. (B.5)

Using these results, we can immediately write:

eg = rq

[

(γ̂ + 1)2

2 γ̂

] 1
3

J x
1
b

[

x

W (x)

] 1
3

G(x) . (B.6)

The function G(x) can be easily expanded for large x. At first non-trivial order we get:

G(x) = 1 +
1

3A0

[

η0 − 1 +A2
η0
A0

]

1

x2
+ · · · . (B.7)

Using that, for large x,

[

x

W (x)

] 1
3

=
1

A
1
3
0

[

1 − A2

3A0

1

x2
+ · · ·

]

, (B.8)

we easily arrive at the expansion of eg written in (6.16). Let us next find the large x

expansion for f , which can be obtained by using the expansion of g and q in the relation

ef =
√
q eg. We get:

ef =
√
q0

κ rq
b

J x
1
b

[

1 +
f2
x2

+ · · ·
]

, (B.9)

where the coefficient f2 is given by:

f2 = g2 +
1

2

q2
q0

= g2 +
2− b

2b
q2 . (B.10)

It is straightforward to demonstrate that (B.10) coincides with the value of f2 written

in (6.17).

Let us now analyze the UV expansion of h. First, we evaluate the integral appearing

in (3.12):

∫ ∞

x

ξ e−3g(ξ)

W (ξ)2
dξ =

2γ̂ b

3 (γ̂ + 1)2A0 (Jrq)3
x−

3
b

[

1 − 3

3 + 2b

(

3g2 + 2
A2

A0

)

1

x2
+ · · ·

]

.

(B.11)
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By combining this result with the expansions (6.16) and (6.12) we get:

h(x) = L4
0

[

2 γ̂ A0

(γ̂ + 1)2

] 4
3 x−

4
b

(J b rq)4

[

1 +
h2
x2

+ · · ·
]

, (B.12)

where L0 is the UV AdS radius (3.39) and the coefficient h2 is:

h2 = −2(6 + b)

3 + 2b
g2 −

(

6

3 + 2b
+

b

3(2− b)

)

A2

A0
− 2

3

3− 2b

2− b

η0 − 1

η0
. (B.13)

One can readily check that the prefactor in (B.12) coincides with the one in (6.18) and

that the coefficient h2 written in (B.13) is the same as the one in (6.19).

Let us now obtain the UV expansion of the function Λ(x), defined in (A.1), which can

be written as:

eΛ(x) =
12 rq J

k

[

(γ̂ + 1)2

2 γ̂

] 1
3 x

1
b

W ′ + 4η

[

x

W (x)

] 1
3

G(x) . (B.14)

The UV expansion of this expression is:

eΛ =
12 rq J

k (A0 + 4η0)

[

(γ̂ + 1)2

2 γ̂ A0

] 1
3

x
1
b

(

1 +
Λ2

x2
+ · · ·

)

, (B.15)

where the coefficient Λ2 can be written in terms of g2 as:

Λ2 = g2 +
A2 + 4(η0 − 1)

A0 + 4η0
= g2 +

b

3(2− b)

[

2(3− 2b)

b

η0 − 1

η0
+
A2

A0

]

. (B.16)

By using the value of g2 in (6.17), we can find a more explicit expression for Λ2:

Λ2 =
3− 2b

3

[

1

2b
+

2

2− b

]

η0 − 1

η0
+

1

3

[

3− 4b

2b
+

b

2− b

]

A2

A0
. (B.17)

Let us next obtain the expansion of eφ by using eφ = eΛ h
1
4 . We get:

eφ = eφ0

(

1 +
φ2
x2

+ · · ·
)

, (B.18)

where the prefactor is

eφ0 =
12L0

k(A0 + 4η0) b
, (B.19)

and can be shown to be the same as the asymptotic value of the dilaton written in (3.41).

The coefficient φ2 is:

φ2 = Λ2 +
1

4
h2 , (B.20)

which has been written more explicitly in (6.19).

Finally, let us write these results in terms of the r variable. At next-to-leading

order, the relation between the coordinates x and r is obtained by integrating the

differential equation:

dr

dx
=

eg

x
=

κ rq
b

[

x
1
b
−1 + g2 x

1
b
−3 + · · ·

]

. (B.21)
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We get:

r = κ rq

[

x
1
b − g2

2b− 1
x

1
b
−2 + · · ·

]

+ cq , (B.22)

where the integration constant cq is given by the following integral:

cq =

∫ ∞

0

(

eg(x)

x
− κ rq

b
x

1
b
−1

)

dx . (B.23)

The relation (B.22) can be inverted as:

x =

(

r − cq
κ rq

)b [

1 +
b

2b− 1
g2

(κ rq
r

)2b
+ · · ·

]

. (B.24)

By plugging the expansion (B.24) into (6.16) and (6.18) one easily arrives at (6.20)

and (6.21).

C More on the entanglement entropy

Let us study analytically the entanglement entropy and the F function near the UV

fixed point at R = 0. We shall represent S(R) in terms of a local functional L =

L(H(x), G(x), ρ(x)) as:

S(R) =

∫ ∞

x∗

L dx . (C.1)

We will use this representation to compute the first-order variation of S when the back-

ground functions H and G and the embedding function ρ are varied around their UV

values:

H(x) = HUV(x) + δH(x) , G(x) = GUV(x) + δG(x) , ρ(x) = ρUV(x) + δρ(x) ,

(C.2)

where HUV = H∞ x
4
b , GUV = G∞ x−2− 2

b and ρUV(x) is the function written in (7.23). At

first order the corrections δH(x) and δG(x) can be parameterized as:

δH(x) = H∞H2 x
4
b
−2 , δG(x) = G∞G2 x

−4− 2
b . (C.3)

The constants H2 and G2 in (C.3) can be related to the ones characterizing the behavior

of the background at the UV:

H2 = 2 (h2 + 4f2 + 2g2 − 2φ2) , G2 = h2 + 2g2 . (C.4)

It is useful to define the following combination of H2 and G2:

H2 =
H2

2
+

G2

2b+ 1
. (C.5)

The perturbation of the profile δρ(x) is the correction, at first-order, of the solution of (7.7)

which satisfies δρ(x→ ∞) = 0. By computing the first variation of (7.7) we find that δρ(x)
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is solution to the following second-order inhomogeneous differential equation:

d

dx

[ √
HUV ρUV ρ

′
UV

√

(ρ ′
UV)

2 +GUV

(

δρ′

ρ ′
UV

+
δρ

ρUV
+

δH

2HUV
− 1

2

2 ρ ′
UV δρ

′ + δG

(ρ ′
UV)

2 +GUV

)

]

−
√

HUV

√

(ρ ′
UV)

2 +GUV

(

δH

2HUV
+

1

2

2 ρ ′
UV δρ

′ + δG

(ρ ′
UV)

2 +GUV

)

= 0 . (C.6)

More explicitly, after using the UV values of H, G, and ρ, the differential equation (C.6)

can be written as:

d

dx

[

2x
3
b
+1 ρ4UV

R2G∞
δρ′ + 2b x

1
b δρ + bH2 x

1
b
−2 ρUV − bG2

R2
x

1
b
−2 ρ3UV

]

−2b x
1
b δρ′ − R2H2 x

1
b
−3

ρUV
− G2 x

1
b
−3 ρUV = 0 . (C.7)

Let us next calculate the first-order variation of the entanglement entropy. From (C.1)

we get:

δS =

∫ ∞

x∗

dx

[

∂L
∂H

∣

∣

∣

∣

UV

δH +
∂L
∂G

∣

∣

∣

∣

UV

δG

]

+ ΠUV(x) δρ(x)

∣

∣

∣

∣

x=∞

x=x∗

, (C.8)

where ΠUV(x) is defined as:

ΠUV(x) ≡
∂L
∂ρ ′

∣

∣

∣

∣

UV

=
2

3π2

√

HUV(x)
ρUV ρ

′
UV

√

(ρ ′
UV)

2 +GUV(x)
. (C.9)

Using the explicit form of ρUV we get:

ΠUV(x) =
2b

3π2

√

H∞G∞ x
1
b

√

1 − b2G∞
R2

x−
2
b , (C.10)

and it follows that:

ΠUV(x = x∗) = 0 . (C.11)

Therefore, the lower limit contribution to the last term in (C.8) vanishes. Let us now study

the contribution to this term of the x→ ∞ limit. We will now check that δρ(x) decreases

as x→ ∞ in such a way that:

lim
x→∞

ΠUV(x) δρ(x) = 0 . (C.12)

Thus, the upper limit of the last term in (C.8) also vanishes. To prove (C.12) we have to

integrate the differential equation (C.7) and extract the large x behavior of the solution.

Amazingly, (C.7) can be integrated analytically. Its general solution can be written as the

sum of two terms:

δρ = δρP + δρG , (C.13)

where δρP is a particular solution of the equation and δρG is a general solution of the

homogeneous part of (C.7). We have found a particular solution δρP , which can be written
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in terms of hypergeometric functions and is given by:

δρP =
R2b+2H2

2b(b− 1)(2b− 1)G∞ ρUV
×

×
[

(

Rx
1
b − b

√

G∞

)2−2b

2F1

(

2b− 2, 2b− 2; 2b− 1;
b
√
G∞

b
√
G∞ −Rx

1
b

)

+

(

Rx
1
b + b

√

G∞

)2−2b

2F1

(

2b− 2, 2b− 2; 2b− 1;
b
√
G∞

b
√
G∞ +Rx

1
b

)]

−
[

b2G2G∞
2 (2b+ 1)

x−
2
b +

R2H2

2b− 1
+

R4H2

b (b− 1) (2b− 1)G∞
x

2
b

]

1

x2 ρUV
. (C.14)

We are only interested in the behavior of δρP for large x. It is straightforward to prove

that, for large x, δρP can be approximated as:

δρP ≈ b2G∞
[

bH2 − (b− 1)G2

]

2 (b+ 1) (2b− 1)R
x−2− 2

b . (C.15)

Thus, as ΠUV ∝ x
1
b for large x,

lim
x→∞

ΠUV(x) δρP (x) = 0 . (C.16)

The general solution of the homogeneous differential equation which vanishes as x→ ∞ is:

δρG =
C

x
1
b ρUV

[

Rx
1
b

2b
√
G∞

log
Rx

1
b + b

√
G∞

Rx
1
b − b

√
G∞

− 1

]

, (C.17)

where C is an arbitrary constant. For large x the function in (C.17) behaves as:

δρG ≈ C b2G∞
3R3

x−
3
b . (C.18)

Therefore,

lim
x→∞

ΠUV(x) δρG(x) = 0 . (C.19)

Then, eq. (C.12) holds and the last term in (C.8) does not contribute to δS, as claimed

above. Let us now calculate the other two contributions. First of all, the term due to the

variation of H is given by:

∫ ∞

x∗

dx
∂L
∂H

∣

∣

∣

∣

UV

δH =
1

3π2

∫ ∞

x∗

dx
ρUV

√

(ρ ′
UV)

2 +GUV(x)
√

HUV(x)
δH

=
1

3π2
bH2

2b− 1

√

H∞G∞ Rx
1
b
−2

∗ , (C.20)

which, after using (7.24) to eliminate x∗, becomes:

∫ ∞

x∗

dx
∂L
∂H

∣

∣

∣

∣

UV

δH =
1

3π2
H2 b

2−2b

2b− 1

√

H∞G1−b
∞ R2b . (C.21)
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Similarly,

∫ ∞

x∗

dx
∂L
∂G

∣

∣

∣

∣

UV

δG =
1

3π2

∫ ∞

x∗

dx

√

HUV(x) ρUV
√

(ρ ′
UV)

2 +GUV(x)
δG

=
2

3π2
b2

4b2 − 1

G2

√
H∞G∞
x2∗

, (C.22)

which, after eliminating x∗, gives:
∫ ∞

x∗

dx
∂L
∂G

∣

∣

∣

∣

UV

δG =
2

3π2
G2 b

2−2b

4b2 − 1

√

H∞ G1−b
∞ R2b . (C.23)

Thus, δS can be written as:

δS =
2

3π2
b2−2b

2b− 1

√

H∞ G1−b
∞ H2R

2b , (C.24)

where H2 is the constant defined in (C.5). Using the definition (7.20), it follows that the

change in the function F is:

δF =
2

3π2
b2−2b

√

H∞ G1−b
∞ H2R

2b . (C.25)

Taking into account (7.11) and (7.14) this expression can be written as:

δF = FUV(S
3) H2

(

κ

L2
0

)2b

(rq R)
2b = FUV(S

3) H2 x
−2
∗ . (C.26)

Therefore, we can write the F function near the UV fixed point as:

F = FUV(S
3) + cUV (rq R)

2b , (C.27)

where the constant coefficient cUV can be read from (C.26),

cUV =

(

κ

L2
0

)2b

FUV(S
3)H2 . (C.28)

eq. (C.27) coincides with (7.31) when the former is written in terms of the dimension ∆UV =

3− b of the quark-antiquark bilinear operator in the massless flavored theory. Moreover, as

FUV(S
3) is always positive, the sign of cUV depends on the sign of the coefficient H2. We

have checked that H2 is negative for all values of the deformation parameter ǫ̂, in agreement

with the expectation that F is maximized at the UV fixed point.

C.1 Entanglement entropy on the strip

Let us now evaluate the entanglement entropy in the case in which the region A is the strip

− l
2 ≤ x1 ≤ + l

2 of width l in the (x1, x2)-plane (see figure 10). In this case we consider a

constant time surface Σ, whose embedding in the ten-dimensional space is determined by

a function x = x(x1). The induced metric on Σ is,

ds28 = h−
1
2

[ (

1 +G(x)x′ 2
)

(dx1)2 + (dx2)2
]

+ h
1
2

[

e2f ds2
S4
+e2g

(

(

E1
)2

+
(

E2
)2
) ]

,

(C.29)
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Figure 10. The surface Σ ends on a strip of length l at the boundary.

where x′ denotes the derivative of the holographic coordinate x with respect to the cartesian

coordinate x1 and the function G(x) has been defined in (7.4). The entropy functional for

the strip of width l is given by:

S(l) =
V6 L2

4G10

∫ + l
2

− l
2

dx1
√

H(x)
√

1 +G(x)x′ 2 ≡
∫ + l

2

− l
2

dx1 Lstrip , (C.30)

where V6 is the volume of the internal manifold, whose value was given after (7.6), H(x) is

the function defined in (7.5), and L2 =
∫

dx2 is the length of the strip. As the integrand

in S(l) does not depend on the coordinate x1, the corresponding Euler-Lagrange equation

admits the following first integral:

x′
Lstrip

∂x′
− Lstrip = constant , (C.31)

or, more explicitly,
√

H(x)
√

1 + G(x)x′ 2
=
√

H∗ , (C.32)

where H∗ = H(x = x∗) and x∗ is the holographic coordinate of the turning point. It follows

from this last expression that x′ is given by:

x′ = ± 1
√

G(x)

√

H(x)

H∗
− 1 . (C.33)

Therefore, the width of the strip is given by the integral:

l = 2
√

H∗

∫ ∞

x∗

dx

√

G(x)
√

H(x)−H∗
, (C.34)

and the entropy S(l) is:

S(l) =
V6 L2

2G10

∫ ∞

x∗

dx

√

G(x)H(x)
√

H(x)−H∗
. (C.35)
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The integral (C.35) for S(l) is divergent in the UV. Indeed, from the behavior of the

functions H(x) and G(x) at large x (eqs. (7.10) and (7.11)), it follows that, when x→ ∞,

the integrand in (C.35) behaves as:
√

G(x)H(x)
√

H(x)−H∗
≈
√

H∞G∞ x
1
b
− 1 , (C.36)

and S(l) therefore diverges as x
1
b
max, where xmax is the upper limit of the integral, which

can be regarded as a UV cutoff. More explicitly, one can rearrange the integral in (C.35)

as:

∫ xmax

x∗

dx

√

G(x)H(x)
√

H(x)−H∗
=

∫ xmax

x∗

dx

[

√

G(x)H(x)
√

H(x)−H∗
−
√

H∞G∞ x
1
b
− 1

]

+b
√

H∞G∞
[

x
1
b
max − x

1
b∗
]

, (C.37)

where the divergent term is explicitly shown. We now define the rescaled functions Ĝ(x)

and Ĥ(x) as:

Ĝ(x) ≡ G(x)

G∞
, Ĥ(x) ≡ H(x)

H∞
, Ĥ∗ ≡

H∗
H∞

. (C.38)

Then, the finite term in S(l) can be written as:

Sfinite(l) =
V6 L2

2G10

√

H∞G∞





∫ ∞

x∗

dx





√

Ĝ(x) Ĥ(x)
√

Ĥ(x)− Ĥ∗

− x
1
b
−1



 − b x
1
b∗



 , (C.39)

whereas the divergent term takes the form:

Sdiv =
V6 L2

2G10
b
√

H∞G∞ x
1
b
max . (C.40)

We have evaluated numerically the right-hand side of (C.39) as a function of the strip

width l. The result is displayed in figure 11. One notices from these results that Sfinite(l)/L2

is negative and diverges as −c/l for small l, where c is a constant. Actually, for small l the

surface Σ is in the UV region of the geometry and one can evaluate the entropy analytically

in this limit. This is the subject of the next subsection, where we show that the constant c

is proportional to the free energy on the three-sphere of the massless flavored theory (see

eq. (C.51) below). The analytical UV calculation is compared to the numerical results in

figure 11.

C.1.1 UV limit

In order to study the UV limit it is convenient to change variables in the integrals (C.34)

and (C.39). Let us introduce a new variable z, related to x as x = x∗ z. Then, l can be

represented as:

l = 2x
2
b
+1

∗
√

G∞

∫ ∞

1
dz

√

Ĝ(x∗ z)
√

Ĥ(x∗ z)− x
4/b
∗

, (C.41)
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-4
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Sfinite Λ

N2 L2 rq

Figure 11. Plot of the entanglement entropy versus the width of the strip. The solid curve

corresponds to the numerical results for ǫ̂ = 9, while the the black dashed curve on the left is the

analytic UV result (C.51) and the dashed red line on the right corresponds to the IR value (C.58).

while Sfinite(l) is given by:

Sfinite(l) = −V6 L2

2G10

√

H∞G∞ x
1
b∗



b−
∫ ∞

1
dz



x
1− 1

b∗

√

Ĝ(x∗ z) Ĥ(x∗ z)
√

Ĥ(x∗ z)− x
4/b
∗

− z
1
b
−1







 .

(C.42)

Let us now obtain the expressions of l and Sfinite(l) in the limit in which x∗ → ∞. In this

case the argument of the functions Ĝ and Ĥ in the integrals is always large and one can

take Ĝ(x) ≈ x−2− 2
b , Ĥ(x) ≈ x

4
b . We get:

l ≈ 2x
− 1

b∗
√

G∞ I1 , (C.43)

where I1 is the following integral:

I1 =

∫ ∞

1

dz

z1+
1
b

√

z
4
b − 1

=
b
√
2π

3
2

[

Γ
(

1
4

)]2 . (C.44)

Using (C.44) in (C.43), we get:

l ≈ b
√
G∞

x
1
b∗

2
√
2π

3
2

[

Γ
(

1
4

)]2 . (C.45)

Similarly, the finite part of the entropy is:

Sfinite(l) ≈ −V6 L2

2G10

√

H∞G∞ x
1
b∗
(

b − I2
)

, (C.46)
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where I2 is the integral:

I2 =

∫ ∞

1
z

1
b
−1





z
2
b

√

z
4
b − 1

− 1



 dz = b

[

1 −
√
2π

3
2

[

Γ
(

1
4

)]2

]

. (C.47)

Plugging (C.47) into (C.46), we arrive at:

Sfinite(l) ≈ −V6 L2

2G10
b
√

H∞G∞ x
1
b∗

√
2π

3
2

[

Γ
(

1
4

)]2 . (C.48)

Eliminating x∗ in favor of l, we get:

Sfinite(l) ≈ −2π3 V6 L2

G10

b2G∞
√
H∞

[

Γ
(

1
4

)]4

1

l
. (C.49)

However, from the definition of G∞ and H∞ in (7.11) it follows that:

b2G∞
√

H∞ =
L8
0 q

2
0 e

−2φ0

b6
=

3π2

2
FUV(S

3) , (C.50)

where FUV(S
3) is the free energy of the massless flavored theory on the three sphere

(see (7.17)). It follows that:

Sfinite(l)

L2
≈ −4π2 FUV(S

3)
[

Γ
(

1
4

)]4

1

l
, (C.51)

which is the result we were looking for. From the comparison of figure 11 to the numerical

results we conclude that (C.51) is a good description of the entropy in the small l region.

Notice that the coefficient of 1/l on the right-hand side of (C.51) is determined by the free

energy of the massless flavored theory. This is expected on general grounds in the UV

region, since the masses of the quarks can be neglected in the high-energy regime.

C.1.2 IR limit

Let us now evaluate Sfinite(l) in the regime in which l is large. In this case the surface

Σ penetrates deeply in the bulk and its tip is near the origin (i.e., x∗ is small). We will

proceed as in section 7.2 and split the interval [x∗,∞] in the integrals (C.34) and (C.39) as

[x∗,∞] = [x∗, xa] ∪ [xa,∞], where xa < 1 is considered small enough so that one can use

the unflavored background functions in the interval [x∗, xa]. Moreover, when x ∈ [xa,∞]

with xa ≫ x∗, H∗ ∝ x4∗ ≪ H(x) ∝ x4 and one can neglect the terms containing H∗ in the

integrals. Then, the strip width l can be approximated as:

l ≈ 2c

γ

L2
ABJM

x∗

∫ xa
x∗

1

dz

z2
√
z4 − 1

+ 2
√

H∗

∫ ∞

xa

dx

√

G(x)
√

H(x)
. (C.52)

When, xa ≫ x∗ and x∗ → 0 we can extend the first integral in (C.52) up to ∞ and neglect

the contribution of the second integral (which is proportional to
√
H∗ ∝ x2∗). Then, l can

be approximately written as:

l ≈ c

γ
L2
ABJM

2
√
2π

3
2

[

Γ
(

1
4

)]2

1

x∗
, (C.53)
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and, as expected, a small value of x∗ leads to a large value of l. Similarly, we can perform

the same type of manipulations in the expression (C.39) of Sfinite. We find:

Sfinite(l)

L2
≈ 2

3π3
γ

c
L6
ABJM e−2φABJM x∗

∫ xa
x∗

1

z2 dz√
z4 − 1

+
2

3π3

√

G∞H∞

[ ∫ ∞

xa

(
√

Ĝ(x) Ĥ(x) − x
1
b
−1

)

dx − b x
1
b
a

]

. (C.54)

Performing the first integral in (C.54) in the limit x∗ → 0 for fixed xa, we arrive at:

Sfinite(l)

L2
≈ − 2

√
2

3π
3
2

[

Γ
(

1
4

)]2

γ

c
L6
ABJM e−2φABJM x∗ + S∞ , (C.55)

where S∞ is the constant:

S∞ =
2

3π3

√

G∞H∞

[ ∫ ∞

xa

(
√

Ĝ(x)Ĥ(x)− x
1
b
−1

)

dx− bx
1
b
a

]

+
2

3π3
γ

c
L6
ABJMe

−2φABJMxa . (C.56)

We can now eliminate in (C.55) the turning point x∗ in favor of l by using (C.53). We find:

Sfinite(l)

L2
≈ −4π2 FIR(S

3)
[

Γ
(

1
4

)]4

1

l
+ S∞ , (C.57)

where we have written the result in terms of FIR(S
3). The first term in (C.57) is just

the strip entanglement entropy for the unflavored theory. The constant S∞ represents the

asymptotic value of Sfinite(l)/L2 as l → ∞. One can approximate this constant by taking

xa → 0 in (C.56). After using (7.14) to relate G∞ and H∞ to FUV(S
3), we arrive at:

S∞ ≈ rq
κFUV(S

3)

πbL2
0

∫ ∞

0

(
√

Ĝ(x)Ĥ(x)− x
1
b
−1

)

dx . (C.58)

D Asymptotic quark-antiquark potential

The purpose of this appendix is to obtain the analytic expressions for the qq̄ potential

energy in the UV and IR limit. We will start by calculating the leading and subleading

UV potential.

D.1 UV potential

Let us find the approximate value of the qq̄ potential in the case in which the distance d is

small and the hanging string only explores the UV of the geometry. This is equivalent to

considering the limit in which the turning point x∗ is large. It is then more convenient to

perform a change of variables in the integrals (8.6) and (8.10) and write d and Eqq̄ as:

d = 2

∫ ∞

1

eg(x∗ z) h(x∗ z)

z
√

h∗ − h(x∗ z)
dz ,

Eqq̄ =
1

π

∫ ∞

1

eg(x∗ z)

z

[ √
h∗

√

h∗ − h(x∗ z)
− 1

]

dz − r∗
π
. (D.1)
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We want to compute the leading value of Eqq̄, as well as the first deviation from the

conformal behavior. For this reason we will make use of the asymptotic expressions of the

different functions of the metric derived in section 6.1.

Let us begin by computing the integrals in (D.1) in a power series expansion for large

x∗. From (6.16) and (6.18) we get:

eg(x∗ z) h(x∗ z) =
L4
0

b κ3 r3q
x
− 3

b∗ z−
3
b

(

1 +
h2 + g2
x2∗ z

2
+ · · ·

)

, (D.2)

where g2 and h2 are given in (6.17) and (6.19) and κ has been defined in (6.15). Then, it

follows that:

1
√

h∗ − h(x∗ z)
=

κ2 r2q
L2
0

x
2
b∗

z
2
b

√

z
4
b − 1

(

1 − h2
2x2∗

z
4
b
+2 − 1

z2 (z
4
b − 1)

+ · · ·
)

. (D.3)

Using these results we obtain the following expansion of the qq̄ separation d:

d =
2L2

0

b κ rq x
1
b∗

[

I1 +
1

x2∗

(

(h2 + g2) I3 − h2
2
I4

)

+ · · ·
]

, (D.4)

where I1 is the integral (C.44), and I3 and I4 are:

I3 =

∫ ∞

1

dz

z3+
1
b

√

z
4
b − 1

=
b
√
π

4
G(b) ,

I4 =

∫ ∞

1

z
4
b
+2 − 1

z3+
1
b (z

4
b − 1)

3
2

dz =
b
√
π

2

[

3 + 2b

4
G(b) −

√
2 π

[

Γ
(

1
4

)]2

]

, (D.5)

where G(b) is the following ratio of Euler Gamma functions:

G(b) ≡
Γ
(

3+2b
4

)

Γ
(

5+2b
4

) . (D.6)

Using these results we arrive at:

d ≈ 2L2
0

κ rq x
1
b∗

[ √
2π

3
2

[

Γ
(

1
4

)]2 +

√
π

4x2∗

(

g2 + (1− 2b)
h2
4

)

G(b) +

√
2π

3
2

4x2∗

h2
[

Γ
(

1
4

)]2

]

. (D.7)

Let us now compute the qq̄ energy at leading and next-to-leading order in the UV

(large x∗ or small d). First, we need the expansion:

√
h∗

√

h∗ − h(x∗ z)
=

z
2
b

√

z
4
b − 1

+
h2
2x2∗

z
2
b
−2 (1− z2)

(z
4
b − 1)

3
2

+ · · · . (D.8)

Then, it is easy to verify that Eqq̄ can be expanded as:

Eqq̄ ≈
κ rq
π b

x
1
b∗

[

I2 +
1

x2∗

(

h2
2
I5 + g2 I6

)]

− r∗
π
, (D.9)
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where I2 is the integral (C.47) and I5 and I6 are:

I5 =

∫ ∞

1

z
3
b
−3(1− z2)

(z
4
b − 1)

3
2

dz =
b
√
π

2

[ √
2π

[

Γ
(

1
4

)]2 − 2b+ 1

4
G(b)

]

,

I6 =

∫ ∞

1
z

1
b
−3





z
2
b

√

z
4
b − 1

− 1



 dz =
b

2b− 1

[

(2b+ 1)
√
π

4
G(b) − 1

]

. (D.10)

To compute Eqq̄ we also need r∗ as a function of x∗. It follows from (B.22) that:

r∗ = κ rq x
1
b∗

[

1 − g2
2b− 1

1

x2∗
+ · · ·

]

+ cq . (D.11)

Then, one can check that:

Eqq̄ ≈ κ rq x
1
b∗

[

−
√
2π

[

Γ
(

1
4

)]2 (D.12)

+
1

x2∗

( √
2π

[

Γ
(

1
4

)]2

h2
4

+
2b+ 1

4
√
π(2b− 1)

(

g2 + (1− 2b)
h2
4

)

G(b)

)]

− cq
π
.

Let us write Eqq̄ as a function of the qq̄ separation d. For this purpose we have to eliminate

x∗ in favor of d. By inverting (D.7), we get:

κ rq x
1
b∗ ≈ 2

√
2π

3
2

[

Γ
(

1
4

)]2

L2
0

d
(D.13)

+rq

√
π

2

[

κ
[

Γ
(

1
4

)]2

2
√
2π

3
2

]2b( √
2π

[

Γ
(

1
4

)]2 h2 +

(

g2 + (1− 2b)
h2
4

)

G(b)

)(

rq d

L2
0

)2b−1

.

Using this result, we get the following dependence of Eqq̄ with the distance d

Eqq̄

rq
≈ − 4π2

[

Γ
(

1
4

)]4

L2
0

rq d

+

√
2π

[

Γ
(

1
4

)]2

[

κ
[

Γ
(

1
4

)]2

2
√
2π

3
2

]2b
(

g2
2b− 1

− h2
4

)

G(b)

(

rq d

L2
0

)2b−1

− cq
πrq

, (D.14)

where we have represented this relation in terms of the rescaled quantities Eqq̄/rq and

rq d/L
2
0. Notice that the leading term (the first term on the right-hand side of (D.14)) is

given by the potential of the massless flavored background, as expected.

D.2 IR potential

We now estimate the qq̄ potential for large separations. In this case we will content our-

selves to compute the leading order contribution. For large qq̄ separations the hanging

fundamental string penetrates deeply in the geometry, which is equivalent to saying that

x∗ is small. We will follow an approach similar to the one in sections 7.2 and C.1.2 and we
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will split the [x∗,∞] interval of the integrals (8.6) and (8.10) as [x∗,∞] = [x∗, xa]∪ [xa,∞]

with xa < 1 being small. We will assume that xa is small enough so that the background

functions are well approximated by (7.32) in the interval [x∗, xa] . Then, we can estimate

the integral (8.6) for d as:

d ≈ 2L2
ABJM x2∗
rq

∫ xa

x∗

dx

x2
√

x4 − x4∗
+

2√
h∗

∫ ∞

xa

eg h

x
dx , (D.15)

where LABJM is the unflavored AdS radius (2.3) and we have used the fact that for x∗ ≪ 1

we have that h∗ ≫ h(x) when x ∈ [xa,∞] and, therefore, in this interval we can neglect

h(x) in the square root of the denominator of the integrand in (8.6). The first integral

in (D.15) can be done analytically, yielding the result:

d ≈ 2L2
ABJM

x∗ rq

[ √
2π

3
2

[

Γ
(

1
4

)]2 − 1

3

(

x∗
xa

)3

2F1

(

1

2
,
3

4
;
7

4
;

(

x∗
xa

)4)
]

+
2x2∗ r

2
q

L2
ABJM

∫ ∞

xa

eg h

x
dx .

(D.16)

For small x∗, at leading order, we get from (D.16):

d ≈ L2
ABJM

x∗ rq

2
√
2π

3
2

[

Γ
(

1
4

)]2 , (D.17)

which confirms that rq d is large when x∗ is small. We can make similar approximations in

the integral (8.10) with the result:

Eqq̄ ≈
rq
π

[ ∫ xa

x∗

[

x2
√

x4 − x4∗
− 1

]

dx − x∗

]

. (D.18)

Performing explicitly the integral, we get:

Eqq̄ ≈ −x∗ rq
π

[ √
2π

3
2

[

Γ
(

1
4

)]2 +
xa
x∗

− xa
x∗

2F1

(

− 1

4
,
1

2
;
3

4
;

(

x∗
xa

)4)
]

, (D.19)

which, at leading order, becomes:

Eqq̄ ≈ −
√
2π

[

Γ
(

1
4

)]2 x∗ rq . (D.20)

Eliminating x∗ by using (D.17) we arrive at the estimate (8.14).

E Asymptotics of the two-point functions

In this appendix we study the renormalized geodesic distance, and the corresponding two-

point function of bulk operators with large conformal dimensions, in the UV limit of small

separation l and in the IR regime in which rq l → ∞. In the former case, our study will

serve to fix the normalization constant C of (9.10), as well as the analytic form of the

correlator near the UV fixed point. This is the case we analyze first in the next subsection.
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E.1 UV behavior

We will now obtain the form of the correlator in the UV limit in which the turning point

x∗ is large and the geodesic does not penetrate much into the bulk of the geometry. In

order to study this limiting case, it is convenient to perform a change of variables in the

integral (9.7) and write it as:

l = 2x∗

∫ ∞

1
dz

√

G(x∗ z)
√

e
1
2
(φ∗−φ(x∗ z))

(

h∗

h(x∗ z)

) 1
2 − 1

. (E.1)

Similarly, the renormalized geodesic length can be represented as:

Lr = 2x∗

∫ zmax

1
dz
e−

φ(x∗ z)
4

[

h(x∗ z)
]− 1

4
√

G(x∗ z)
√

1− e
1
2
(φ(x∗ z))−φ∗)

(h(x∗ z)
h∗

) 1
2

− 2L0 e
−φ0

4

b
log(C x∗ zmax) , (E.2)

where zmax = xmax/x∗. When x∗ is large the argument of the functions in the integrals (E.1)

and (E.2) is large and one can use the UV asymptotic expressions (6.18) and (7.10). There-

fore, we can approximate l as:

l ≈ 2
√

G∞ x
− 1

b∗

∫ ∞

1

dz

z1+
1
b

√

z
2
b − 1

. (E.3)

The integral in (E.3) just gives b and, thus, we have:

l ≈ 2 b
√

G∞ x
− 1

b∗ =
2

κ

L2
0

rq x
1
b∗

. (E.4)

It follows that, when x∗ is large rq l is small. Thus the UV limit we are studying corresponds

to rq l → 0. Similarly, the UV limit of Lr is:

Lr ≈ 2L0 e
−φ0

4

b





∫ ∞

1

dz

z





z
1
b

√

z
2
b − 1

− 1



 − log(C x∗)



 . (E.5)

The integral in this last equation is:

∫ ∞

1

dz

z





z
1
b

√

z
2
b − 1

− 1



 = b log 2 . (E.6)

On the other hand, the UV conformal dimension ∆UV of a bulk field of mass m has been

written in (9.12). Taking these facts into account, we can write:

e−mLr ≈

(

b
√
G∞ C 1

b

)2∆UV

l2∆UV
. (E.7)
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If the operator O is canonically normalized in the short-distance rq l → 0 limit, the co-

efficient in the numerator of (E.7) should be chosen to be one as in (9.11). Therefore, it

follows that the constant C is fixed to

C 1
b =

√
λ

rq b
√
G∞

=
κ
√
λ

L2
0

. (E.8)

Let us now evaluate the first correction of the two-point correlator around the UV

fixed point. Let us expand the function G(x) for large x as in (C.2) and (C.3). Then, for

large x∗ we get:

√

G(x∗ z) ≈
√

G∞ x
−1− 1

b∗ z−1− 1
b

[

1 +
G2

2
x−2
∗ z−2

]

, (E.9)

where G2 = h2 + 2g2. Similarly:

√

e
1
2
(φ∗−φ(x∗ z))

(

h∗
h(x∗ z)

) 1
2

− 1 ≈
√

z
2
b − 1

[

1 +
φ2 + h2
4x2∗

z
2
b
−2 (z2 − 1)

z
2
b − 1

]

. (E.10)

It follows that the separation l of the two points of the correlator can be written as:

l ≈ 2 b
√

G∞ x
− 1

b∗

[

1 +
1

2x2∗

(

G2 J1 − φ2 + h2
2

J2
)

]

, (E.11)

where J1 and J2 are the following integrals:

J1 ≡ 1

b

∫ ∞

1

dz

z3+
1
b

√

z
2
b − 1

=

√
π

2

Γ
(

1 + b
)

Γ

(

3
2 + b

) ,

J2 ≡ 1

b

∫ ∞

1

z2 − 1

z3−
1
b

(

z
2
b − 1

) 3
2

dz =
√
π

Γ
(

1 + b
)

Γ

(

1
2 + b

) − 1 . (E.12)

Let us invert the relation (E.11) at first order and write x∗ as a function of l. We get:

x∗ ≈
[

2
√
G∞ b

l

]b [

1 + cx∗
l2b
]

, (E.13)

where cx∗
is a constant given by:

cx∗
=

b
(

2
√
G∞ b

)2b





(

g2
2b+ 1

− 2b− 1

2b+ 1

h2
4

− φ2
4

)
√
π Γ
(

1 + b
)

Γ
(

1
2 + b

) +
φ2 + h2

4



 . (E.14)

Moreover, the renormalized geodesic length at first order takes the form:

Lr ≈ 2L0 e
−φ0

4

[

log

(

2b rq
√
G∞

x
1
b∗
√
λ

)

+
1

x2∗

[(

g2 − φ2
4

+
h2
4

)

J3 − φ2 + h2
4

J2

]

]

,

(E.15)
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where J2 is the integral defined in (E.12) and J3 is:

J3 ≡ 1

b

∫ ∞

1

dz

z3−
1
b

√

z
2
b − 1

=

√
π

2

Γ
(

b
)

Γ

(

1
2 + b

) . (E.16)

Let us now write Lr in terms of l. By using (E.13) to eliminate x∗ in terms of l we arrive at:

Lr ≈ 2L0 e
−φ0

4

[

log

(

rq l√
λ

)

+ cL

(

rq l√
λ

)2b ]

, (E.17)

where the coefficient cL is given by:

cL =

(
√
λ

2b rq
√
G∞

)2b √
π Γ
(

b
)

Γ
(

1
2 + b

)

[

g2
2(2b+ 1)

− φ2
8

− 1

8

2b− 1

2b+ 1
h2

]

. (E.18)

Therefore, the two-point correlator near the UV fixed point can be written as:

〈

O(t, l)O(t, 0)

〉

=
f∆(rq l/

√
λ)

(rq l/
√
λ)2∆UV

, (E.19)

where the function f∆ parameterizes the deviation from the conformal behavior near the

UV fixed point and is given, at first order, by

f∆(rq l/
√
λ) ≈ 1 + c∆

(

rq l√
λ

)2b

, (E.20)

where the new constant c∆ is just:

c∆ = −∆UV

4

√
π Γ
(

b
)

Γ
(

1
2 + b

)

(

κ

2
√
2π σ

)2b [ 4

2b+ 1
g2 − 2b− 1

2b+ 1
h2 − φ2

]

. (E.21)

E.2 IR behavior

Let us now analyze the two-point functions in the IR limit, which corresponds to taking

x∗ → 0. In this case the geodesic penetrates deeply in the bulk. We will proceed similarly

to what we did in section D.2 for the qq̄ potential in the IR. Accordingly, we split the

interval [x∗, xmax] as [x∗, xmax] = [x∗, xa] ∪ [xa, xmax] for some xa < 1 small. Near the

turning point, i.e., when x∗ ≤ x ≤ xa, we can approximate the functions h(x) and g(x) as:

h(x) ≈
(

c LIR

γ

)4 1

x4
, eg ≈ γ

c
x , (E.22)

where LIR = LABJM is the AdS radius of the unflavored ABJM solution and γ and c are

the parameters of the unflavored running solution. It follows that, in this IR region, the

function G(x) behaves as:

G(x) ≈ c2

γ2
L4
IR

x4
. (E.23)

Moreover, the dilaton φIR is constant and given by the ABJM value φABJM written in (2.4).
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Suppose that we have chosen some xa ≫ x∗. Let us then split the integral (9.7) for l as:

l = 2

[ ∫ xa

x∗

dx+

∫ xmax

xa

dx

]

√

G(x)
√

e
1
2
(φ∗−φ(x))

(

h∗

h(x)

) 1
2 − 1

≡ lIR + lUV , (E.24)

where xmax should be sent to +∞ at the end of the calculation. Let us approximate the

first integral in (E.24) by taking the functions in the deep IR, as in (E.22). We obtain:

lIR ≈ 2c

γ
L2
IR

∫ xa

x∗

dx

x2
√

x2

x2
∗

− 1
=

2c

γ

L2
IR

x∗

√

1− x2∗
x2a

. (E.25)

For small x∗/xa we can approximate this integral as:

lIR ≈ 2c

γ

L2
IR

x∗
. (E.26)

To evaluate lUV approximately we notice that h∗ ∝ x−4
∗ and, therefore, it is large for

x∗ → 0. Then, we can neglect the one inside the square root and approximate lUV as:

lUV ≈ x∗
γ e−

φIR
4

c LIR

∫ ∞

xa

dx e
φ(x)
4
[

h(x)
] 1
4
√

G(x) . (E.27)

Since the integral in (E.27) converges and is independent of x∗, it follows that lUV ∼ x∗
and, therefore, it can be neglected with respect to the large value of lIR ∼ 1/x∗. Thus,

we take

l ≈ γ̂ − 1

γ

L2
IR

rq x∗
. (E.28)

Notice that it follows from this equation that rq l is large if x∗ is small, as it should be

in the IR regime. Let us next perform a similar analysis for the renormalized geodesic

length Lr. First, we consider the IR integral:

∫ xa

x∗

dx
e−

φ(x)
4

[

h(x)
]− 1

4
√

G(x)
√

1− e
1
2
(φ(x))−φ∗)

(h(x)
h∗

) 1
2

≈ e−
φIR
4 LIR

∫ xa

x∗

dx

x
√

1− x2
∗

x2

=

= e−
φIR
4 LIR log

(

xa +
√

x2a − x2∗
x∗

)

≈ e−
φIR
4 LIR log

(

2xa
x∗

)

. (E.29)

To evaluate the UV integral we proceed similarly to what we did for the integral for l and,

in this case, we only keep the one inside the square root. Then:

∫ xmax

xa

dx
e−

φ(x)
4

[

h(x)
]− 1

4
√

G(x)
√

1− e
1
2
(φ(x))−φ∗)

(h(x)
h∗

) 1
2

≈
∫ xmax

xa

dx e−
φ(x)
4
[

h(x)
]− 1

4
√

G(x) . (E.30)
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Therefore:

mLr ≈ 2∆IR log

(

2xa
x∗

)

+ 2m

∫ xmax

xa

dx e−
φ(x)
4
[

h(x)
]− 1

4
√

G(x)

− 2∆UV log

(

κ
√
λx

1
b
max

L2
0

)

, (E.31)

where ∆IR is the conformal dimension of the operator O in the IR conformal point, given

by:

∆IR = mLIR e
−φIR

4 , (E.32)

which is just (9.13). Let us next define the following quantities:

IIR ≡ −2m

∫ 1

xa

dx e−
φ(x)
4
[

h(x)
]− 1

4
√

G(x) − 2∆IR log xa ,

IUV ≡ −2m

∫ xmax

1
dx e−

φ(x)
4
[

h(x)
]− 1

4
√

G(x) +
2∆UV

b
log xmax . (E.33)

Then, after using the relation (E.28) to eliminate x∗ in favor of l, we get:

mLr ≈ log(rq l/
√
λ)2∆IR + log

[(

2γ

γ̂ − 1

√
λ

L2
IR

)2∆IR
(

κ

L2
0

)−2∆UV
]

− IIR − IUV . (E.34)

Then, it follows that the IR limit rq l → ∞ of the two-point correlator is as in (9.14), where

N is the normalization constant given by:

N =

(

κ
√
λ

L2
0

)2∆UV

(

2γ
γ̂−1

√
λ

L2
IR

)2∆IR
exp

[

IIR + IUV

]

. (E.35)

It turns out that, in the expression of the integrals in (E.33) we can take the limits xa → 0

(in IIR) and xmax → ∞ (in IUV). Actually, it can be easily proved that, after taking these

limits, IIR and IUV can be recast as:

IIR = 2∆IR

∫ 1

0

dx

x

[

1− e
φIR−φ(x)

4

[

hIR(x)

h(x)

] 1
4

√

G(x)

GIR(x)

]

,

IUV =
2∆UV

b

∫ ∞

1

dx

x

[

1 − e
φ0−φ(x)

4

[

hUV(x)

h(x)

] 1
4

√

G(x)

GUV(x)

]

. (E.36)

Notice that the form of the correlator is consistent with the fact that the conformal symme-

try is recovered in the IR limit rq l → ∞. The non-canonical normalization factor N is due

to the fact that we chose to renormalize L in such a way that the correlator is canonically

normalized in the opposite UV limit rq l → 0.
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F WKB mass levels

Consider the following differential equation for the function R(x):

∂x

[

P (x) ∂xR
]

+ m2Q(x)R = 0 , (F.1)

where x takes values in the range x∗ ≤ x ≤ ∞, m is the mass parameter and P (x) and

Q(x) are two arbitrary functions that are independent of m. We will assume that near

x ≈ x∗,∞ these functions behave as:

P ≈ P1(x− x∗)
s1 , Q ≈ Q1(x− x∗)

s2 , as x→ x∗ ,

P ≈ P2 x
r1 , Q ≈ Q2 x

r2 , as x→ ∞ , (F.2)

where Pi, Qi, si, and ri are constants. By a of suitable change of variables, the differ-

ential equation (F.1) can be converted into a Schrödinger equation, which only admits a

discrete set of normalizable solutions for a set of values of m parameterized by a quan-

tum number n ≥ 0. The mass levels for large values of n can be evaluated in the WKB

approximation [68], with the result:

mWKB =
π

ξ

√

(n+ 1)

(

n+
|s1 − 1|

s2 − s1 + 2
+

|r1 − 1|
r1 − r2 − 2

)

, (F.3)

where ξ = ξ(x∗) is the integral:

ξ =

∫ ∞

x∗

dx

√

Q(x)

P (x)
. (F.4)

In our case, the functions P (x) and Q(x) which correspond to the fluctuation equa-

tion (10.13) are:

P (x) =
h

1
4 e2f−φ

x
(x2 − x2∗) , Q(x) =

h
5
4 e2f+2g−φ

x
, (F.5)

and it is immediate to extract the exponents s1, s2, r1, and r2:

s1 = 1 , s2 = 0 , r1 = 1 +
1

b
, r2 = −1− 1

b
. (F.6)

Using these values one immediately finds that the WKB mass levels are given by (10.14).

F.1 Asymptotic spectra

Let us now evaluate analytically the meson spectrum in the two limiting cases in which

the sea quark mass mq = rq/2π is small or large compared to the valence quark mass µq.

Notice that eg ∝ mq (see eqs. (5.6) and (5.7)). Therefore, (10.4) can be regarded as giving

the relation µq/mq as a function of x∗.

Let us consider first the case in which mq is small. Clearly, when mq → 0 for fixed µq
one necessarily must have x∗ large. Actually, integrating (10.4) by using the asymptotic

expression of g written in (6.16) at leading order, we get:

µq ≈ κ mq x
1
b∗ , (F.7)
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where the constant κ has been defined in (6.15). Thus, when mq → 0 for fixed µq the x

coordinate of the tip of the flavor brane increases as:

x∗ ∼ m−b
q , (mq → 0) . (F.8)

Let us now evaluate ξ(x∗) when x∗ is large. First of all we perform a change of variables

in the integral (10.15) and rewrite ξ(x∗) as:

ξ(x∗) =

∫ ∞

1
dz

eg(x∗ z)
√

h(x∗ z)√
z2 − 1

. (F.9)

If x∗ is large, the argument of the functions g and h in (F.9) is large and we can use their

UV asymptotic expressions (6.16) and (6.18) to evaluate them. At leading order, we get:

eg(x∗ z) ≈ r∗
b
z

1
b , h(x∗ z) ≈

L4
0

r4∗
z−

4
b , (F.10)

where r∗ is the value of the r coordinate corresponding to x = x∗. Therefore, for mq → 0

for fixed µq the ξ is approximately

ξ ≈ L2
0

b r∗

∫ ∞

1

dz

z
1
b

√
z2 − 1

=
L2
0

r∗

√
π

Γ
(

2b+1
2b

)

Γ
(

b+1
2b

) . (F.11)

Using this result in (10.14) we get the following mass spectrum in the UV limit:

m
(UV )

WKB
=

√
π√
2

r∗
L2
0

Γ
(

b+1
2b

)

Γ
(

2b+1
2b

)

√

(n+ 1)(2n+ 1) , (µq/mq → ∞) . (F.12)

Let us write this result in terms of physical quantities. Recall that L0 and r∗ are related

to the ’t Hooft coupling λ and to the valence quark mass µq as:

L2
0 = π

√
2λσ , r∗ = 2πα′ µq , (F.13)

where σ is the screening function written in (8.13). Then, for large µq/mq, we have:

m
(UV )

WKB
=

√
π µq

σ
√
λ

Γ
(

b+1
2b

)

Γ
(

2b+1
2b

)

√

(n+ 1)(2n+ 1) , (µq/mq → ∞) , (F.14)

where we have taken α′ = 1. Eq. (F.14) is exactly the WKB mass spectrum one gets for

vector mesons in the massless flavored background of ref. [33].

Let us next consider the limit in which µq/mq is small. Since eg ∼ mq, it follows

from (10.4) that x∗ must be small. Actually, we can estimate the relation between µq/mq

and x∗ by extracting from (4.9) and (5.6) the approximate expression of eg near x = 0.

We get:

eg ≈ γ

c
x ≈ π (γ̂ + 1)mq x . (F.15)
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Then, we have:

µq ≈
γ̂ + 1

2
mq x∗ , (F.16)

and it follows that, for fixed µq and large mq, the coordinate of the tip of the flavor brane

behaves as:

x∗ ∼ 1

mq
, (mq → ∞) . (F.17)

Thus, for large sea quark mass x∗ → 0 and thus the dynamics of the fluctuating flavor

brane is dominated by the IR, where the solution corresponds to the running solution of

the unflavored system. In this case, we have at leading order near x ∼ 0:

eg(x) ≈ γ

c
x ≈ r∗

x

x∗
, h(x) ≈ 2π2N

k

c4

γ4
1

x4
≈ 2π2N

k

1

r4∗

(

x∗
x

)4

, (F.18)

where, in the last step, we used that c/γ ≈ x∗/r∗. Thus,

eg(x∗ z)
√

h(x∗ z) ≈
√
2π2λ

r∗

1

z
, (F.19)

and, after evaluating the integral (F.9) and writing the result in terms of the ’t Hooft

coupling λ and the valence quark mass µq , we have:

m
(IR)

WKB
=

2µq√
λ

√

(n+ 1)(2n+ 1) , (µq/mq → 0) , (F.20)

which is exactly the mass spectrum of vector mesons in the unflavored ABJM model [15].

By combining (F.14) and (F.20) we obtain the UV/IR mass relation written in (10.16). It

is now straightforward to obtain this ratio for small and large values of the deformation

parameter. Indeed, for small ǫ̂ one can expand m
(UV )

WKB
/m

(IR)

WKB
as:

m
(UV )

WKB

m
(IR)

WKB

= 1 +
3− log 2

4
ǫ̂ +

1

384

[

12

(

log 2
(

log 2 + 3
)

− 3

)

− π2
]

ǫ̂2 + · · · . (F.21)

Moreover, in the opposite limit in which ǫ̂ is very large, we have:

m
(UV )

WKB

m
(IR)

WKB

≈ 8
√
2π

5
√
15

Γ
(

9
10

)

Γ
(

7
5

)

√
ǫ̂ . (F.22)
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