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1 Introduction

The problem of fermionic quantum criticality has proven hard enough for condensed matter

physics to keep seeking new angles of attack. The main problem we face is that the

energy scales vary by orders of magnitude between different phases. The macroscopic,

measurable quantities emerge as a result of complex collective phenomena and are difficult

to relate to the microscopic parameters of the system. An illustrative example present the

heavy fermion materials [3] which still behave as Fermi liquids but with vastly (sometimes

hundredfold) renormalized effective masses. On the other hand, the strange metal phase

of cuprate-based superconducting materials [4], while remarkably stable over a range of

doping concentrations, shows distinctly non-Fermi liquid behavior. The condensed matter

problems listed all converge toward a single main question in field-theoretical language. It

is the classification of ground states of interacting fermions at finite density.

In this paper we attempt to understand these ground states in the framework of

AdS/CFT, the duality between the strongly coupled field theories in d dimensions and

a string configuration in d + 1 dimension. Holography (AdS/CFT correspondence) [1, 2]

has become a well-established treatment of strongly correlated electrons by now, but it still

has its perplexities and shortcomings. Since the existence of holographic duals to Fermi

– 1 –



J
H
E
P
1
2
(
2
0
1
3
)
0
2
5

surfaces has been shown in [8, 9], the next logical step is to achieve the understanding of

the phase diagram: what are the stable phases of matter as predicted by holography, how

do they transform into each other and, ultimately, can we make predictions on quantum

critical behavior of real-world materials based on AdS/CFT.

The classification of ground states now translates into the following question: classify

the stable asymptotically AdS geometries with charged fermionic matter in a black hole

background. Most of the work done so far on AdS/CFT for strongly interacting fermions

relies on bottom-up toy gravity models and does not employ a top-down string action. We

stay with the same reasoning and so will work with Einstein gravity in 3 + 1 dimensions.

We note, however, that top-down constructions of holographic fermions exist [6, 11].

In this paper we construct a model dubbed “WKB star”, alluding to the fact that

we treat the same large occupation number limit as the electron star [10] but go further

from the ideal fluid limit of [10]. The main idea is to solve the fermionic equations of

motion in the WKB limit without taking the fluid limit: the total density is the sum of

the contributions of individual wave functions rather than an integral over them. The

main approximation we introduce is thus just the quasiclassical treatment of fermions,

inherent to WKB. The inverse occupation number serves as the control parameter of this

approximation. In addition, we assume that the correction to the fluid limit is captured

by the correction to the pressure. This assumption cannot be rigorously derived. We

will discuss, however, the robustness of our findings with respect to this assumption. In

addition to simply improving the mathematical treatment of the bulk many-body fermion

system, we will show that some properties of the system change nonperturbatively in the

fluid limit. In particular, the thermodynamic behavior of the system at finite temperature

is changed compared to the electron star.

We will use a simple WKB formalism to approximate the many-body Fermi system

in the AdS bulk. This adds quantum corrections to the Thomas-Fermi (fluid) approxi-

mation by taking into account finite level spacing. In other words, we do not take the

limit of an infinite number of occupied levels but keep the occupation number finite. The

occupation number itself acts as the control parameter of our approximation. The most

notable feature, however, occurs in the transition from the semiclassical approximation at

infinite occupation number to finite occupation number. We find that the finite density

quantum many body phases with fermionic quasiparticles at high enough temperatures

always exhibit a first order transition into the zero density AdS-RN phase. Intuitively,

this can be interpreted as a universal van der Waals liquid-gas transition. On the other

hand in the semiclassical fluid limit underlying the electron star, the transition was found

to be continuous [12, 33]. With this re-emergence of the first order nature of the ther-

mal phase transition at the quantum level our results confirm the intuition that a density

driven phase transition is always first order as also indicated by the Dirac hair approxi-

mation [13]. We thus show with an explicit calculation that in the context of fermionic

questions in AdS/CFT quantum “1/N” corrections can be important and that the semi-

classical fluid limit can be unreliable, at least at finite temperature. While the quantum

corrections likely have important consequences also at T = 0, we have not explored the

zero-temperature physics in this paper.
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The outline of the paper is as follows. In the section 2 we describe the field content

and geometry of our gravity setup, an Einstein-Maxwell-Dirac system in 3 + 1 dimension,

and review the single-particle solution to the bulk Dirac equation. In section 3 we start

from that solution and apply the WKB approximation to derive the Dirac wave function

of a many-particle state in the bulk. Afterwards we calculate density and pressure of the

bulk fermions — the semiclassical estimate and the quantum corrections, thus arriving at

the equation of state. Section 4 contains the numerically self-consistent solution of the set

of equations for fermions, gauge field and the metric. There we also describe our numerical

procedure. Section 5 is the core, where we analyze thermodynamics and spectra of the

field theory side and identify different phases as a function of the three parameters of the

system: chemical potential µ, fermion charge e and conformal dimension ∆. Section 6

sums up the conclusions and offers some insight into possible broader consequences of our

work and into future steps.

2 Holographic fermions in charged background

We wish to construct the gravity dual to a field theory at finite fermion density. We will

specialize to 2+1-dimensional conformal systems of electron matter, dual to AdS4 gravities.

We consider a Dirac fermion of charge e and mass m in an electrically charged gravitational

background with asymptotic AdS geometry. Adopting the AdS radius as the unit length,

we can rescale the metric gµν and the gauge field Aµ:

gµν 7→ gµνL
2, Aµ 7→ LAµ. (2.1)

In these units, the action of the system is:

S =

∫

d4x
√−g

[

1

2κ2
L2 (R+ 6) +

L2

4
F 2 + L3Lf

]

(2.2)

where κ is the gravitational coupling and Fµν = ∂µAν − ∂νAµ is the field strength tensor.

The fermionic Lagrangian is:

Lf = Ψ̄

[

eµAΓ
A

(

∂µ +
1

4
ωBC
µ ΓBC − ieLAµ

)

−mL

]

Ψ (2.3)

where Ψ̄ = iΨ†Γ0, eµA is the vierbein and ωAB
µ is the spin connection.

We shall be interested in asymptotically AdS solutions with an electric field. The

U(1) gauge field is simply A = Φdt and we parametrize our metric in four spacetime

dimensions as:

ds2 =
f(z)e−h(z)

z2
dt2 − 1

z2
(

dx2 + dy2
)

− 1

f(z)z2
dz2 (2.4)

The radial coordinate is defined for z ≥ 0, where z = 0 is the location of AdS boundary.

All coordinates are dimensionless, according to (2.1). This form of the metric is sufficiently

general to model any configuration of static and isotropic charged matter. Development of

a horizon at finite z is signified by the appearance of a zero of the function f(z), f(zH) = 0.

From now on we will set L = 1.

– 3 –



J
H
E
P
1
2
(
2
0
1
3
)
0
2
5

We will now proceed to derive the equation of motion for the Dirac field. From (2.3),

the equation reads:

eµAΓ
A

(

∂µ +
1

4
ωBC
µ ΓBC − ieAµ

)

Ψ = mΨ. (2.5)

In the metric (2.4) we can always eliminate the spin connection [8] by transforming:

Ψ 7→ (ggzz)−
1
4Ψ =

eh(z)/4z3/2

f(z)1/4
Ψ ≡ a−1(z)Ψ. (2.6)

At this point it is convenient to adopt a specific representation of gamma matrices.

We choose:

Γ0 =

(

1 0

0 −1

)

, Γx,y,z =

(

0 σ1,2,3
−σ1,2,3 0

)

. (2.7)

In this basis we define the radial projections Ψ± as eigenvalues of the projection operator

onto the time axis:

Ψ± =
1

2

(

1± Γ0
)

Ψ, (2.8)

after which the Dirac equation in matrix form becomes:

√

f∂z

(

Ψ+

Ψ−

)

= D̂

(

Ψ+

Ψ−

)

. (2.9)

Here the matrix D̂ is the differential operator along the transverse coordinates (x, y) and

time, which we will specify shortly.

We will now set the stage for solution of the Dirac equation in the WKB approximation.

We can separate the radial dynamics (along the z coordinate) from the motion in the x−y

plane. We can thus make the separation ansatz:
(

Ψ+(t, z, x, y)

Ψ−(t, z, x, y)

)

=

∫

dω

2π

(

F (z)K1(x, y)

−G(z)K2(x, y)

)

e−iωt (2.10)

where the F,G are scalars and the modes K1,2 are in-plane spinors. The Dirac equation

then takes the form:

(

∂zFK1

−∂zGK2

)

=





−∂̂/
√

f(z)
(

Ẽ (ω, z) + M̃ (z)
)

σ3
(

Ẽ (ω, z)− M̃ (z)
)

σ3 −∂̂/
√

f(z)





(

FK1

−GK2

)

(2.11)

We recognize the matrix at the right hand side as D̂/
√
f . The terms Ẽ and M̃ have the

meaning of local energy and mass terms, respectively:

Ẽ(z) = −eh(z)/2

f(z)
(ω + eΦ(z)), M̃(z) =

m

z
√

f(z)
. (2.12)

The in-plane operator ∂̂ acts on each in-plane spinor as:

∂̂ =

(

0 i∂̄

−i∂ 0

)

(2.13)
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with ∂ ≡ ∂x+i∂y. To maintain the separation of variables in (2.11), we require ∂̂Ki = λiKi,

where |λi|2 corresponds the momentum-squared of the in-plane motion of the particle. The

physical requirement that this momentum be the same for both radial projections translates

into the condition |λ2| = |λ1|. Consistency of the separation of variables then shows us that

K2 = σ3K1 and thus λ1 = −λ2 = k. This solves the x, y-dependent part of the equation,

in terms of ρ ≡
√

x2 + y2 and φ = arctan y/x:

Ki(x, y) =

(

Jl−1/2(λiρ)e
i(l−1/2)φ

Jl+1/2(λiρ)e
−i(l+1/2)φ

)

, (2.14)

where Ja is the Bessel function of the first kind of order a (the second branch, with the

modified Bessel function of the first kind Ya, is ruled out as it diverges at x = y = 0). Now

the reduced radial equation becomes:
(

∂zF

∂zG

)

=

(

−k̃ Ẽ + M̃

M̃ − Ẽ k̃

)(

F

G

)

(2.15)

with k̃ = k/
√
f (let us note that eq. (2.15) is for the pair (F,G), whereas the initial

equation (2.11) is written for the bispinor (FK1,−GK2)). For the WKB calculation of

the density, it is useful to remind that the wave function Ψ in eq. (2.10) has two quantum

numbers corresponding to the motion in the (x, y) plane: they are simply the momentum

projections kx, ky (or equivalently the momentum module λ and the angular momentum

l). The radial eigenfunctions in z-direction provide a third quantum number n.

3 Equation of state of the WKB star

In this section we construct the model of the bulk fermions in an improved semiclassical

approximation — the WKB star. We solve the Dirac equation in the WKB approximation,

and the density is computed by summing a large number of energy levels. This is in the

spirit of Thomas-Fermi approximation. However, we perform an exact summation of a

finite number of WKB quantum-mechanical solutions for the wave functions rather than

approximating the sum by an integral as implied in the semiclassical fluid limit. One of

the drawbacks of the Thomas-Fermi fluid limit are sharp bounds (i.e., discontinuous first

derivative) of density and pressure profiles along the radial direction (see e.g. [10, 12, 33]).

As we have already argued, sharp bounds make it hard if not impossible to capture several

phenomena. In this respect summing WKB wave functions goes beyond Thomas-Fermi; it

includes quantum corrections as the number of occupied states is finite and all collective

and individual profiles will be continuous without sharp edges. In further work one might

start from our model and treat the quantum-mechanical (one loop) corrections in a more

systematic way in order to bridge the gap between the electron star [10] and single-particle

quantum mechanical calculation of Dirac hair [13].

3.1 WKB hierarchy and semiclassical calculation of the density

In the framework of quantum-many-body calculations, the first task is to construct the

induced charge density n(z). Physically, the origin of the induced charge in our model is

– 5 –
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the pair production in the strong electromagnetic field of the black hole. To remind the

reader, a (negatively) charged black hole in AdS space is unstable at low temperatures, and

spontaneously discharges into the vacuum [24]. This means that there will be a non-zero

net density of electrons n(z). One can calculate n(z) in a Hartree approximation as a

density of non-interacting electrons, compute the collective effect on other fields by this

density and iterate. Our novel approach is to use WKB methods to efficiently compute the

many wave functions enumerated by the quantum numbers (λ, l, n).

The algorithm for the WKB expansion of the wave function for Dirac equation is

adopted from [31]. Even though every single step is elementary, altogether it seems to be

less well known than its Schrödinger equivalent. We consider the Dirac equation in the

form (2.9) and introduce the usual WKB phase expansion:

Ψ(z) = e
∫ z
z0

dzy(z)
√

f(z)
χ(z) (3.1)

with the spinor part χ(z). The phase y(z) can be expressed as the semiclassical expansion

in ~,1

y(z) = y−1(z) + y0(z) + y1(z) + . . . (3.2)

The equations for the perturbative corrections now follow from (3.1)–(3.2):

D̂χ0 = y−1χ0, (3.3)

D̂χ1 = y−1χ1 + y0χ0 +
√

f∂zχ0, (3.4)

. . .

D̂χn = y−1χn +
√

f∂zχn−1 +

n−1
∑

i=0

yn−i−1χi. (3.5)

Notice in particular that y−1/χ0 is an eigenvalue/eigenvector of D̂. In our case the matrix

D̂ has rank two, so there are two eigenvalues/eigenvectors for y−1/χ0: y±−1 and χ±
0 . To

find the first order correction to the phase of the wave function y0, we multiply (3.4) from

the left by the left eigenvalue χ̃±
0 of the matrix D̂ (D̂ is in general not symmetric, so the

right and left eigenvalues are different):

y0 = −(∂zχ
±
0 , χ̃

±
0 )

(χ̃±
0 , χ

±
0 )

. (3.6)

so we can now construct the usual WKB solution of the form Ψ± = eiθ±/
√
q, where q is the

WKB momentum and θ± the phase. The term y0 is just the first order correction to θ±.

Finally, let us recall the applicability criterion of the WKB calculation. It is known that

WKB approximation fails in the vicinity of turning points. The condition of applicability

comes from comparing the leading and the next to leading term in the expansion (3.2):

y0(z)

y−1(z)
≪ 1. (3.7)

1From the very beginning we put ~ = 1. However, to elucidate the semiclassical nature of the expansion

we give it here with explicit ~. Dirac equation becomes ~
√
f∂zΨ̂ = D̂Ψ̂, where Ψ̂ = (Ψ+,Ψ−), yielding the

expansion y(z) = ~
−1

(

y−1(z) + ~y0(z) + ~
2y1(z) + . . .

)

.
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In terms of Ẽ(z) and M̃(z) introduced in eq. (2.12) it gives at k = 0:

M̃(z)∂zẼ(z)− Ẽ(z)∂zM̃(z)

Ẽ(z)(Ẽ(z)− M̃(z))
≪ 1. (3.8)

3.1.1 WKB wave function

According to (3.3), the leading effective WKB momentum for the motion in z direction

q ≡ |y±−1| is:
q2(z) = Ẽ2(z)− M̃2(z)− k̃2(z). (3.9)

The wave function in radial direction, Ψ = (F,−G), is given by the superposition of two

linear independent solutions

Ψ(z) = C+χ+(z)e
iθ(z) + C−χ−(z)e

−iθ(z), (3.10)

with the phase determined by

θ(z) =

∫ z
(

q(z′) + δθ(z′)
)

dz′ (3.11)

δθ(z) =

∫ z k̃∂zk̃ − q∂zq +
(

Ẽ − M̃
)(

∂zẼ + ∂zM̃
)

2k̃q
dz. (3.12)

The constants C+ and C− are related by invoking the textbook boundary conditions [25]

for the behavior of WKB wave function at the boundary of the classically allowed region

(q2(z) > 0) and the classically forbidden region (q2(z) < 0). The wave function in the

classically allowed region then reads:

Ψ(z) =
C

√

q(z)





√

Ẽ(z) + M̃(z) sin (θ(z)− δθ(z))
√

Ẽ(z)− M̃(z) sin θ (z)



 , (3.13)

δθ(z) = ArcSin
q(z)

√

Ẽ2(z)− M̃2(z)
, (3.14)

and C is the only remaining undetermined normalization constant. Integrating the prob-

ability density over all coordinates in the classically allowed region (z1, z2) gives the nor-

malization condition:

C2

∫ 1

0
dz

√

g3d(z)

a(z)2

∫

dx

∫

dyC2
2dΨnkxky(z, x, y)Ψ

†
n′k′xk

′
y
(z, x, y) = 1. (3.15)

The metric factor is g3d(z) = g(z)gtt(z), and a(z) is the conversion factor from (2.6). In

the left-hand side of the equality we took into account the normalization of the continuous

spectrum in the (x, y) plane. The integration in the perpendiular coordinates is trivial for

the solution (2.14), as we can transform the integral into the integral over ρ, φ and the

orthogonality relation for Bessel functions gives the definition of C2
2d:

C−2
2d

∫ ∞

0
J(λρ)J(λ′ρ)ρdρ =

δ(λ− λ′)

λ
(3.16)
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and it allows us to express the normalization constant as:

C =

(

4π

∫

dz

√

gtt√
gzz

Ẽ(z)

q(z)

)−1/2

, (3.17)

where a factor of 2π comes from the integration over φ and an additional factor of 2 from

the summation over the full four-component wave function, i.e. bispinor (each spinor gives

Ẽ(z)/q(z) after averaging over the fast oscillating phase θ). This completes the derivation

of WKB wave function and allows us to compute the density.

3.1.2 WKB density

As in [31] we find the total density by summing single-particle wave functions in the clas-

sically allowed region. The WKB wave function is characterized by the quantum numbers

(λ, l, n) with λ being the linear momentum in the x− y plane, l — the orbital momentum

in the x−y plane and n — the energy level of the central motion in the potential well along

z direction. The bulk density can be expressed as the sum over the cylindrical shells of

the bulk Fermi surface. Each shell satisfies the Luttinger theorem in the transverse (x− y)

direction and so the density carried by each shell nxy(z) can easily be found. We can then

sum over all shells to arrive at the final answer which reads simply
∫

dznz(z)nxy(z). A

similar qualitative logic for summing the Luttinger densities in the x − y plane was used

also in [14] although the model used in that paper is overall very different (see also the

fully consistent treatment with regularization in [38]).

Let us start by noticing that the end points of the classically allowed region determine

the limits of summation over n and λ: q2(ωn, λ) ≥ 0. Thus, the density in the WKB

region is:

n(z) =
2π

a(z)2

∫ 2π

0
dφ

∑

n:q2(ωn,λ)≥0

∫

√
f(z)(Ẽ2(ω,z)−M̃2(z))

0
λdλ

∫ ∞

0
dρρC2

2d|Ψ(z, x, y)|2. (3.18)

The limit of the sum over the level number n is determined by the requirement that WKB

momentum be positive; in other words, we sum over occupied levels inside the potential well

only. Remember that the bulk fields live at zero temperature, hence there is no Fermi-Dirac

factor. The sum over the orbital quantum number l extends to infinity as the (x, y) plane

is homogenous and the orbital number does not couple to the non-trivial dynamics along

the radial direction. We can now invoke the (local) Bohr-Sommerfeld quantization rule:
∫

dzq(z) = NWKBπ (3.19)

to estimate the total number NWKB of radial harmonics in the sum. The expression for

NWKB in combination with (3.17) then give:

Cn =

(

1

4π2

∂ωn

∂n

)1/2

, for q(z) ≫ δθ(z), z ≈ 1. (3.20)

Now we turn the summation over the quantum number n into the integration over energy

and obtain for the bulk electron density (here we also performed the integration over ρ using

– 8 –
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the explicit expression for the wave function (2.11) and the normalization condition (3.16)

for the Bessel functions):

n(z) =
4π

a(z)2

∫ 2π

0
dφ

∫

√
f(z)(Ẽ2(0,z)−M̃2(z))

0
dλλ

∫ µloc

0
dω

Ẽ(ω, z)

4π2q(ω, λ, z)
. (3.21)

After performing first integral over ω and then over λ we get:2

n(z) = z3
q3WKBf

3/2(z)

3π2
(3.22)

with qWKB determined by

q2WKB = Ẽ2(0, z)− M̃2(z). (3.23)

Notice that this formula corresponds with common knowledge on the density of electron

star [10]. However, even though the formal expression is the same, the self-consistent

solution for the metric and gauge field is different because of the quantum correction we

introduce to pressure. The difference is visualized in figure 1A where we preview our

backreacted WKB star solutions and compare them to the semi-classical (electron star)

limit. While the electron star density exhibits a discontinuity at the horizon, the WKB

density smoothly falls off to zero. However, both models have a semiclassical “edge”:

outside the region z1 < z < z2, the density is exactly zero. In reality, quantum tails change

this picture. In [37] we show that (small) nonzero density extends all the way between the

boundary and the horizon. However, it is not expected to change the finite temperature

physics which is in the focus of this paper. We therefore do not take into account the

quantum tails in further calculations, to avoid any distractions from the main message.

3.2 Pressure and equation of state in the semiclassical approximation

Following the logic behind the density calculation, we will now calculate the pressure p

along the radial direction. It will actually prove easier to derive the expression for the

(bulk) internal energy density first and then calculate the pressure. By definition, the

energy density reads

E(z) =
∑

kx,ky

∫

dx

∫

dy

∫ µloc

0
dωωΨ†(z)Ψ(z) =

∑

λ

∫ µloc

0
dωω

Ẽ(z)

4π2q(z)
(3.24)

where Ẽ(z) is defined in (2.12), µloc = µeh(z)/2/f(z) and the sum limits are the same

as in (3.21). Performing the integration in a similar fashion as when computing n(z)

in (3.21)–(3.22), we obtain

E =
3

4
eΦn+

1

2
f2M̃2ArcSinh

Ẽ

M̃
. (3.25)

2The given result for n can be compared to the charge density in the electron star limit given in [17]. The

metric functions used there are related to ours as f 7→ fe−h/z2 and g 7→ 1/fz2, where our metric functions

are on the right hand side. Likewise, our definition of qWKB is related to kF of [17] as qWKB = kF /
√
f .

Now the total bulk charge is expressed in [17] as Q =
∫

dzñe(z) where ñe(z) ∼ n(z)eh/2. In our conventions

Q =
∫

dz
√
−ggzzgttn =

∫

dzn(z)eh/2 thus giving the same result as in [17].
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(A) (B)

(C) (D)

Figure 1. WKB bulk density n(z) (eq. (3.22), blue lines) and electron star density (red dashed

lines). Parameter values (A) (µ, e,m) = (1.7, 1, 0.1), (B) (µ, e,m) = (1.7, 10, 1). The classically

allowed region lies between the turning points z∗ and z∗∗, determined by the condition of vanishing

WKB momentum (q(z∗) = q(z∗∗) = 0). The parameters for (A) are in the classical (electron star)

regime, with NWKB ≫ 1 when WKB approximation is quite accurate. The plot (B) shows a case of

small NWKB where the WKB approximation becomes inadequate and further quantum corrections

are likely to be important. (C) Bulk density for a range of values (µ, e,m) = (1.7, 1, 0.1) (red),

(µ, e,m) = (1.7, 5, 0.1) (violet), (µ, e,m) = (1.7, 10, 1) (green) and (µ, e,m) = (1.7, 20, 1) (blue).

For large specific charge of the fermion (and therefore a large number of WKB levels in the bulk)

the solution is dominated by the classically allowed region and looks similar to the electron star

limit. For smaller e/m values (and thus fewer WKB levels) the quantum correction in the near-

boundary region becomes more important and the curves are visibly different from the fluid limit.

(D) Thermodynamical pressure (eq. (3.34)), for the same parameter values as in (C).

Notice that the first term exactly corresponds to the electrostatic energy while the second

is the one-loop term that encapsulates the quantum fluctuations. The above result is

remarkably close to the Hartree vacuum polarization correction as it appears in various

model energy functionals in literature.

3.2.1 Microscopic pressure

The easiest way to express the pressure is to make use of the first law of thermodynamics,

which states

p(z) =
√
gzz (eΦ (z)− E (z)) . (3.26)

There are two possible approaches to arrive at the pressure also directly from the equa-

tions of motion. We can express the radial pressure p from the microscopic fermionic
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Lagrangian (2.3). By definition it reads

p =
∑

n,λ

(

Ψ†
+σ3∂zΨ− +Ψ†

−σ3∂zΨ+

)

=
1

a2

(

Ẽ(F 2 +G2)− M̃(F 2 −G2)− 2k̃FG
)

(3.27)

The equality follows directly from the Dirac equation, substituting the expressions for ∂zΨ±

from (2.9). Now we can exploit the lowest order WKB solution (3.13) to get

p =
2π

a2

∑

n,λ

C2
n

(

Ẽ − M̃

q
− k̃

)

, (3.28)

which, after the momentum integration, gives:

p = 2π
∑

n

C2
ne

h/2z3
√

f

[

(

Ẽ − M̃
)

q2WKB(z)−
2

3
q3WKB(z)

]

(3.29)

The explicit calculation is tedious but straightforward. Unlike the density case, the final

sum is not readily performed to obtain a closed-form expression. Instead, we integrate

numerically over the energy levels ωn to obtain the function p(z). However, even a quick

look at (3.29) tells that it behaves as q3WKB at leading order, for qWKB large (the first

and the third term will contribute as q3WKB). After the energy integration this term gains

roughly a factor of µ, implying that p ∼ µn ∼ µ4, as we expect to recover in the fluid limit.

We have now calculated the radial pressure, i.e. the fermionic component of the stress

tensor T z
z . Due to local isotropy, it does not depend on the direction and position in the

x − y plane. The same happens in the fluid limit, as shown in [10]. The pressure in the

perpendicular direction (in the x− y plane) is analogously expressed as

p⊥ = −
∑

n,λ

ik
(

Ψ†
+σ1Ψ− +Ψ†

−σ1Ψ+

)

=
2π

a2(z)

∑

n,λ

C2
n

1

q
λẼ (3.30)

The summation over λ, i.e. the value of the in-plane momentum can again be performed

analytically, yielding:

p⊥ = 2π
∑

n

C2
ne

h/2z3fq2WKBẼ. (3.31)

In fact, the above sum has a closed-form limit for NWKB → ∞:

p⊥ = f2eh/2z3
q4WKB

12π2
, (3.32)

which obeys the relation p⊥
√
gii = n

√
g00/3, the covariant version of the relation p = µn/4.

We will not make use of p⊥ as the ii component of the Einstein equations is not functionally

independent of the 00 and zz components; the two metric functions f, h are determined

from the two equations, and the third one can only serve as a consistency check.

– 11 –
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3.2.2 Thermodynamic pressure

In a “near”-classical regime, at large occupation number, thermodynamics ought to work,

so we can express the pressure from the energy density E , as p = −∂E/∂V . This expression

is still hard to calculate exactly. However, we can use the following trick to estimate p at

the leading order. Consider a small change of the number density δn. It will introduce

a small change of energy δE , pressure δp and the volume of the bulk electron gas δV ,

the latter because the classically allowed region where q2WKB > 0 will shift and grow (if

δn > 0). Now since the metric is radially symmetric we can expand the volume V =
∫ z∗∗
z∗

d3x e−h(z)/2

z4
around its initial value and find that the leading term in its variation

behaves as δV = V δℓ/(1− ℓ) + . . ., where ℓ ≡ z∗∗ − z∗ is the (dimensionless) length of the

classically allowed interval along the z axis, i.e. the interval between the zeros of the WKB

momentum qWKB(z) =
√

Ẽ2(z)− M̃2(z). This yields

∂E

∂V
= E + V

∂E
∂V

= E + V
δE(1− ℓ)

V δℓ
=

δE
δℓ

. (3.33)

Since all the processes we study are certainly adiabatic (looking at the whole system of

gravity plus the matter fields), we can replace the variations by partial derivatives and write

p ∼ ∂E/∂ℓ as an approximation for the radial pressure. However, even this expression we

are only able to evaluate in a very crude way. For NWKB ≫ 1, it is natural to assume (and

confirmed by the numerics, see figure 1) that z∗∗ is very close to the horizon, z∗ is quite

far from the horizon and ℓ ≈ 1 − z∗. For z ∼ z∗, we assume that the electric potential

does not deviate much from the linear law: Φ ∼ µ(1 − z), because z∗ is not far from the

boundary. This means that the metric function h(z) can be well approximated by a linear

function h(z) ∼ const.(1− z). Solving the equation q2WKB = Ẽ2(z∗)− M̃2(z∗) = 0, we get

ℓ ∼ 1 − log e2µ2

m2 , and (3.25) gives the thermodynamic pressure. However, we cannot get

the numerical prefactor right in our approach, and this is important in order to satisfy the

first law of thermodynamics, which in the fluid limit predicts p = E/4. We therefore norm

pthd by hand by a constant factor Cthd. This gives:

pthd = −Cthd
∂E
∂Φ

∂Φ

∂µ

∂µ

∂ℓ
∼ 3

4
eµ(1− z)

(

n+
M̃2e−h

z
√

M̃2 + ehẼ2

)

(3.34)

This is the relevant regime to compare with the electron star. We will call the esti-

mate (3.34) thermodynamic pressure and denote it by pthd to differentiate from the exact

summation of WKB wave functions (3.29). These expression are also the equations of

state of the system as they connect the pressure to the density. The thermodynamic

pressure is more convenient for calculations. In spite of its approximate nature, (3.34) in

particular yields a remarkably accurate result when compared with the quantum pressure

at NWKB ≫ 1.

We can make the connection between the exact first law of thermodynamics (3.26) and

the quick estimate (3.34) by showing them to be equal in the limit of small Ẽ, which is

appropriate in the vicinity of the phase transition from WKB star to the RN black hole.
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(A) (B)

Figure 2. Comparison between full quantum pressure (dashed blue lines, eq. (3.29)) and thermo-

dynamic pressure (solid black lines, eq. (3.34)) for two sets of parameters: (µ/T, e,m) = (1.7, 1, 0.1)

(A) and (µ/T, e,m) = (1.7, 5, 1) (B). For comparison we plot also the fluid pressure p = enΦ/2

(dashed green lines). Expectedly, for NWKB ≫ 1 (A) the thermodynamic approximation comes

close to the exact summation while for NWKB small the level spacing is large and the thermody-

namic limit is no longer a good approximation to the sum of the contributions of individual levels.

Notice that both ways of computing pressure yield similar results for large NWKB but deviate at

smaller NWKB.

In this case expanding both equations in Ẽ, we find the same expression:

p ≈ 1

4
eΦn+

f

z
ẼM̃ +O(Ẽ3). (3.35)

Finally, it is illustrative to see how we reproduce the electron star pressure [10] in the

limit of large density. For n → ∞, the first term in E and pthd dominates and we obtain

from (3.25) and (3.34)

pES =
1

4
eΦn (3.36)

as expected for an ideal fluid, which corresponds to the electron star approach. The

physical interpretation of this result (and of the pressure inside the classically allowed

region in general) is that of a Fermi gas pressure which, as we know, survives also in the

limit of classical thermodynamics. The comparison of p, pthd and pES is summarized in

figure 2, for high and low number of levels. While the thermodynamic approximation (3.34)

is good when NWKB ≫ 1, for small NWKB both the fluid limit and the thermodynamic limit

eventually break down and the contributions of individual levels must be taken into account.

Once again, the introduction of Airy corrections would extend the nonzero pressure to the

whole AdS space, which is only expected to be relevant at T = 0 [37].

4 Maxwell-Dirac-Einstein system

We have now arrived at the point where we can look for a numerically self-consistent so-

lution of the Einstein-Maxwell equations. The numerics uses an iterative procedure to

converge toward the solution. Only in the IR region it is possible to use a scaling ansatz

to estimate the scaling behavior of the metric and matter fields, akin to the procedure

used in [20]. This is the first attempt at a numerically self-consistent solution includ-

ing backreaction on the geometry with holographic fermions which goes beyond the fluid

picture of [10].
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Our calculation is similar to the one for relativistic ideal fluid (i.e. electron star) ap-

proximation. Because an ideal fluid is dissipation-less one can construct an action as put

forward in [15] and used in [10, 12]. The Lagrangian of this charged fluid coupled to gravity

and electromagnetism is

S =

∫

d4x

[

1

2κ2
(R+ 6)− 1

2q2
(∂zΦ)

2 + p

]

. (4.1)

In other words, the contribution of fermions reduces to the pressure p. While we do

not take the fluid limit in this paper, within the WKB star model we assume that in

the first approximation the influence of the corrections to fluid limit (NWKB → ∞) is fully

encapsulated by the correction to the classical (or fluid) pressure we found in (3.25)–(3.29).

The emergent isotropy and its implied ideal nature of the fluid at large occupation number

should ensure this.

To construct the backreacted geometry, we therefore “replace” the fermionic terms

in the exact action (2.2) with our effective ideal fluid model in terms of the density and

pressure of the bulk fermions. The total effective action is represented as S = SE+SM+Sf ,

the sum of Einstein, Maxwell and fluid part. The only nonzero component of the gauge field

is Φ and the only non-vanishing derivatives are the radial derivatives ∂z (the others average

out to zero for symmetry reasons). The nonzero fermion pressure p is that considered in

section 3.2 and there is a nonzero (local) charge density

j0e = qn
√

g00 = qn
zeh/2√

f
. (4.2)

The fermion fluid term in the effective action thus becomes

Sf = −
∫

d4x
√−g

(

j0eΦ+ p
)

. (4.3)

Due to the preserved spherical symmetry we may substitute these simplifications directly

in the effective action to arrive at:

Seff =

∫

d4x
√−g

[

1

2κ2
(R+ 6)− z4

2
eh
(

∂Φ

∂z

)2

− j0eΦ+ p

]

. (4.4)

The only components of the stress tensor the fermion kinetic energy contributes to are the

diagonal ones; the others vanish due to homogeneity and isotropy in time and in the x− y

plane. From (4.4) we get the equations for the energy-momentum tensor:

T 0
0 = −1

2
z4eh

(

∂Φ

∂z

)2

+ j0eΦ (4.5)

T z
z = = −1

2
z4eh

(

∂Φ

∂z

)2

+ j0eΦ+mn+ gzzp. (4.6)

With the metric ansatz (2.4), we can now write down our equations of motion:

1√−g

(

∂ze
−h/2∂zΦ

)

= −j0e (4.7)

3f − z∂zf − 3 = T 0
0 (4.8)

3f − z∂zf − 3zf∂zh− 3 = T z
z (4.9)
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Notice that the ii component of the Einstein equations:

1

2
(∂zzf − f∂zzh) +

1

4

(

f∂zh
2 − 3∂zf∂zh

)

+
f∂zh− 2∂zf

z
+

3f

z2
= T i

i (4.10)

with

T i
i = −1

2
z4eh

(

∂Φ

∂z

)2

+ giip⊥ (4.11)

is functionally dependent on the others and drops out. For that reason, (4.7)–(4.9) forms

the complete system of Maxwell-Einstein equations. We do not need to know T i
i or p⊥ nor

to assume the isotropy (in the sense T i
i = T z

z ).

In this article we shall only be interested in finite temperature solutions. The grav-

itational background is therefore a black hole with an horizon: a single zero in the warp

function f(z) at a finite value z = zH .3 Physically the inescapability of the black hole

horizon immediately suggests the following boundary conditions. The black hole horizon

should have no hair so Φ(zH) = 0; h(z) which characterizes the ratio of the UV and IR

speed of light should be finite at the horizon: h(zH) = h0. Note that the effective WKB

potential felt by the fermions blows up at the horizon and that the fermion wavefunctions

therefore manifestly vanish at zH . This same phenomenon is noted in the electron star at

finite temperature which also has an “inner” edge outside the horizon [12, 33].

At AdS infinity the boundary conditions are standard in AdS/CFT: for the gauge

field limz→0Φ(z) = µ fixes the chemical potential at the boundary (z0 → 0). We normal-

ize limz→0 f(z) = 1, limz→0 h(z) = 0. Again the boundedness of the normalized WKB

wavefunctions uniquely fixes the behavior of the fermions.

Finally, it remains to define the units used throughout the paper. The natural unit

of energy and momentum is the chemical potential µ and we will express all quantities in

units of µ. The two thermodynamic parameters are the chemical potential µ and T . As

AdS/CFT is built on conformal field theories which have no intrinsic scale, the physics

only depends on the ratio µ/T .

Let us conclude with an outline of the numerical algorithm, which is not completely

trivial. The boundary conditions to be implemented are given at different points: some

are given at the AdS boundary and some at the horizon. Since the system is nonlinear, it

is necessary to either linearize the system or to shoot for the correct boundary conditions

with the full nonlinear system. After experimenting with both, we have decided to iterate

the full, non-simplified system of equations, integrating from the horizon and shooting

for the conditions at the boundary. The iterative procedure consists of two steps: we

start with the non-backreacted AdS-RN geometry and compute the density (semiclassical

plus the quantum corrections) for the the electron charge equal to e/N (where e is the

physical charge and N some positive integer), then we solve the system of Einstein-Maxwell

equations (4.7)–(4.9), afterwards we increase the fermion charge to 2e/N , calculate the

3At zero temperature, when the horizon vanishes due to fermionic backreaction (this includes also the

case of Lifshitz geometry), the boundary condition for f guarantees also the smoothness of the solution on

the horizon: ∂zf(zH) = 0. This condition ensures that we pick the correct branch of the solution as there

are typically two families of functions f(z) that satisfy the equations of motion and the condition f(z) = 0.

One of them has a vanishing derivative whereas the other has finite derivative as z → 1.
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(A) (B)

Figure 3. Profiles of the metric functions f(z) (red) and e−h(z) (violet), the gauge field Φ(z) (green),

density n(z) (blue) and the pressure p(z) (cyan) at zero temperature, for (µ/T, e,m) = (1.7, 1, 0.1)

(A) and for (µ/T, e,m) = (1.7, 10, 0.1) (B). Solid lines are calculated from our model while dashed

lines are the electron star solution for the same parameter values. For better visibility density

and pressure are rescaled by a constant factor. Near the boundary we always have h(z) → 0 and

Φ(z) = µ+O(z), in accordance with the universal AdS asymptotics of the solution but in the interior

the solutions start to deviate. Most striking is the absence of sharp classical edges in density and

pressure. The difference in pressure will turn out to be crucial in moving away from the fluid limit.

Here we have not shown the solution with NWKB = 4: this case deviates from the electron star

(NWKB → ∞) so strongly that it does not make sense to compare it. Indeed, 4 ≪ ∞!

charge density in the background (f, h,Φ) taken from previous iteration and solve for this

density the Einstein-Maxwell equations (4.7)–(4.9). We repeat this procedure for charge

3e/N , 4e/N etc. After N iterations we have arrived at the physical value of the charge e.

Then we do more iterations with fixed charge e to ensure that the solution has converged,

checking that the set of functions (f, h,Φ) does not change from iteration to iteration. In

this way we achieve the self-consistent numerical solution of the Maxwell-Dirac-Einstein

system of equations. The integration is always done from the horizon, shooting for the

conditions for Φ and h at the boundary, since it is well known that integrating from the

AdS boundary is a risky procedure as it is next to impossible to arrive at the correct branch

of the solution at the horizon.

5 Phases of holographic fermions

We can now analyze the structure of both the bulk and the field theory side as a function

of the parameters T/µ, e and m. We first shortly discuss the nature of the bulk solution for

the geometry and gauge field and notice some qualitative properties. The typical way that

the solutions to the WKB-Fermi-Einstein system (4.7)–(4.9) look is illustrated in figure 3.

The near-horizon scaling of the metric and gauge field is of Lifshitz type, as expected in the

light of earlier models [10, 34]. Notice that we are working at finite temperature and thus

do not impose the IR boundary conditions for the metric functions which correspond to

the Lifshitz geometry. Our finding of Lifshitz scaling is purely numerical, with the simple

boundary conditions discussed above. In the figure, we plot also the electron star solution

for comparison. One should be careful in comparing the two, however, as the electron

star corresponds to the limit e → 0 and thus cannot be compared directly (i.e., for the
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same parameter values) to our WKB star. Our convention is to first define the electron

star by choosing the total charge density Q and the parameter m̂ = m/eκ, where κ is the

gravitational constant whose value is fixed by the normalization of the action (4.1). For

the WKB star, we impose the same value of Q, while the value of m is found as m = m̂eκ

(for WKB star we can control e as an independent parameter). Relative proximity of

the solutions for large N seems to confirm that this is a physically meaningful way of

comparing the models.

5.1 Thermodynamics

We can now use these full solutions to determine the macroscopic characteristics of the

dual strongly coupled fermion system. Let us first derive the free energy of the boundary

field theory. According to the dictionary, it is equal to the (Euclidean) on-shell action,

which contains both bulk and boundary components:

F = Son−shell
bulk + Son−shell

bnd . (5.1)

We have already discussed the bulk action in the previous section. We will again approxi-

mate the fermionic contribution (4.3) by its leading term, the pressure.

In computing the free energy using AdS/CFT a crucial part is often played by boundary

terms in the action. It encapsulates the regularizing terms that eliminate z → 0 divergences,

enforces a Dirichlet boundary condition for the gauge field, but it also provides the kernel

for the fermionic correlation functions [9, 36]

Sbnd =

∮

∂AdS

√
−h

(

1

2
nνF

µνAµ + Ψ̄+Ψ−

)

, (5.2)

with h being the induced metric on the boundary (h = 1
z2
(−1/f(z = 0), 1, 1)) and Ψ+ and

Ψ− are radial projections of the wave function as in eq. (2.8). By ∂AdS we have denoted

the boundary of the AdS space. Let us now briefly show why these boundary fermion

terms do not contribute to the free energy, but that the leading fermion contribution is the

(one-loop) effective pressure. Essentially the point is that only normalizable modes of the

field are occupied and hence they cannot contribute to the boundary action as they die off

too fast. The Dirac field asymptotics at the boundary are given by [13]:

Ψ+ =
iµγ0

2m+ 1
B−z

5/2+m + . . . , Ψ− = B−z
3/2+m + . . . (5.3)

At the same time the electromagnetic boundary term reduces to Φ∂zΦ|z=0 = −µρ, where

ρ is the total boundary (not only fermionic) charge density, read off from the subleading

“response” of the bulk electrostatic potential limz→0Φ(z) = µ− ρz + . . .. The regularized

boundary action now reads

Sbnd = lim
z0→0

S(z0) + lim
z0→0

∫

d3x

[

3µ

2(2m+ 1)
B̄−iγ

0B−z
1+2m
0 − 1

2
µρ

]

, (5.4)

Since m > −1/2 is the fermionic unitarity bound in AdS/CFT, the first term always

vanishes in the limit z0 → 0. The total on-shell action, i.e. the free energy is therefore

F =

∫ zH

z0

dzd3x
√−g

[

R+ 6 +
zeh/2qnΦ

2
√
f

+ p

]

− 1

2
µρ (5.5)
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5.2 Constructing the phase diagram: quantum corrections imply a first order

thermal phase transition to AdS-RN

The condensed matter context in which we are discussing AdS/CFT is that of an emergent

finite density fermionic ground state out of an UV CFT. In the deep UV or at very high

temperatures T/µ the chemical potential should be negligible and we should recover as the

preferred groundstate the UV CFT at finite T/µ. The gravitational dual of this is the AdS-

RN black hole. It describes a conformal critical phase with no Fermi surfaces. As we lower

T/µ an instability should set in towards a state with a finite occupation number of fermions.

In the probe analysis one indeed finds several normalizable wavefunctions signalling the

existence of states with distinct occupation numbers. They are the bulk counterpart of

the existence of non-Fermi-liquid Fermi surfaces [8, 9, 19, 21]. A crucial qualitative aspect

is that due to their fermionic nature the wavefunctions of these normalizable modes can

never “grow”. From a microscopic point of view it therefore appears that any fermion

driven phase transition cannot be second order. In the fluid limit, however, the transition

was found to be third order. There is no conflict because new analytic behavior can emerge

in the fluid scaling limit where the number of Fermi surfaces is taken to infinity.4 It does

mean that one has to be quite careful in the fluid limit as for fermions these corrections can

change macroscopic quantities. For any finite number of Fermi surfaces we should discover

a first order transition. We did indeed find this earlier in the Dirac hair approximation

valid for NWKB = 1 [13]. With the WKB construction put forward here, we will show that

this is indeed so for any finite NWKB.

Figure 4 shows the behavior of the free energy F (T/µ) of the WKB corrected star

construction for different parameters e,m, corresponding to a different number of levels

NWKB (which roughly equals the number of Fermi surfaces. In the high temperature

phase the preferred state with lowest F (T/µ) is that of the pure AdS-RN. Since there are

no occupied fermionic states it is independent of the fermion charge and mass. In the low

temperature phase the preferred phase is the WKB star. Where the phase transition occurs,

one immediately sees the characteristic first order cusp in F (T/µ) whose non-analyticity

indeed becomes clearer as NWKB decreases. The panel (B) of the figure makes this clear

by showing the vicinity of the phase transition.

The first order nature of the phase transition can in fact be understood analytically

with this WKB construction. The argument is along similar lines as for the fluid limit of

the electron star [12]. Assuming that the transition is dominated by the behavior of the

fermions and that the contribution of the geometry change due to backreaction is small

4Note that there is a crucial subtlety in the fluid limit in AdS/CFT with a flat Minkowski-space boundary.

Normally one needs a thermodynamic “fluid” limit to even be able to discuss the notion of a phase transition.

In global AdS, or conventional Tolman-Oppenheimer-Volkov neutron stars, a bound on the number of radial

modes, implies a countable number of states. However, this is not so in AdS/CFT with a flat Minkowski-

space boundary. For each radial mode there is still a formal infinite number of modes distinguished by the

transverse momentum. The phase transition discussed here is where one considers N/Vtransverse → ∞. It

restores one’s intuition that the emergence of each single Fermi surface dual to each single radial mode is

associated with a macroscopic phase transition. We thank Sean Hartnoll for emphasizing this.
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Figure 4. Free energy as a function of temperature F (T ). The abrupt change of the derivative

signifies the first order transition between the finite density phase and the pure black hole (with

zero bulk fermion density), in line with the analytical prediction of the first order transition from

the second term in the bulk free energy in section 5.2. We show the calculations for three different

values (µ, e,m) of the system parameters: (1.7, 3, 0.1), NWKB(T = 0) = 40 in blue, (1.7, 10, 0.1),

NWKB(T = 0) = 20 in red and (1.7, 10, 0.7), NWKB(T = 0) = 11 in violet. Notice how the slope

of F in the low-temperature phase decreases as the number of levels increases: for NWKB → ∞
we reach the electron star limit when the transition becomes continuous. Panel (B) shows the

vicinity of the critical temperature for three sets of parameter values, to make the cusp in F (T )

clearly visible. In the high temperature (RN) phase the curves F (T ) fall on top of each other as

one expects for the RN black hole with n = 0. The behavior in the low-temperature phase (with

non-zero density) is different for the three curves as the value of the charge affects the behavior of

the bulk fermions. For presentation purposes, the curves have been rescaled to the same transition

temperature; in general, however, (T/µ)c is not universal and will differ for different corners of the

parameter space.

near the critical temperature, the relevant part of the free energy of the system is given by

FFermi ≈
∫ zH

0
p =

eµ

2

∫ z∗∗

z∗

(1− z)n+
eµ

2

∫ z∗∗

z∗

M̃2e−h

z
√

M̃2 + ehẼ2
≡ F fluid

Fermi +∆FFermi (5.6)

Starting from low temperatures and nonzero n, at the transition point the bulk density n

vanishes. In the WKB construction that means that the turning points coincide: z∗ → z∗∗.

The first, “fluid limit” term F fluid
Fermi in (5.6) is proportional to Φn and it is analyzed in detail

in [12]. It yields the scaling F fluid
Fermi ∼ (T − Tc)

3. This indicates a third order transition at

the semi-classical level. The new, second, quantum term will change this, however. The

vanishing of the classically allowed region means Ẽ ≈ M̃ in the whole (narrow) region

z∗ < z < z∗∗. One can thus expand Ẽ = M̃ + δz × δẼ/δz + . . . and analyze the leading

terms in δz. It is easy to see that its expansion starts from a constant. Since for vanishing

δz the density can be assumed constant throughout the WKB star, we estimate the integral

in ∆FFermi as

∆FFermi ≈
ΦM̃2e−h

√

M̃2 + ehẼ2
δz = (const.+O (δz)) δz, (5.7)

where δz = z∗∗ − z∗. Therefore, the second term scales as ∆FFermi ∼ δz. Now, for a

vanishing bulk charged fluid/emerging charged black hole, the principle of detailed balance

predicts that the charge of the former equals the charge of the latter: nδz = nBHδzH ,
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where the charge densities of the bulk and the black hole are n and nBH, respectively, and

δzH is the change in the position of the black hole horizon. Since the densities can be

assumed constant for vanishing δz and δzH , we find δz ∼ δzH ∼ T − Tc. We can now

write FFermi = F fluid
Fermi +∆FFermi. We know that F fluid

Fermi ∼ (T − Tc)
3 [12], but we have now

shown that

∆FFermi ∼ T − Tc. (5.8)

At the quantum level the transition is always of first order. The quantum correction is

subleading at general T values, but becomes leading as the phase transition point is ap-

proached. Finally, we remark that, if one considers the bulk free (or internal) energy
∫

dzE
given in eq. (3.24) using the similar scaling reasoning, one arrives at the same conclusion:

F ∼ T − Tc. This confirms the intuition that the bulk and boundary thermodynamics are

equivalent at leading order, i.e. the difference Fbulk − F does not contain first-order terms

in T − Tc and thus does not change the order of the transition. Now the exact free energy

differs from our WKB star calculation, as we have assumed that the correction to the fluid

limit is fully captured by the correction to pressure. However, an additional term in F

cannot decrease the order of the transition: it can introduce new singularities (of some

order α, scaling as (T − Tc)
α) but cannot cancel out the term.

The numerics just confirms this analytic prediction of a first order phase transition.

The field theory interpretation of the discontinuous nature of the transition to a phase

with Fermi surfaces is simple: fermions do not break any symmetry but the discharge of

the black hole does signify that the ground state is reconstructed due to the formation of

a rigid Fermi surface. The only way to reconstruct the ground state without breaking any

symmetries is precisely the first order transition of the density van der Waals liquid-gas

type. This is the macroscopic counterpart to the probe analysis where the Grassman nature

of fermions Pauli blocks the growing of mode functions. A van der Waals liquid-gas first

order type transition is indeed seen in [13] for the first order transition from NWKB = 1

Dirac hair state to AdS-RN. The confusing point was that electron star/AdS-RN transition

valid in the strict NWKB → ∞ fluid limit was found to be third order [12, 33]. Here we

show that this change in the nature of the phase transition is an artifact of this NWKB → ∞
limit. Instead the expected first order behavior is recovered for any finite value of NWKB.

6 Discussion and conclusions

In this paper we have constructed the WKB star as an improved semiclassical model of

holographic fermions in AdS4 space, aimed at understanding the phase diagram of strongly

coupled Fermi and non-Fermi liquids. The model combines a WKB approximation with a

Hartree summation to approximate a finite NWKB charged fermion state in AdS coupled

to both gravity and electromagnetism. The dominant effect is a quantum correction to

the pressure and energy density (”vacuum polarization”) of the conventional NWKB → ∞
classical model — the electron star. This finite NWKB approach has allowed us to address

the intermediate fermion charges which cannot be modeled satisfyingly with any of the

previously used models.
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By studying the free energy of the system we can now construct the full phase diagram

of the system. Most importantly, we find a universal first order phase transition from a

finite density to a zero density (Reissner-Nordström, quantum critical) phase. The discon-

tinuity of the density comes from the quantum term in the internal energy. This term is

always present but its relative contribution to the free energy decreases with the inverse

of the number of radial modes NWKB. The extreme limit NWKB → ∞ reproduces the

unexpected third order continuous phase transition found in [12, 33]. Nevertheless, in any

real system with finite fermion charge the discontinuity will be present, which fits into the

general expectation that the thermal phase transition of a fermionic system should be of

the van der Waals (liquid-gas, Ising) type.

So far three distinct approaches aiming at capturing the stable phases of holographic

fermionic matter have appeared: the electron star [10], Dirac hair [13] and the confined

Fermi liquid model [14]. The electron star is essentially a charged fermion rewriting of the

well-known Oppenheimer-Volkov equations for a neutron star in AdS background. The

bulk is thus modeled as a semiclassical fluid. It is a controlled approximation in the certain

limit of the parameter values. The mystery is its field theory dual: it is a hierarchically

ordered (infinite) multiplet of fermionic liquids with stable quasiparticles [17]. On the

other end of the spectrum is Dirac hair, which reduces the bulk fermion matter to a single

radial harmonic. The Dirac hair approach is based on the truncation of the full non-

local equations of motion. As a consequence the field theory dual is a single Fermi liquid,

however its gravitational consistency properties are not yet fully understood. In [18] we

have shown that Dirac hair and electron star can be regarded as the extreme points of a

continuum of models, dialing from deep quantum - a single radial mode - to a classical

regime - a very large occupation number - in the bulk. They correspond to two extreme

phases in the field theory phase diagram: a multiplet of a very large number of Fermi

liquids and a single Fermi liquid. The third approach [14] performs a Hartree summation

of the exact quantum mechanical wave functions to capture the fermion density. While the

paper [14] applies the Hartree method to a specific model (confined Fermi liquid, where

the confinement is intrduced through modifying the bulk geometry), the main idea can be

used in any background. This approach is more general then the single-particle approach

of [13] and it naturally extends the single harmonic Dirac hair state with a single Fermi

surface to a state with multiple Fermi surfaces. Our main motivation is to construct a

complementary model that extends from the other end — the semi-classical fluid — down

to a state with a countable but large number of Fermi surfaces. We aim for a system

which is general enough to encompass the middle ground between extreme quantum and

extreme classical regimes in the original deconfined setup. In the recent model of “quantum

electron star” [16] the same goal is set but the method used is different and is based on

the deconfined limit of [14].

In constructing the WKB star, we were also guided by the strengths and weaknesses

of these existing models. On the one hand, the Dirac hair is a fully quantum-mechanical

model which shows its strength in particular near the boundary (the ultraviolet of the

field theory) but becomes worse in the interior, i.e. close to the horizon (the infrared of

the field theory) where density is high and the resulting state of matter cannot be well
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Figure 5. Applicability of various approximations as a function of the ratio of the fermion charge

and the total charge of the system, Q/e: Dirac hair, confined Fermi liquid, our present WKB-model,

electron star. Dirac hair and electron star are the simplest and most flexible approximations but

limited to the extreme ends of the Q/e axis. Compare also to figure 10 in [18].

described by a single wave function. On the other hand, the electron star yields a very

robust description of high-density matter in the interior but its sharp boundary at some

radius rc is clearly incompatible with a fully quantum description. It is thus obvious that

the physically interesting model lies somewhere in-between the two approaches.

How to relate the electron star [10], Dirac hair [13] and the (confined) Hartree Fermi

liquid [14] to our new phase diagram? All models use the same microscopic action for a

Dirac fermion with charge e and mass m, but the system is approximated in different ways.

The electron star is the fluid limit of the equations of motion, yielding the Openheimer-

Volkov equations in the bulk. As explained in [18], this approximation is valid in the

limit of infinite occupation number NWKB → ∞, e → 0 with the total charge density

fixed Q = NWKBe. In addition, the mass m → 0 while m̂ = m/
√
NWKBe is fixed. The

Dirac hair departs from the opposite limit, treating the bulk fermion as a single collective

excitation with NWKB = 1. To obtain a macroscopic charge density one essentially has

to take e ≫ 1. Finally, the confined Fermi liquid of [14] and its deconfined version [16]

improve on the Dirac Hair by using a standard Hartree summation of the non-interacting

bulk Fermi gas. It works for all NWKB ∼ O(1) and this significantly increases the region

of applicability but at the cost of substantial practical complications, in particular if one

wishes to take into account the backreaction on the metric [16]. Our model takes a similar

summation approach but simplifies the wave function calculation drastically by using the

WKB approximation. This inherently assumes semiclassical dynamics and large number of

energy levels NWKB ≫ 1 in the bulk. The WKB star is thus independent of [13] but draws

heavily on the electron star and the dialing concept of [18]. Since we do not make the

assumption of zero energy spacing NWKB → ∞ necessary for the fluid approximation, our

model thus works well in the intermediate regime where NWKB is finite but large compared

to unity. This message is illustrated in figure 5, emphasizing the singular nature of both

the electron star and the Dirac hair.

One obvious downside of the WKB star is that the WKB approximation breaks down

when NWKB, the occupation number, is low. In particular, it means that the accuracy of

our method is lowest close to the phase transition to the RN phase. However, for reasons

outlined in the section 5.2, we can argue that the order of the phase transition cannot

change, i.e. the first-order singularity in the free energy will not be canceled out by the

corrections to WKB. Our treatment is an improvement over the strict NWKB → ∞ limit of
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the electron star model used in [12, 33] to analyze the phase transition, however it remains

a task for further work to approach the transition point with a more accurate method which

is not limited to large occupation numbers. The recent paper [38] constructs a solution

with finite fermion density in AdS4 without using WKB: this turns out to be much more

involved, but allows one to move away from the large NWKB regime.

The natural next step departing from this WKB treatment is to employ a fully

quantum-mechanical density functional method. It is, in fact, not a significant compli-

cation compared to the approach of this paper: the recipe for computing the density n

will be replaced by a somewhat more complicated functional of the gauge field and the

metric, which needs to be computed iteratively. We anticipate that this will not alter the

qualitative picture, although the numbers might change significantly. The main conclusion

of our paper is that the singular fluid limit of bulk fermions when coupled to AdS gravity

can lead to macroscopically anomalous results. Finite NWKB corrections are crucial to get

the correct answer.
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