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1 Introduction

Higher spin field theory is a topic that enters several aspects of modern theoretical physics.

In this paper we quantize higher spin fields on (A)dS spaces using a worldline approach

and study their one loop effective action, extending the analysis of [1] that was restricted

to flat spacetimes.

The worldline approach to quantum field theory (see [2] for a review), has been known

to be an alternative tool to compute Feynman diagrams through the quantization of rel-

ativistic point particles. More specifically, one loop effective actions in the presence of

external fields find an efficient approach in terms of point particle path integrals computed

on the circle, whereas field theory propagators are linked to particle path integrals on the

line. In particular, for relativistic higher spin fields (see [3–8] for reviews) the particle

approach might be particularly useful to extract information beyond the classical level. It

is the main objective of the present manuscript to use a particle approach to compute the

one loop effective action for higher spin fields in curved space. Indeed, extensions of the

worldline approach to field theories with background gravity are feasible, as discussed for

example in [9–14].

The class of higher spin particles that we wish to treat here are those described by

the O(N) spinning particles actions [15–18], that contain a fully-gauged extended super-

symmetry on the worldline. These models describe in first quantization higher spin fields

that enjoy conformal invariance in flat spacetimes [19–21]. They form the complete set
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in D = 4, and for spin S > 1 they live only in even space-time dimensions. In [22] the

conformal invariance was proven by showing that these particle models have classical back-

ground reparametrization and Weyl invariance, thus leaving the conformal Killing vectors

as generators of true symmetries. This result also implies that these models are consistent

on generic conformally flat spaces. The particular coupling to (A)dS spaces was previously

known from the work of [23]. The class of higher spin fields treated here can be described

by higher spin curvature tensors that obey the symmetries of a Young tableau of D/2 rows

and [S] columns (see [24] for a discussion of the curvature tensors for half-integer spin).

More general types of higher spin fields could perhaps be described by using the detour

worldline methods of [25–27].

The gauge structure of our particle models on generic conformally flat spaces is quite

complex, as it contains non-trivial structure functions [22]. We find it simpler, for the

moment being, to investigate the one loop effective action on maximally symmetric spaces,

i.e. (A)dS spaces, which allow for an algebraically simpler gauge fixing procedure. Weyl

anomalies are generically present in quantum field theories, so that we expect to find a

nontrivial effective action, as indeed we do.

One may also approach the problem directly in quantum field theory, as suitable actions

are known, see for example [28–36]. However we wish to suggest here the point of view that

many results are more efficiently obtained using first quantized methods.1 Recently the

heat kernel for some higher spin fields in (mostly) odd-dimensional maximally symmetric

spaces were computed using a group-theoretical approach [42–44]. Our approach deals with

a different set of multiplets on even-dimensional spaces. It would be useful to eventually

compare the two approaches. Also, a different type of effective action with higher spin

backgrounds was studied in [45].

In subsequent sections we first present the gauge fixing of the models under study, then

briefly review the regularization techniques needed to compute worldline path integrals in

curved spaces. Finally we present the derivation of the worldline representation of the

effective action. It is generically difficult to compute it in a closed form, so we aim here

to calculate explicitly only the first few heat kernel coefficients for (A)dS backgrounds.

For D > 2 these correspond to diverging terms that must be subtracted to renormalize

the effective action. We perform the path integral computation with an arbitrary metric,

as intermediate calculations might be useful for a larger class of backgrounds. Indeed,

as mentioned above, these spinning particles are certainly consistent on conformally flat

spaces. However, in that case the gauge fixing procedure is much more laborious and will

not be attempted here.

The present analysis could be repeated step by step to carry out similar calculations

for the U(N) spinning particle [46], which gives rise to higher spin fields living on complex

spaces [47] (treated already for the particular cases of N=1,2 on arbitrary Kahler manifolds

in [48, 49]).

1A worldline approach to quantum massive higher spins in (A)dS [37–41] can be treated along similar

lines by dimensionally reducing the O(N) spinning particle used here.
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To conclude, the main results derived here are a worldline representation of the one

loop effective action for a class of higher spin fields on (A)dS spaces, see eq. (2.27), and

the calculations of the first few heat kernel coefficients, see eqs. (3.4), (3.5) for integer spin

and eqs. (3.11), (3.12) for half-integer spin.

2 Spinning particle on conformally flat spaces

The model we study here is the (fully) gauged counterpart of the mechanical model with

action

S =

∫ 1

0
dt
(
pµẋ

µ +
i

2
ψai ψ̇ia −

1

2
pµp

µ
)
, i = 1, . . . , N (2.1)

where a set of global worldline symmetries (time translation, N supersymmetries, O(N)

R-symmetry) are rendered local to guarantee unitarity. Here xµ and pµ are spacetime

coordinates and momenta of the particle, whereas ψai are Majorana fermions, with a a

flat Lorentz index. The resulting phase-space action identifies the so-called O(N) spinning

particle model and, when considering a curved target space, reads

S[x, p, ψ,E; g] =

∫ 1

0
dt

[
pµẋ

µ +
i

2
ψai ψ̇ia − eH − iχi πµeµaψai︸ ︷︷ ︸

Qi

−1

2
aij iψi · ψj︸ ︷︷ ︸

Jij

]
(2.2)

with H = H0 − 1
8Rabcd ψ

a · ψbψc · ψd and H0 = 1
2g
µνπµπν being the kinetic hamiltonian

written in terms of the covariant momenta πµ = pµ− i
2ωµabψ

a
i ψ

b
i . From (2.2) one recognizes

the supercharges Qi and the O(N) symmetry generators Jij . E collectively denotes the

worldline gauge fields E = (e, χi, aij), i.e. einbein, gravitini and O(N) gauge fields respec-

tively. This model describes the first quantization of a particular mixed-symmetry higher

spin particle in D = 2d even-dimensional curved space, that generically (for N > 2) must

be conformally flat. The spectrum of the model for N > 2 is empty in odd dimensions [18].

For even N = 2n the model describes equations of motion (the Dirac constraints) for a

bosonic field strength characterized by a rectangular Young tableau with n columns and d

rows. For odd N = 2n + 1 the model describes equations of motion for a fermionic field

strength, a spinor-tensor with a tensor structure characterized by the same n × d Young

tableau. For D = 4 this involves all possible massless representations of the Poincaré

group, that at the level of gauge potentials are given by totally symmetric (spinor-) ten-

sors, whereas for D > 4 it corresponds to conformal multiplets only [19–21]. The euclidean

configuration space action, that one obtains after integrating out the momenta pµ and

Wick rotating, reads

S[y,E; g] =

∫ 1

0
dτ

[
1

2e
gµν

(
ẋµ − χiψµi

)(
ẋν − χjψνj

)
(2.3)

+
1

2
ψai

(
δijδab∂τ + ẋµωµabδij − aijδab

)
ψbj −

e

8
Rabcd ψ

a · ψbψc · ψd
]
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with y = (xµ, ψai ) being the “matter” fields. For arbitrary N and generic curved back-

grounds the gauge symmetry generators (H,Qi, Jij) do not form a first class algebra. How-

ever in [22] it was found that, if the background is conformally flat, they form a (nonlinear)

first-class constraint algebra and the previous action is gauge-invariant under the transfor-

mations induced by the gauge symmetry generator G = ξH + iεiQi + 1
2αijJij := ΞAGA.2

At the quantum level the constraint algebra on conformally flat spaces closes as well,

provided one adds to the hamiltonian an improvement term proportional to the scalar of

curvature, namely

H = H0 −
1

8
Rabcd ψ

a · ψbψc · ψd − (N − 2)(D +N − 2)

16(D − 1)
R (2.4)

with the kinetic operator given by

H0 =
1

2

(
πa − iωbba

)
πa

πa = eµaπµ , πµ = g1/4pµg
−1/4 − i

2
ωµabψ

a
i ψ

b
i . (2.5)

Here we use a path integral formalism and find it more convenient to use the (euclidean)

configuration space action

S[y,E; g] =

∫ 1

0
dτ

[
1

2e
gµν

(
ẋµ − χiψµi

)(
ẋν − χjψνj

)
+

1

2
ψai

(
δijδab∂τ + ẋµωµabδij − aijδab

)
ψbj −

e

8
Rabcd ψ

a · ψbψc · ψd

−e(N − 2)(D +N − 2)

16(D − 1)
R

]
(2.6)

that is (2.3) with the addition of the improvement term. The associated path integral

evaluated on the circle S1

Γ[g] =

∫
S1

DEDy

Vol (Gauge)
e−S[y,E;g] (2.7)

gives a representation of the one loop effective action for the aforementioned higher spin field

coupled to external gravity. It is defined by taking bosonic fields with periodic boundary

conditions and fermionic fields with antiperiodic boundary conditions.

In order to be able to perform computations two preliminary issues have to be taken

care of:

i) Firstly, the worldline action must be suitably gauge-fixed; i.e. the gauge fields E

must be fixed to some specific configuration that will depend upon a set of modular

parameters that must be integrated over. In the present case the gauge symmetry

algebra, associated to the above generators, is nonlinear, i.e. commutators of pairs

of generators involve structure functions and not structure constants. Therefore one

must use more powerful hamiltonian BRST methods to gauge fix the action in its

hamiltonian form.
2For N 6 2 the R-symmetry group is either trivial or abelian, and the algebra closes on an arbitrary

background.
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ii) The resulting gauge-fixed action depends only upon “matter” fields and modular

parameters. However, in curved space, it still is a nonlinear sigma model, so that for

perturbative computations one usually Taylor expands the metric about a fixed point

of the circle. This results in an infinite set of vertices. In addition some Feynman

diagrams present ambiguities and need to be regularized. This is a well-known fact,

and several regularization schemes have been used in the past to compute such path

integrals; see [60] for an overall review. Up to recently only quantum-mechanical

path integrals in curved space with N 6 2 had been used: these path integrals, in

the worldline formalism, correspond to the first quantization of spin S 6 1 fields

in curved space. More recently in [61] the regularization of nonlinear sigma models

with arbitrary N was considered, having in mind applications to the O(N) spinning

particles. What studied in [61] are the globally supersymmetric counterparts of the

models studied here. That is enough for the present purposes as the gauging does

not introduce additional ambiguities.

2.1 Gauge-fixing in (A)dS

In this section we describe the gauge-fixing of the O(N) spinning particle propagating on

(A)dS spaces. For such backgrounds the Riemann curvature can be written as

Rabcd = b(ηacηbd − ηadηbc) (2.8)

where Λ = (D−1)(D−2)b is the cosmological constant. Let us start considering the action

in hamiltonian form. At the classical level (cfr. (2.2)), in (A)dS spaces the hamiltonian

constraint reduces to H = H0 − b
4JijJij and the first-class algebra reduces to a quadratic

algebra (curly brackets here are graded Poisson brackets)

{Qi, Qj} = −2iδijH + ib

(
JikJjk −

1

2
δijJklJkl

)
{Jij , Jkl} = δjkJil − δikJjl − δjlJik + δilJjk

{Jij , Qk} = δjkQi − δikQj , {H,Qi} = {H,Jij} = 0 (2.9)

that can be used to obtain the corresponding transformations of the gauge fields.

Upon canonical quantization the latter quadratic algebra turns into the following

(anti-)commutation relations

{Qi, Qj} = 2δijH −
b

2
(JikJjk + JjkJik − δijJklJkl)

[Jij , Jkl] = iδjkJil − iδikJjl − iδjlJik + iδilJjk

[Jij , Qk] = iδjkQi − iδikQj , [H,Qi] = [H,Jij ] = 0 (2.10)

with the hamiltonian constraint given by (2.4), that in (A)dS reduces to

H = H0 −
b

4
JijJij − bA(D) (2.11)

with A(D) = −D
8 (D +N − 2).
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In order to gauge fix the locally symmetric O(N) spinning particle action (with quan-

tum gauge algebra given in (2.10)) we use the hamiltonian BRST method reviewed in

appendix A. Basically, we define ghost fields CA = (C, Ci, Cij) and ghost momenta PA =

(P,Pi,Pij) for all constraint generators GA = (H,Qi, Jij), such that [PA, CB} = −iδBA and

write the quantum BRST operator as a graded sum Ω =
∑

p≥0

(p)

Ω. Starting from

(0)

Ω= CAGA = CH + CiQi + CijJij (2.12)

and imposing the nilpotency of the BRST charge, we can recursively obtain higher

antighost-number operators. Setting

[GA, GB} = FCAB(z) GC (2.13)

with zα = (pµ, x
µ, ψai ) and FCAB(z) structure functions, for the algebra (2.10) we get

(1)

Ω =
i

2
(−)εACACBFCBAPC

= −iCiCiP − 2CkCkiPi + 2CikCkjPij − i
b

4

(
CiCiJklPkl − 2CiCjJikPjk

)
(2.14)

and

(3)

Ω =
b2

24

(
CiCjCkCl PijPkmPlm − 3CmCmCiCj PikPjlPkl + CkCkClCl Tr(P3

ij)
)

(2.15)

(2)

Ω =
(p)

Ω= 0 , p > 3 . (2.16)

One can thus write the quantum gauge-fixed hamiltonian operator as

Hqu = HBRST − i{K,Ω}

where the first term is a BRST-invariant hamiltonian and K a gauge fixing fermion: the

latter is BRST-invariant for any choice of K thanks to the nilpotency of Ω. In the present

case since H itself enters as a constraint we can set HBRST = 0 and thus have

Hqu = −i{K,Ω} . (2.17)

Let us now use the gauge-fixing fermion

K = −ÊAPA , ÊA =

(
β, 0,

θij
2

)
(2.18)

with θij a N ×N skew diagonal matrix, dependent on [S] = [N/2] := n angular variables

θk, with k = 1, . . . , n. Here S = N/2 is the “spin” of the particle. With this choice one

obtains the hamiltonian operator

Hqu = βH +
1

2
θijJij − θijCiPj − 2θijCimPjm (2.19)

and consequently the gauge-fixed path integral can be written as

Γ[g] = KN

∫ ∞
0

dβ

β

n∏
k=1

∫ 2π

0

dθk
2π

∫
S1

DzDCDP eiSqu[z,C,P,Ê;g] (2.20)
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with phase space action

Squ[z, C,P, Ê; g] =

∫ 1

0
dt
[
pµẋ

µ +
i

2
ψai ψ̇ia + ĊAPA −Hqu

]
(2.21)

Hqu = β

(
1

2
gµν(x)πµπν − b

4
JijJij − bA(D)

)
+

1

2
θijJij − θijCiPj − 2θijCimPjm (2.22)

and πµ = pµ − i
2ω

µ
abψ

a
i ψ

b
i . Above KN is a normalization factor that implements the

reduction to a fundamental region of moduli space

KN =

{
2

2nn! , N = 2n
1

2nn! , N = 2n+ 1
(2.23)

as discussed in [1]. Integrating out particle momenta leads to a configuration space path

integral that involves the action

Squ[y, C,P, Ê; g] =

∫ 1

0
dt

[
1

2β
gµν ẋ

µẋν +
i

2
ψaiDtψ

a
i + β

(
b

4
JijJij + bA(D)

)
− 1

2
θijJij

−PĊ + Pi(δij∂t − θij)Cj − Pij(δimδjp∂t − θimδjp + θjmδip)Cmp

]
(2.24)

where Dtψ
a
i = ψ̇ai + ẋµωµ

a
bψ

b
i . A Wick rotation to euclidean time yields

Γ[g] = KN

∫ ∞
0

dβ

β

n∏
k=1

∫ 2π

0

dθk
2π

∫
S1

DyDCDP e−Squ[y,C,P,Ê;g] (2.25)

with the euclidean version of the action given by

Squ[y, C,P, Ê; g] =
1

β

∫ 1

0
dτ

[
1

2
gµν ẋ

µẋν +
1

2
ψai

(
δijDτ − θij

)
ψaj −

b

4
JijJij − β2bA(D)

−PĊ + Pi(δij∂t − θij)Cj + Pij(δimδjp∂t − θimδjp + θjmδip)Cmp

]
.

(2.26)

where we have Wick-rotated the O(N) fields θij → iθij and the ghost momenta PA → iPA.

Here Dτ is represented by the same covariant derivative as given above, with “dot” now

representing derivative with respect to τ . Fermions and ghosts have been suitably rescaled

in order to have a common 1
β in front of the action. In the following we perturbatively

compute the above path integral. Although the latter is defined on (A)dS spaces, for

convenience we keep the geometry arbitrary and only at the end do we fix it to (A)dS. In

essence, we replace b
4JijJij + β2bA(D) by 1

8Rabcdψ
a · ψbψc · ψd + β2 (N−2)(D+N−2)

16(D−1) R in the

– 7 –
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above action. Integrating over the ghost fields yields

Γ[g] = KN

∫ ∞
0

dβ

β

n∏
k=1

∫ 2π

0

dθk
2π

(
Det(∂τ − θvec)ABC

)−1
Det′(∂τ − θadj)PBC

∫
S1

DxDψ exp

(
− 1

β

∫ 1

0
dτ

[
1

2
gµν ẋ

µẋν +
1

2
ψai

(
δijDτ − θij

)
ψaj

− 1

8
Rabcdψ

a · ψbψc · ψd − β2 (N − 2)(D +N − 2)

16(D − 1)
R

])
(2.27)

where θvec and θadj denote the gauge-fixed O(N) potentials in the vector and adjoint

representation, respectively. Det′ indicates a determinant without its zero modes, and Dx
is the reparametrization invariant measure. Below we consider a short-time perturbative

approach to the above nonlinear sigma model path integral.

2.2 Regularization of supersymmetric nonlinear sigma models

For a particle in curved space, the passage between the operatorial representation of the

transition amplitude and its path integral counterpart is in general not straightforward, as

the latter involves a nonlinear sigma model that perturbatively gives rise to superficial di-

vergences. These divergences are compensated by vertices arising from the nontrivial path

integral measure, but finite ambiguities remain that need to be dealt with by specifying

a regularization scheme. This is well studied for models with global (super)symmetries

(see [60] for a review). However it is clear that gauging does not introduce further diver-

gences. Indeed upon gauge fixing, the gauged model reduces essentially to the ungauged

one. Moreover the ghosts do not couple to the target space geometry and just produce the

correct measure for integration over the moduli space.

In [61] we considered the regularization of the spinning particle model with hamiltonian

H = H0 + αRabcdψ
a
i ψ

b
iψ

c
jψ

d
j + V (2.28)

with H0 given by (2.5). The corresponding euclidean classical action in configuration space

is given by

S =
1

β

∫ 1

0
dτ

[
1

2
gµν ẋ

µẋν +
1

2
ψaiDτψ

a
i + αRabcdψ

a
i ψ

b
iψ

c
jψ

d
j + β2V

]
(2.29)

and, for α = −1
8 , is nothing but the ungauged version of the nonlinear sigma model of

the previous section. We found that such path integral reproduces the transition ampli-

tudes that satisfies the Schrödinger equation with hamiltonian (2.28) provided we add the

counterterm

VCT =


−
(

1
8 + αN

2

)
R+ 1

8g
µνΓρµλΓλνρ + N

16ωµabω
µab , TS

−
(

1
8 + αN

2

)
R− 1

24(Γρµλ)2 + N
24ωµabω

µab , MR

−
(

1
8 + αN

2

)
R , DR

(2.30)
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Since the process of gauging does not introduce further ambiguities than those already

taken into account in [61], we conclude that the regularization there discussed is suitable

for the model of the previous section, provided one sets α = −1
8 and

V = VCT −
(N − 2)(D +N − 2)

16(D − 1)
R . (2.31)

Above TS refers to Time Slicing regularization [50, 51], MR refers to Mode Regulariza-

tion [52–56] and DR refers to Dimensional Regularization [10, 12, 57–59], that are the three

regularization schemes developed in the past to treat one-dimensional nonlinear sigma mod-

els (particles in curved space). In the present work we adopt DR to compute the short

time perturbative expansion of (2.27). We parametrize the coordinates of the circle as

xµ(τ) = xµ + qµ(τ), where xµ is the initial/final point of the circle and qµ(τ) are quan-

tum fluctuations with Dirichlet boundary conditions qµ(0) = qµ(1) = 0. Fermions have

antiperiodic boundary conditions on the circle and have no zero modes. We then expand

the metric and the spin connection about the point xµ using Riemann normal coordinates,

and get

gµν(x(τ)) = gµν +
1

3
Rαµνβq

αqβ +
1

6
∇γRαµνβqαqβqγ

+Rαβµνγδq
αqβqγqδ +O(q5) (2.32)

ωµab(x(τ)) =
1

2
Rαµabq

α +
1

3
∇αRβµabqαqβ +

1

8
∇α∇βRγµabqαqβqγ

+
1

30
∇α∇β∇γRδµabqαqβqγqδ +O(q5) (2.33)

where Rαβµνγδ = 1
20∇δ∇γRαµνβ + 2

45Rαµ
σ
βRγσνδ. All the tensors are here evaluated at the

initial point xµ. Above we only give the terms that are needed to obtain a perturbative

expansion to order β2. We thus get

Γ[g] = KN

∫
dDx

∫ ∞
0

dβ

β

n∏
k=1

∫ 2π

0

dθk
2π

(
Det(∂τ − θvec)ABC

)−1
Det′(∂τ − θadj)PBC

×
∫
DBC

DqDaDbDcDψ̄DψDη e
− 1
β

∫ 1
0 dτ
(

1
2
gµν(q̇µq̇ν+aµaν+bµcν)+

∑
k ψ̄ak(∂τ+iθk)ψak+ 1

2
ηa∂τηa

)
× e−Sint (2.34)

where we have exponentiated the reparametrization invariant measure by means of measure

ghosts a, b, c [52, 53] and have complexified the 2n fermions ψ; the leftover uncomplexified

Majorana fermion η is only present when the number of supersymmetries N is odd —

i.e. for half-integer spin. From the quadratic part of the action one gets the path integral

normalization and the propagators for all fields, that are reported in appendix B, whereas
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higher order terms form the interacting action

Sint =
1

β

∫ 1

0
dτ[(

1

6
Rαµνβq

αqβ +
1

12
∇γRαµνβqαqβqγ +

1

2
Rαβµνγδq

αqβqγqδ
)

(q̇µq̇ν + aµaν + bµcν)

+

(
1

2
Rαµabq

α +
1

3
∇αRβµabqαqβ +

1

8
∇α∇βRγµabqαqβqγ

+
1

30
∇α∇β∇γRδµabqαqβqγqδ

)
q̇µ

(
n∑
k=1

ψ̄akψ
b
k +

1

2
ηaηb

)

+ α

(
Rabcd + qα∇αRabcd +

1

2
qαqβ∇α∇βRabcd

)
ψa · ψ̄b

(
ψc · ψ̄d + ηcηd

)
+ β2

(
V + qα∇αV +

1

2
qαqβ∇α∇βV

)]
(2.35)

whose path integral average is computed using the Wick theorem. We thus get

Γ[g] =

∫ ∞
0

dβ

β

∫
dDx

√
|g|

(2πβ)D/2

n∏
k=1

∫ 2π

0

dθk
2π

d(θ;D,S)
〈
e−Sint

〉
(2.36)

with

√
|g|

(2πβ)D/2
being the normalization of the bosonic path integral in D dimensions with

Dirichlet boundary conditions, whereas the fermionic normalization contributes to the mod-

uli integrand

d(θ;D,N) = KN

(
Det(∂τ − θvec)ABC

)D
2
−1

Det′(∂τ − θadj)PBC (2.37)

=


2

2nn!

n∏
k=1

(
2 cos θk2

)D−2∏
k<l

[(
2 cos θl2

)2
−
(

2 cos θk2

)2
]2

, N = 2n

2
D
2 −1

2nn!

n∏
k=1

(
2 cos θk2

)D−2(
2 sin θk

2

)2∏
k<l

[(
2 cos θl2

)2
−
(

2 cos θk2

)2
]2

, N = 2n+ 1

that integrated gives

Dof(D,N) =
n∏
k=1

∫ 2π

0

dθk
2π

d(θ;D,N) := a0 , (2.38)

the number of degrees of freedom for the higher spin field described by the locally supersym-

metric spinning particle model with N supersymmetries [1], i.e. the physical polarizations

of a particle of spin S = N/2. By factoring out the number of degrees of freedom, we can

finally write the above effective action in a compact way as

Γ[g] = a0

∫ ∞
0

dβ

β

∫
dDx

√
|g|

(2πβ)D/2

〈〈
e−Sint

〉〉
=

∫ ∞
0

dβ

β
Z(β) (2.39)
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with
〈〈
· · ·
〉〉

representing the average over the path integral and over the moduli space.

Hence, for the effective action density in proper time we get

Z(β) = a0

∫
dDx

√
|g|

(2πβ)D/2

〈〈
e−Sint

〉〉
=

∫
dDx

√
|g|

(2πβ)D/2

(
a0 + a1β + a2β

2 +O(β3)
)

(2.40)

and we parametrize the Seleey-DeWitt coefficients ai as follows

a0

(
1 + v2Rβ + (v3R

2
abcd + v4R

2
ab + v5R

2 + v6∇2R)β2 +O(β3)
)
. (2.41)

Next we compute the numerical coefficients vi.

3 Heat kernel expansion for higher spin fields in (A)dS

Equipped with the results of the previous sections we can now compute the heat kernel in

a perturbative expansion for higher spin fields on (A)dS spaces, using the O(N) spinning

particle representation discussed above. Although in the previous sections we gauge fixed

the locally supersymmetric action for maximally symmetric spaces only, here we compute

the expansion keeping an unspecified metric in the sigma model and only at the end of

the section will we specialize to (A)dS spaces. This we do mostly for future convenience,

as intermediate results might be useful when considering more general spacetimes, such as

the conformally flat spaces. Since in the following we adopt dimensional regularization,

the total potential acquires the form:

V = wR , with w(D,N,α) := wCT (N,α) + w(A)dS(D,N)

where

wCT (N,α) = −
(

1

8
+
αN

2

)
, w(A)dS(D,N) = −(N − 2)(D +N − 2)

16(D − 1)
, (3.1)

as follows from (2.30), (2.31).

3.1 Integer spins

For this case we set N = 2n. One can complexify fermions and, with the help of propagators

given in appendix B, one gets for the perturbative average〈
e−Sint

〉
= exp

{
−β

[
1

24
+ α

(
n−

∑
k

cos−2 θk
2

)
+ w

]
R

+ β2

[
− 1

720
R2
αβ +

(
1

720
− 1

192

∑
k

cos−2 θk
2

)
R2
αµνβ −

(
1

480
+
w

12

)
∇2R

]

− αβ2

12

(
n−

∑
k

cos−2 θk
2

)
∇2R

+ (αβ)2

[((∑
k

cos−2 θk
2

)2

− 1

2

∑
k

cos−4 θk
2

)
R2
αµνβ

+ 2

(∑
k

cos−2 θk
2
−
∑
k

cos−4 θk
2

)
R2
αβ

]
+O(β3)

}
, (3.2)

– 11 –



J
H
E
P
1
2
(
2
0
1
2
)
1
1
3

that, for α = −1/8 reduces to〈
e−Sint

〉
= 1− β

(
1− 3n

24
+

1

8

∑
k

cos−2 θk
2

+ w

)
R

+ β2

{
1

2

(
1− 3n

24
+

1

8

∑
k

cos−2 θk
2

+ w

)2

R2

+

(
− 1

720
− 1

32

∑
k

cos−4 θk
2

+
1

32

∑
k

cos−2 θk
2

)
R2
ab

+

 1

720
− 1

192

∑
k

cos−2 θk
2

+
1

64

(∑
k

cos−2 θk
2

)2

− 1

128

∑
k

cos−4 θk
2

)
R2
abcd−

(
1− 5n

480
+

1

96

∑
k

cos−2 θk
2

+
w

12

)
∇2R

}
+O(β3) , (3.3)

with

w = w(D = 2d,N = 2n, α = −1
8) = −(N − 2)(N − 1)

16(D − 1)
= −(2n− 1)(n− 1)

8(2d− 1)
.

We are ready now to extract the Seeley-DeWitt coefficients for arbitrary integer spin S = n

in arbitrary even dimension D = 2d; to this aim we integrate (3.3) against the modular

measure given in (2.36), (2.37) and get:

a0 =


1 , n = 0

2n−1 (2d− 2)!

[(d− 1)!]2

n−1∏
k=1

k(2k − 1)!(2k + 2d− 3)!

(2k + d− 2)!(2k + d− 1)!
, n > 0

(3.4)

and

v2 =
3n− 1

24
− 1

8
I1 − w

v3 =
1

720
− n(n+ 1)

256
+

3n+ 1

384
I1 +

3

256
I2 +

1

256
I3

v4 = − 1

720
+
n(n+ 1)

64
− n

32
I1 +

1

64
I2 −

1

64
I3

v5 =
1

2

(
9n2 − 21n+ 2

1152
− w(3n− 1)

12
+ w2

)
+

1

2

(
5− 3n

192
+
w

4

)
I1 +

1

256

(
I2 + I3

)
v6 =

5n− 1

480
− w

12
− 1

96
I1 (3.5)

with

I1 =
2n(n+ d− 2)

2d− 3

I2 =
4n(n− 1)(n+ d− 1)(n+ d− 2)

(2d− 3)(2d− 1)

I3 =
n(n+ 1)(4n2 − 1)

(2d− 3)(2d− 5)

(3.6)
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Detailed computation of modular integrals is given in appendix C. Let us now briefly

comment on the results described above in (3.4), (3.5):

• For n = 0, the formalism describes a conformally coupled scalar field and the expected

results are easily obtained.

• For n = 1, (3.4), (3.5) reproduce the well known Seeley-DeWitt coefficients for a

degree (d− 1) differential form (vector field in D = 4) [12] on a general background.

• For n ≥ 2, the spinning particle consistently propagates on conformally flat manifolds.

However, for this case, in the previous sections we limited the computation of the

BRST charge to (A)dS spaces. Hence the structure of the Seeley-DeWitt coefficients

reduces to

a0

(
1 + v2Rβ + vR2β2

)
with v =

1

d(2d− 1)
v3 +

1

2d
v4 + v5 .

Example: D = 4 , spin n

In 4-dimensional space-time the model describes completely symmetric tensors of spin

n, and the Seeley-DeWitt coefficients are given by:

a0 =

{
1 , n = 0

2 , n > 0
, v2 = −n

2

6
, v3 =

1

720
− n2

96

v4 = − 1

720
− n2

48
+
n4

12
, v5 =

1

96
n2 − 1

36
n4 , v6 =

1

720
− 1

72
n2 ,

(3.7)

When n ≥ 2 the restriction to (A)dS yields:

v =
1

6
v3 +

1

4
v4 + v5 = − 1

8640
+

1

288
n2 − 1

144
n4 (3.8)

We again recognize for n = 0, 1 the known coefficients for a conformally improved scalar

and an ordinary spin one vector field. For n > 0 the first coefficient a0 represents the two

polarizations of massless particles of spin n.

The case of n = 2 corresponds to a linearized graviton on a fixed background, but this

is true only in D = 4. In other dimensions one has a different field content compatible

with conformal invariance.

3.2 Half-integer spins

In such a case one can only complexify 2n fermions. The left-over one has no θ, and one

thus gets〈
e−Sint

〉
= exp

{
−β

[
1

24
+ w + α

(
n−

∑
k

cos−2 θk
2

)]
R

+ β2

[
− 1

720
R2
αβ −

(
7

5760
+

1

192

∑
k

cos−2 θk
2

)
R2
αµνβ −

(
1

480
+
w

12

)
∇2R

]

− αβ2

12

(
n−

∑
k

cos−2 θk
2

)
∇2R
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+ (αβ)2

[((∑
k

cos−2 θk
2

)2

+
∑
k

cos−2 θk
2
− 1

2

∑
k

cos−4 θk
2

)
R2
αµνβ

+ 2

(∑
k

cos−2 θk
2
−
∑
k

cos−4 θk
2

)
R2
αβ

]
+O(β3)

}
, (3.9)

that, for α = −1/8, reduces to〈
e−Sint

〉
= 1− β

(
1− 3n

24
+

1

8

∑
k

cos−2 θk
2

+ w

)
R

+ β2

{
1

2

(
1− 3n

24
+

1

8

∑
k

cos−2 θk
2

+ w

)2

R2

+

(
− 1

720
− 1

32

∑
k

cos−4 θk
2

+
1

32

∑
k

cos−2 θk
2

)
R2
ab

+

− 7

5760
+

1

96

∑
k

cos−2 θk
2

+
1

64

(∑
k

cos−2 θk
2

)2

− 1

128

∑
k

cos−4 θk
2

)
R2
abcd −

(
1− 5n

480
+
w

12
+

1

96

∑
k

cos−2 θk
2

)
∇2R

}
+O(β3) (3.10)

where now we use

w = w(D = 2d,N = 2n+ 1, α = −1
8) = −(N − 2)(N − 1)

16(D − 1)
= −n(2n− 1)

8(2d− 1)
.

We compute, in analogy with the previous section, the Seeley-DeWitt coefficients for ar-

bitrary half-integer spin S = n+ 1
2 in arbitrary even dimension 2d, represented by spinor-

tensors corresponding to potentials with rectangular Young tableaux of n columns and

d− 1 rows; we get:

a0 =
2d−2+n

d

(2d− 2)!

[(d− 1)!]2

n−1∏
k=1

(k + d− 1)(2k + 1)!(2k + 2d− 3)!

(2k + d− 1)!(2k + d)!
(3.11)

and

v2 =
3n− 1

24
− 1

8
Ĩ1 − w

v3 = − 7

5760
− n(n+ 1)

256
+

3n+ 7

384
Ĩ1 +

3

256
Ĩ2 +

1

256
Ĩ3

v4 = − 1

720
+
n(n+ 1)

64
− n

32
Ĩ1 +

1

64
Ĩ2 −

1

64
Ĩ3

v5 =
1

2

(
9n2 − 21n+ 2

1152
− w(3n− 1)

12
+ w2

)
+

1

2

(
5− 3n

192
+
w

4

)
Ĩ1 +

1

256

(
Ĩ2 + Ĩ3

)
v6 =

5n− 1

480
− w

12
− 1

96
Ĩ1 (3.12)
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with

Ĩ1 =
2n(n+ d− 1)

2d− 3

Ĩ2 =
4n(n− 1)(n+ d− 1)(n+ d)

(2d− 3)(2d− 1)

Ĩ3 =
n(n+ 1)(2n+ 1)(2n+ 3)

(2d− 3)(2d− 5)
.

(3.13)

The modular integrals are again computed in details in appendix C.

In the half-integer spin case the spinning particle model we start with is consistent on

any background only if n = 0 (i.e. spin 1
2). When n ≥ 1 we restrict our analysis to (A)dS

spaces and at order β2 in the expansion of the effective action the only term that survives

is a0vR
2 where, again, v = 1

d(2d−1)v3 + 1
2dv4 + v5.

Example: D = 4 , spin n + 1
2

In 4-dimensional space-time we describe spinor-tensors with n completely symmetric

vector indices and one spinor index
(
i.e. spin n + 1

2

)
. The Seeley-DeWitt coefficients we

find are:

a0 = 2 , v2 = −(2n+ 1)2

24
, v3 = − 7

5760
− n

96
− n2

96

v4 = − 1

720
+

n

48
+

5n2

48
+
n3

6
+
n4

12
, v5 =

1

1152
+

1

144
n− 5

96
n2 − 19

288
n3 − 1

144
n4 ,

v6 = − 1

480
− 1

72
n− 1

72
n2 . (3.14)

When n = 0 the previous formulas reproduce the well know Seeley-DeWitt coefficients for

a spinor field [10], while for n ≥ 1 in (A)dS we get:

v =
11

34560
+

n

96
− n2

36
− 7n3

288
+
n4

72
.

Let us stress again that in 4 dimension we recognize in a0 = 2 the two polarizations of a

massless half-integer spin field.
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A Hamiltonian BRST quantization

The hamiltonian BRST formalism is a construction that allows to convert the local (gauge)

symmetry of the unfixed action (in hamiltonian form) to a global symmetry of the gauge-

fixed action. It makes use of the double aspect that first-class generators have, as restric-

tions on the phase-space and generators of gauge transformations (see for examples [62]).
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One defines a differential δ (the Koszul-Tate differential) that acts as a derivative in

the directions orthogonal to the constrained phase-space manifold and is nilpotent, δ2 = 0.

Hence the definition

δzα = 0, zα = (pµ, x
µ, ψai ) . (A.1)

Moreover, one extends the phase space defining ghosts CA and ghost momenta PA, such

that {PA, CB} = −δBA and

δCA = 0, δPA = −GA (A.2)

with GA first class constraints. The operator δ thus defines a natural grading, characterized

by the antighost number

gh(δ) = −1, gh(z) = 0 = gh(C), gh(P) = 1 . (A.3)

Note that the bracket itself in the ghost sector has antighost number −1. Another grading

is the Grassmann parity

εA := ε(GA) (A.4)

so that, since ε(δ) = 1, we have

ε(CA) = ε(PA) = εA + 1, mod 2 . (A.5)

One also introduces another derivative d that acts parallel to the gauge orbits. It is defined

on functions of the original phase space, φ(z), as

dφ = {φ, CAGA} = {φ,GA}CA, gh(d) = 0, ε(d) = 1 . (A.6)

Finally one seeks a differential s that is a graded sum of δ, d and higher order (in antighost

number) derivatives, such that it results nilpotent on the extended phase space involving

ghosts

s = δ + d+ “higher order terms“ , s2 = 0 . (A.7)

Thanks to antighost grading, nilpotency of s implies

δ2 = 0 (A.8)

dδ + δd = 0 (A.9)

d2 = −{δ,∆} (A.10)

· · ·

Equations (A.9), (A.10) mean that d is a “differential modulo δ”. The first one is satisfied,

along with the grading properties, if one defines the following rules for the action of d on

the extended phase space

dPA = (−)εACCFBCAPB , dCA = 0 (A.11)
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where F ’s are structure functions and only depend upon the original phase space variables{
GA, GB

}
= FCABGC , FCAB = FCAB(z) . (A.12)

One then seeks a BRST operator Ω

Ω =
∑
p≥0

(p)

Ω , gh
( (p)

Ω
)

= p (A.13)

that implements the action of the differential s as

sΦ = {Φ,Ω} (A.14)

with Φ(z, C,P) a function of the extended phase space variables, where

(0)

Ω= CAGA (A.15)

so that

δΦ =
{

Φ,
(0)

Ω
}
C P

= {Φ, CA}GA (A.16)

with the lowerscript CP meaning that the bracket is only taken in the ghost sector. It is

trivial to check that (A.16) works correctly on the extended phase space variables. For a

function of the original phase space we obviously have dφ(z) =
{
φ,

(0)

Ω
}

orig

= {φ,GA}CA.

Finally, thanks to the Jacobi identity, the nilpotency conditions turns into{
Ω,Ω

}
= 0 . (A.17)

Higher order operators have the form

(p)

Ω= CB1 · · · CBp+1U
A1···Ap
B1···Bp+1

PA1 · · · PAp , U = U(z) (A.18)

so that the nilpotency equation (A.17), with the help of (A.16), allows to write

δ
(0)

Ω = 0 (A.19)

δ
(p+1)

Ω +
1

2

(
p∑

k=0

{ (p−k)
Ω ,

(k)

Ω
}

orig
+

p−1∑
k=0

{ (p−k)
Ω ,

(k+1)

Ω
}
C P

)
= 0 , p ≥ 0 . (A.20)

For example, it is easy to find the next-to-leading operator
(1)

Ω as

δ
(1)

Ω= −1

2

{ (0)

Ω ,
(0)

Ω
}

orig
=

1

2
(−)εACACBFCBAGC = δ

(
−1

2
(−)εACACBFCBAPC

)
(A.21)

so that, modulo a δ-exact term

(1)

Ω= −1

2
(−)εACACBFCBAPC . (A.22)
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One thus recursively fixes all other terms in the graded expansion. If the constraint algebra

is linear (i.e. it is a Lie algebra) the expansion stops at p = 1.

The gauge fixed action in hamiltonian form reads

Sgf =

∫ 1

0
dt

[
żαaα + ĊAPA −HBRST −

{
K,Q

}]
(A.23)

where aα are momenta conjugated to the phase space variables z (indices are contracted

with the symplectic identity matrix), HBRST is the BRST-invariant extension of the ex-

tended hamiltonian andK an arbitrary gauge-fixing fermion. This action is BRST invariant

for any K. An important example concerns algebraic gauges for which the gauge fields are

fixed to ÊA: in such a special case

K = −ÊAPA (A.24)

for which {
K,Q

}
= ÊAGA − (−)εAÊACBFCBAPC + · · · · · · . (A.25)

The above technique to construct the BRST charge Ω is known as Koszul-Tate resolution.

Below we use the Koszul-Tate resolution to study an interesting class of non lie rank

3 superalgebra, and to construct the gauge fixed action for O(N) spinning particles prop-

agating on (A)dS target spaces. We do it directly at the quantum level where Poisson

brackets are replaced by (anti-)commutators, such as [PA, CB} = −iδBA and PA are taken

to be (anti-)hermitian when (anti-)commuting whereas CA are always hermitians. The

master formula (A.17) is now a nilpotency condition on the BRST charge, Ω2 = 0. We

thus have
(0)

Ω= CAGA ,
(1)

Ω=
i

2
(−)εACACBFCBAPC , . . . . (A.26)

The hamiltonian operator is given by Hqu = HBRST − i{K,Ω}, with HBRST a BRST-

invariant hamiltonian and K a gauge-fixing fermion.

B Propagators

Propagators are obtained by inverting the differential operators appearing in the quadratic

action 1
β

∫ 1
0 dτ

(
1
2gµν(q̇µq̇ν + aµaν + bµcν) +

∑
k ψ̄ak(∂τ + iθk)ψ

a
k + 1

2ηa∂τη
a
)

〈
qµ(τ)qσ(σ)

〉
= −βgµν∆(τ, σ) (B.1)〈

aµ(τ)aσ(σ)
〉

= βgµν∆gh(τ, σ) (B.2)〈
bµ(τ)cσ(σ)

〉
= −2βgµν∆gh(τ, σ) (B.3)〈

ψak(τ)ψ̄bk′(σ)
〉

= βδkk′δ
ab∆AF (τ − σ, θk) (B.4)〈

ηa(τ)ηb(σ)
〉

= βδab∆AF (τ − σ, 0) (B.5)

with

∆(τ, σ) = (τ − 1)σθ(τ − σ) + (σ − 1)τθ(σ − τ) (B.6)

∆gh(τ, σ) = ••∆(τ, σ) = δ(τ, σ) (B.7)
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and (
∂τ + iθk

)
∆AF (τ − σ, θk) = δA(τ − σ) (B.8)

that yields

∆AF (τ − σ, θk) =
e−iθk(τ−σ)

2 cos θk2

(
eiθk/2θ(τ − σ)− e−iθk/2θ(σ − τ)

)
. (B.9)

Hence

∆AF (0, θk) =
i

2
tan

θk
2

(B.10)

∆AF (τ − σ, 0) =
1

2
ε(τ − σ) . (B.11)

C Modular integrals

In this appendix we are going to show the detailed calculation of the modular integrals

required to find the Seleey-DeWitt (SDW) coefficients presented in section 3. We will

always consider even dimensional spacetime with D = 2d, and we shall distinguish the two

cases of even and odd N , although the techniques will be the same.

C.1 Even N

We compute the modular integrals for the even N = 2n case. First of all, we define the

modular average of an arbitrary function f(θj) of the moduli θj ; by using the measure

given in (2.36) and (2.37), and taking into account that modular integrals are even under

θi → 2π − θi, we have:

〈〈f(θj)〉〉E :=
1

a0

2

n!

n∏
i=1

∫ π

0

dθi
2π

(
2 cos

θi
2

)D−2∏
k<l

[(
2 cos

θk
2

)2

−
(

2 cos
θl
2

)2
]2

f(θj)

(C.1)

where a0 is the normalization factor giving the degrees of freedom, that ensures 〈〈1〉〉E = 1,

and reads

a0 :=
2

n!

n∏
i=1

∫ π

0

dθi
2π

(
2 cos

θi
2

)D−2∏
k<l

[(
2 cos

θk
2

)2

−
(

2 cos
θl
2

)2
]2

. (C.2)

The result for (C.2) is already known from [1], but will be rederived here. Since all the

integrals we need will be expressed as generalizations of the Selberg’s integral, it is conve-

nient to change variables as xi = sin2 θi
2 , ranging from 0 to 1. The average of a function

f(xj) := f(θ(xj)) becomes

〈〈f(xj)〉〉E :=
N
a0

n∏
i=1

∫ 1

0
dxi x

−1/2
i (1− xi)d−3/2

∏
k<l

(xk − xl)2f(xj) , (C.3)

where

N =
22(d−1)n+(n−1)(2n−1)

πnn!
. (C.4)
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The averages we need to compute can be read down from (3.3), and are

I1 :=

〈〈
n∑
i=1

cos−2 θi
2

〉〉
E

=

〈〈
n∑
i=1

1

1− xi

〉〉
E

,

J :=

〈〈
n∑

i,j=1

cos−2 θi
2

cos−2 θj
2

〉〉
E

=

〈〈
n∑

i,j=1

1

(1− xi)(1− xj)

〉〉
E

,

K :=

〈〈
n∑
i=1

cos−4 θi
2

〉〉
E

=

〈〈
n∑
i=1

1

(1− xi)2

〉〉
E

.

(C.5)

For notational convenience we gave the names J and K to the corresponding averages,

since they will be found as linear combinations of other quantities named I2 and I3, in

terms of which the SDW coefficients are presented in the paper.

Let us focus now on the factor a0, that gives the degrees of freedom of the model. In

the xi variables it is given by

a0 = N
n∏
i=1

∫ 1

0
dxi x

−1/2
i (1− xi)d−3/2

∏
k<l

(xk − xl)2 . (C.6)

There is a well known result by Selberg [63, 64] for such kind of integrals, that gives:

Sn(α, β) :=
n∏
i=1

∫ 1

0
dxi x

α
i (1− xi)β

∏
k<l

(xk − xl)2 =
n∏
k=1

k!Γ(k + α)Γ(k + β)

Γ(k + n+ α+ β)
, (C.7)

from which we obtain, after inserting the factor (C.4) and rearranging the product in (C.7):

a0 = N Sn
(
−1

2 , d−
3
2

)
= 2n−1 (2d− 2)!

[(d− 1)!]2

n−1∏
k=1

k(2k − 1)! (2k + 2d− 3)!

(2k + d− 2)! (2k + d− 1)!
, (C.8)

that indeed coincides with the result found in [1].

To proceed further, let us consider the following generalization of Selberg’s integral by

Aomoto [63, 65]:

Sn,1(α, β; t) :=

n∏
i=1

∫ 1

0
dxi x

α
i (1− xi)β(xi − t)

∏
k<l

(xk − xl)2

= Sn(α, β)
n!∏

k

(k + n+ α+ β)
P (α,β)
n (1− 2t) ,

(C.9)

where P
(α,β)
n (1− 2t) is the Jacobi polynomial of degree n. By taking a derivative of (C.9)

with respect to t, and evaluating it at t = 1 we get very close to the definition of I1, and

precisely we have

I1 =
N
a0

(−)n ∂tSn,1
(
−1

2 , d−
5
2 ; t
)
|t=1 = (−)n

∂tSn,1
(
−1

2 , d−
5
2 ; t
)
|t=1

Sn
(
−1

2 , d−
3
2

) . (C.10)
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The basic properties of Jacobi polynomials that we need for such calculation are:

dk

dzk
P (α,β)
n (z) =

Γ(α+ β + n+ 1 + k)

2kΓ(α+ β + n+ 1)
P

(α+k,β+k)
n−k (z) ,

P (α,β)
n (−1) = (−)n

(
n+ β

n

)
.

(C.11)

We can now compute I1 by inserting (C.9) into (C.10), and using the relations (C.11) and

the result (C.7) we find a quite compact result:

I1 = (−)n−1Sn(−1
2 , d−

5
2)

Sn(−1
2 , d−

3
2)

n!(n+ d− 2)∏
k

(k + n+ d− 3)
P

(1/2,d−3/2)
n−1 (1− 2t)|t=1

=
2n(n+ d− 2)

2d− 3
.

(C.12)

We now turn to compute the average I2, defined as

I2 :=

〈〈∑
i 6=j

1

(1− xi)(1− xj)

〉〉
E

= J−K . (C.13)

From the definition of Sn,1(α, β; t) in (C.9), it is easy to see that I2 is related to its second

t derivative as

I2 =
N
a0

(−)n ∂2
t Sn,1

(
−1

2 , d−
5
2 ; t
)
|t=1 = (−)n

∂2
t Sn,1

(
−1

2 , d−
5
2 ; t
)

Sn
(
−1

2 , d−
3
2

) , (C.14)

and in the same way we computed I1 we find for I2

I2 =
Sn(−1

2 , d−
5
2)

Sn(−1
2 , d−

3
2)

n!(n+ d− 2)(n+ d− 1)∏
k

(k + n+ d− 3)
P

(3/2,d−1/2)
n−2 (1− 2t)|t=1

= 4n(n− 1)
(n+ d− 1)(n+ d− 2)

(2d− 1)(2d− 3)
.

(C.15)

We need at this point to introduce one further generalization of Selberg’s integral,

provided by Kaneko [63]:

Kn(α, β; t) :=

n∏
i=1

∫ 1

0
dxi x

α
i (1− xi)β(1− txi)−1

∏
k<l

(xk − xl)2

= Sn(α, β) 2F1(n, n+ α; 2n+ α+ β; t) ,

(C.16)

where 2F1(a, b; c; t) is the Gauss hypergeometric function. By taking two derivatives with

respect to t in (C.16) and evaluating at t = 1 one finds an average that is related to K by

linear combinations of I1 and I2. We shall then define I3 as

I3 :=
N
a0
∂2
tKn

(
−1

2 , d−
1
2 ; t
)
|t=1 =

Sn
(
−1

2 , d−
1
2

)
Sn
(
−1

2 , d−
3
2

) ∂2
t 2F1

(
n, n− 1

2 ; 2n+ d− 1; t
)
|t=1 .

(C.17)
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In order to perform the computation we need the following properties of the hypergeometric

function:

dk

dzk
2F1(a, b; c; z) =

(a)k(b)k
(c)k

2F1(a+ k, b+ k; c+ k; z) , (ak) :=
Γ(a+ k)

Γ(a)
,

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

.

(C.18)

Using now (C.18) in (C.17), we can compute I3 that results

I3 =
Sn
(
−1

2 , d−
1
2

)
Sn
(
−1

2 , d−
3
2

) (n)2

(
n− 1

2

)
2

(2n+ d− 1)2
2F1

(
n+ 2, n+ 3

2 ; 2n+ d+ 1; t
)
|t=1

=
n(n+ 1)(4n2 − 1)

(2d− 3)(2d− 5)
.

(C.19)

By using the definition (C.16) and taking the double derivative with respect to t in t = 1

one finds that K is given as the following linear combination:

K =
1

2
I3 −

1

2
I2 + (n+ 1) I1 −

n(n+ 1)

2
, (C.20)

whereas, by means of I2 = J−K, one has

J =
1

2
I3 +

1

2
I2 + (n+ 1) I1 −

n(n+ 1)

2
. (C.21)

This concludes our computations of the modular integrals for even N = 2n. Although

the SDW coefficients can be read off straightforwardly from I1, J and K, we choose to

present them in the paper in terms of I1, I2 and I3, since they have much more compact

expressions.

C.2 Odd N

We turn now to compute the modular integrals required for odd N = 2n+ 1. The averages

needed will have exactly the same structure as the even N case, the only difference being

the form of the modular measure. In particular, the only changes needed will be in the

prefactorN and in all the generalized Selberg’s formulas, where the parameter α will switch

everywhere from −1
2 to +1

2 . The averages in the odd case are explicitly given by

〈〈f(xj)〉〉O :=
N
a0

n∏
i=1

∫ 1

0
dxi x

1/2
i (1− xi)d−3/2

∏
k<l

(xk − xl)2f(xj) , (C.22)

where we see that the only difference between (C.22) and (C.3) is the power 1/2 instead of

−1/2, that is the α parameter we used in all the previous computations. In addition, the

prefactor now reads

N =
22(d−1)+n(2n+2d−3)

πnn!
. (C.23)
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The averages have the same definition as before, being

Ĩ1 :=

〈〈
n∑
i=1

cos−2 θi
2

〉〉
O

=

〈〈
n∑
i=1

1

1− xi

〉〉
O

,

J̃ :=

〈〈
n∑

i,j=1

cos−2 θi
2

cos−2 θj
2

〉〉
O

=

〈〈
n∑

i,j=1

1

(1− xi)(1− xj)

〉〉
O

,

K̃ :=

〈〈
n∑
i=1

cos−4 θi
2

〉〉
O

=

〈〈
n∑
i=1

1

(1− xi)2

〉〉
O

.

(C.24)

Again, we will compute Ĩ2 and Ĩ3 instead of J̃ and K̃. The degrees of freedom factor a0

now reads

a0 = N
n∏
i=1

∫ 1

0
dxi x

1/2
i (1− xi)d−3/2

∏
k<l

(xk − xl)2 . (C.25)

Everything goes in the same way as it did with even N , and we easily obtain:

a0 = NSn
(

1
2 , d−

3
2

)
=

2d−2+n

d

(2d− 2)!

[(d− 1)!]2

n−1∏
k=1

(k + d− 1)(2k + 1)! (2k + 2d− 3)!

(2k + d− 1)! (2k + d)!
,

Ĩ1 =
N
a0

(−)n ∂tSn,1
(

1
2 , d−

5
2 ; t
)
|t=1 =

2n(n+ d− 1)

2d− 3
,

Ĩ2 =
N
a0

(−)n ∂2
t Sn,1

(
1
2 , d−

5
2 ; t
)
|t=1 =

4n(n− 1)(n+ d)(n+ d− 1)

(2d− 1)(2d− 3)
,

Ĩ3 =
N
a0
∂2
tKn

(
1
2 , d−

1
2 ; t
)
|t=1 =

n(n+ 1)(2n+ 1)(2n+ 3)

(2d− 3)(2d− 5)
.

(C.26)

Also the relations that give J̃ and K̃ remain unchanged and are

K̃ =
1

2
Ĩ3 −

1

2
Ĩ2 + (n+ 1) Ĩ1 −

n(n+ 1)

2
,

J̃ =
1

2
Ĩ3 +

1

2
Ĩ2 + (n+ 1) Ĩ1 −

n(n+ 1)

2
.

(C.27)
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[15] F. Berezin and M. Mariñov, Particle Spin Dynamics as the Grassmann Variant of Classical

Mechanics, Annals Phys. 104 (1977) 336 [INSPIRE].

[16] V.D. Gershun and V.I. Tkach, Classical and quantum dynamics of particles with arbitrary

spin (in Russian), Pisma Zh. Eksp. Teor. Fiz. 29 (1979) 320 [Sov. Phys. JETP 29 (1979)

288].

[17] P.S. Howe, S. Penati, M. Pernici and P.K. Townsend, Wave equations for arbitrary spin from

quantization of the extended supersymmetric spinning particle, Phys. Lett. B 215 (1988) 555

[INSPIRE].

[18] P.S. Howe, S. Penati, M. Pernici and P.K. Townsend, A particle mechanics description of

antisymmetric tensor fields, Class. Quant. Grav. 6 (1989) 1125 [INSPIRE].

[19] W. Siegel, Conformal invariance of extended spinning particle mechanics, Int. J. Mod. Phys.

A 3 (1988) 2713 [INSPIRE].

[20] W. Siegel, All free conformal representations in all dimensions, Int. J. Mod. Phys. A 4

(1989) 2015 [INSPIRE].

[21] R. Metsaev, All conformal invariant representations of d-dimensional anti-de Sitter group,

Mod. Phys. Lett. A 10 (1995) 1719 [INSPIRE].

[22] F. Bastianelli, O. Corradini and E. Latini, Spinning particles and higher spin fields on (A)dS

backgrounds, JHEP 11 (2008) 054 [arXiv:0810.0188] [INSPIRE].

[23] S. Kuzenko and Z. Yarevskaya, Conformal invariance, N extended supersymmetry and

massless spinning particles in anti-de Sitter space, Mod. Phys. Lett. A 11 (1996) 1653

[hep-th/9512115] [INSPIRE].

[24] O. Corradini, Half-integer Higher Spin Fields in (A)dS from Spinning Particle Models, JHEP

09 (2010) 113 [arXiv:1006.4452] [INSPIRE].

– 24 –

http://arxiv.org/abs/hep-th/0503128
http://inspirehep.net/search?p=find+EPRINT+hep-th/0503128
http://dx.doi.org/10.1142/S0217751X09043134
http://arxiv.org/abs/0805.1346
http://inspirehep.net/search?p=find+EPRINT+arXiv:0805.1346
http://arxiv.org/abs/1112.4285
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.4285
http://dx.doi.org/10.1016/S0550-3213(02)00683-1
http://dx.doi.org/10.1016/S0550-3213(02)00683-1
http://arxiv.org/abs/hep-th/0205182
http://inspirehep.net/search?p=find+EPRINT+hep-th/0205182
http://dx.doi.org/10.1103/PhysRevD.67.104009
http://arxiv.org/abs/hep-th/0211134
http://inspirehep.net/search?p=find+EPRINT+hep-th/0211134
http://dx.doi.org/10.1088/1126-6708/2004/01/023
http://arxiv.org/abs/hep-th/0312064
http://inspirehep.net/search?p=find+EPRINT+hep-th/0312064
http://dx.doi.org/10.1088/1126-6708/2005/04/010
http://arxiv.org/abs/hep-th/0503155
http://inspirehep.net/search?p=find+EPRINT+hep-th/0503155
http://dx.doi.org/10.1088/1126-6708/2005/10/114
http://arxiv.org/abs/hep-th/0510010
http://inspirehep.net/search?p=find+EPRINT+hep-th/0510010
http://dx.doi.org/10.1088/1126-6708/2005/02/069
http://arxiv.org/abs/gr-qc/0412095
http://inspirehep.net/search?p=find+EPRINT+gr-qc/0412095
http://dx.doi.org/10.1016/0003-4916(77)90335-9
http://inspirehep.net/search?p=find+J+AnnalsPhys.,104,336
http://dx.doi.org/10.1016/0370-2693(88)91358-5
http://inspirehep.net/search?p=find+J+Phys.Lett.,B215,555
http://dx.doi.org/10.1088/0264-9381/6/8/012
http://inspirehep.net/search?p=find+J+Class.Quant.Grav.,6,1125
http://dx.doi.org/10.1142/S0217751X88001132
http://dx.doi.org/10.1142/S0217751X88001132
http://inspirehep.net/search?p=find+J+Int.J.Mod.Phys.,A3,2713
http://dx.doi.org/10.1142/S0217751X89000819
http://dx.doi.org/10.1142/S0217751X89000819
http://inspirehep.net/search?p=find+J+Int.J.Mod.Phys.,A4,2015
http://dx.doi.org/10.1142/S0217732395001848
http://inspirehep.net/search?p=find+J+Mod.Phys.Lett.,A10,1719
http://dx.doi.org/10.1088/1126-6708/2008/11/054
http://arxiv.org/abs/0810.0188
http://inspirehep.net/search?p=find+EPRINT+arXiv:0810.0188
http://dx.doi.org/10.1142/S0217732396001648
http://arxiv.org/abs/hep-th/9512115
http://inspirehep.net/search?p=find+EPRINT+hep-th/9512115
http://dx.doi.org/10.1007/JHEP09(2010)113
http://dx.doi.org/10.1007/JHEP09(2010)113
http://arxiv.org/abs/1006.4452
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.4452


J
H
E
P
1
2
(
2
0
1
2
)
1
1
3

[25] F. Bastianelli, O. Corradini and A. Waldron, Detours and Paths: BRST Complexes and

Worldline Formalism, JHEP 05 (2009) 017 [arXiv:0902.0530] [INSPIRE].

[26] D. Cherney, E. Latini and A. Waldron, BRST Detour Quantization, J. Math. Phys. 51

(2010) 062302 [arXiv:0906.4814] [INSPIRE].

[27] D. Cherney, E. Latini and A. Waldron, Generalized Einstein Operator Generating Functions,

Phys. Lett. B 682 (2010) 472 [arXiv:0909.4578] [INSPIRE].

[28] C. Fronsdal, Massless Fields with Integer Spin, Phys. Rev. D 18 (1978) 3624 [INSPIRE].

[29] J. Fang and C. Fronsdal, Massless Fields with Half Integral Spin, Phys. Rev. D 18 (1978)

3630 [INSPIRE].

[30] C. Fronsdal, Singletons and Massless, Integral Spin Fields on de Sitter Space (Elementary

Particles in a Curved Space. 7., Phys. Rev. D 20 (1979) 848 [INSPIRE].

[31] I. Buchbinder, A. Pashnev and M. Tsulaia, Lagrangian formulation of the massless higher

integer spin fields in the AdS background, Phys. Lett. B 523 (2001) 338 [hep-th/0109067]

[INSPIRE].

[32] D. Francia and A. Sagnotti, Minimal local Lagrangians for higher-spin geometry, Phys. Lett.

B 624 (2005) 93 [hep-th/0507144] [INSPIRE].

[33] I. Buchbinder, V. Krykhtin and A. Reshetnyak, BRST approach to Lagrangian construction

for fermionic higher spin fields in (A)dS space, Nucl. Phys. B 787 (2007) 211

[hep-th/0703049] [INSPIRE].

[34] A. Campoleoni, D. Francia, J. Mourad and A. Sagnotti, Unconstrained Higher Spins of Mixed

Symmetry. I. Bose Fields, Nucl. Phys. B 815 (2009) 289 [arXiv:0810.4350] [INSPIRE].

[35] A. Campoleoni, D. Francia, J. Mourad and A. Sagnotti, Unconstrained Higher Spins of Mixed

Symmetry. II. Fermi Fields, Nucl. Phys. B 828 (2010) 405 [arXiv:0904.4447] [INSPIRE].

[36] A. Campoleoni and D. Francia, Maxwell-like Lagrangians for higher spins, arXiv:1206.5877

[INSPIRE].

[37] S. Deser and A. Waldron, Gauge invariances and phases of massive higher spins in (A)dS,

Phys. Rev. Lett. 87 (2001) 031601 [hep-th/0102166] [INSPIRE].

[38] S. Deser and A. Waldron, Partial masslessness of higher spins in (A)dS, Nucl. Phys. B 607

(2001) 577 [hep-th/0103198] [INSPIRE].

[39] Y. Zinoviev, On massive high spin particles in AdS, hep-th/0108192 [INSPIRE].

[40] P. de Medeiros, Massive gauge invariant field theories on spaces of constant curvature, Class.

Quant. Grav. 21 (2004) 2571 [hep-th/0311254] [INSPIRE].

[41] R. Metsaev, Massive totally symmetric fields in AdS(d), Phys. Lett. B 590 (2004) 95

[hep-th/0312297] [INSPIRE].

[42] J.R. David, M.R. Gaberdiel and R. Gopakumar, The Heat Kernel on AdS3 and its

Applications, JHEP 04 (2010) 125 [arXiv:0911.5085] [INSPIRE].

[43] R. Gopakumar, R.K. Gupta and S. Lal, The Heat Kernel on AdS, JHEP 11 (2011) 010

[arXiv:1103.3627] [INSPIRE].

[44] R.K. Gupta and S. Lal, Partition Functions for Higher-Spin theories in AdS, JHEP 07

(2012) 071 [arXiv:1205.1130] [INSPIRE].

[45] X. Bekaert, E. Joung and J. Mourad, Effective action in a higher-spin background, JHEP 02

(2011) 048 [arXiv:1012.2103] [INSPIRE].

– 25 –

http://dx.doi.org/10.1088/1126-6708/2009/05/017
http://arxiv.org/abs/0902.0530
http://inspirehep.net/search?p=find+EPRINT+arXiv:0902.0530
http://dx.doi.org/10.1063/1.3372732
http://dx.doi.org/10.1063/1.3372732
http://arxiv.org/abs/0906.4814
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.4814
http://dx.doi.org/10.1016/j.physletb.2009.11.047
http://arxiv.org/abs/0909.4578
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.4578
http://dx.doi.org/10.1103/PhysRevD.18.3624
http://inspirehep.net/search?p=find+J+Phys.Rev.,D18,3624
http://dx.doi.org/10.1103/PhysRevD.18.3630
http://dx.doi.org/10.1103/PhysRevD.18.3630
http://inspirehep.net/search?p=find+J+Phys.Rev.,D18,3630
http://dx.doi.org/10.1103/PhysRevD.20.848
http://inspirehep.net/search?p=find+J+Phys.Rev.,D20,848
http://dx.doi.org/10.1016/S0370-2693(01)01268-0
http://arxiv.org/abs/hep-th/0109067
http://inspirehep.net/search?p=find+EPRINT+hep-th/0109067
http://dx.doi.org/10.1016/j.physletb.2005.08.002
http://dx.doi.org/10.1016/j.physletb.2005.08.002
http://arxiv.org/abs/hep-th/0507144
http://inspirehep.net/search?p=find+EPRINT+hep-th/0507144
http://dx.doi.org/10.1016/j.nuclphysb.2007.06.006
http://arxiv.org/abs/hep-th/0703049
http://inspirehep.net/search?p=find+EPRINT+hep-th/0703049
http://dx.doi.org/10.1016/j.nuclphysb.2008.12.019
http://arxiv.org/abs/0810.4350
http://inspirehep.net/search?p=find+EPRINT+arXiv:0810.4350
http://dx.doi.org/10.1016/j.nuclphysb.2009.08.025
http://arxiv.org/abs/0904.4447
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.4447
http://arxiv.org/abs/1206.5877
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.5877
http://dx.doi.org/10.1103/PhysRevLett.87.031601
http://arxiv.org/abs/hep-th/0102166
http://inspirehep.net/search?p=find+EPRINT+hep-th/0102166
http://dx.doi.org/10.1016/S0550-3213(01)00212-7
http://dx.doi.org/10.1016/S0550-3213(01)00212-7
http://arxiv.org/abs/hep-th/0103198
http://inspirehep.net/search?p=find+EPRINT+hep-th/0103198
http://arxiv.org/abs/hep-th/0108192
http://inspirehep.net/search?p=find+EPRINT+hep-th/0108192
http://dx.doi.org/10.1088/0264-9381/21/11/004
http://dx.doi.org/10.1088/0264-9381/21/11/004
http://arxiv.org/abs/hep-th/0311254
http://inspirehep.net/search?p=find+EPRINT+hep-th/0311254
http://dx.doi.org/10.1016/j.physletb.2004.03.057
http://arxiv.org/abs/hep-th/0312297
http://inspirehep.net/search?p=find+EPRINT+hep-th/0312297
http://dx.doi.org/10.1007/JHEP04(2010)125
http://arxiv.org/abs/0911.5085
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.5085
http://dx.doi.org/10.1007/JHEP11(2011)010
http://arxiv.org/abs/1103.3627
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.3627
http://dx.doi.org/10.1007/JHEP07(2012)071
http://dx.doi.org/10.1007/JHEP07(2012)071
http://arxiv.org/abs/1205.1130
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.1130
http://dx.doi.org/10.1007/JHEP02(2011)048
http://dx.doi.org/10.1007/JHEP02(2011)048
http://arxiv.org/abs/1012.2103
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.2103


J
H
E
P
1
2
(
2
0
1
2
)
1
1
3

[46] N. Marcus, Kähler spinning particles, Nucl. Phys. B 439 (1995) 583 [hep-th/9409175]

[INSPIRE].

[47] F. Bastianelli and R. Bonezzi, U(N) spinning particles and higher spin equations on complex

manifolds, JHEP 03 (2009) 063 [arXiv:0901.2311] [INSPIRE].

[48] F. Bastianelli and R. Bonezzi, Quantum theory of massless (p,0)-forms, JHEP 09 (2011) 018

[arXiv:1107.3661] [INSPIRE].

[49] F. Bastianelli, R. Bonezzi and C. Iazeolla, Quantum theories of (p,q)-forms, JHEP 08 (2012)

045 [arXiv:1204.5954] [INSPIRE].

[50] J. De Boer, B. Peeters, K. Skenderis and P. Van Nieuwenhuizen, Loop calculations in

quantum mechanical nonlinear σ-models, Nucl. Phys. B 446 (1995) 211 [hep-th/9504097]

[INSPIRE].

[51] J. de Boer, B. Peeters, K. Skenderis and P. van Nieuwenhuizen, Loop calculations in quantum

mechanical nonlinear σ-models σ-models with fermions and applications to anomalies, Nucl.

Phys. B 459 (1996) 631 [hep-th/9509158] [INSPIRE].

[52] F. Bastianelli, The Path integral for a particle in curved spaces and Weyl anomalies, Nucl.

Phys. B 376 (1992) 113 [hep-th/9112035] [INSPIRE].

[53] F. Bastianelli and P. van Nieuwenhuizen, Trace anomalies from quantum mechanics, Nucl.

Phys. B 389 (1993) 53 [hep-th/9208059] [INSPIRE].

[54] F. Bastianelli, K. Schalm and P. van Nieuwenhuizen, Mode regularization, time slicing, Weyl

ordering and phase space path integrals for quantum mechanical nonlinear σ-models, Phys.

Rev. D 58 (1998) 044002 [hep-th/9801105] [INSPIRE].

[55] F. Bastianelli and O. Corradini, On mode regularization of the configuration space path

integral in curved space, Phys. Rev. D 60 (1999) 044014 [hep-th/9810119] [INSPIRE].

[56] R. Bonezzi and M. Falconi, Mode Regularization for N = 1,2 SUSY σ-model, JHEP 10

(2008) 019 [arXiv:0807.2276] [INSPIRE].

[57] H. Kleinert and A. Chervyakov, Reparametrization invariance of path integrals, Phys. Lett. B

464 (1999) 257 [hep-th/9906156] [INSPIRE].

[58] F. Bastianelli, O. Corradini and P. van Nieuwenhuizen, Dimensional regularization of

nonlinear σ-models on a finite time interval, Phys. Lett. B 494 (2000) 161 [hep-th/0008045]

[INSPIRE].

[59] F. Bastianelli, O. Corradini and P. van Nieuwenhuizen, Dimensional regularization of the

path integral in curved space on an infinite time interval, Phys. Lett. B 490 (2000) 154

[hep-th/0007105] [INSPIRE].

[60] F. Bastianelli and P. van Nieuwenhuizen, Path integrals and anomalies in curved space,

Cambridge University Press, Cambridge, U.K. (2006).

[61] F. Bastianelli, R. Bonezzi, O. Corradini and E. Latini, Extended SUSY quantum mechanics:

transition amplitudes and path integrals, JHEP 06 (2011) 023 [arXiv:1103.3993] [INSPIRE].

[62] M. Henneaux and C. Teitelboim, Quantization of gauge systems, Princeton University Press,

Princeton, U.S.A. (1992).

[63] J. Kaneko, Selberg integrals and hypergeometric functions associated with Jack polynomials,

SIAM J. Math. Anal. 24 (1993) 1086.

[64] M.L. Mehta, Random Matrices, 3rd ed., Elsevier Academic Press, Amsterdam (2004).

[65] K. Aomoto, Jacobi polynomials associated with Selberg integrals, SIAM J. Math. Anal. 18

(1987) 545.

– 26 –

http://dx.doi.org/10.1016/0550-3213(95)00056-X
http://arxiv.org/abs/hep-th/9409175
http://inspirehep.net/search?p=find+EPRINT+hep-th/9409175
http://dx.doi.org/10.1088/1126-6708/2009/03/063
http://arxiv.org/abs/0901.2311
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.2311
http://dx.doi.org/10.1007/JHEP09(2011)018
http://arxiv.org/abs/1107.3661
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.3661
http://dx.doi.org/10.1007/JHEP08(2012)045
http://dx.doi.org/10.1007/JHEP08(2012)045
http://arxiv.org/abs/1204.5954
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.5954
http://dx.doi.org/10.1016/0550-3213(95)00241-J
http://arxiv.org/abs/hep-th/9504097
http://inspirehep.net/search?p=find+EPRINT+hep-th/9504097
http://dx.doi.org/10.1016/0550-3213(95)00593-5
http://dx.doi.org/10.1016/0550-3213(95)00593-5
http://arxiv.org/abs/hep-th/9509158
http://inspirehep.net/search?p=find+EPRINT+hep-th/9509158
http://dx.doi.org/10.1016/0550-3213(92)90070-R
http://dx.doi.org/10.1016/0550-3213(92)90070-R
http://arxiv.org/abs/hep-th/9112035
http://inspirehep.net/search?p=find+EPRINT+hep-th/9112035
http://dx.doi.org/10.1016/0550-3213(93)90285-W
http://dx.doi.org/10.1016/0550-3213(93)90285-W
http://arxiv.org/abs/hep-th/9208059
http://inspirehep.net/search?p=find+EPRINT+hep-th/9208059
http://dx.doi.org/10.1103/PhysRevD.58.044002
http://dx.doi.org/10.1103/PhysRevD.58.044002
http://arxiv.org/abs/hep-th/9801105
http://inspirehep.net/search?p=find+EPRINT+hep-th/9801105
http://dx.doi.org/10.1103/PhysRevD.60.044014
http://arxiv.org/abs/hep-th/9810119
http://inspirehep.net/search?p=find+EPRINT+hep-th/9810119
http://dx.doi.org/10.1088/1126-6708/2008/10/019
http://dx.doi.org/10.1088/1126-6708/2008/10/019
http://arxiv.org/abs/0807.2276
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.2276
http://dx.doi.org/10.1016/S0370-2693(99)00943-0
http://dx.doi.org/10.1016/S0370-2693(99)00943-0
http://arxiv.org/abs/hep-th/9906156
http://inspirehep.net/search?p=find+EPRINT+hep-th/9906156
http://dx.doi.org/10.1016/S0370-2693(00)01180-1
http://arxiv.org/abs/hep-th/0008045
http://inspirehep.net/search?p=find+EPRINT+hep-th/0008045
http://dx.doi.org/10.1016/S0370-2693(00)00978-3
http://arxiv.org/abs/hep-th/0007105
http://inspirehep.net/search?p=find+EPRINT+hep-th/0007105
http://dx.doi.org/10.1007/JHEP06(2011)023
http://arxiv.org/abs/1103.3993
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.3993

	Introduction
	Spinning particle on conformally flat spaces
	Gauge-fixing in (A)dS
	Regularization of supersymmetric nonlinear sigma models

	Heat kernel expansion for higher spin fields in (A)dS
	Integer spins
	Half-integer spins

	Hamiltonian BRST quantization
	Propagators
	Modular integrals
	Even N
	Odd N


