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function using Chern-Simons theory and Hamiltonian formulation respectively and find an

agreement. We also show that the D4 brane on M shares exactly the same zero mode

partition function again using the Hamiltonian formulation. For the oscillator modes we

find that KK modes associated with the circle compactification are missing from the D4

brane. By making an infinitesimal noncommutative deformation we have instanton thresh-

old bound states. We explicitly compute the instanton partition function up to instanton

charge three, and show a perfect match with a corresponding contribution inside the M5

brane partition function, thus providing a very strong supporting evidence that D4 brane

is identical with M5 brane which extends beyond the BPS sector. We comment on the

modular properties of the M5 brane partition function when compactified on T 2 times a

four-manifold. We briefly discuss a case of a singular fibration.
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1 Introduction

On the M5 brane worldvolume W there lives a selfdual two-form B, whose field strength

H = dB is selfdual. There is no covariant action one can write down for a selfdual two-

form (without including auxiliary fields) because H ∧H = 0. If one computes the partition

function of a non-selfdual two-form, one finds for the zero mode part a sum of terms

Zzero =
∑

a,b

Θ [ab ] (τ)Θ
[
a
b

]
(τ)

Here τ is the period matrix on the intermediate Jacobian

JW = H3(W,R)/H3(W,Z)

and ai, bi are characteristics each of them taking values 0 or 1
2 , and i = 1, · · · , b32 where b3 =

dimH3(W,R). Θ [ab ] (τ) denotes the Jacobi theta function, and one of these theta functions

will correspond to the partition function of a selfdual two-form on W embedded in some

eleven-manifold. In general it appears the M5 brane partition function is not completely

diffeomorphism invariant. To see this, let us take the worldvolume as W = T 2 × CP
2 [1].1

We have precisely one selfdual harmonic two-form on CP
2 and the theory of selfdual two-

form reduces to the theory of a compact chiral scalar field on T 2. It is well-known that no

modular invariant partition function exists for a compact chiral scalar on T 2. What we can

require is the M5 brane partition function be invariant only under diffeomorphisms that

preserve the physical data which determine its characteristics. Such physical data may

consist of the orientation of W and the spin structure of W [1]. How the spin structure

dependence on the characteristics appears is complicated and we will not address the

question in any satisfactory way. It appears that the framework where this question can

be answered is within seven-dimensional Chern-Simons theory. In the first part of this

paper we follow [1] to compute the partition function of a selfdual two-form on a generic

six-manifold from Chern-Simons theory, but leave the determination of the characteristics

aside perhaps for the future.

We next perform a direct computation of the M5 brane partition function starting from

the M5 brane action. Previous works on direct computations include [2–4]. The separation

of the partition function into a zero mode part and an oscillator mode part is somewhat

intricate. We can illustrate this by taking a real compact 2d scalar on T 2. Its full modular

invariant partition function is given by

Z =
∑

a,b

∣∣∣∣
Θ [ab ] (τ)

η(τ)

∣∣∣∣
2

1One may object that CP2 has no spin structure. However the fermions on the M5 brane also carry an

R-symmetry index and such fermions may live on T 2 ×CP
2. It is the eleven-dimensional space which must

be a spin manifold, rather than the M5 brane worldvolume. One may also consider Taub-NUT space TN

in place of CP2 which also has a unique normalizable selfdual harmonic two-form. However this space is

noncompact and so it might be less clear how to define the full partition function.
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Here η(τ) denotes the Dedekind eta function. If we use the Hamiltonian formulation, then

we are led to the following separation of this partition function into zero mode and oscillator

mode parts, [5]

Zzero =
∑

a,b

|Θ [ab ] (τ)|2

Zosc =
1

|η(τ)|2

neither of which are modular invariant by themselves, and only the product of these is

modular invariant. If on the other hand we use the Lagrangian formulation, then it is not

so obvious how we shall define the measure in the path integral. One way is to define the

measure so that we end up with the following separation [6]

Zzero = τ2
∑

a,b

|Θ [ab ] (τ)|2

Zosc =
1

τ2|η(τ)|2

again neither of which are modular invariant by themselves.2

One of our goals in this paper is to establish an equivalence between M5 brane parti-

tion function on a circle-bundle over some five-manifold M5, and a corresponding partition

function for D4 brane on M5 obtained by dimensional reduction along the fiber. To this

end we need to preserve the separation between zero modes and oscillator modes in our

comparison between M5 and D4 brane. This means that we can not work in the Lagrangian

formulation to obtain the zero mode contribution of the D4 brane partition function as was

done recently in [7, 8], and try to match this zero mode contribution with the zero mode

contribution of the M5 brane when that is computed using the Hamiltonian formulation.

In fact a mismatch is shown explicitly to arise between zero modes for D4 and M5 brane by

using this approach in [8]. But this mismatch is entirely due to the fact that different formu-

lations are used to compute zero modes. By using the Hamiltonian formulation for both M5

and D4 brane, we will see that their zero mode contributions respectively perfectly agree.

As we already indicated above, a careful treatment of zero mode and oscillator mode

contributions is also crucial for modular invariance. In [2] it was shown that for the selfdual

tensor field part of M5 brane on T 6 this gives rise to an SL(6,Z) modular invariant partition

function for the choice of 00-characteristics. For this we need to combine zero-mode and

oscillator-mode contributions. In this paper we also show that the scalar fields part alone is

SL(6,Z) invariant by combining zero mode and oscillator mode contributions. For generic

six manifolds of the form T 2 ×M4 we study SL(2,Z) mapping class group acting on the

T 2. Here we show that the M5 brane partition function with 00-characteristic is modular

invariant up to a phase.

Considering now the oscillator modes of D4 on M5, we find that all KK-modes along

the circle direction are missing. Thus, at this stage, we find a mismatch of the partition

functions in their oscillator parts. But of course this is not the end of the story. Taking S1

2A modular invariant combination is
√
τ2|η(τ)|2.
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as an M-theory circle direction, a KK momentum along the circle direction is interpreted

as a D0 brane in the type IIA string theory side. When D0 branes are bound to D4,

their dynamics can be faithfully described by worldvolume degrees of freedom on the D4

brane. These are nothing but instantonic particles which satisfy the (anti) selfdual equa-

tion along the four spatial directions of D4. For our U(1) case, however, the corresponding

instanton solutions become singular and, consequently, missed when one considers only

regular configurations. In order to regularize them, we introduce a spatial noncommuta-

tivity which makes the size of instanton finite and, then, take the commutative limit in the

end recovering the original symmetries of D4 brane.

One may wonder whether the D0 brane could escape the D4 brane when it becomes

singular in the commutative limit. However in [9] it was argued that the Higgs and Coulomb

branches are decoupled even when the instanton shrinks to zero size. This argument was

further supported by an index calculation made in [10] for instanton number one.3

In this paper we show that these small instanton contributions match precisely with

those of the missing KK modes, which is in accordance with the original idea of the proposal

in [11, 12]. In particular one can be rather explicit for the one-instanton case. For two

instantons, in addition to the Hilbert space of two separate instantons, one can find so-

called threshold bound state in their moduli space which corresponds to a single p5 = 2 KK

mode of the M5 side [13]. This counting can be continued to higher instanton numbers [14].

Finally we discuss the case of singular fibration in which the circle size R becomes zero

at some points of base manifold [15]. For this, in addition to the usual 5d sYM fields on

D4 worldvolume, one may need some extra degrees localized at the singular points in order

to have a full agreement. We illustrate this phenomenon rather explicitly in the example

of TN × T 2 where one has a codimension-four singularity if one takes the M-theory circle

direction to be that of the Taub-NUT circle. We show that the extra degree needed is a

chiral 2d scalar on T 2.

Other works which are of some relevance to various aspects of our work include [16, 17].

In appendix A, we obtain the period matrix for six-manifolds W which are such types

of circle-bundles in which the fiber-circle constitutes a one-cycle in W . So for instance this

excludes the case of W = S3 × S3. Even though S3 is a circle-bundle there is no one-cycle

in S3. In appendix B we obtain the period matrix forW = T 2×M4 where for simplicity we

assume there are no one-cycles onM4. In appendix C we present holomorphic factorization

of the partition function of a nonchiral boson (applicable to 2d scalar and 6d two-form) at

the free fermion radius.

2 M5 brane from Chern-Simons theory

We follow [1] and consider the action of a non-chiral two-form B such that only its selfdual

part couples to a background three-form gauge potential C whose field strength is G = dC,

S[B,C] = −λ
2

∫

W

(
|H|2 + 2B ∧G

)
(2.1)

3We would like to thank Sethi for pointing out this problem to us, as well as informing us about his

reference.
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Here λ is a coupling constant, W denotes the six-dimensional world-volume of the M5

brane, |H|2 = H ∧∗H where we define H = dB+C. Our definition of Hodge dual is found

in appendix A. This action is the six-dimensional analog of a gauged WZW action on a

two-manifold to which there are many similarities. The action is not invariant under the

gauge symmetry δC = dΛ, δB = −Λ but it transforms as

δS[B,C] = λ

∫

W

Λ ∧G

As shown in [1] this gauge anomaly is canceled by the term ∼
∫
C ∧G∧G in the M-theory

effective action. For our purpose, the gauge anomaly will be helpful in order to match with

Chern-Simons theory in seven dimensions, so for the moment we like to keep it, rather than

canceling it. From the action, we derive the equation of motion d ∗H = G. We also have

the Bianchi identity dH = G. On W we may decompose any three-form ω as ω = ω++ω−

where ∗ω+ = ±ω±. The equation of motion and the Bianchi identity are consistent with

the selfduality equation H− = 0 and it is in this sense that the action describes a selfdual

three-form H+. Classically this selfduality equation is consistent for any value of λ. But as

we will see, the situation changes in the quantum theory. If we introduce the inner product

(ω, η) =
∫
W
ω ∧ ∗η then we can write the M5 brane action in the form

S[B,C] = −λ
2

(
(dB, dB) + 2(C+, C−) + 4(dB,C−)

)

Let us define the partition function of B in the background of C as

Z(C) =

∫
DBeiS[B,C]

By differentiating under the integral sign, we then find that

(
δ

δC+
+ iλC−

)
Z(C) = 0

and (
d

D

DC− + 2iλG

)
Z(C) = 0

In the second relation we assume the equation of motion dH+ = G and we define a covariant

derivatives as

D

DC− =
δ

δC− − iλC+

D

DC+
=

δ

δC+
+ iλC−

Our functional derivatives are defined with respect to the inner product as δ
δω
(ω, η) = η.

Let us now consider Chern-Simons theory at level k on a seven-manifold U

bounded by W

S =
k

4π

∫

U

C ∧ dC
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As usual we can make a variation and read off the symplectic potential from the boundary

term. If we assume that ∂U =W , then we have the symplectic potential

A = − k

4π

∫

W

C ∧ δC (2.2)

which we can also write as

A =
k

4π

(
− (C−, δC+) + (C+, δC−)

)

Here we have noted that the inner product of two selfdual or two antiselfdual three-forms

vanish identically. Its curvature is the symplectic two-form

Ω =
k

2π
(δC+, δC−)

In components we have

Ω+− =
k

2π

and the inverse is

Ω−+ =
2π

k

We define covariant derivatives

D

DC± =
δ

δC± − iAC±

where

AC± = ∓ k

4π
C∓

consistent with

λ =
k

4π

Gauge transformations act on a wave function ψ(C) and the gauge potential as ψ → eiΛψ,

AC± → AC± + δΛ
δC± . Under a gauge variation δC = dΛ the Chern-Simons action varies by

δS =
k

4π

∫

W

Λ ∧G

This variation is identical with the gauge variation of the M5 brane action if we choose the

coupling constant as λ = k
4π .

We impose holomorphic polarization of the wave function ψ,

D

DC+
ψ = 0

In temporal gauge we have the Gauss law constraint d(C+ + C−) = 0. After quantization

this becomes d
(
P (C+) + P (C−)

)
ψ = 0 where the prequantum operators are given by

P (C+) = −2πi

k

D

DC− + C+

P (C−) =
2πi

k

D

DC+
+ C−

– 6 –
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The general solution to the holomorphic polarization condition is of the form

ψ(C+, C−) = exp

(
ik

4π
(C+, C−)

)
φ(C−)

and so

P (C+) = −2πi

k
D− + C+

P (C−) = C−

From this we get the quantum version (2.3) of Gauss law as

(
d

D

DC− +
ik

2π
G

)
ψ = 0 (2.3)

We see the same equations from the M5 brane action if we choose the coupling λ = k
4π . This

implies that we shall identify the wave function ψ with the M5 brane partition function Z.

2.1 Zero mode part

Let us now compute the zero mode part of the wave function ψ. We expand the harmonic

part of C in a basis of harmonic three-forms on W . We can choose this as a symplectic

basis. If we let ai and b
i denote three-cycles inW , then αi and β

i which denote the Poincaré

dual harmonic three-forms which we normalize as

1

2π

∫

aj

αi = δji

1

2π

∫

bj
βi = δij

will constitute a symplectic basis on W in the sense that

( ∫
W
αi ∧ αj

∫
W
αi ∧ βl∫

W
βk ∧ αj

∫
W
βk ∧ βl

)
= 4π2

(
0 δli

−δkj 0

)

We will also define the following linear combinations

ωi = αi + τijβ
j

ω̄i = αi + τ̄ijβ
j

by demanding these are selfdual and antiselfdual harmonic three-forms respectively. The

period matrix τij can then be extracted by integrating ωi over the b
j-cycles,

1

2π

∫

bj
ωi = τij

If we define

τ = −τ1 − τ2

τ̄ = −τ1 + τ2

– 7 –
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then we have ∫

W

ωi ∧ ω̄j = 8π2(τ2)ij

We expand the harmonic part of the C-field as

C = xiαi + yiβ
i

In terms of complex coordinates that we define as

ai = τ̄ijx
j − yi

āi = τijx
j − yi

we have

C =
1

2
(τ2)

ij(aiωj − āiω̄j)

Large gauge transformations leave the holonomy

H(C) = ei
∫

C
C

invariant for any choice of three-cycle C. Since the connection is constrained to be flat by

the Chern-Simons action, the exponent defines an element in JW which is a torus T b3(W )

whose coordinates are (xi, yj) subject to torus identifications

xi ∼ xi + 1

yj ∼ yj + 1

Large gauge variations act on JW as

δxi = ni

δyj = mj (2.4)

for integers ni,mj . The Chern-Simons Lagrangian becomes4

L =
kπ

2
(τ2)

ij(−ai ˙̄aj + āiȧj)

and we get the symplectic potential and symplectic two-form as

A =
kπ

2
(τ2)

ij(−aiδāj + āiδaj) (2.5)

Ω = −kπ(τ2)ijδai ∧ δāj (2.6)

Canonical commutation relations are

[ai, āj ] =
i

kπ
(τ2)ij (2.7)

4While a non-Abelian generalization of the M5 brane Lagrangian has not been found, one can probably

more easily write down a non-Abelian generalization of the reduced Chern-Simons quantum mechanics

Lagrangian on the space of zero modes (the intermediate Jacobian). Here on the intermediate Jacobian we

have just complex-valued scalar fields ai which depend only on time.

– 8 –
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and prequantum operators are

P (ai) =
i

kπ
(τ2)ijDāj + ai

P (āi) = − i

kπ
(τ2)ijDaj + āi

which one may check realize the algebra (2.7).

Large gauge transformations act on the potential and the wave function as

A′ = A+ δΛ(n,m)

ψ′ = eiΛ(n,m)ψ

where we define

A′(a, ā) = A(a+ τ̄n−m, a+ τn−m)

ψ′(a, ā) = ψ(a+ τ̄n−m, a+ τn−m)

For the sake of convenience (and not for pedagogical reasons), we will switch back and forth

between real and complex coordinates. As we want to see how various quantities depend

on the various choices we make, we will now assume the symplectic potential is chosen as

A = 2πkxiδyi + δµ(xi, yj)

with an arbitrary function µ. Such a gauge transformation of the symplectic potential

corresponds to a canonical transformation of the phase space variables xi, yj . We impose

holomorphic polarization on the wave function

Daiψ(a, ā) = 0

This condition is solved by

ψ(a, ā) = ei(K(a,ā)+µ(a,ā))φ(ā)

where

K = πkτijx
ixj + f(ā)

is the Kahler potential. In the Kahler potential we have the freedom of adding an arbitrary

antiholomorphic function f .

We can read off the gauge parameter associated to a large gauge transformation (2.4)

from the variation of the symplectic potential

δA = A(x+ n, y +m)−A(x, y) = δΛ(n,m)

This gives us the gauge parameter as

Λ(n,m) = 2πkniyi + µ(x+ n, y +m)− µ(x, y) + c(n,m)

– 9 –
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where c(n,m) is a further closed term that we can always add. From

eiΛ(n,m)ψ(x, y) = ψ(x+ n, y +m)

we find that µ cancels out and we are left with the condition that

e2πikn
iyieic(n,m)eiK(a,ā)φ(ā) = eiK(a+δa,ā+δā)φ(ā+ δā)

Here

K(a+ δa, ā+ δā)−K(a, ā) = πkτijn
inj + 2πkτijn

ixj + f(ā+ δā)− f(ā)

and so we have, by noting that

ni(yi − τijx
j) = āi

that

φ(ā+ δā) = eic(n,m)ef(ā+δā)−f(ā)e−iπkτijn
inj+2πikniāiφ(ā)

Here

δāi = τijn
j −mi

and c(n,m) can be partially fixed by requiring that φ(ā) satisfies the ‘cocycle condition’ of

large gauge transformations

φ
(
ā+ τ(n+ n′)−m−m′) = φ

(
(ā+ τn′ −m′) + τn−m

)
(2.8)

Here, on the right-hand side our notation is supposed to mean that we first compute the

gauge transformation φ(ā′ + τn−m) in terms of φ(ā′) and subsequently we express φ(ā′)
as a gauge transformation of φ(ā). Let us first consider the case f(ā) = 0. We then find

c(n,m) = πkτijn
imj

is the minimal choice that makes the cocycle condition satisfied. But we can add further

linear terms to this

c(n,m) = πkτijn
imj + 2π(cin

i + dimi)

and still satisfy the cocycle condition. If we have non-vanishing f , we still get the same

result for c(n,m) due to the exponential nature of eif which automatically makes the

cocycle condition satisfied.

If we choose f = 0 then we can identify the gauge transformation of φ with the gauge

transformation of a Jacobi theta function with certain characteristics, related to ci and d
i as

φ(ā) = Θ
[ c

k

−d

]
(−kτ |kā)

Let us now consider a three-cycle CN,M in W characterized by periods

∫

CN,M

ωi =Mi + τijN
j

– 10 –
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and define the holonomy

H(N,M) = e
ik

∫

CN,M
C

over this three-cycle. When we insert the zero mode expansion for C we get

H(N,M) = eiπk((M+τN)i(τ2)
ijaj−(M+τ̄N)i(τ2)

ij āj)

Since we do not make any canonical transformation of the phase space variable C when we

define the holonomy, we shall use the symplectic potential that we obtain as the boundary

term of the Chern-Simons action, that is (2.5). In this gauge we solve the polarization

condition by

ψ(a, ā) = e−
iπk
2

(τ2)ijaiājφ(ā)

where φ(ā) depends holomorphically on ā. The gauge variation of ψ now induces the gauge

variation

φ(ā+ τn−m) = e
iπk
2

(τ2)ij [(τ̄n−m)i(τn−m)j+2(τ̄n−m)iāj ]eic(n,m)φ(ā) (2.9)

As before we can partially fix c(n,m) by demanding that we satisfy the cocycle condi-

tion (2.8). We then again find that

c(n,m) = kπmin
i + 2π(cimi + din

i)

up to some constants ci and di that we have to fix by other means. On the wave function

φ the prequantum operators reduce to the quantum operators

Q(ai) = − i

πk
(τ2)ij∂āj

Q(āi) = āi

which also realize the algebra (2.7). We use the BCH formula

eA+B = e−
1

2
[A,B]eAeB

to express the holonomy in the form

H(N,M) = e−
iπk
2

(τ2)ij(M+τ̄N)i(M+τN)je−iπk(M+τ̄N)i(τ2)
ij āje(M+τN)i∂āi

When we act with the holonomy on φ(ā) we then get

H(N,M)φ(ā) = e−
iπk
2

(τ2)ij(M+τ̄N)i(M+τN)je−iπk(M+τ̄N)i(τ2)
ij ājφ(ā+M + τN)

Finally we use the gauge transformation of φ as given in (2.9) and find that most exponential

factors cancel out, and we are left with

H(N,M)φ(ā) = e2πi(c
iMi+diN

i)eikπMiN
i

φ(ā)

We now see that the eigenvalue of the holonomy corresponds to the characteristics ci and

di. Using the BCH formula we can show that the holonomies obey the algebra

H(N,M)H(N ′,M ′) = eπik(M
′
iN

i+MiN
′i)H(N +N ′,M +M ′) (2.10)

– 11 –
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We can be ignorant about the signs in the exponent since the difference is always of the

form e2πikMiN
′i
= 1. For k even this formula admits that we take all holonomies to be

H(N,M) = 1. For k odd this formula forbids us to take all H(N,M) = 1 and the best we

can do is to allow for some (or all) of them to be −1.

Let us now turn to holonomies on JW ,

W (N,M) = e
i
∫

cN,M
A

As a preliminary attempt we define these by choosing the gauge potential as

A = 2πkxiδyi + 2πi(ciδyi + diδx
i)

since this makes W (N,M) invariant under (2.4) while any other choice obtained by adding

for example adding an exact term on the form ξδ(xiyi) would not give us an invariant

holonomy under (2.4) for generic values on ξ. We will return to this issue more fully below.

Let us choose a closed loop on JW as a straight line

cN,M =
{
(xi, yj) = (N iθ,Mjθ)|0 ≤ θ ≤ 1

}

=
{
āi = (τijN

i −Mi)θ|0 ≤ θ ≤ 1
}

The holonomy can now be evaluated to

W (N,M) = e2πi(c
iMi+diN

i)eikπMiN
i

and we can read off the characteristics from

W (ei, 0) = e2πic
i

W (0, ej) = e2πidj

where ei = (0, · · · , 1, · · · , 0) with 1 at the i-th entry. However this does not bring us any

closer to what the characteristics really should be.

Our definition of the holonomy W (N,M) is not satisfactory since it is gauge choice

dependent. We also can not see if using the definition of holonomy as proposed in [18] can

help us here. If we can find a gauge invariant definition of W (N,M) we may expect that

W (N,M) = H(N,M) for that gauge invariant definition since clearly H(N,M) is gauge

invariant. Indeed there might exist a gauge invariant definition of W (N,M). To allow for

the most general possible extension of manifold and symplectic two-form, we shall include

all the oscillator modes and we are led to consider seven-dimensional Chern-Simons theory

to compute the holonomy following [1]. By including the oscillators, we have to consider

the symplectic potential on the form A = k
4π

∫
W
C ∧ δC. We then consider a one-cycle

C in JW around which we want to compute the holonomy for this symplectic potential.

Let us parameterize the one-cycle by θ ∈ [0, 1] and consider a one-parameter family of

C-fields that we denote as CC(θ). Time coordinate is being replaced by θ coordinate. The

differential δC in field space becomes a differential in the seven dimensional space S1 ×W

where S1 is the one-cycle parametrized by θ. The holonomy can be expressed as

H(C) = exp i

∫

C

A = exp
ik

4π

∫

S1×W
CC ∧ dCC
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However this formula is only valid if A is globally defined along C. For the generic case we

instead define the holonomy by finding an extension X whose boundary is ∂X = S1 ×W

and define the holonomy as

H(C) = exp
ik

4π

∫

X

G ∧G

where G = dCC . This is still a simplification of the real situation in M theory since in

general G is an element in a shifted integral cohomology [1]. Nevertheless, the point is that

we need to find an extension X over which the spin structure of S1 ×W and the gauge

field CC can be extended. How one can make such an extension may depend on the spin

structure on W . For example, if we have periodic (Ramond) fermions on a circle we can

not extend the circle to a disk. This means that the holonomy will depend on the spin

structure on W .

One may consider W = T 6 as an example. Here Θ
[
0
0

]
is the only fully modular

invariant choice. But this need not necessarily be the partition function of the M5 brane of

a given spin structure if that spin structure is not fully modular invariant. The M5 brane

partition function need only be invariant under modular transformations that preserve the

spin structure.

2.2 Oscillators

The inner product of two wave functions is defined as5

(ψ, ψ) =

∫
DCψ(C)ψ(C)

=

∫
DC+DC− exp

(
ik

2π
(C+, C−)

)
φ(C−)φ(C−)

We can expand C = Charmonic + dχ in a harmonic and an exact piece since by Gauss law

dC = 0. We note that χ is real in both Euclidean as well as in Minkowski signature since

Wick rotation can only affect the components C0MN which in our gauge choice are zero.

The fact that χ is real means that it can be gauged away by a gauge transformation

δC = dλ

by taking the real gauge parameter as λ = −χ. This is thus different from the quantization

of three-dimensional Chern-Simons theory [19]. The generator of gauge transformations

is given by the Gauss law constraint, which we here express for an infinitesimal gauge

parameter λ in the form
∫
λ ∧

(
d

δ

δC− − ik

2π
G

)
φ(C−) = 0

Upon integration by parts, this equation makes sense only if λ is such that (dλ)+ = 0 and

C+ = 0. In that case this equation reduces to

φ
(
C− + (dλ)−

)
= φ(C−)

5In Euclidean signature we define the bar as usual complex conjugation. In this signature we also have

C+ ∧ C− = −iC+ ∧ ∗C− and C± = C±. The exponent exp ik
2π

(C+, C−) is now real with respect to our

complex conjugation in Euclidean signature.
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whose solution can be taken as

φ(C−) = φ(C−
harmonic)

with a trivial oscillator contribution. The oscillator mode contribution to the inner product

of wave functions is now given by

(ψ, ψ)osc =

∫
DCδ(dC) exp

(
ik

4π

∫
|C|2

)

where we have noticed that (C+, C−) = 1
2(C,C). We replace

δ(dC) =

∫
Dχ exp

(
ik

2π

∫
dC ∧ χ

)

Completing the square and shifting C → C+dχ and noting the measure is gauge invariant,

D(C + dχ) = DC, we get

(ψ, ψ)osc =

∫
Dχ exp

(
− ik

4π
exp |dχ|2

)

The path integral is suffering of a gauge redundancy δχ = dλ and so needs to be gauge

fixed. It is clear that this is path integral is precisely equal to the path integral of a non-

chiral two-form gauge field onW , but which here has been obtained from the Chern-Simons

theory on I ×W . The path integral was over C but this is constrained to be flat dC = 0,

and the exact part can therefore be re-expressed as an integral over χ. We note that the

sign gets correct. We express the path integral in Minkowski signature, and we have the

phase factor eiS from which we read off the action

S = − k

4π

∫
|dχ|2

which corresponds to the action (2.1) in a vanishing background C field if we make the

identifications B = χ.

3 The M5 brane partition function

In this section we perform a direct and explicit computation of the full Abelian M5 brane

partition function using Hamiltonian formulation. For the selfdual three-form we recover

the result we got above from Chern-Simons theory, but here we will also supplement this

with contributions from the five scalar fields and the fermions.

In order to apply the Hamiltonian formulation we assume that the M5 brane worldvol-

ume M6 is a circle-bundle over a base-manifold M5. We choose the following parametriza-

tion for the metric on M6

ds2M5 = βdt2 +Gmn(dx
m − V mdt)(dxn − V ndt) (3.1)

and we assume that β is a constant. We will assume that ∂t is a Killing vector field, which

means that ∂tV
m = 0 and ∂tGmn = 0. We will associate t with time and xm with spatial
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directions on M5. We will promote β to a complex holomorphic parameter, thus allowing

for Minkowskian and Euclidian signatures.

As the M5 brane action we will take

S = SB + Sφ + Sψ

where

SB = − λ

12

∫
d6x

√−gHMNPHMNP

Sφ = −λ
∫
d6x

√−g∂MφA∂MφA

Sψ = iλ

∫
d6x

√−gψ̄ΓM∂Mψ

Selfduality fixes the coupling constant to be

λ =
1

4π

3.1 Scalar field

Let us consider the scalar field action

S = −λ
∫

M6

d6x
√−ggMNhMhN (3.2)

for one of the five real scalar fields. Here we define the field strength of a zero form scalar

field φ as

hM = ∂Mφ

The momentum conjugate φ is

π = −2λ
√
−β

√
Ght

The Hamiltonian is

H = λ
√
−β
∫

M5

d5x
√
G(−htht + hm6Dhm)

We note the following metric identities6

ht = βht − V mhm

hm6D = hm + V mht

and we see that the Hamiltonian can be expressed in terms of the five-dimensional metric as

H = λ
√
−β
∫

M5

d5x
√
G
(
− β(ht)2 + hmhm + 2htV mhm

)

6Let us derive them here: ht = gtth
t + gtmgmnhn + gtmgmtht gives ht(1− gtmgmt) = gtth

t + gtmgmnhn.

We then miraculously notice that gtt, 1− gtmgmt and gtmgmn all contain the common factor β+ V 2 which

can be factored out and the identity follows. Next we compute hmn
6D = gmtht+gmnhn = 1

β
V mht+Gmnhn+

1

β
V mV nhn and substitute ht = gtth

t−V nhn and we find that two terms ∼ V mV nhn cancel and the second

identity follows.
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To get a better handle on the scalar field partition function, and in particular its modular

invariance, we temporarily introduce a regulator and assume that the scalar field is compact

φ(x) ∼ φ(x) + 2πr

with a radius r that we in the end will take to infinity. The important point is that

the regulator r does not mix with the geometry of space-time, so we can introduce r as

a separate quantity on which the partition function may depend, in order to extract its

dependence on the geometry. Using this together periodicity of the scalar field together

with the canonical commutation relation

[φ(x), π(y)] = iδ5(x− y)

we conclude that

P = −2λ
√
−β
∫
d5y

√
Ght

is integer quantized as

P =
n

r

where n is integer. Moreover, we expand ht in a basis of harmonic zero forms. But such

harmonics are necessarily constants. So ht is a constant. It must therefore be given by

ht = − n

2λ
√
−β(Vol)r

where Vol =
∫
d5x

√
G. The Hamiltonian is now given by

H =
λ
√
−β

Vol

n2

r2
+ · · ·

where the + · · · terms will be irrelevant in the limit r → ∞. In that limit the discrete sum

can be replaced by an integral over q = n/r, and we get

Zzero =

∫ ∞

−∞
dqe−2πiH =

(
Vol

2iλ
√
−β

)1

2

(3.3)

Of course the integral is evaluated by taking β real and positive, and then we make the

analytic continuation.

3.2 Tensor gauge field

The tensor gauge field can be treated in an analogous way as the compact scalar field. The

action for the non-chiral tensor gauge field is given by

S = − λ

12

∫
d6x

√−gHMNPHMNP

We define the field strength of the two-form gauge potential BMN as

HMNP = ∂MBNP + ∂NBPM + ∂PBMN
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The momentum conjugate to BMN is

EMN = −λ
√
−β
2

√
GHtMN

and we have five primary constraints

Emt = 0

for m = 1, . . . , 5. These we must supplement by equally many gauge fixing constraints.

We will choose the temporal gauge

Bmt = 0

The Hamiltonian is

H =
λ
√
−β

12

∫
d5x

√
G(−3HtmnHtmn +HmnpHmnp)

We note the following metric identities7

H0mn = βHt
mn − V pHmnp

Hmnp
6D = Hmnp + 3V [mH |t|np]

and we see that the Hamiltonian can be expressed in terms of the five-dimensional metric as

H =
λ
√
−β

12

∫
d5x

√
G(−3βHtmnHt

mn + 6V pHtmnHmnp +HmnpH
mnp)

The holonomies are periodic ∫

Σ
B ∼

∫

Σ
B + 2π

Let us introduce the covariant momentum variable emn = Emn√
G

whose indices we can

covariantly lower by the five-dimensional metric to define a momentum two-form e =
1
2emndx

m ∧ dxn. From the canonical commutation relations

[Bmn(x), E
pq(y)] = iδpqmnδ

5(x− y)

we see that [ ∫

Σj

B,

∫

B5

e ∧ ∗Ωi
]
=
i

2

∫

Σj

Ωi

Here we denote by Ωi the basis elements of harmonic two-forms on M5 and we have a

metric

Gij =
∫

M5

Ωi ∧ ∗Ωj

If we expand

e = eiΩ
i

7The derivation is analogous to what we did for the scalar field.
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then we get [ ∫

Σj

B, ei
]
=
i

2
δij

where we define ei = Gijej . Then
2ei = ni

must be integer quantized momenta conjugate to the 2π-periodic holonomies
∫
Σi
B. We

also expand H = miΩ̃i where m
i are integer quantized magnetic charges and Ω̃i are dual

three-forms to Ωi as defined in appendix A. By taking

λ =
1

4π

we get the zero mode part of the Hamiltonian as

Hzero =
√

−β 2πGij
(
ninj +

1

4
mimj

)
− 2πLijnimj

where Gij denotes the inverse of Gij and Lij is defined in Appedix A. The zero mode

partition function is defined as

Zzero =
∑

ni,mi

e−2πiHzero

By identifying the period matrix as

τij = 2π
(
− Lij +

√
−βGij

)

the zero mode partition function can be written as8

Zzero =
∑

ai,bi

Θ [ab ] (−τ)Θ
[
a
b

]
(−τ)

Here the Jacobi theta functions are given by

Θ [ab ] (τ) =
∑

ni∈Z
exp

(
πi(ni + ai)τij(n

j + aj) + 2πinibi
)

and the characteristics ai and bi are running over 0, 12 .

So far we have computed the zero mode part of the partition function of a non-selfdual

three-form H, and we have seen that it is holomorphically factorizable in a certain sense,

as a finite sum of products of chiral and antichiral parts. On the Chern-Simons theory

side, this corresponds to the inner product of wave functions. The wave function that

corresponds to the partition function of selfdual three-form is now given by

Z = Θ [ab ] (−τ |0)
for some certain characteristics.

This computation shows that we shall choose the corresponding Chern-Simons level to

be k = 1 but it might be interesting to ask whether other values of k can be implemented

in M5 brane theory as well.

8Complex conjugation works as usual only in Euclidean signature where β is real and positive. But we

can extend analytically to arbitrary complex β while always prescribing the conjugation rule
√
−β = −

√
−β.

Using this prescription we can use theta function formalism also in Minkowski signature which is the natural

signature for Hamiltonian quantization.
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3.3 An alternative treatment of selfdual tensor gauge field

For the tensor gauge field we may use a selfdual Lagrangian. Holomorphic factorization

works nicely for the zero modes if we define the period matrix on the space of harmonic

three-forms. For the oscillator modes this method requires an extension of the period ma-

trix to include the oscillator modes. However this extended period matrix would be an

infinite-dimensional matrix which could lead to additional subtleties in the holomorpic fac-

torization. The alternative route is to work directly with a selfdual Lagrangian from which

we can compute the contribution of the the selfdual oscillator modes using conventional

quantization methods, that is Hamiltonian quantization or path integral quantization.

Let us first return to the nonselfdual Lagrangian. For the zero modes we have two

set of integers, mi and ni. Using notations introduced in appendix A, these integers were

defined as

Hmnp = miΩ̃i,mnp

emn =
ni

2
Ωmni

Let us now decompose the three-form into selfdual and antiselfdual parts,

H = H+ +H−

where

H±,tmn = ±
√−g
6

ǫtmnpqrH±
pqr

We accordingly decompose the two sets of integers as

mi = mi+ +mi−

2ni = mi+ −mi−

whose solutions are

mi± = ni ± mi

2

We can express this as saying that

mi+ = pi + ai

where pi ∈ Z and each ai is either 0 or 1
2 .

We now turn to the selfdual Lagrangian. We define a six-dimensional vielbein eA =

eAMdx
M which we decompose into eA = (et, eα) where α = 1, · · · , 5. For the three-form

field strength we have

HMNP = eAMe
B
Ne

C
PHABC

where we define

∂A = eMA ∂M

and

HABC = 3∂[ABBC]
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To see this one notices that the ordinary derivative can be replaced covariant derivatives

in the three-form, and the vielbein is covariantly constant. Then we consider the following

six-dimensional Lagrangian (λ = 1
4π )

L = − λ

12

∫
d5x

√
GǫαβγδǫHαβγ∂tBδǫ −

λ
√
−β
6

∫
d5x

√
GHαβγHαβγ

As we showed above, the Dirac charge quantization for the selfdual field strength is given by

1

2π

∫

ci

H = Z+ ai

over spatial three-cycles ci. Moreover, the selfdual holonomies

Xi(t) = exp
i
∫

Σi
B+

are periodic or antiperiodic according to

Xi(t+ 2π) = (−1)biXi(t)

The bi correspond to the characteristics bi in the theta function. In two-dimensions the

holonomies correspond to fermions via bosonization.

4 The D4 brane partition function

If we choose the metric on the M5 brane worldvolume on the form

ds2M5 = G̃µνdx
µdxν +R2(dx5 + vµdx

µ)2

then the corresponding D4 brane action will be given by

S = SYM + Sφ′ + Sψ′

where

SYM = − 1

4g2

∫
d5x

√
−G̃FµνFµν +

1

32π2

∫
d5xG̃ǫµνκτσFµνFκτvσ

Sφ′ = − 1

2g2

∫
d5x

√
−G̃∂µφ′A∂µφ′A

Sψ′ =
i

g2

∫
d5x

√
−G̃ψ̄′Γµ∂µψ

′

and the coupling constant is

g2 = 4π2R
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4.1 Scalar field

The scalar field action is given by

S = − 1

2g2

∫
d5x

√
−G̃G̃µν∂µφ′∂νφ′

where

g2 = 4π2R

This action is obtained by dimensional reduction of (3.2) and by defining

φ′ = 2πRφ

We introduce a regulator r′ such that

φ′ ∼ φ′ + 2πr′

but of course this regulator is different from the M5 brane regulator r. These are related as

r′ = 2πRr

The quickest way to compute the zero mode contribution to the partition function is by

lending the result from the M5 brane. To this end we rescale the scalar field so that

the action gets the factor −λ in front in place of 1
2g2

. We then find the periodicity gets

modified to

φ′ ∼ φ′ + 2πr′′

with

r′′ =
1√
2πR

2πr′

Then we can borrow the M5 brane result and we get the zero mode part of the Hamilto-

nian as

HD4 =
λ
√
−β

Vol′
n2

r′′2

where we use Vol′ =
∫
d4x

√
g in place of V ol =

∫
d5x

√
G. These volume factors are

related by

Vol = 2πRVol′

To compare with the M5 brane Hamiltonian, we substitute r′′ =
√
2πRr. Then

HD4 =
λ
√
−β

Vol′2πR

n2

r2

which now agrees with the zero mode part of the M5 brane Hamiltonian. Consequently

also Zzero,φ′ agrees with Zzero,φ of the M5 brane.
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4.2 Gauge field

The momentum conjugate to Ai is

Ei = − 1

4π2R

√
−G̃F ti + 1

8π2
G̃ǫtijklFjkvl

We choose temporal gauge

At = 0

We first show that we can express the conjugate momentum in a six-dimensional form as

Ei = − 1

2π

√−gH5ti
6D

To see this, we first note that

H5µν
6D =

1

R2
G̃µκG̃νλH5κλ − vλH

µνλ
6D

Then using selfduality, we have

H5µν
6D =

1

R2
G̃µκG̃νλH5κλ −

1

2

√−gǫµνλκτ5vλHκτ5

and then

R

√
−G̃Hti5

6D =
1

2π

(
1

R

√
−G̃F ti + 1

2
G̃ǫtijklvjFkl

)

where we define

Hµν5 =
1

2π
Fµν

and the identity follows.

We next comment on the integer quantization of the momentum which follows by the

fact that it is conjugate to 2π-periodic holonomies. For YM we then have

[ ∫ 2π

0
dx1A1, E

1

]
= 2πi

and for the six-dimensional theory we have

[ ∫ 2π

0
dx1

∫ 2π

0
dx5B15, 2πE

15

]
= 2π2i

where we write 2πE15 due to integration over x5 as necessary to get δ4 quantities on the

r.h.s. in both cases. From these relations together with 2π-periodicity of holonomies, we

conclude that

E1 = 2πn1

2πE15 = 2π2n15

where n1 and n15 are integer quantized. By identifying these integers as ni = ni5 for

i = 1, 2, 3, 4, we conclude that

2πEi5 = πEi
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and thus we should expect the conjugate momentum of our ‘would be’ six-dimensional

theory, should be given by

Emn = − 1

4π

√−gHtmn
6D

or in other words,

Emn = −λ√−gHtmn
6D

The Hamiltonian we derive from the 5D YM is given by

HYM = EiFti − LYM

The first term is

EiFti = −√−gHti5
6DHti5

For the second term we first notice that

−1

4

√−gH5µν
6D H5µν = LYM

and furthermore

−1

4

√−gH5µν
6D H5µν = −√−g

(
1

4
H5ij

6DH5ij +
1

2
H5ti

6DH5ti

)

Thus

HYM =
√−g

(
1

4
H5ij

6DH5ij −
1

2
H5ti

6DH5ti

)

The six-dimensional Hamiltonian is given by

HM5 =
λR

6

∫
d5x

√
−G̃Hmnp

6D Hmnp

but by using the selfduality constraint this Hamiltonian can also be expressed as

HM5 = −λR
2

∫
d5x

√
−G̃Htnp

6DHtnp

= R

∫
d4x

√
−G̃
(
− 1

2
Htij

6DHtij +
1

4
H5ij

6DH5ij

)

To get to the second line we have assumed that the fields are independent of the coordinate

on the fiber, so that integration along the fiber just gives a factor of 2π. We also used

selfduality again, now in the form of Htij
6DHtij = −H5ij

6DH5ij . We now have

HM5 = HYM

under the assumption of fields being independent on the fiber coordinate. In particular

then, the zero mode partition functions are identical.
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5 Oscillators

5.1 Selfdual tensor field

In the spirit that M5 brane theory is a higher dimensional analog of selfdual scalar field

in two dimensions, we begin by computing the oscillator partition function for a two-

dimensional selfdual scalar field in a way that is easily generalized to a selfdual two-form

gauge potential in six dimensions.

5.1.1 Two-torus

Let us consider a real scalar field on T 2 with metric

ds2 = βdt2 +Gxx(dx− V xdt)2 = Gxx(dx+ τdt)(dx+ τ̄ dt)

where

τ = −V x +

√
−β√
Gxx

τ̄ = −V x −
√
−β√
Gxx

The action is

S = −1

2

∫
dtdx

√−ggMN∂Mφ∂Nφ

As the orthonormal basis on the base-manifold whose coordinate is x ∼ x + 2π we take

ϕn = 1
2πe

inx for n ≥ 0. The complex conjugates are ϕn = ϕ−n. The quadratic equation of

motion reads (for n ≥ 0)

(
1

β
(∂t + V x∂x)

2 +Gxx∂2x

)
eiEt+inx = 0

and it has solutions

E+
n = τn

E−
n = τ̄n

In Minkowski signature E+
n ≥ 0 and E−

n ≤ 0. The Hamiltonian is

H =
1

2

∑

n∈Z+

n

[
τ

(
a†nan +

1

2

)
− τ̄

(
b†nbn +

1

2

)]

where

[am, a
†
n] = δm,n

[bm, b
†
n] = δm,n

The partition function becomes

Zosc =
1

η(τ)η(τ)
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where

η(τ) = e−
iπτ
12

∞∏

n=1

(1− e2πiτn)

is the Dedekind eta function.

We note that the partition function can be expressed as a determinant

Zosc =
2π

√
β√

det′△

where in this determinant we shall put ∂t = im where m ∈ Z due to our convention where

the time coordinate interval over which we compute the partition function is [0, 2π]. The

physical time interval is 2π
√

|β|.

5.1.2 Six-manifold

We now proceed to generalize this to six dimensions. If we impose temporal and Lorentz

gauge

itB = 0

d†B = 0

with respect to six-dimensional metric, then the Maxwell equation of motion becomes

△6B = 0

where △6 denotes the Laplacian on M6. The energies are obtained by solving the equation

△6(e
iEαtϕα) = 0

where ϕα denote an orthonormal basis of two-forms onM5. Such a basis can be conveniently

chosen such that

△5ϕα = λαϕα

(ϕα, ϕβ) = δβα

where the inner product is given by (ϕα, ϕβ) =
∫
M5

ϕα ∧ ∗5ϕ̄β and λα denote eigenvalues

and bar denotes complex conjugation.

Obviously the eigenvalues λα may be degenerate. What is less obvious is that the

partition function can be complex-valued. To see this, let us assume a Cartesian product

M6 = T 2 ×M4. In this case we get

B = φ(t, x)ϕ(xi)

and we wish to solve the equation of motion

(△2φ)ϕ+ φ△4ϕ = 0
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Let us assume that we solve this equation by requiring

△4ϕ = 0

Then dϕ = 0 and we get

dB = dφ ∧ ϕ

Requiring this to be selfdual means that either both ϕ and dφ are selfdual or both anti-

selfdual. This shows that the partition function will now contain a factor

Zosc(τ, gij) =
1

η(τ)b+η(τ)
b−

where b± denote the number of selfdual and antiselfdual harmonics on M4 respectively,

and η(τ) is the contribution from one selfdual scalar field on T 2. Only if b+ − b− = 0 do

we have a real-valued oscillator partition function. The oscillator mode contribution for a

selfdual tensor gauge field is given by the holomorphic factor 1
η(τ)b+

. We do not know how

this factorization extends beyond the zero modes on M4 in this case. One way to compute

the oscillator mode contribution to the partition function of a selfdual tensor gauge field

could be to directly work with a selfdual action for example the one we wrote down in

section 3.3.

5.1.3 Six-torus

Let us now instead turn to the case when M6 is flat T 6. Since this is T 2 × T 4 and

b+(T 4) = b−(T 4) = 3 the oscillator partition function will be real. This means that to

compute the oscillator mode partition function for a selfdual tensor gauge field on T 6 we

can simply take the square root of the oscillator mode partition function of a non-selfdual

tensor gauge field on T 6. The Laplacian is

△6 = −gMN∂M∂N

and this gets split into

△6 = − 1

β
∂2t −

2

β
V m∂t∂m +△5

Let us define

fmn~p =
1

(2π)
5

2

eipmx
m

dxm ∧ dxn

which satisfy

△5f
mn
~p = λ~pf

mn
~p(

fmn~p , fpq~q
)
=

√
GGmn,pqδ~p,~q

where

λ~p = p2

p :=
√
Gmnpmpn
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We wish the consider a basis fmn~p with the property that (fmn~p )∗ are linearly independent of

fmn~p . This can be achieved by restricting ourselves to a half-space ~p ∈ Z
5
+. This half-space

can be selected by first picking a co-dimension one hyperplane in R
5 which only intersects

the origin but no other lattice points in Z
5. Such a hyperplane may be defined by one

normal vector which we may take for example as ~n = (1,
√
2,
√
3,
√
5,
√
7,
√
11). Then we

may define the half-space as Z5
+ = {~p ∈ Z

5|~n · ~p > 0}. The energies are

E±
~p = −V mpm ±

√
−βp

Let us define a projector

(Π~p)
n
m =

1

2
(δnm − p̂mp̂

n)

Then

f̃mn~p = (Π~p)
mn
pq f

pq
~p

satisfy Lorentz gauge pmf
mn
~p = 0 (we drop the tilde for notation convenience). Moreover

(
fmn~p , fpq~q

)
=

√
GΠmn,pqδ~p,~q

We also define selfduality projectors

(S~p)
mn
pq =

1

2

(
Πmnpq +

1

2

√
Gǫmnpqrp̂

r

)

and define

f̃mn~p = (S~p)
mn
pq f

pq
~p

which obey (again dropping the tilde)

(
fmn~p , fpq~q

)
=

√
GSmn,pqδ~p,~q

We expand

B(x) =
∑

~p∈Z5
+

(
amn,~pe

iE+

~p
t + bmn,~pe

iE−

~p
t)fmn~p (~x) + c.c.

and this will now satisfy the Maxwell equation of motion, be in Lorentz gauge and give a

selfdual field strength. We see that there are three independent polarizations amn,~p for a

given momentum ~p. Let us denote these independent ones as ai~p for i = 1, 2, 3.

It is a general result that the Hamiltonian of a quadratic Lagrangian is given by

H =
∑

~p∈Z5
+
,i

[
E+
~p

(
ai†~p a

i
~p +

1

2

)
− E−

~p

(
bi†~p b

i
~p +

1

2

)]

where

[ai~p, a
j†
~q ] = δijδ~p,~q

[bi~p, b
j†
~q ] = δijδ~p,~q
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Since the Hamiltonian shall be non-negative in Minkowski signature, we shall take E+ to

be non-negative, and E− to be non-positive solutions to the quadratic equation of motion.

The oscillator partition function now becomes

Zosc =
1

η(gMN )3η(gMN )3
(5.1)

where we define a generalized Dedekind eta function and its conjugate as

η(gMN ) = e
−iπ∑

~p∈Z
5
+
E+

~p
∏

~p∈Z5
+

(
1− e2πiE

+

~p
)

η(gMN ) = e
iπ

∑

~p∈Z
5
+
E−

~p
∏

~p∈Z5
+

(
1− e−2πiE−

~p
)

If we pick T 2 with modular parameter τ embedded in T 6 then Zosc contains as a factor
1

η(τ)3η(τ)
3 . This is an important observation to show modular invariance of the full partition

function on T 6.

5.2 Scalar fields

For the five scalar fields we get the contribution

1

η(gMN )5η(gMN )5

where E± are computed from △6 acting on zero forms eiEtφ(xm). For a flat T 6 we get

that same eta functions as those for the selfdual tensor field since for flat space we have

the same energies.

5.3 Fermions

In order to preserve supersymmetry on T 6 we shall impose periodic boundary conditions

on the fermions on all the 6 one-cycles of T 6. For the spatial directions this amounts to

integer momenta. To get periodic fermions in the time direction we must insert (−1)F .

Thus the fermionic partition function is

tr
(
(−1)F e2πiH

)
= e−8iπ

∑

~p∈Z5
(E+

~p
−E−

~p
)
∏

~p∈Z5
+
+~0

(
1− e2πiE

+

~p
)8(

1− e−2πiE−

~p
)8

Now for this periodic boundary conditions there is a zero mode ~p = 0 which kills the whole

partition function so that

Z = 0

Obviously this partition function is modular invariant. We may also relax period boundary

condition in time direction while preserving supersymmetry since supersymmetry variations

are at a fixed time and do not see such a boundary condition in time. In that case we get

the partition function as

tr(e2πiH) = e−8iπ
∑

~p∈Z5
(E+

~p
−E−

~p
)
∏

~p∈Z5
+
+~0

(
1 + e2πiE

+

~p
)8(

1 + e−2πiE−

~p
)8
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but now we can only expect this to be modular invariant under modular transformations

that act on T 5 ⊂ T 6 and leave the time direction unaffected. So we shall expect this

partition function to be only SL(5,Z) invariant.

6 Modular invariance of M5 brane on T
2
× M4

So far we have been studying M5 brane on circle fibration over a five-manifold. If we

continue the program of circle fibrations, the next step will be to consider a two-torus

fibered over some four-manifold. Since the modular group of a two-torus is SL(2,Z) we

can ask whether the M5 brane partition function is SL(2,Z) invariant. Such a strategy was

used in [2] for the case of a flat T 6 to prove full SL(6,Z) modular invariance on T 6 by first

proving SL(2,Z) modular invariance on a T 2 embedded in T 6. But we may generalize. The

most general geometry for which SL(2,Z) modular invariance can be studied is where we

have two commuting Killing vectors corresponding to a two-torus T 2 in the six-manifold

M6. If we take one circle direction of that T 2 to be associated with time, the natural choice

of metric will be

ds2 = βdt2 +Gmn(dx
m − V mdt)(dxn − V ndt)

on which we make a subsequent decomposition of the same form,

Gmndy
mdyn = γ(dy5)2 + gij(dy

i − U idy5)(dyj − V jdy5)

Thus, by substituting dym = dxm − V mdt, the full M5 brane metric is

ds2 = βdt2 + γ(dx− V 5dt)2 + gij(dx
i − V idt− U idx)(dxj − V jdt− U idx)

The first two terms can be combined into the standard metric on a two-torus

γ(dx+ τdt)(dx+ τ̄ dt)

if we define

τ = −V 5 +

√
−β√
γ

The metric is invariant under simultaneous exchange of coordinates on T 2,

t′ = x

x′ = −t

and the following change of parameters in the metric,

V ′i = U i

U ′i = −V i

τ ′ = −1

τ

τ̄ ′ = −1

τ̄
γ′ = τ τ̄γ
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We will postpone a study of modular invariance on generic such fiber-bundles to future

work. Here we will assume the six-manifold M6 is on the form of a Cartesian product

M6 = T 2 ×M4

This corresponds to putting V i = U i = 0 above. The metric on M6 is then

ds2M6
= ds2M2

+ ds2M4

where

ds2M2
= γ(dx+ τdt)(dx+ τ̄ dt)

ds2M4
= gijdx

idxj

The Laplace operator becomes

△6 = △2 +△6

6.1 The zero mode part

In the appendix B we obtain the period matrix for T 2×M4 for the case that dimH
1(M4) =

0. This period matrix has been previously obtained in [22]. We have the following results

for the period matrix and its inverse,

τIJ = τ1(Q
−1)IJ + τ2GIJ

(τ−1)IJ = τ̃1Q
IJ + τ̃2Q

IKQJLGKL

Here τ is the period matrix on T 2 and QIJ and GIJ is the intersection form and the metric

associated with M4 as defined in the appendix B. We define9

τ̃1 = − τ1
τ21 − τ22

τ̃2 = − τ2
τ21 − τ22

The partition function is10

Zzero = Θ
[
0
0

]
(τIJ)

Two ingredients are involved to see the modular property of this partition function under

S-transformation. The first ingredient is Poisson resummation,

∑

nI∈Z
eiπn

IτIJn
J

=
1√

det τIJ

∑

mI∈Z
eiπmI(τ

−1)mJ

The second ingredient is to make use the intersection form (whose entries are integers) to

define dual integers

mI = QIJmJ

9We remind that our notation is τ = −τ1 − τ2 and τ̄ = −τ1 + τ2 in both Minkowski and Euclidean

signatures. We then define τ̃ = − 1

τ
= − τ̄

τ τ̄
.

10For simplicity we consider only zero characteristics. It is also true that this choice is the most modular

invariant choice [20, 21]
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which results in

mI(τ
−1)mJ = mI τ̃IJm

J

where we define

τ̃IJ = τ̃1(Q
−1)IJ + τ̃2GIJ

To compute the determinant we define

m = mIΩ
I

and

m± = m± ∗m

we then consider the following equality (noting that ∗∗ = 1 and defining the inner product

as usual). Then

mIZ
IJmJ =

1

4

(
τ(m+,m+) + τ̄(m−,m−)

)

We can compute the determinant as a product of exponents. These exponents factorize

into selfdual parts, so we can compute the determinant of each factor. One such factor is

1√
detZIJ

=
∏

m+

∫
dm+ exp

1

4
τ(m+,m+)

=

(
1√
τ

)b+

The product runs over the selfdual harmonic two-forms, and b+ is the number of such

two-forms.

No contribution relevant for S-duality comes from harmonic one-forms on M4 because

these do not give a dependence on τ . They involve various combinations that contain

dt ∧ dx, but no single dx nor single dt, so there is no τ dependence.

We find that the zero mode partition function transforms like

Zzero

(
− 1

τ
, gij

)
=

√
τ
b+
√
τ̄
b−Zzero(τ, gij)

Zzero(τ + 1, gij) = Zzero(τ, gij)

A corresponding result was obtained in [22] for non-Abelian gauge group. However in this

reference it seems the second ingredient of using the intersection form QIJ to define dual

integer numbers is missing.

6.2 Oscillator mode part

Oscillators contribute with a generalized eta function. Zero modes have already been

analyzed, and the determinant of the six-dimensional Laplacian acting on two-forms, equals

the generalized eta function up to a zero mode factor.

We have learned how to extract Zosc from the determinant. Let us now consider the

determinant that is relevant to this situation

det△6 = det(△2 +△4)
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We will ignore the issue of gauge fixing and ghost determinants. Instead we will map this

determinant directly to Zosc. Only massless modes from two-dimensional point of view can

contribute an SL(2,Z) anomaly. So it is enough to consider zero modes of △4. These are

the harmonic two-forms on M4. Thus the determinant we will be interested in reads

(det△2)
b2

From this result we can immediately conclude that the τ dependence of the oscillator

partition function is

Zosc(τ, gij) =
1

η(τ)b+η(τ)
b−

and it transforms as

Zosc

(
− 1

τ
, gij

)
=

(
1√
τ

)b+( 1√
τ̄

)b−
Zosc(τ, gij)

Zosc(τ + 1, gij) = e−
iπ
12

(b+−b−)Zosc(τ, gij)

The total partition function is thus invariant under S-transformation τ → − 1
τ
and trans-

forms at most by a phase under T -transformation τ → τ + 1. The partition function is

modular invariant whenever b+ = b−. This shows that the partition function is modular

invariant on T 6 but not on T 2×TN where b+ 6= b−. (On TN we have b+ = 1 and b− = 0).

For the five scalar fields we also find modular invariance on T 6, despite the oscillator

mode contribution by itself is not modular invariant. But we do have a zero mode con-

tribution also for the non-compact scalar fields, as we showed in section 3.1. For the case

that W = T 2 ×M4 (whereof T 6 is a special case) we find that we can express the zero

mode factor as

Zzero =

(
γ

−β

)1

4

=
1√
τ2

It transforms under S-transformation into

Zzero

(
− 1

τ
, gij

)
= |τ |Zzero(τ)

For a single scalar field the oscillator mode partition function transforms as

Zosc

(
− 1

τ
, gij

)
=

1

|τ |Zosc(τ)

showing that ZzeroZosc is invariant under S-transformation. The same holds true for T -

transformation on T 6.

For the fermions on T 6 and if we assume antiperiodic boundary conditions in all

directions, we find a zero mode that kills the whole partition function. Obviously 0 is

SL(6,Z) modular invariant. If we choose periodic boundary conditions on the circle in
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T 6 that we associate with time, then we shall only expect to find SL(5,Z) invariance.

And indeed this amount of symmetry is manifest in our expression for the oscillator mode

partition function, as was also noted in [2] in the context of tensor gauge field on T 6.

Thus the M5 brane partition function with zero characteristics on a flat T 6 is SL(6,Z)

modular invariant, and on T 2 ×M4 it is SL(2,Z) modular invariant up to a phase. Under

dimensional reduction to four dimensions we find a partition function which is a modular

form [23]. It is natural that we get different modular properties of the partition functions

in four and six dimensions since we truncate away all the KK modes in four dimensions.

Nevertheless we do find a modular property in four dimensions. This experience could

motivate us to ask if some modular property could also be found in five dimensions.

The oscillator parts of both D4 and M5 are on the form of generalized Dedekind eta

functions. Let us consider a flat six-torus. Then the frequencies Enm that appear in the

generalized Dedekind eta function are the positive roots to the equation of motion

gMNnMnN = 0

where we solve this equation for nt = Enm and pick the positive solutions (in Minkowski

signature). For the D4 brane Eni
are positive solutions to

G̃µνnµnν = 0

where nt = Eni
. We use the index notation M = (µ, 5) and µ = (t, i) for i = 1, · · · , 4.

Since

gMNnMnN = G̃µν(nµ − vµn5)(nν − vνn5) +
1

R2
n5

2

we see that

gMNnMnN = G̃µνnµnν

only for vanishing KK momentum n5 = 0.

If we pick factors in ZM5
osc with ni = 0 and perform the product over all non-vanishing

Kaluza-Klein momenta n5 = 1, 2, 3, · · · , then these give rise to a τ -dependent factor

1

η(τ)3η(τ)
3

Here the powers 3 correspond to the six harmonics bij on T 4, separated into selfdual and

anti-selfdual parts. These harmonics are responsible for the 3-fold degeneracy of En5
. For

the D4 brane we put n5 = 0 and this τ -dependent factor does not arise in ZD4
osc.

7 The M5/D4 partition function on T
6

Multiplying together the various contributions, what have found on T 6 is the following M5

brane partition function

ZM5 = ZM5
zeroZM5

osc
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where

ZM5
zero = Θ

[
0
0

]
(−τ)

(
iVol√
−β

)5

2

ZM5
osc =

∏

~p 6=0

(
1 + e2πiE

+

~p

1− e2πiE
+

~p

)4(
1 + e−2πiE−

~p

1− e−2πiE−

~p

)4

and where ~p = (pm) = (pi, p5) for i = 1, . . . , 4. For the D4 brane we have found that

ZD4
zero = ZM5

zero

ZD4
osc =

∏

pi 6=0

(
1 + e2πiE

+
pi

1− e2πiE
+
pi

)4(
1 + e−2πiE−

pi

1− e−2πiE−
pi

)4

What is missing so far from the D4 brane are the KK modes with p5 6= 0, to which we will

turn our attention in the next section. Let us here just note that a particularly simple KK

sector in the M5 brane oscillators is obtained by taking pi = 0 with p5 6= 0. We note that

E±
pi=0,p5

= ±
√
−β

√
G55|p5| − V 5p5

and so by defining

q = e2πi(
√
−β

√
G55−V 5)

q̃ = e−2πi(−
√
−β

√
G55−V 5)

we find that this sector gives the following contribution

ZM5
osc,pi=0 =

∞∏

p5=1

(
1 + qp5

1− qp5

)8(1 + q̃p5

1− q̃p5

)8
(7.1)

8 Small instantons and KK modes

Up to now we have shown that the naive D4 brane partition function on T 5 does not match

with that for the M5 brane on T 6. The zero mode’s part has the precise agreement while

there is a clear mismatch in the oscillator part of the partition functions. If the proposed

D4/M5 on S1 correspondence is correct, this implies that one is missing certain degrees

of freedom from the D4 brane side. It is clear from the previous discussion so far that

the missing part are all those spectra of KK modes along the circle direction S1. Here we

would like to show that this KK part of the partition function is precisely generated by

small instantons corresponding to D0 branes of the type IIA string theory.

Taking our S1 as an M-theory circle, the M5 becomes D4 by the type IIA reduction

and the KK circle momenta are corresponding to D0 branes from the view point of the

type IIA theory. If D0 branes are away from the D4 to the five transverse directions, then

their Hilbert space is not to do with that of the D4 brane. When D0 branes are located

on top of the D4, they can be bound to the D4 brane forming a (threshold) bound state,
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which can be faithfully captured by the D4 brane worldvolume dynamics we are dealing

with. This is one of the basic construct of the D4/M5 on S1 correspondence proposed in

refs. [11, 12]. These D0 branes are captured by the well known instanton dynamics of D4

branes satisfying the selfdual (or anti-selfdual) equation

F = (−) ∗4 F

where the hodge dual ∗4 is taken over the four spatial direction of the worldvolume direc-

tions of D4 branes. The instanton number is counted by an integer n5

n5 =
1

8π2

∫
trF ∧ F

For the SU(N) part of N D4 branes with N ≥ 2, regular solutions of the above self

dual equation can be found explicitly. It is well known, however, that for the case of

U(1), the corresponding instanton solutions become singular classically. Hence one has to

introduce some regularization in order to use the conventional techniques including the

moduli space approximation. Here we shall introduce the noncommutativity parameters

for the spatial part of the coordinates for the sake of the regularization and then, in the end,

we take the commutative limit by sending the noncommutative parameters to zero. In this

regularization, the instanton size squared turns out to be of order of the noncommutativity

parameters. Since we are interested in the small size limit, the physics of global aspects

decouples from the local dynamics and, for instance, the boundary condition on their wave

function can be imposed separately afterwards.

Hence by an appropriate coordinate transformation, we make the D4 brane worldvol-

ume metric to the standard flat Minkowski form,

ds25 = −dz20 + dzidzi

With these coordinates, the 6d metric including circle fibration now takes the form

ds26 = ds25 +R2(dx5 + ṽµdz
µ)2

We shall introduce the spatial noncommutativity

[zi, zj ] = iθij

where the noncommutativity parameters θij can be fully parameterized by

θij = ξaηaij + ζaη̄aij

where ηaij and η̄ij a = 1, 2, 3 are the selfdual and anti-selfdual ’t Hooft tensors respectively.

We shall focus on the Maxwell part of the D4 brane action that is given by

S = − 1

16π2R

∫
d5z FµνF

µν +
1

32π2

∫
d5z ǫµνλδρFµνFλδ ṽρ (8.1)

and we are interested in the instanton solutions satisfying

Fij =
1

2
ǫijklF

kl
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and their moduli space dynamics. The instanton solutions of the selfdual equation and their

modular space dynamics can be systematically studied by the so called Atiyah-Drinfeld-

Hitchin-Manin (ADHM) method of the construction [24], for which the noncommutative

deformation can be incorporated in addition [25]. We shall not introduce all the details

here but just necessary part for the present purpose. The ADHM equations for selfdual

instantons reads11

[Z,Z†] + [W,W †] + II† − J†J = ζ3 ≡ ζ

[Z,W ] + IJ = ζ1 + iζ2

where X and W are complex n5 ×n5 matrices and I† and J are N ×n5 complex matrices.

As before N is for the N parallel D4’s and we are here only concerned about the N = 1

case. We note the anti-selfdual part of the noncommutativity parameters enters for the

ADHM equations for selfdual instantons. Since there are U(n5) gauge symmetry for the

n5 instanton dynamics, one has to mode out the degrees of the above ADHM equations

by an appropriate U(n5) gauge fixing conditions. Thus the moduli space dimension as

parameterized by the matrices is given by 4n25+4n5N moded out by 3n25 conditions imposed

by the ADHM equations together with n25 gauge fixing conditions. Therefore the resulting

dimension becomes 4n5N or 4n5 for our interest of N = 1 case. The moduli space metric

is induced from the flat metric

ds2 = tr
(
dIdI† + dJ†dJ + dZdZ† + dWdW †)

by a hyper-Kahler quotient procedure [13].

8.1 One instanton dynamics

From now on, we shall focus on U(1) case with N = 1, set ξ1 + iξ2 = ζ1 + iζ2 = 0 and take

ζ > 0. Then for one instanton case with n5 = 1, the gauge fixed solution reads

I1×1 =
√
ζ , J1×1 = 0

while Z1×1 and W1×1 are not constrained at all. Thus we conclude that one instanton

moduli space is given simply by flat R4 with

ds2n5=1 = |dZ|2 + |dW |2 = dXidXi

where Xi is the position on R4. This describes a D0 with a definite finite size freely moving

along the worldvolume directions of the D4 brane. (One can show that there is a finite

binding energy between D0 and D4 due the nonvanishing noncommutativity parameter ζ.)

For the details of its Hilbert space and moduli dynamics, one may be more explicit for

this simplest case. Of course via the ADHM construction, one may find explicit nonsingular

one instanton solution Ai(~z) with A0 = 0 [25, 26] but we do not need here its explicit form

11The anti-selfdual instanton corresponds to replacing ζa by ξa in the ADHM equations. Therefore,

to have ADHM constructions for both instantons and anti-instantons, we need to have both ζa and ξa

non-vanishing.

– 36 –



J
H
E
P
1
2
(
2
0
1
2
)
0
9
9

since the translational symmetry of the system will be enough to show some details as

will be clear below. With the choice of A0 = 0, the configuration Ai(~z − ~X) is explicitly

describing the moduli space R4. Here Xi are the so-called collective coordinates for the

moduli (solution) space interpreted as a position of D0 along the worldvolume directions

of the D4. In general the zero mode that is the variation of the solution tangent to the

moduli space requires an extra gauge transformation

δjAi =
∂

∂Xj
Ai +

∂

∂zi
λj

where λj will be chosen such that the constraints ∂
∂zi
δjAi = 0 hold, which means that the

zero modes are orthogonal to gauge transformation modes δAi = DiΛ. For the present one

instanton case, the constraints are trivially solved with λj = 0 by assuming the gauge fixing

condition ∂iAi = 0. Thus for the explicit moduli space dynamics, we insert the ansatz

Ai
(
~z − ~X(t)

)
, A0 = 0

to the action (8.1) in order to obtain the low energy effective action for the one-instanton

dynamics. This will be valid up to quadratic order of the velocity Ẋi. For the evaluation

we further note

1

16π2

∫
d4zFijFij = n5 = 1

1

16π2

∫
d4zFijFim =

n5
4
δjm

where for the latter we have used the translational symmetry of the one-instanton solution.

The resulting effective Lagrangian for the one-instanton dynamics reads

Ln5=1
eff = −n5

R
+ n5 ṽ0 +

n5
2R

ẊiẊi + n5 ṽiẊ
i

For anti-instantons we instead find (with n5 = −1)

Ln5=−1
eff =

n5
R

+ n5 ṽ0 −
n5
2R

ẊiẊi + n5 ṽiẊ
i

The canonical momentum has an extra contribution from the first-order time deriva-

tive term,

pi = ±n5
R
Ẋi + n5 ṽi

with upper sign for instanton and lower sign for anti-instanton respectively. The Hamilto-

nian becomes

H = ±n5
R

− n5 ṽ0 ±
R

2n5
(pi − n5ṽi)(pi − n5ṽi)

Here ±n5

R
is the mass of the nonrelativistic motion of an instanton and of an anti-instanton

respectively. We note that the sign is precisely such that this mass is always positive. One

then recognizes that this is the nonrelativistic version of the relativistic counterpart

− (p0 − n5ṽ0)
2 + (pi − n5ṽi)

2 +
n25
R2

= 0 (8.2)
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in Minkowski signature if we make the following identifications

H = −p−0 > 0

for the instanton and the anti-instanton respectively. Here p±0 denote the positive and

negative roots to the quadratic equation of motion (8.2) (for a sufficiently small ṽ0). Since

one has the 5d Poincaré symmetry of D4 in the commutative limit, one may argue that

the above should be the precise spectrum; Its 6d version takes the form

gMNpMpN = 0

with the instanton number n5 is identified with the KK momentum p5 along the circle

direction. Thus we conclude that the required spectra for single KK mode are precisely

reproduced from the single instanton and anti-instanton dynamics respectively.

The supersymmetric extension of this analysis for the one-instanton case is rather

straightforward. We shall describe simply the result here. The one-instanton is half BPS

(preserving half of the 16 supersymmetries) and the 8 fermionic zero modes form a multiplet

consisting of 8 bosonic and 8 fermionic states. This agrees with the ground state degeneracy

of one-D0 and one-D4 bound states. Among the 8 bosonic states, 5 correspond to the KK

parts of 5 scalar while the remaining 3 are the KK modes from the selfdual two form gauge

field. The fermionic part are also matching precisely with the KK modes from 8 fermionic

degrees. Thus we conclude that the dynamics of one instanton sector is precisely matching

with that of the one KK mode of the M-theory circle.

8.2 Multi instanton dynamics

We now turn to the cases of higher instanton numbers. The case of two U(1) noncommu-

tative instantons has been analyzed in [13] which leads to the metric on the 8 dimensional

moduli space

ds2n5=2 = ds2com + ds2rel

where the center of mass part is R4 with metric

ds2com = dXidXi

while the relative part of the metric is given by the Eguchi-Hanson metric [27]

ds2rel =
r2√

r4 + 4ζ2

(
dr2 +

r2

4
σ23

)
+

1

4

√
r4 + 4ζ2 (σ21 + σ22)

In this metric σa are the standard SU(2) left invariant one forms given by

σ1 = − sinψdθ + cosψ sin θdϕ

σ2 = cosψdθ + sinψ sin θdϕ

σ3 = dψ + cos θdϕ

and the angular variables are ranged over

0 ≤ θ ≤ π , 0 ≤ ϕ ≤ 2π , 0 ≤ ψ ≤ 2π
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due to these angular ranges, the geometry involves S3/Z2 whereas a full S3 requires the

range 0 ≤ ψ ≤ 4π. As expected, this metric is nonsingular at r = 0. In the commutative

limit of ζ → 0, one may ignore any interactions between instantons completely leading to

the metric for

R
4 × R

4/Z2

or

T 4 × T 4/Z2

including the global boundary conditions, where Z2 is interpreted as the permutation sym-

metry of identical particles. Thus the Hilbert space for two KK modes is realized by the

two instanton dynamics.

Their quantum mechanical Hamiltonian is given by the Laplacian operators of the

geometry acting on the wave functions with internal structure characterized by n-forms.

It is well known that the Eguchi-Hanson metric allows a unique normalizable selfdual

harmonic two-form state

ω2 = − 2r3

(r4 + 4ζ2)
3

2

dr ∧ σ3 +
1

(r4 + 4ζ2)
1

2

σ1 ∧ σ2

This is interpreted as a threshold bound state two U(1) instantons. As noticed in [13], this

threshold bound state corresponds to the state of the charge two (n5 = 2) KK mode.

For the maximally supersymmetric case, the counting of relevant two-instanton states

goes as follows. As explained each D0 brane has 24 states, eight bosonic and eight fermionic.

Now for two D0 branes, considering them as identical particles, the exchange symmetry

has to be incorporated in this counting of internal states. There are 1
2 × 8 × 9 possible

states with both D0 branes in the bosonic states. There are also 1
2 × 8× 7 states with both

D0 branes in (different) fermionic states (due to the exclusion principle). The remaining

possibilities include 8 × 8 states with one in a bosonic state and one in a fermionic state.

Hence the two (separate) D0 branes involve in total 128 states. But as just described above,

two D0 branes can also form a threshold bound state and be bound to the D4 brane, which

is then identified as a single n5 = 2 KK mode. This involves 16 states as a single entity.

Thus the total number of states with n5 = 2 is counted as d2 = 16 + 128 = 144.

Threshold bound states for n5 > 2 have not yet been constructed. However their

existence was proven in [14]. For n5 = 3 there is thus a threshold bound state which

corresponds to a single instanton particle carrying instanton number n5 = 3 and which

has 16 internal states (eight bosonic plus eight fermionic). We can also have two separate

instanton particles, one with instanton number n5 = 1 and the other being a treshold bound

state with instanton number n5 = 2. Since these two instanton particles are distinct they

contribute with 16×16 = 256 internal states. Finally we can have three separate instantons

each carrying instanton number n5 = 1. As each of these instantons can be either bosonic

or fermionic they add up to 120 + 288 + 224 + 56 = 688 internal states. (The four terms

correspond to instanton types BBB, BBF , BFF , FFF where B and F refers to 8-bosonic

and 8-fermionic states.) Thus for n5 = 3 we have in total d3 = 16+256+688 = 960 states.
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In general we get the total number of degrees of freedom dn5
at a given instanton number

n5 from the following generating partition function as

28
∞∑

n=0

dn q
n = 28

∞∏

n5=1

(
1 + qn5

1− qn5

)8
(8.3)

where the overall 28 is the counting of states for D4 brane ground states. This formula can

be derived from the counting of BPS states in string theory and using some chains of U

dualities [14, 28]. We have explicitly checked that the coefficient d1, d2 and d3 are correctly

generated by this generating function.

The counting is precisely in parallel with the required KK states which is the missing

part of M5 brane partition function in the naive D4 brane computation without incorpo-

rating instanton contributions. We note that ZM5
osc,pi=0 as obtained in eq. (7.1) contains as

one factor the generating function of instantons (8.3). The second factor in eq. (7.1) which

involves a product over q̃ shall be interpreted as the contribution from anti-instantons.

Instantons are BPS configurations, which means that static instantons do not interact

among themselves. Static anti-instantons likewise do not interact among themselves. How-

ever an instanton interacts with an anti-instanton since such a configuration is not BPS.

Also if we give some small momenta to instantons, they start to interact and feel the metric

of the moduli space. However as the instanton and anti-instanton sizes become small in

the commutative limit, the moduli space becomes flat and these become non-interacting

particles. In the same fashion instanton and anti-instanton interactions disappear in this

limit. Their contribution to the D4 brane partition function then factorizes. First from

the instantons we have the factor

Z inst =
∏

ni∈Z
Z inst
ni

where ni labels momenta of an instanton or a threshold-bound state of instantons which

we call a KK particle with n5 = 1 or with some nonvanishing n5 respectively. Using the

counting of degrees of freedom as obtained above up to instanton number n5 = 3, we have

the following contribution from KK particles with a specific momentum ni to the D4 brane

partition function

Z inst
ni

= 1 + 16 e
2πiE+

ni,1 + 16 e
2πiE+

ni,2 + 128 e
4πiE+

ni,1

+16 e
2πiE+

ni,3 + 256 e
2πi

(

E+
ni,1

+E+
ni,2

)

+ 688 e
6πiE+

ni,1

+ . . .

where E+
ni,n5

refers to −p−0 > 0 where p±0 are the two roots to the equation (8.2). Second

from the anti-instantons we have the factor

Zanti-inst =
∏

ni

Zanti-inst
ni
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As we have seen, the anti-instanton is associated with E+
ni,n5

= −p−0 > 0 for n5 negative.

We then find that

Zanti-inst
ni

= 1 + 16 e
2πiE+

ni,−1 + 16 e
2πiE+

ni,−2 + 128 e
4πiE+

ni,−1

+16 e
2πiE+

ni,−3 + 256 e
2πi

(

E+
ni,−1

+E+
ni,−2

)

+ 688 e
6πiE+

ni,−1

+ . . .

We now claim that n5 6= 0 contributions to the M5 brane partition function contain gen-

erating functions for these instanton and anti-instanton threshold bound states. More

precisely, we claim that

Z inst
ni

=
∞∏

n5=1

(
1 + e2πiE

+
ni,n5

1− e2πiE
+
ni,n5

)8

Zanti-inst
ni

=
−1∏

n5=−∞

(
1 + e2πiE

+
ni,n5

1− e2πiE
+
ni,n5

)8

It is rather easy to check explicitly that these generating functions reproduce the correct

number of degrees of freedom for each threshold bound state up to total instanton number

n5 = 3. By noting the relation

E+
ni,n5

= −E−
−ni,−n5

it is easy to see that we have

ZM5(T 6) = ZD4(T 5)Z inst(T 5)Zanti-inst(T 5)

where the various factors on the right-hand side correspond to instanton numbers n5 = 0,

n5 > 0 and n5 < 0 respectively. We may also phrase this relation as

ZM5(T 6) = lim
ζ,ξ→0

ZD4
ζ,ξ (T

5)

since the non-commutative D4 already has those instanton sectors in the theory so they

shall not be supplemented.

There is now little doubt that the M5 brane is really the same thing as (noncommu-

tative) D4 in the above sense. In particular the M5 brane partition function encodes the

number of internal degrees of freedom of each D0 brane threshold bound state.

One final note is the fact that the zero mode part of the partition function include

also so called large instanton configurations which are satisfying the same (anti) selfdual

equation of instantons. However as we showed explicitly, these large instantons are nothing

to do with D0 branes. Namely, without involving any D0 branes, we have shown that the

zero mode part of D4 and M5 has already an agreement with each other.

Since the essential properties of small instanton contribution we are using are only

local ones, one expects that the above discussion can be extended to the case of general five

manifold with circle fibration. But the relevant ADHM construction and the corresponding

regularization is lacking currently. We shall leave this issue for future investigations.
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9 Singular fibration

So far we have considered circle fibers with constant radius R. We may also consider

situations where R depends on the D4 brane worldvolume coordinate. At some points

one may also allow R = 0 in which case we have a singular fibration. From the M5

brane worldvolume point of view such singular fibrations are smooth and pose no further

problems in the computation of the partition function, but from the D4 brane point of

view the computation of the partition function becomes much more difficult when R is not

constant. Also we may need to add new degrees of freedom at the locus of the singularity

R = 0. As a singular fibration we may consider the M5 brane worldvolume on the form

W = TN ×T 2 with TN being a Taub-NUT space that supports a single harmonic selfdual

two-form Ω+. Such a fibration has been considered also in [15, 29]. Then the zero mode part

of the M5 brane partition function will involve Θ(τ) where τ is the period matrix on T 2.

There is no fully modular invariant theta function except for Θ

[
1

2
1

2

]
(τ) that vanishes,12 so

the M5 brane partition function will depend on the choice of spin structure. As symplectic

basis of harmonic three-forms on W we take

α = Ω+ ∧ dx
β = Ω+ ∧ dy

and the period matrix of W becomes the τ parameter of T 2. On the five-dimensional base-

manifold R
3×T 2 we have sYM theory with coupling constant g2 ∼ R. It appears that the

zero mode contribution from sYM can not give us a τ dependence of the partition function

because the only harmonic two-form is the one on T 2 itself, while to have a τ dependence

we would need a harmonic two-form that has only one component on T 2. Such a harmonic

two-form is not normalizable on R
3 × T 2 and must be excluded. Instead we have to add a

chiral scalar action localized at the singularity {0} × T 2 of TN × T 2. The chiral scalar of

course gives us a partition function Θ(τ) on T 2.

Another way to see this is by studying the gauge anomaly cancelation. The gravipho-

ton term

SsYM =
1

8π2

∫

R3×T 2

A ∧ dA ∧ w

with

w = − 1

2r3
ǫijkx

idxj ∧ dxk

has the anomalous gauge variation

δSsYM =
1

8π2

∫

T 2×R+

dλ ∧ F
∫

S2

w

=
1

4π

∫

T 2

λF

under the variation

δA = dλ
12That is not so if we couple M5 brane to a background C field though.
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This gauge anomaly can be canceled by a gauged scalar field theory

SWZW =
1

8π

∫

T 2

(
|dφ+A|2 + 2φF

)

supported on {0} × T 2 whose gauge variation is

δSWZW = − 1

4π

∫

T 2

λF

under

δφ = −λ
δA = dλ

Moreover, 2π periodicity of the holonomy
∫
A implies that φ is also 2π periodic in order

to make dφ + A a gauge invariant quantity. Now this together with the normalization

we found for SWZW tells us that we have a coupling constant which corresponds to the

free fermion radius. This action corresponds to Chern-Simons theory in three dimensions

at level k = 1. Such a Chern-Simons theory may be derived from seven dimensions by

expanding

C = Ω+ ∧A

We then get
k

4π

∫

R×W
C ∧ dC =

k

4π

∫

TN

Ω+ ∧ Ω+

∫

R×T 2

A ∧ dA

The selfdual harmonic two-form was found in [30, 31]. We will normalize it so that Ω+ =
1
4πω where

ω =
r

r + 1
σ1 ∧ σ2 +

1

(r + 1)2
dr ∧ σ3

using the notation and conventions of [30]. Then we have

∫

c

Ω+ = 1

∫
Ω+ ∧ Ω+ = 1

where the three-cycle c is spanning the r, ψ plane where the coordinate range is ψ ∈ [0, 4π].

We then find that A is a connection one-form whose holonomy is 2π periodic, induced from

C, and we find that
k

4π

∫
A ∧ dA

with standard normalization, induced from Chern-Simons action for C.

Another generalization we did not consider in this paper is to include six-manifolds

which have no one-cycles at all. As we can see from our appendix A, once we have a

one-cycle, there is a natural choice of symplectic basis of three-forms and corresponding

three-cycles. If we have no one-cycle in our six-manifold we may of course still find a
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symplectic basis though the method in appendix A does not apply to such cases. For

example we may consider the case when the six-manifold is W = S3 × S3. On S3 we do

not have a one-cycle even though it can be viewed as a Hopf bundle over a base manifold

S2. Nevertheless we can define a symplectic basis for this situation by taking as basis

three-forms certain rescaled volume forms on each of the two S3 respectively. One may

also consider a situation where the two Hopf fibers make up a skew torus, in which case

the period matrix τ (which is just a complex number) can take any value in the upper

half-plane. Also we have been ignorant about curvature corrections and essentially our

presentation in the present paper is correct only for a flat T 6. On curved space we need

to add a curvature term for the scalar fields to maintain conformal invariance. Moreover

superconformal invariance puts severe constraints on the possible six-manifolds one may

consider [32]. However one may circumvent this constraint from superconformal invariance

by considering a situation where one has a background flux on S3 which spontaneously

breaks conformal symmetry, while preserving maximal supersymmetry. Such a situation

was considered in [33] where it was shown that the zero mode parts of the M5 brane

partition function on T 3 × S3 matches with the corresponding zero mode part of the D4

brane partition function on T 3 × S2 respectively. It would be interesting to extend this

analysis to the oscillator modes.
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A Period matrix on S
1
× M5

We assume a six-manifold on the formM6 = S1×M5. On the space of harmonic two-forms

Ωi on M5, we define a metric

Gij =
∫

Ωi ∧ ∗Ωj

where ∗ denotes the Hodge star on M5. We define a basis of dual harmonic three-forms

Ω̃i = 2πGij ∗ Ωj

where Gij is the inverse of Gij . Then we have a symplectic basis

αi = Ω̃i

βi = Ωi ∧ dt

We assume
∫
dt = 2π and that

∫
Cj

Ωi = δij when integrated over dual two-cycle. The αi

and βi then have periods 2π when integrated over their dual three-cycles in M6. We also

have the symplectic property ∫
αi ∧ βj = 4π2δji
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One may object that we should not need a metric to define a symplectic basis. As we will

see in the next section, if M6 = T 2 ×M4 then this symplectic basis can be rewritten in

terms of the intersection form on M4 and the metric does not enter the definition of the

symplectic basis.

We define the period matrix τij and its conjugate τ̄ij by requiring that

ωi = αi + τijβ
j

ω̄i = αi + τ̄ijβ
j

are selfdual and antiselfdual respectively with respect to the six-dimensional Hodge star

that we define with respect to the six-dimensional metric tensor

gMN =

(
1
β

1
β
V n

1
β
V m Gmn + 1

β
V mV n

)

We will define this six-dimensional Hodge-star when acting on three-forms as

∗6dxM ∧ dxN ∧ dxP =
1

6

√−gǫMNP
M ′N ′P ′dxM

′ ∧ dxN ′ ∧ dxP ′

This definition is related to the conventional Hodge-star as ∗6 =
√
−β√
|β|

∗6,conventional. Our

Hodge-star depends holomorphically on β which we may promote into a holomorphic co-

ordinate. Our Hodge star now squares according to

∗6∗6 = 1

when acting on three-forms in six dimensions, and so we shall by selfduality/antiselfduality

mean that

∗6ω = ω

∗6ω̄ = −ω̄

It turns out that the solution to these conditions can be expressed like

τij = −(τ1)ij − (τ2)ij

where

αi = (τ1)ijβ
j + (τ2)ij ∗6 βj

If we expand

∗6βi = Cijαj +Aijβ
j

then

Xij = (C−1)ikA
k
j

Yij = (C−1)ij
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From the symplectic properties, it follows that

Cij =
1

4π2

∫
∗6βi ∧ βj

Aij = − 1

4π2

∫
∗6βi ∧ αj

By brute force computation we get

∫
∗6βi ∧ βj =

2π√
−βG

ij

∫
∗6βi ∧ αj =

2π√
−βGjk2πL

ki

Here we define

Ki
j =

1

2

∫
d5x

√
GΩimnΩ̃

mnp
j Vp

Lij =
1

4

∫
d5xGǫmnpqrΩimnΩ

j
pqVr

and we have the relation

Kij = 2πLij

however the latter form Lij shows manifest symmetry in ij. Then we get the period

matrix as

τij = 2π
(
− Lij +

√
−βGij

)

B Period matrix on T
2
× M4

For simplicity we assume that M4 has no one-cycles. Then the harmonic two-forms on M4

must be the same as the harmonic two-forms on M5 = S1 ×M4. Let us here denote these

harmonic two-forms as

ΩI =
1

2
ΩImndx

m ∧ dxn =
1

2
ΩIijdx

i ∧ dxj

where xm = (x, xi) for i = 1, 2, 3, 4 and x denotes the coordinate on the spatial S1 in M5.

We define the intersection form and the metric on H2(M4,Z) as

QIJ =

∫

M4

ΩI ∧ ΩJ

GIJ =

∫

M4

ΩI ∧ ∗4ΩJ

We then find that

∗4ΩI = XI
JΩ

J

where

XI
J = GIK(Q−1)KJ
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By ∗4∗4 = 1 when acting on two-forms, we get

GIK(Q−1)KJ = QIKGKJ

We define a symplectic basis on M6 as

αI = (Q−1)IJΩ
J ∧ dx

βI = ΩI ∧ dt

and indeed this is consistent with our choice of symplectic basis on S1×M5 in our previous

section. To see this we first notice that

GIJ = 2πRGIJ

and then

2π

∫

M5

∗5ΩK ∧ ΩL = GKI(Q−1)IJ

∫

M5

ΩJ ∧ ΩL ∧ dx

Since ΩI is an arbitrary element of H2(M4,Z) we conclude that

2πGIK ∗5 ΩK = (Q−1)IJΩ
J ∧ dx

We define the period matrix as

τIJ = −(τ1)IJ − (τ2)IJ

where

αI = (τ1)IJβ
J + YIJ ∗6 βJ

We have

∗6βI = ∗4ΩI ∧ ∗2dt
and we have

∗4ΩI = GIK(Q−1)KJΩ
J

∗2dt =
√
γ√
−β (−dx+ V xdt)

We define the two-dimensional period matrix as

τ = −τ1 − τ2

where

α = τ1β + τ2 ∗2 β
and where

β = dt

α = dx

From this definition we get

τ = −V x +

√
−β√
γ

We get the six-dimensional period matrix as

τIJ = τ1(Q
−1)IJ + τ2GIJ
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C Holomorphic factorization

The Hamiltonian is

H = −τ2
(
n2 +

1

4
m2

)
− τ1nm

=
1

2

((
m

2
+ n

)2
τ −

(
m

2
− n

)2
τ̄

)

The partition function is

∑
e2πiH =

∑
eiπτ(n+

m
2 )

2

e−iπτ̄(n−
m
2 )

2

Following page 115 in [6] we define

q = e2πiτ

q̄ = e−2πiτ̄

and compute

∑
|Θ
[
α
β

]
(−τ)|2 =

∑(
q

1

2
n2

q̄
1

2
m2

+ q
1

2(n+
1

2)
2

q̄
1

2(m+ 1

2)
2
)1
2

(
1 + (−1)n+m

)

As the summand vanishes unless n+m = 2p is even, we can substitute

m = 2p− n

and we get a sum over n, p

∑(
q

1

2
n2

q̄
1

2
(2p−n)2 + q

1

2(n+
1

2)
2

q̄
1

2(2p−n+
1

2)
2
)

We substitute

n = p− q

and we get

∑(
q

1

2
(p−q)2 q̄

1

2
(p+q)2 + q

1

2(p−q+
1

2)
2

q̄
1

2(p+q+
1

2)
2
)
=
∑

q
1

2(
m
2
−q)2 q̄

1

2(
m
2
+q)

2

=
∑

e2πiH

since in the second line we may break the sum over m into sum over m = 2p and a sum

over m = 2p+ 1.
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